Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.116.2.9
      1 /*	$NetBSD: uvm_aobj.c,v 1.116.2.9 2014/05/22 19:11:57 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.116.2.9 2014/05/22 19:11:57 yamt Exp $");
     42 
     43 #include "opt_uvmhist.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/kmem.h>
     49 #include <sys/pool.h>
     50 #include <sys/atomic.h>
     51 
     52 #include <uvm/uvm.h>
     53 #include <uvm/uvm_page_array.h>
     54 
     55 /*
     56  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
     57  * keeping the list of resident pages, it may also keep a list of allocated
     58  * swap blocks.  Depending on the size of the object, this list is either
     59  * stored in an array (small objects) or in a hash table (large objects).
     60  *
     61  * Lock order
     62  *
     63  *	uao_list_lock ->
     64  *		uvm_object::vmobjlock
     65  */
     66 
     67 /*
     68  * Note: for hash tables, we break the address space of the aobj into blocks
     69  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
     70  */
     71 
     72 #define	UAO_SWHASH_CLUSTER_SHIFT	4
     73 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
     74 
     75 /* Get the "tag" for this page index. */
     76 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
     77 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
     78     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     79 
     80 /* Given an ELT and a page index, find the swap slot. */
     81 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
     82     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
     83 
     84 /* Given an ELT, return its pageidx base. */
     85 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     86     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     87 
     88 /* The hash function. */
     89 #define	UAO_SWHASH_HASH(aobj, idx) \
     90     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
     91     & (aobj)->u_swhashmask)])
     92 
     93 /*
     94  * The threshold which determines whether we will use an array or a
     95  * hash table to store the list of allocated swap blocks.
     96  */
     97 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
     98 #define	UAO_USES_SWHASH(aobj) \
     99     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
    100 
    101 /* The number of buckets in a hash, with an upper bound. */
    102 #define	UAO_SWHASH_MAXBUCKETS		256
    103 #define	UAO_SWHASH_BUCKETS(aobj) \
    104     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
    105 
    106 /*
    107  * uao_swhash_elt: when a hash table is being used, this structure defines
    108  * the format of an entry in the bucket list.
    109  */
    110 
    111 struct uao_swhash_elt {
    112 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    113 	voff_t tag;				/* our 'tag' */
    114 	int count;				/* our number of active slots */
    115 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    116 };
    117 
    118 /*
    119  * uao_swhash: the swap hash table structure
    120  */
    121 
    122 LIST_HEAD(uao_swhash, uao_swhash_elt);
    123 
    124 /*
    125  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    126  * Note: pages for this pool must not come from a pageable kernel map.
    127  */
    128 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
    129 
    130 /*
    131  * uvm_aobj: the actual anon-backed uvm_object
    132  *
    133  * => the uvm_object is at the top of the structure, this allows
    134  *   (struct uvm_aobj *) == (struct uvm_object *)
    135  * => only one of u_swslots and u_swhash is used in any given aobj
    136  */
    137 
    138 struct uvm_aobj {
    139 	struct uvm_object u_obj; /* has: lock, pgops, #pages, #refs */
    140 	pgoff_t u_pages;	 /* number of pages in entire object */
    141 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    142 	int *u_swslots;		 /* array of offset->swapslot mappings */
    143 				 /*
    144 				  * hashtable of offset->swapslot mappings
    145 				  * (u_swhash is an array of bucket heads)
    146 				  */
    147 	struct uao_swhash *u_swhash;
    148 	u_long u_swhashmask;		/* mask for hashtable */
    149 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    150 };
    151 
    152 static void	uao_free(struct uvm_aobj *);
    153 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    154 		    int *, int, vm_prot_t, int, int);
    155 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    156 
    157 #if defined(VMSWAP)
    158 static struct uao_swhash_elt *uao_find_swhash_elt
    159     (struct uvm_aobj *, int, bool);
    160 
    161 static bool uao_pagein(struct uvm_aobj *, int, int);
    162 static bool uao_pagein_page(struct uvm_aobj *, int);
    163 #endif /* defined(VMSWAP) */
    164 
    165 /*
    166  * aobj_pager
    167  *
    168  * note that some functions (e.g. put) are handled elsewhere
    169  */
    170 
    171 const struct uvm_pagerops aobj_pager = {
    172 	.pgo_reference = uao_reference,
    173 	.pgo_detach = uao_detach,
    174 	.pgo_get = uao_get,
    175 	.pgo_put = uao_put,
    176 };
    177 
    178 /*
    179  * uao_list: global list of active aobjs, locked by uao_list_lock
    180  */
    181 
    182 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
    183 static kmutex_t		uao_list_lock		__cacheline_aligned;
    184 
    185 /*
    186  * hash table/array related functions
    187  */
    188 
    189 #if defined(VMSWAP)
    190 
    191 /*
    192  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    193  * offset.
    194  *
    195  * => the object should be locked by the caller
    196  */
    197 
    198 static struct uao_swhash_elt *
    199 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    200 {
    201 	struct uao_swhash *swhash;
    202 	struct uao_swhash_elt *elt;
    203 	voff_t page_tag;
    204 
    205 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    206 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    207 
    208 	/*
    209 	 * now search the bucket for the requested tag
    210 	 */
    211 
    212 	LIST_FOREACH(elt, swhash, list) {
    213 		if (elt->tag == page_tag) {
    214 			return elt;
    215 		}
    216 	}
    217 	if (!create) {
    218 		return NULL;
    219 	}
    220 
    221 	/*
    222 	 * allocate a new entry for the bucket and init/insert it in
    223 	 */
    224 
    225 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    226 	if (elt == NULL) {
    227 		return NULL;
    228 	}
    229 	LIST_INSERT_HEAD(swhash, elt, list);
    230 	elt->tag = page_tag;
    231 	elt->count = 0;
    232 	memset(elt->slots, 0, sizeof(elt->slots));
    233 	return elt;
    234 }
    235 
    236 /*
    237  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    238  *
    239  * => object must be locked by caller
    240  */
    241 
    242 int
    243 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    244 {
    245 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    246 	struct uao_swhash_elt *elt;
    247 
    248 	/*
    249 	 * if noswap flag is set, then we never return a slot
    250 	 */
    251 
    252 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    253 		return 0;
    254 
    255 	/*
    256 	 * if hashing, look in hash table.
    257 	 */
    258 
    259 	if (UAO_USES_SWHASH(aobj)) {
    260 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    261 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
    262 	}
    263 
    264 	/*
    265 	 * otherwise, look in the array
    266 	 */
    267 
    268 	return aobj->u_swslots[pageidx];
    269 }
    270 
    271 /*
    272  * uao_set_swslot: set the swap slot for a page in an aobj.
    273  *
    274  * => setting a slot to zero frees the slot
    275  * => object must be locked by caller
    276  * => we return the old slot number, or -1 if we failed to allocate
    277  *    memory to record the new slot number
    278  */
    279 
    280 int
    281 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    282 {
    283 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    284 	struct uao_swhash_elt *elt;
    285 	int oldslot;
    286 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    287 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    288 	    aobj, pageidx, slot, 0);
    289 
    290 	KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
    291 
    292 	/*
    293 	 * if noswap flag is set, then we can't set a non-zero slot.
    294 	 */
    295 
    296 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    297 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
    298 		return 0;
    299 	}
    300 
    301 	/*
    302 	 * are we using a hash table?  if so, add it in the hash.
    303 	 */
    304 
    305 	if (UAO_USES_SWHASH(aobj)) {
    306 
    307 		/*
    308 		 * Avoid allocating an entry just to free it again if
    309 		 * the page had not swap slot in the first place, and
    310 		 * we are freeing.
    311 		 */
    312 
    313 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    314 		if (elt == NULL) {
    315 			return slot ? -1 : 0;
    316 		}
    317 
    318 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    319 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    320 
    321 		/*
    322 		 * now adjust the elt's reference counter and free it if we've
    323 		 * dropped it to zero.
    324 		 */
    325 
    326 		if (slot) {
    327 			if (oldslot == 0)
    328 				elt->count++;
    329 		} else {
    330 			if (oldslot)
    331 				elt->count--;
    332 
    333 			if (elt->count == 0) {
    334 				LIST_REMOVE(elt, list);
    335 				pool_put(&uao_swhash_elt_pool, elt);
    336 			}
    337 		}
    338 	} else {
    339 		/* we are using an array */
    340 		oldslot = aobj->u_swslots[pageidx];
    341 		aobj->u_swslots[pageidx] = slot;
    342 	}
    343 	return oldslot;
    344 }
    345 
    346 #endif /* defined(VMSWAP) */
    347 
    348 /*
    349  * end of hash/array functions
    350  */
    351 
    352 /*
    353  * uao_free: free all resources held by an aobj, and then free the aobj
    354  *
    355  * => the aobj should be dead
    356  */
    357 
    358 static void
    359 uao_free(struct uvm_aobj *aobj)
    360 {
    361 	struct uvm_object *uobj = &aobj->u_obj;
    362 
    363 	KASSERT(mutex_owned(uobj->vmobjlock));
    364 	uao_dropswap_range(uobj, 0, 0);
    365 	mutex_exit(uobj->vmobjlock);
    366 
    367 #if defined(VMSWAP)
    368 	if (UAO_USES_SWHASH(aobj)) {
    369 
    370 		/*
    371 		 * free the hash table itself.
    372 		 */
    373 
    374 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    375 	} else {
    376 
    377 		/*
    378 		 * free the array itsself.
    379 		 */
    380 
    381 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    382 	}
    383 #endif /* defined(VMSWAP) */
    384 
    385 	/*
    386 	 * finally free the aobj itself
    387 	 */
    388 
    389 	uvm_obj_destroy(uobj, true);
    390 	kmem_free(aobj, sizeof(struct uvm_aobj));
    391 }
    392 
    393 /*
    394  * pager functions
    395  */
    396 
    397 /*
    398  * uao_create: create an aobj of the given size and return its uvm_object.
    399  *
    400  * => for normal use, flags are always zero
    401  * => for the kernel object, the flags are:
    402  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    403  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    404  */
    405 
    406 struct uvm_object *
    407 uao_create(vsize_t size, int flags)
    408 {
    409 	static struct uvm_aobj kernel_object_store;
    410 	static int kobj_alloced __diagused = 0;
    411 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    412 	struct uvm_aobj *aobj;
    413 	int refs;
    414 
    415 	/*
    416 	 * Allocate a new aobj, unless kernel object is requested.
    417 	 */
    418 
    419 	if (flags & UAO_FLAG_KERNOBJ) {
    420 		KASSERT(!kobj_alloced);
    421 		aobj = &kernel_object_store;
    422 		aobj->u_pages = pages;
    423 		aobj->u_flags = UAO_FLAG_NOSWAP;
    424 		refs = UVM_OBJ_KERN;
    425 		kobj_alloced = UAO_FLAG_KERNOBJ;
    426 	} else if (flags & UAO_FLAG_KERNSWAP) {
    427 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    428 		aobj = &kernel_object_store;
    429 		kobj_alloced = UAO_FLAG_KERNSWAP;
    430 		refs = 0xdeadbeaf; /* XXX: gcc */
    431 	} else {
    432 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    433 		aobj->u_pages = pages;
    434 		aobj->u_flags = 0;
    435 		refs = 1;
    436 	}
    437 
    438 	/*
    439  	 * allocate hash/array if necessary
    440  	 *
    441  	 * note: in the KERNSWAP case no need to worry about locking since
    442  	 * we are still booting we should be the only thread around.
    443  	 */
    444 
    445 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    446 #if defined(VMSWAP)
    447 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    448 
    449 		/* allocate hash table or array depending on object size */
    450 		if (UAO_USES_SWHASH(aobj)) {
    451 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    452 			    HASH_LIST, kernswap ? false : true,
    453 			    &aobj->u_swhashmask);
    454 			if (aobj->u_swhash == NULL)
    455 				panic("uao_create: hashinit swhash failed");
    456 		} else {
    457 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    458 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    459 			if (aobj->u_swslots == NULL)
    460 				panic("uao_create: swslots allocation failed");
    461 		}
    462 #endif /* defined(VMSWAP) */
    463 
    464 		if (flags) {
    465 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    466 			return &aobj->u_obj;
    467 		}
    468 	}
    469 
    470 	/*
    471 	 * Initialise UVM object.
    472 	 */
    473 
    474 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
    475 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
    476 	if (__predict_false(kernobj)) {
    477 		/* Initialisation only once, for UAO_FLAG_KERNOBJ. */
    478 		uvm_obj_setlock(&aobj->u_obj,
    479 		    mutex_obj_alloc_kernel_obj_lock(MUTEX_DEFAULT, IPL_NONE));
    480 	}
    481 
    482 	/*
    483  	 * now that aobj is ready, add it to the global list
    484  	 */
    485 
    486 	mutex_enter(&uao_list_lock);
    487 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    488 	mutex_exit(&uao_list_lock);
    489 	return(&aobj->u_obj);
    490 }
    491 
    492 /*
    493  * uao_init: set up aobj pager subsystem
    494  *
    495  * => called at boot time from uvm_pager_init()
    496  */
    497 
    498 void
    499 uao_init(void)
    500 {
    501 	static int uao_initialized;
    502 
    503 	if (uao_initialized)
    504 		return;
    505 	uao_initialized = true;
    506 	LIST_INIT(&uao_list);
    507 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    508 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    509 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    510 }
    511 
    512 /*
    513  * uao_reference: hold a reference to an anonymous UVM object.
    514  */
    515 void
    516 uao_reference(struct uvm_object *uobj)
    517 {
    518 	/* Kernel object is persistent. */
    519 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    520 		return;
    521 	}
    522 	atomic_inc_uint(&uobj->uo_refs);
    523 }
    524 
    525 /*
    526  * uao_detach: drop a reference to an anonymous UVM object.
    527  */
    528 void
    529 uao_detach(struct uvm_object *uobj)
    530 {
    531 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    532 	struct uvm_page_array a;
    533 	struct vm_page *pg;
    534 
    535 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    536 
    537 	/*
    538 	 * Detaching from kernel object is a NOP.
    539 	 */
    540 
    541 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    542 		return;
    543 
    544 	/*
    545 	 * Drop the reference.  If it was the last one, destroy the object.
    546 	 */
    547 
    548 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    549 	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
    550 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    551 		return;
    552 	}
    553 
    554 	/*
    555 	 * Remove the aobj from the global list.
    556 	 */
    557 
    558 	mutex_enter(&uao_list_lock);
    559 	LIST_REMOVE(aobj, u_list);
    560 	mutex_exit(&uao_list_lock);
    561 
    562 	/*
    563 	 * Free all the pages left in the aobj.  For each page, when the
    564 	 * page is no longer busy (and thus after any disk I/O that it is
    565 	 * involved in is complete), release any swap resources and free
    566 	 * the page itself.
    567 	 */
    568 
    569 	uvm_page_array_init(&a);
    570 	mutex_enter(uobj->vmobjlock);
    571 	mutex_enter(&uvm_pageqlock);
    572 	while ((pg = uvm_page_array_fill_and_peek(&a, uobj, 0, 0, 0))
    573 	    != NULL) {
    574 		uvm_page_array_advance(&a);
    575 		pmap_page_protect(pg, VM_PROT_NONE);
    576 		if (pg->flags & PG_BUSY) {
    577 			pg->flags |= PG_WANTED;
    578 			mutex_exit(&uvm_pageqlock);
    579 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
    580 			    "uao_det", 0);
    581 			uvm_page_array_clear(&a);
    582 			mutex_enter(uobj->vmobjlock);
    583 			mutex_enter(&uvm_pageqlock);
    584 			continue;
    585 		}
    586 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    587 		uvm_pagefree(pg);
    588 	}
    589 	mutex_exit(&uvm_pageqlock);
    590 	uvm_page_array_fini(&a);
    591 
    592 	/*
    593 	 * Finally, free the anonymous UVM object itself.
    594 	 */
    595 
    596 	uao_free(aobj);
    597 }
    598 
    599 /*
    600  * uao_put: flush pages out of a uvm object
    601  *
    602  * => object should be locked by caller.  we may _unlock_ the object
    603  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    604  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    605  *	XXXJRT a page, we simply just deactivate it.  Should probably
    606  *	XXXJRT handle this better, in the future (although "flushing"
    607  *	XXXJRT anonymous memory isn't terribly important).
    608  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    609  *	or block.
    610  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    611  *	for flushing.
    612  * => NOTE: we are allowed to lock the page queues, so the caller
    613  *	must not be holding the lock on them [e.g. pagedaemon had
    614  *	better not call us with the queues locked]
    615  * => we return 0 unless we encountered some sort of I/O error
    616  *	XXXJRT currently never happens, as we never directly initiate
    617  *	XXXJRT I/O
    618  */
    619 
    620 static int
    621 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    622 {
    623 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    624 	struct uvm_page_array a;
    625 	struct vm_page *pg;
    626 	voff_t curoff;
    627 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    628 
    629 	KASSERT(mutex_owned(uobj->vmobjlock));
    630 
    631 	if (flags & PGO_ALLPAGES) {
    632 		start = 0;
    633 		stop = aobj->u_pages << PAGE_SHIFT;
    634 	} else {
    635 		start = trunc_page(start);
    636 		if (stop == 0) {
    637 			stop = aobj->u_pages << PAGE_SHIFT;
    638 		} else {
    639 			stop = round_page(stop);
    640 		}
    641 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    642 			printf("uao_flush: strange, got an out of range "
    643 			    "flush (fixed) %"PRIu64" -> %"PRIu64"\n",
    644 			    aobj->u_pages << PAGE_SHIFT, stop);
    645 			stop = aobj->u_pages << PAGE_SHIFT;
    646 		}
    647 	}
    648 	UVMHIST_LOG(maphist,
    649 	    " flush start=0x%lx, stop=0x%x, flags=0x%x",
    650 	    start, stop, flags, 0);
    651 
    652 	/*
    653 	 * Don't need to do any work here if we're not freeing
    654 	 * or deactivating pages.
    655 	 */
    656 
    657 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    658 		mutex_exit(uobj->vmobjlock);
    659 		return 0;
    660 	}
    661 
    662 	/* locked: uobj */
    663 	uvm_page_array_init(&a);
    664 	curoff = start;
    665 	while ((pg = uvm_page_array_fill_and_peek(&a, uobj, curoff, 0, 0)) !=
    666 	    NULL) {
    667 		if (pg->offset >= stop) {
    668 			break;
    669 		}
    670 
    671 		/*
    672 		 * wait and try again if the page is busy.
    673 		 */
    674 
    675 		if (pg->flags & PG_BUSY) {
    676 			pg->flags |= PG_WANTED;
    677 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    678 			    "uao_put", 0);
    679 			uvm_page_array_clear(&a);
    680 			mutex_enter(uobj->vmobjlock);
    681 			continue;
    682 		}
    683 		uvm_page_array_advance(&a);
    684 		curoff = pg->offset + PAGE_SIZE;
    685 
    686 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    687 
    688 		/*
    689 		 * XXX In these first 3 cases, we always just
    690 		 * XXX deactivate the page.  We may want to
    691 		 * XXX handle the different cases more specifically
    692 		 * XXX in the future.
    693 		 */
    694 
    695 		case PGO_CLEANIT|PGO_FREE:
    696 		case PGO_CLEANIT|PGO_DEACTIVATE:
    697 		case PGO_DEACTIVATE:
    698  deactivate_it:
    699 			mutex_enter(&uvm_pageqlock);
    700 			/* skip the page if it's wired */
    701 			if (pg->wire_count == 0) {
    702 				uvm_pagedeactivate(pg);
    703 			}
    704 			mutex_exit(&uvm_pageqlock);
    705 			break;
    706 
    707 		case PGO_FREE:
    708 			/*
    709 			 * If there are multiple references to
    710 			 * the object, just deactivate the page.
    711 			 */
    712 
    713 			if (uobj->uo_refs > 1)
    714 				goto deactivate_it;
    715 
    716 			/*
    717 			 * free the swap slot and the page.
    718 			 */
    719 
    720 			pmap_page_protect(pg, VM_PROT_NONE);
    721 
    722 			/*
    723 			 * freeing swapslot here is not strictly necessary.
    724 			 * however, leaving it here doesn't save much
    725 			 * because we need to update swap accounting anyway.
    726 			 */
    727 
    728 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    729 			mutex_enter(&uvm_pageqlock);
    730 			uvm_pagefree(pg);
    731 			mutex_exit(&uvm_pageqlock);
    732 			break;
    733 
    734 		default:
    735 			panic("%s: impossible", __func__);
    736 		}
    737 	}
    738 	mutex_exit(uobj->vmobjlock);
    739 	uvm_page_array_fini(&a);
    740 	return 0;
    741 }
    742 
    743 /*
    744  * uao_get: fetch me a page
    745  *
    746  * we have three cases:
    747  * 1: page is resident     -> just return the page.
    748  * 2: page is zero-fill    -> allocate a new page and zero it.
    749  * 3: page is swapped out  -> fetch the page from swap.
    750  *
    751  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    752  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    753  * then we will need to return EBUSY.
    754  *
    755  * => prefer map unlocked (not required)
    756  * => object must be locked!  we will _unlock_ it before starting any I/O.
    757  * => flags: PGO_ALLPAGES: get all of the pages
    758  *           PGO_LOCKED: fault data structures are locked
    759  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    760  * => NOTE: caller must check for released pages!!
    761  */
    762 
    763 static int
    764 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    765     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    766 {
    767 	voff_t current_offset;
    768 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    769 	int lcv, gotpages, maxpages, swslot, pageidx;
    770 	bool done;
    771 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    772 
    773 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    774 		    (struct uvm_aobj *)uobj, offset, flags,0);
    775 
    776 	/*
    777  	 * get number of pages
    778  	 */
    779 
    780 	maxpages = *npagesp;
    781 
    782 	/*
    783  	 * step 1: handled the case where fault data structures are locked.
    784  	 */
    785 
    786 	if (flags & PGO_LOCKED) {
    787 
    788 		/*
    789  		 * step 1a: get pages that are already resident.   only do
    790 		 * this if the data structures are locked (i.e. the first
    791 		 * time through).
    792  		 */
    793 
    794 		done = true;	/* be optimistic */
    795 		gotpages = 0;	/* # of pages we got so far */
    796 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    797 		    lcv++, current_offset += PAGE_SIZE) {
    798 			/* do we care about this page?  if not, skip it */
    799 			if (pps[lcv] == PGO_DONTCARE)
    800 				continue;
    801 			ptmp = uvm_pagelookup(uobj, current_offset);
    802 
    803 			/*
    804  			 * if page is new, attempt to allocate the page,
    805 			 * zero-fill'd.
    806  			 */
    807 
    808 			if (ptmp == NULL && uao_find_swslot(uobj,
    809 			    current_offset >> PAGE_SHIFT) == 0) {
    810 				ptmp = uvm_pagealloc(uobj, current_offset,
    811 				    NULL, UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
    812 				if (ptmp) {
    813 					/* new page */
    814 					ptmp->flags &= ~PG_FAKE;
    815 					uvm_pagemarkdirty(ptmp,
    816 					    UVM_PAGE_STATUS_UNKNOWN);
    817 					goto gotpage;
    818 				}
    819 			}
    820 
    821 			/*
    822 			 * to be useful must get a non-busy page
    823 			 */
    824 
    825 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    826 				if (lcv == centeridx ||
    827 				    (flags & PGO_ALLPAGES) != 0)
    828 					/* need to do a wait or I/O! */
    829 					done = false;
    830 					continue;
    831 			}
    832 
    833 			/*
    834 			 * useful page: busy/lock it and plug it in our
    835 			 * result array
    836 			 */
    837 			KASSERT(uvm_pagegetdirty(ptmp) !=
    838 			    UVM_PAGE_STATUS_CLEAN);
    839 
    840 			/* caller must un-busy this page */
    841 			ptmp->flags |= PG_BUSY;
    842 			UVM_PAGE_OWN(ptmp, "uao_get1");
    843 gotpage:
    844 			pps[lcv] = ptmp;
    845 			gotpages++;
    846 		}
    847 
    848 		/*
    849  		 * step 1b: now we've either done everything needed or we
    850 		 * to unlock and do some waiting or I/O.
    851  		 */
    852 
    853 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
    854 		*npagesp = gotpages;
    855 		if (done)
    856 			return 0;
    857 		else
    858 			return EBUSY;
    859 	}
    860 
    861 	/*
    862  	 * step 2: get non-resident or busy pages.
    863  	 * object is locked.   data structures are unlocked.
    864  	 */
    865 
    866 	if ((flags & PGO_SYNCIO) == 0) {
    867 		goto done;
    868 	}
    869 
    870 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    871 	    lcv++, current_offset += PAGE_SIZE) {
    872 
    873 		/*
    874 		 * - skip over pages we've already gotten or don't want
    875 		 * - skip over pages we don't _have_ to get
    876 		 */
    877 
    878 		if (pps[lcv] != NULL ||
    879 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    880 			continue;
    881 
    882 		pageidx = current_offset >> PAGE_SHIFT;
    883 
    884 		/*
    885  		 * we have yet to locate the current page (pps[lcv]).   we
    886 		 * first look for a page that is already at the current offset.
    887 		 * if we find a page, we check to see if it is busy or
    888 		 * released.  if that is the case, then we sleep on the page
    889 		 * until it is no longer busy or released and repeat the lookup.
    890 		 * if the page we found is neither busy nor released, then we
    891 		 * busy it (so we own it) and plug it into pps[lcv].   this
    892 		 * 'break's the following while loop and indicates we are
    893 		 * ready to move on to the next page in the "lcv" loop above.
    894  		 *
    895  		 * if we exit the while loop with pps[lcv] still set to NULL,
    896 		 * then it means that we allocated a new busy/fake/clean page
    897 		 * ptmp in the object and we need to do I/O to fill in the data.
    898  		 */
    899 
    900 		/* top of "pps" while loop */
    901 		while (pps[lcv] == NULL) {
    902 			/* look for a resident page */
    903 			ptmp = uvm_pagelookup(uobj, current_offset);
    904 
    905 			/* not resident?   allocate one now (if we can) */
    906 			if (ptmp == NULL) {
    907 
    908 				ptmp = uvm_pagealloc(uobj, current_offset,
    909 				    NULL, 0);
    910 
    911 				/* out of RAM? */
    912 				if (ptmp == NULL) {
    913 					mutex_exit(uobj->vmobjlock);
    914 					UVMHIST_LOG(pdhist,
    915 					    "sleeping, ptmp == NULL\n",0,0,0,0);
    916 					uvm_wait("uao_getpage");
    917 					mutex_enter(uobj->vmobjlock);
    918 					continue;
    919 				}
    920 
    921 				/*
    922 				 * got new page ready for I/O.  break pps while
    923 				 * loop.  pps[lcv] is still NULL.
    924 				 */
    925 
    926 				break;
    927 			}
    928 
    929 			/* page is there, see if we need to wait on it */
    930 			if ((ptmp->flags & PG_BUSY) != 0) {
    931 				ptmp->flags |= PG_WANTED;
    932 				UVMHIST_LOG(pdhist,
    933 				    "sleeping, ptmp->flags 0x%x\n",
    934 				    ptmp->flags,0,0,0);
    935 				UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
    936 				    false, "uao_get", 0);
    937 				mutex_enter(uobj->vmobjlock);
    938 				continue;
    939 			}
    940 
    941 			/*
    942  			 * if we get here then the page has become resident and
    943 			 * unbusy between steps 1 and 2.  we busy it now (so we
    944 			 * own it) and set pps[lcv] (so that we exit the while
    945 			 * loop).
    946  			 */
    947 
    948 			KASSERT(uvm_pagegetdirty(ptmp) !=
    949 			    UVM_PAGE_STATUS_CLEAN);
    950 			/* we own it, caller must un-busy */
    951 			ptmp->flags |= PG_BUSY;
    952 			UVM_PAGE_OWN(ptmp, "uao_get2");
    953 			pps[lcv] = ptmp;
    954 		}
    955 
    956 		/*
    957  		 * if we own the valid page at the correct offset, pps[lcv] will
    958  		 * point to it.   nothing more to do except go to the next page.
    959  		 */
    960 
    961 		if (pps[lcv])
    962 			continue;			/* next lcv */
    963 
    964 		/*
    965  		 * we have a "fake/busy/clean" page that we just allocated.
    966  		 * do the needed "i/o", either reading from swap or zeroing.
    967  		 */
    968 
    969 		swslot = uao_find_swslot(uobj, pageidx);
    970 
    971 		/*
    972  		 * just zero the page if there's nothing in swap.
    973  		 */
    974 
    975 		if (swslot == 0) {
    976 
    977 			/*
    978 			 * page hasn't existed before, just zero it.
    979 			 */
    980 
    981 			uvm_pagezero(ptmp);
    982 		} else {
    983 #if defined(VMSWAP)
    984 			int error;
    985 
    986 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
    987 			     swslot, 0,0,0);
    988 
    989 			/*
    990 			 * page in the swapped-out page.
    991 			 * unlock object for i/o, relock when done.
    992 			 */
    993 
    994 			mutex_exit(uobj->vmobjlock);
    995 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
    996 			mutex_enter(uobj->vmobjlock);
    997 
    998 			/*
    999 			 * I/O done.  check for errors.
   1000 			 */
   1001 
   1002 			if (error != 0) {
   1003 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1004 				    error,0,0,0);
   1005 				if (ptmp->flags & PG_WANTED)
   1006 					wakeup(ptmp);
   1007 
   1008 				/*
   1009 				 * remove the swap slot from the aobj
   1010 				 * and mark the aobj as having no real slot.
   1011 				 * don't free the swap slot, thus preventing
   1012 				 * it from being used again.
   1013 				 */
   1014 
   1015 				swslot = uao_set_swslot(uobj, pageidx,
   1016 				    SWSLOT_BAD);
   1017 				if (swslot > 0) {
   1018 					uvm_swap_markbad(swslot, 1);
   1019 				}
   1020 
   1021 				mutex_enter(&uvm_pageqlock);
   1022 				uvm_pagefree(ptmp);
   1023 				mutex_exit(&uvm_pageqlock);
   1024 				mutex_exit(uobj->vmobjlock);
   1025 				return error;
   1026 			}
   1027 #else /* defined(VMSWAP) */
   1028 			panic("%s: pagein", __func__);
   1029 #endif /* defined(VMSWAP) */
   1030 		}
   1031 
   1032 		/*
   1033 		 * note that we will allow the page being writably-mapped
   1034 		 * (!PG_RDONLY) regardless of access_type.
   1035 		 */
   1036 		uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_UNKNOWN);
   1037 
   1038 		/*
   1039  		 * we got the page!   clear the fake flag (indicates valid
   1040 		 * data now in page) and plug into our result array.   note
   1041 		 * that page is still busy.
   1042  		 *
   1043  		 * it is the callers job to:
   1044  		 * => check if the page is released
   1045  		 * => unbusy the page
   1046  		 * => activate the page
   1047  		 */
   1048 		KASSERT(uvm_pagegetdirty(ptmp) != UVM_PAGE_STATUS_CLEAN);
   1049 		KASSERT((ptmp->flags & PG_FAKE) != 0);
   1050 		ptmp->flags &= ~PG_FAKE;
   1051 		pps[lcv] = ptmp;
   1052 	}
   1053 
   1054 	/*
   1055  	 * finally, unlock object and return.
   1056  	 */
   1057 
   1058 done:
   1059 	mutex_exit(uobj->vmobjlock);
   1060 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1061 	return 0;
   1062 }
   1063 
   1064 #if defined(VMSWAP)
   1065 
   1066 /*
   1067  * uao_dropswap:  release any swap resources from this aobj page.
   1068  *
   1069  * => aobj must be locked or have a reference count of 0.
   1070  */
   1071 
   1072 void
   1073 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1074 {
   1075 	int slot;
   1076 
   1077 	slot = uao_set_swslot(uobj, pageidx, 0);
   1078 	if (slot) {
   1079 		uvm_swap_free(slot, 1);
   1080 	}
   1081 }
   1082 
   1083 /*
   1084  * page in every page in every aobj that is paged-out to a range of swslots.
   1085  *
   1086  * => nothing should be locked.
   1087  * => returns true if pagein was aborted due to lack of memory.
   1088  */
   1089 
   1090 bool
   1091 uao_swap_off(int startslot, int endslot)
   1092 {
   1093 	struct uvm_aobj *aobj;
   1094 
   1095 	/*
   1096 	 * Walk the list of all anonymous UVM objects.  Grab the first.
   1097 	 */
   1098 	mutex_enter(&uao_list_lock);
   1099 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
   1100 		mutex_exit(&uao_list_lock);
   1101 		return false;
   1102 	}
   1103 	uao_reference(&aobj->u_obj);
   1104 
   1105 	do {
   1106 		struct uvm_aobj *nextaobj;
   1107 		bool rv;
   1108 
   1109 		/*
   1110 		 * Prefetch the next object and immediately hold a reference
   1111 		 * on it, so neither the current nor the next entry could
   1112 		 * disappear while we are iterating.
   1113 		 */
   1114 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
   1115 			uao_reference(&nextaobj->u_obj);
   1116 		}
   1117 		mutex_exit(&uao_list_lock);
   1118 
   1119 		/*
   1120 		 * Page in all pages in the swap slot range.
   1121 		 */
   1122 		mutex_enter(aobj->u_obj.vmobjlock);
   1123 		rv = uao_pagein(aobj, startslot, endslot);
   1124 		mutex_exit(aobj->u_obj.vmobjlock);
   1125 
   1126 		/* Drop the reference of the current object. */
   1127 		uao_detach(&aobj->u_obj);
   1128 		if (rv) {
   1129 			if (nextaobj) {
   1130 				uao_detach(&nextaobj->u_obj);
   1131 			}
   1132 			return rv;
   1133 		}
   1134 
   1135 		aobj = nextaobj;
   1136 		mutex_enter(&uao_list_lock);
   1137 	} while (aobj);
   1138 
   1139 	mutex_exit(&uao_list_lock);
   1140 	return false;
   1141 }
   1142 
   1143 /*
   1144  * page in any pages from aobj in the given range.
   1145  *
   1146  * => aobj must be locked and is returned locked.
   1147  * => returns true if pagein was aborted due to lack of memory.
   1148  */
   1149 static bool
   1150 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1151 {
   1152 	bool rv;
   1153 
   1154 	if (UAO_USES_SWHASH(aobj)) {
   1155 		struct uao_swhash_elt *elt;
   1156 		int buck;
   1157 
   1158 restart:
   1159 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1160 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1161 			     elt != NULL;
   1162 			     elt = LIST_NEXT(elt, list)) {
   1163 				int i;
   1164 
   1165 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1166 					int slot = elt->slots[i];
   1167 
   1168 					/*
   1169 					 * if the slot isn't in range, skip it.
   1170 					 */
   1171 
   1172 					if (slot < startslot ||
   1173 					    slot >= endslot) {
   1174 						continue;
   1175 					}
   1176 
   1177 					/*
   1178 					 * process the page,
   1179 					 * the start over on this object
   1180 					 * since the swhash elt
   1181 					 * may have been freed.
   1182 					 */
   1183 
   1184 					rv = uao_pagein_page(aobj,
   1185 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1186 					if (rv) {
   1187 						return rv;
   1188 					}
   1189 					goto restart;
   1190 				}
   1191 			}
   1192 		}
   1193 	} else {
   1194 		int i;
   1195 
   1196 		for (i = 0; i < aobj->u_pages; i++) {
   1197 			int slot = aobj->u_swslots[i];
   1198 
   1199 			/*
   1200 			 * if the slot isn't in range, skip it
   1201 			 */
   1202 
   1203 			if (slot < startslot || slot >= endslot) {
   1204 				continue;
   1205 			}
   1206 
   1207 			/*
   1208 			 * process the page.
   1209 			 */
   1210 
   1211 			rv = uao_pagein_page(aobj, i);
   1212 			if (rv) {
   1213 				return rv;
   1214 			}
   1215 		}
   1216 	}
   1217 
   1218 	return false;
   1219 }
   1220 
   1221 /*
   1222  * uao_pagein_page: page in a single page from an anonymous UVM object.
   1223  *
   1224  * => Returns true if pagein was aborted due to lack of memory.
   1225  * => Object must be locked and is returned locked.
   1226  */
   1227 
   1228 static bool
   1229 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1230 {
   1231 	struct uvm_object *uobj = &aobj->u_obj;
   1232 	struct vm_page *pg;
   1233 	int rv, npages;
   1234 
   1235 	pg = NULL;
   1236 	npages = 1;
   1237 
   1238 	KASSERT(mutex_owned(uobj->vmobjlock));
   1239 	rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
   1240 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
   1241 
   1242 	/*
   1243 	 * relock and finish up.
   1244 	 */
   1245 
   1246 	mutex_enter(uobj->vmobjlock);
   1247 	switch (rv) {
   1248 	case 0:
   1249 		break;
   1250 
   1251 	case EIO:
   1252 	case ERESTART:
   1253 
   1254 		/*
   1255 		 * nothing more to do on errors.
   1256 		 * ERESTART can only mean that the anon was freed,
   1257 		 * so again there's nothing to do.
   1258 		 */
   1259 
   1260 		return false;
   1261 
   1262 	default:
   1263 		return true;
   1264 	}
   1265 
   1266 	/*
   1267 	 * ok, we've got the page now.
   1268 	 * mark it as dirty, clear its swslot and un-busy it.
   1269 	 */
   1270 	uao_dropswap(&aobj->u_obj, pageidx);
   1271 
   1272 	/*
   1273 	 * make sure it's on a page queue.
   1274 	 */
   1275 	mutex_enter(&uvm_pageqlock);
   1276 	if (pg->wire_count == 0)
   1277 		uvm_pageenqueue(pg);
   1278 	mutex_exit(&uvm_pageqlock);
   1279 
   1280 	if (pg->flags & PG_WANTED) {
   1281 		wakeup(pg);
   1282 	}
   1283 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
   1284 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1285 	UVM_PAGE_OWN(pg, NULL);
   1286 
   1287 	return false;
   1288 }
   1289 
   1290 /*
   1291  * uao_dropswap_range: drop swapslots in the range.
   1292  *
   1293  * => aobj must be locked and is returned locked.
   1294  * => start is inclusive.  end is exclusive.
   1295  */
   1296 
   1297 void
   1298 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1299 {
   1300 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1301 	int swpgonlydelta = 0;
   1302 
   1303 	KASSERT(mutex_owned(uobj->vmobjlock));
   1304 
   1305 	if (end == 0) {
   1306 		end = INT64_MAX;
   1307 	}
   1308 
   1309 	if (UAO_USES_SWHASH(aobj)) {
   1310 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1311 		voff_t taghi;
   1312 		voff_t taglo;
   1313 
   1314 		taglo = UAO_SWHASH_ELT_TAG(start);
   1315 		taghi = UAO_SWHASH_ELT_TAG(end);
   1316 
   1317 		for (i = 0; i < hashbuckets; i++) {
   1318 			struct uao_swhash_elt *elt, *next;
   1319 
   1320 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1321 			     elt != NULL;
   1322 			     elt = next) {
   1323 				int startidx, endidx;
   1324 				int j;
   1325 
   1326 				next = LIST_NEXT(elt, list);
   1327 
   1328 				if (elt->tag < taglo || taghi < elt->tag) {
   1329 					continue;
   1330 				}
   1331 
   1332 				if (elt->tag == taglo) {
   1333 					startidx =
   1334 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1335 				} else {
   1336 					startidx = 0;
   1337 				}
   1338 
   1339 				if (elt->tag == taghi) {
   1340 					endidx =
   1341 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1342 				} else {
   1343 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1344 				}
   1345 
   1346 				for (j = startidx; j < endidx; j++) {
   1347 					int slot = elt->slots[j];
   1348 
   1349 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1350 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1351 					    + j) << PAGE_SHIFT) == NULL);
   1352 					if (slot > 0) {
   1353 						uvm_swap_free(slot, 1);
   1354 						swpgonlydelta++;
   1355 						KASSERT(elt->count > 0);
   1356 						elt->slots[j] = 0;
   1357 						elt->count--;
   1358 					}
   1359 				}
   1360 
   1361 				if (elt->count == 0) {
   1362 					LIST_REMOVE(elt, list);
   1363 					pool_put(&uao_swhash_elt_pool, elt);
   1364 				}
   1365 			}
   1366 		}
   1367 	} else {
   1368 		int i;
   1369 
   1370 		if (aobj->u_pages < end) {
   1371 			end = aobj->u_pages;
   1372 		}
   1373 		for (i = start; i < end; i++) {
   1374 			int slot = aobj->u_swslots[i];
   1375 
   1376 			if (slot > 0) {
   1377 				uvm_swap_free(slot, 1);
   1378 				swpgonlydelta++;
   1379 			}
   1380 		}
   1381 	}
   1382 
   1383 	/*
   1384 	 * adjust the counter of pages only in swap for all
   1385 	 * the swap slots we've freed.
   1386 	 */
   1387 
   1388 	if (swpgonlydelta > 0) {
   1389 		mutex_enter(&uvm_swap_data_lock);
   1390 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1391 		uvmexp.swpgonly -= swpgonlydelta;
   1392 		mutex_exit(&uvm_swap_data_lock);
   1393 	}
   1394 }
   1395 
   1396 #endif /* defined(VMSWAP) */
   1397