Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.117
      1 /*	$NetBSD: uvm_aobj.c,v 1.117 2012/09/14 18:56:15 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.117 2012/09/14 18:56:15 rmind Exp $");
     42 
     43 #include "opt_uvmhist.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/proc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/kmem.h>
     50 #include <sys/pool.h>
     51 
     52 #include <uvm/uvm.h>
     53 
     54 /*
     55  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
     56  * keeping the list of resident pages, it may also keep a list of allocated
     57  * swap blocks.  Depending on the size of the object, this list is either
     58  * stored in an array (small objects) or in a hash table (large objects).
     59  *
     60  * Lock order
     61  *
     62  *	uvm_object::vmobjlock ->
     63  *		uao_list_lock
     64  */
     65 
     66 /*
     67  * Note: for hash tables, we break the address space of the aobj into blocks
     68  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
     69  */
     70 
     71 #define	UAO_SWHASH_CLUSTER_SHIFT	4
     72 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
     73 
     74 /* Get the "tag" for this page index. */
     75 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
     76 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
     77     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     78 
     79 /* Given an ELT and a page index, find the swap slot. */
     80 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
     81     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
     82 
     83 /* Given an ELT, return its pageidx base. */
     84 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     85     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     86 
     87 /* The hash function. */
     88 #define	UAO_SWHASH_HASH(aobj, idx) \
     89     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
     90     & (aobj)->u_swhashmask)])
     91 
     92 /*
     93  * The threshold which determines whether we will use an array or a
     94  * hash table to store the list of allocated swap blocks.
     95  */
     96 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
     97 #define	UAO_USES_SWHASH(aobj) \
     98     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
     99 
    100 /* The number of buckets in a hash, with an upper bound. */
    101 #define	UAO_SWHASH_MAXBUCKETS		256
    102 #define	UAO_SWHASH_BUCKETS(aobj) \
    103     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
    104 
    105 /*
    106  * uao_swhash_elt: when a hash table is being used, this structure defines
    107  * the format of an entry in the bucket list.
    108  */
    109 
    110 struct uao_swhash_elt {
    111 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    112 	voff_t tag;				/* our 'tag' */
    113 	int count;				/* our number of active slots */
    114 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    115 };
    116 
    117 /*
    118  * uao_swhash: the swap hash table structure
    119  */
    120 
    121 LIST_HEAD(uao_swhash, uao_swhash_elt);
    122 
    123 /*
    124  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    125  * Note: pages for this pool must not come from a pageable kernel map.
    126  */
    127 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
    128 
    129 /*
    130  * uvm_aobj: the actual anon-backed uvm_object
    131  *
    132  * => the uvm_object is at the top of the structure, this allows
    133  *   (struct uvm_aobj *) == (struct uvm_object *)
    134  * => only one of u_swslots and u_swhash is used in any given aobj
    135  */
    136 
    137 struct uvm_aobj {
    138 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    139 	pgoff_t u_pages;	 /* number of pages in entire object */
    140 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    141 	int *u_swslots;		 /* array of offset->swapslot mappings */
    142 				 /*
    143 				  * hashtable of offset->swapslot mappings
    144 				  * (u_swhash is an array of bucket heads)
    145 				  */
    146 	struct uao_swhash *u_swhash;
    147 	u_long u_swhashmask;		/* mask for hashtable */
    148 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    149 };
    150 
    151 static void	uao_free(struct uvm_aobj *);
    152 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    153 		    int *, int, vm_prot_t, int, int);
    154 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    155 
    156 static void uao_detach_locked(struct uvm_object *);
    157 static void uao_reference_locked(struct uvm_object *);
    158 
    159 #if defined(VMSWAP)
    160 static struct uao_swhash_elt *uao_find_swhash_elt
    161     (struct uvm_aobj *, int, bool);
    162 
    163 static bool uao_pagein(struct uvm_aobj *, int, int);
    164 static bool uao_pagein_page(struct uvm_aobj *, int);
    165 #endif /* defined(VMSWAP) */
    166 
    167 /*
    168  * aobj_pager
    169  *
    170  * note that some functions (e.g. put) are handled elsewhere
    171  */
    172 
    173 const struct uvm_pagerops aobj_pager = {
    174 	.pgo_reference = uao_reference,
    175 	.pgo_detach = uao_detach,
    176 	.pgo_get = uao_get,
    177 	.pgo_put = uao_put,
    178 };
    179 
    180 /*
    181  * uao_list: global list of active aobjs, locked by uao_list_lock
    182  */
    183 
    184 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
    185 static kmutex_t		uao_list_lock		__cacheline_aligned;
    186 
    187 /*
    188  * hash table/array related functions
    189  */
    190 
    191 #if defined(VMSWAP)
    192 
    193 /*
    194  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    195  * offset.
    196  *
    197  * => the object should be locked by the caller
    198  */
    199 
    200 static struct uao_swhash_elt *
    201 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    202 {
    203 	struct uao_swhash *swhash;
    204 	struct uao_swhash_elt *elt;
    205 	voff_t page_tag;
    206 
    207 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    208 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    209 
    210 	/*
    211 	 * now search the bucket for the requested tag
    212 	 */
    213 
    214 	LIST_FOREACH(elt, swhash, list) {
    215 		if (elt->tag == page_tag) {
    216 			return elt;
    217 		}
    218 	}
    219 	if (!create) {
    220 		return NULL;
    221 	}
    222 
    223 	/*
    224 	 * allocate a new entry for the bucket and init/insert it in
    225 	 */
    226 
    227 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    228 	if (elt == NULL) {
    229 		return NULL;
    230 	}
    231 	LIST_INSERT_HEAD(swhash, elt, list);
    232 	elt->tag = page_tag;
    233 	elt->count = 0;
    234 	memset(elt->slots, 0, sizeof(elt->slots));
    235 	return elt;
    236 }
    237 
    238 /*
    239  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    240  *
    241  * => object must be locked by caller
    242  */
    243 
    244 int
    245 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    246 {
    247 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    248 	struct uao_swhash_elt *elt;
    249 
    250 	/*
    251 	 * if noswap flag is set, then we never return a slot
    252 	 */
    253 
    254 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    255 		return 0;
    256 
    257 	/*
    258 	 * if hashing, look in hash table.
    259 	 */
    260 
    261 	if (UAO_USES_SWHASH(aobj)) {
    262 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    263 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
    264 	}
    265 
    266 	/*
    267 	 * otherwise, look in the array
    268 	 */
    269 
    270 	return aobj->u_swslots[pageidx];
    271 }
    272 
    273 /*
    274  * uao_set_swslot: set the swap slot for a page in an aobj.
    275  *
    276  * => setting a slot to zero frees the slot
    277  * => object must be locked by caller
    278  * => we return the old slot number, or -1 if we failed to allocate
    279  *    memory to record the new slot number
    280  */
    281 
    282 int
    283 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    284 {
    285 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    286 	struct uao_swhash_elt *elt;
    287 	int oldslot;
    288 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    289 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    290 	    aobj, pageidx, slot, 0);
    291 
    292 	KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
    293 
    294 	/*
    295 	 * if noswap flag is set, then we can't set a non-zero slot.
    296 	 */
    297 
    298 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    299 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
    300 		return 0;
    301 	}
    302 
    303 	/*
    304 	 * are we using a hash table?  if so, add it in the hash.
    305 	 */
    306 
    307 	if (UAO_USES_SWHASH(aobj)) {
    308 
    309 		/*
    310 		 * Avoid allocating an entry just to free it again if
    311 		 * the page had not swap slot in the first place, and
    312 		 * we are freeing.
    313 		 */
    314 
    315 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    316 		if (elt == NULL) {
    317 			return slot ? -1 : 0;
    318 		}
    319 
    320 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    321 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    322 
    323 		/*
    324 		 * now adjust the elt's reference counter and free it if we've
    325 		 * dropped it to zero.
    326 		 */
    327 
    328 		if (slot) {
    329 			if (oldslot == 0)
    330 				elt->count++;
    331 		} else {
    332 			if (oldslot)
    333 				elt->count--;
    334 
    335 			if (elt->count == 0) {
    336 				LIST_REMOVE(elt, list);
    337 				pool_put(&uao_swhash_elt_pool, elt);
    338 			}
    339 		}
    340 	} else {
    341 		/* we are using an array */
    342 		oldslot = aobj->u_swslots[pageidx];
    343 		aobj->u_swslots[pageidx] = slot;
    344 	}
    345 	return oldslot;
    346 }
    347 
    348 #endif /* defined(VMSWAP) */
    349 
    350 /*
    351  * end of hash/array functions
    352  */
    353 
    354 /*
    355  * uao_free: free all resources held by an aobj, and then free the aobj
    356  *
    357  * => the aobj should be dead
    358  */
    359 
    360 static void
    361 uao_free(struct uvm_aobj *aobj)
    362 {
    363 	struct uvm_object *uobj = &aobj->u_obj;
    364 
    365 	uao_dropswap_range(aobj, 0, 0);
    366 	mutex_exit(uobj->vmobjlock);
    367 
    368 #if defined(VMSWAP)
    369 	if (UAO_USES_SWHASH(aobj)) {
    370 
    371 		/*
    372 		 * free the hash table itself.
    373 		 */
    374 
    375 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    376 	} else {
    377 
    378 		/*
    379 		 * free the array itsself.
    380 		 */
    381 
    382 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    383 	}
    384 #endif /* defined(VMSWAP) */
    385 
    386 	/*
    387 	 * finally free the aobj itself
    388 	 */
    389 
    390 	uvm_obj_destroy(uobj, true);
    391 	kmem_free(aobj, sizeof(struct uvm_aobj));
    392 }
    393 
    394 /*
    395  * pager functions
    396  */
    397 
    398 /*
    399  * uao_create: create an aobj of the given size and return its uvm_object.
    400  *
    401  * => for normal use, flags are always zero
    402  * => for the kernel object, the flags are:
    403  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    404  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    405  */
    406 
    407 struct uvm_object *
    408 uao_create(vsize_t size, int flags)
    409 {
    410 	static struct uvm_aobj kernel_object_store;
    411 	static kmutex_t kernel_object_lock;
    412 	static int kobj_alloced = 0;
    413 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    414 	struct uvm_aobj *aobj;
    415 	int refs;
    416 
    417 	/*
    418 	 * Allocate a new aobj, unless kernel object is requested.
    419 	 */
    420 
    421 	if (flags & UAO_FLAG_KERNOBJ) {
    422 		KASSERT(!kobj_alloced);
    423 		aobj = &kernel_object_store;
    424 		aobj->u_pages = pages;
    425 		aobj->u_flags = UAO_FLAG_NOSWAP;
    426 		refs = UVM_OBJ_KERN;
    427 		kobj_alloced = UAO_FLAG_KERNOBJ;
    428 	} else if (flags & UAO_FLAG_KERNSWAP) {
    429 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    430 		aobj = &kernel_object_store;
    431 		kobj_alloced = UAO_FLAG_KERNSWAP;
    432 		refs = 0xdeadbeaf; /* XXX: gcc */
    433 	} else {
    434 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    435 		aobj->u_pages = pages;
    436 		aobj->u_flags = 0;
    437 		refs = 1;
    438 	}
    439 
    440 	/*
    441  	 * allocate hash/array if necessary
    442  	 *
    443  	 * note: in the KERNSWAP case no need to worry about locking since
    444  	 * we are still booting we should be the only thread around.
    445  	 */
    446 
    447 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    448 #if defined(VMSWAP)
    449 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    450 
    451 		/* allocate hash table or array depending on object size */
    452 		if (UAO_USES_SWHASH(aobj)) {
    453 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    454 			    HASH_LIST, kernswap ? false : true,
    455 			    &aobj->u_swhashmask);
    456 			if (aobj->u_swhash == NULL)
    457 				panic("uao_create: hashinit swhash failed");
    458 		} else {
    459 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    460 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    461 			if (aobj->u_swslots == NULL)
    462 				panic("uao_create: swslots allocation failed");
    463 		}
    464 #endif /* defined(VMSWAP) */
    465 
    466 		if (flags) {
    467 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    468 			return &aobj->u_obj;
    469 		}
    470 	}
    471 
    472 	/*
    473 	 * Initialise UVM object.
    474 	 */
    475 
    476 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
    477 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
    478 	if (__predict_false(kernobj)) {
    479 		/* Initialisation only once, for UAO_FLAG_KERNOBJ. */
    480 		mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
    481 		uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
    482 	}
    483 
    484 	/*
    485  	 * now that aobj is ready, add it to the global list
    486  	 */
    487 
    488 	mutex_enter(&uao_list_lock);
    489 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    490 	mutex_exit(&uao_list_lock);
    491 	return(&aobj->u_obj);
    492 }
    493 
    494 /*
    495  * uao_init: set up aobj pager subsystem
    496  *
    497  * => called at boot time from uvm_pager_init()
    498  */
    499 
    500 void
    501 uao_init(void)
    502 {
    503 	static int uao_initialized;
    504 
    505 	if (uao_initialized)
    506 		return;
    507 	uao_initialized = true;
    508 	LIST_INIT(&uao_list);
    509 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    510 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    511 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    512 }
    513 
    514 /*
    515  * uao_reference: add a ref to an aobj
    516  *
    517  * => aobj must be unlocked
    518  * => just lock it and call the locked version
    519  */
    520 
    521 void
    522 uao_reference(struct uvm_object *uobj)
    523 {
    524 
    525 	/*
    526  	 * kernel_object already has plenty of references, leave it alone.
    527  	 */
    528 
    529 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    530 		return;
    531 
    532 	mutex_enter(uobj->vmobjlock);
    533 	uao_reference_locked(uobj);
    534 	mutex_exit(uobj->vmobjlock);
    535 }
    536 
    537 /*
    538  * uao_reference_locked: add a ref to an aobj that is already locked
    539  *
    540  * => aobj must be locked
    541  * this needs to be separate from the normal routine
    542  * since sometimes we need to add a reference to an aobj when
    543  * it's already locked.
    544  */
    545 
    546 static void
    547 uao_reference_locked(struct uvm_object *uobj)
    548 {
    549 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    550 
    551 	/*
    552  	 * kernel_object already has plenty of references, leave it alone.
    553  	 */
    554 
    555 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    556 		return;
    557 
    558 	uobj->uo_refs++;
    559 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    560 		    uobj, uobj->uo_refs,0,0);
    561 }
    562 
    563 /*
    564  * uao_detach: drop a reference to an aobj
    565  *
    566  * => aobj must be unlocked
    567  * => just lock it and call the locked version
    568  */
    569 
    570 void
    571 uao_detach(struct uvm_object *uobj)
    572 {
    573 
    574 	/*
    575  	 * detaching from kernel_object is a noop.
    576  	 */
    577 
    578 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    579 		return;
    580 
    581 	mutex_enter(uobj->vmobjlock);
    582 	uao_detach_locked(uobj);
    583 }
    584 
    585 /*
    586  * uao_detach_locked: drop a reference to an aobj
    587  *
    588  * => aobj must be locked, and is unlocked (or freed) upon return.
    589  * this needs to be separate from the normal routine
    590  * since sometimes we need to detach from an aobj when
    591  * it's already locked.
    592  */
    593 
    594 static void
    595 uao_detach_locked(struct uvm_object *uobj)
    596 {
    597 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    598 	struct vm_page *pg;
    599 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    600 
    601 	/*
    602  	 * detaching from kernel_object is a noop.
    603  	 */
    604 
    605 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    606 		mutex_exit(uobj->vmobjlock);
    607 		return;
    608 	}
    609 
    610 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    611 	uobj->uo_refs--;
    612 	if (uobj->uo_refs) {
    613 		mutex_exit(uobj->vmobjlock);
    614 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    615 		return;
    616 	}
    617 
    618 	/*
    619  	 * remove the aobj from the global list.
    620  	 */
    621 
    622 	mutex_enter(&uao_list_lock);
    623 	LIST_REMOVE(aobj, u_list);
    624 	mutex_exit(&uao_list_lock);
    625 
    626 	/*
    627  	 * free all the pages left in the aobj.  for each page,
    628 	 * when the page is no longer busy (and thus after any disk i/o that
    629 	 * it's involved in is complete), release any swap resources and
    630 	 * free the page itself.
    631  	 */
    632 
    633 	mutex_enter(&uvm_pageqlock);
    634 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    635 		pmap_page_protect(pg, VM_PROT_NONE);
    636 		if (pg->flags & PG_BUSY) {
    637 			pg->flags |= PG_WANTED;
    638 			mutex_exit(&uvm_pageqlock);
    639 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
    640 			    "uao_det", 0);
    641 			mutex_enter(uobj->vmobjlock);
    642 			mutex_enter(&uvm_pageqlock);
    643 			continue;
    644 		}
    645 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    646 		uvm_pagefree(pg);
    647 	}
    648 	mutex_exit(&uvm_pageqlock);
    649 
    650 	/*
    651  	 * finally, free the aobj itself.
    652  	 */
    653 
    654 	uao_free(aobj);
    655 }
    656 
    657 /*
    658  * uao_put: flush pages out of a uvm object
    659  *
    660  * => object should be locked by caller.  we may _unlock_ the object
    661  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    662  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    663  *	XXXJRT a page, we simply just deactivate it.  Should probably
    664  *	XXXJRT handle this better, in the future (although "flushing"
    665  *	XXXJRT anonymous memory isn't terribly important).
    666  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    667  *	or block.
    668  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    669  *	for flushing.
    670  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    671  *	that new pages are inserted on the tail end of the list.  thus,
    672  *	we can make a complete pass through the object in one go by starting
    673  *	at the head and working towards the tail (new pages are put in
    674  *	front of us).
    675  * => NOTE: we are allowed to lock the page queues, so the caller
    676  *	must not be holding the lock on them [e.g. pagedaemon had
    677  *	better not call us with the queues locked]
    678  * => we return 0 unless we encountered some sort of I/O error
    679  *	XXXJRT currently never happens, as we never directly initiate
    680  *	XXXJRT I/O
    681  *
    682  * note on page traversal:
    683  *	we can traverse the pages in an object either by going down the
    684  *	linked list in "uobj->memq", or we can go over the address range
    685  *	by page doing hash table lookups for each address.  depending
    686  *	on how many pages are in the object it may be cheaper to do one
    687  *	or the other.  we set "by_list" to true if we are using memq.
    688  *	if the cost of a hash lookup was equal to the cost of the list
    689  *	traversal we could compare the number of pages in the start->stop
    690  *	range to the total number of pages in the object.  however, it
    691  *	seems that a hash table lookup is more expensive than the linked
    692  *	list traversal, so we multiply the number of pages in the
    693  *	start->stop range by a penalty which we define below.
    694  */
    695 
    696 static int
    697 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    698 {
    699 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    700 	struct vm_page *pg, *nextpg, curmp, endmp;
    701 	bool by_list;
    702 	voff_t curoff;
    703 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    704 
    705 	KASSERT(mutex_owned(uobj->vmobjlock));
    706 
    707 	curoff = 0;
    708 	if (flags & PGO_ALLPAGES) {
    709 		start = 0;
    710 		stop = aobj->u_pages << PAGE_SHIFT;
    711 		by_list = true;		/* always go by the list */
    712 	} else {
    713 		start = trunc_page(start);
    714 		if (stop == 0) {
    715 			stop = aobj->u_pages << PAGE_SHIFT;
    716 		} else {
    717 			stop = round_page(stop);
    718 		}
    719 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    720 			printf("uao_flush: strange, got an out of range "
    721 			    "flush (fixed)\n");
    722 			stop = aobj->u_pages << PAGE_SHIFT;
    723 		}
    724 		by_list = (uobj->uo_npages <=
    725 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    726 	}
    727 	UVMHIST_LOG(maphist,
    728 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    729 	    start, stop, by_list, flags);
    730 
    731 	/*
    732 	 * Don't need to do any work here if we're not freeing
    733 	 * or deactivating pages.
    734 	 */
    735 
    736 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    737 		mutex_exit(uobj->vmobjlock);
    738 		return 0;
    739 	}
    740 
    741 	/*
    742 	 * Initialize the marker pages.  See the comment in
    743 	 * genfs_putpages() also.
    744 	 */
    745 
    746 	curmp.flags = PG_MARKER;
    747 	endmp.flags = PG_MARKER;
    748 
    749 	/*
    750 	 * now do it.  note: we must update nextpg in the body of loop or we
    751 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    752 	 * because we may free "pg" before doing the next loop.
    753 	 */
    754 
    755 	if (by_list) {
    756 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    757 		nextpg = TAILQ_FIRST(&uobj->memq);
    758 	} else {
    759 		curoff = start;
    760 		nextpg = NULL;	/* Quell compiler warning */
    761 	}
    762 
    763 	/* locked: uobj */
    764 	for (;;) {
    765 		if (by_list) {
    766 			pg = nextpg;
    767 			if (pg == &endmp)
    768 				break;
    769 			nextpg = TAILQ_NEXT(pg, listq.queue);
    770 			if (pg->flags & PG_MARKER)
    771 				continue;
    772 			if (pg->offset < start || pg->offset >= stop)
    773 				continue;
    774 		} else {
    775 			if (curoff < stop) {
    776 				pg = uvm_pagelookup(uobj, curoff);
    777 				curoff += PAGE_SIZE;
    778 			} else
    779 				break;
    780 			if (pg == NULL)
    781 				continue;
    782 		}
    783 
    784 		/*
    785 		 * wait and try again if the page is busy.
    786 		 */
    787 
    788 		if (pg->flags & PG_BUSY) {
    789 			if (by_list) {
    790 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    791 			}
    792 			pg->flags |= PG_WANTED;
    793 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    794 			    "uao_put", 0);
    795 			mutex_enter(uobj->vmobjlock);
    796 			if (by_list) {
    797 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    798 				TAILQ_REMOVE(&uobj->memq, &curmp,
    799 				    listq.queue);
    800 			} else
    801 				curoff -= PAGE_SIZE;
    802 			continue;
    803 		}
    804 
    805 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    806 
    807 		/*
    808 		 * XXX In these first 3 cases, we always just
    809 		 * XXX deactivate the page.  We may want to
    810 		 * XXX handle the different cases more specifically
    811 		 * XXX in the future.
    812 		 */
    813 
    814 		case PGO_CLEANIT|PGO_FREE:
    815 		case PGO_CLEANIT|PGO_DEACTIVATE:
    816 		case PGO_DEACTIVATE:
    817  deactivate_it:
    818 			mutex_enter(&uvm_pageqlock);
    819 			/* skip the page if it's wired */
    820 			if (pg->wire_count == 0) {
    821 				uvm_pagedeactivate(pg);
    822 			}
    823 			mutex_exit(&uvm_pageqlock);
    824 			break;
    825 
    826 		case PGO_FREE:
    827 			/*
    828 			 * If there are multiple references to
    829 			 * the object, just deactivate the page.
    830 			 */
    831 
    832 			if (uobj->uo_refs > 1)
    833 				goto deactivate_it;
    834 
    835 			/*
    836 			 * free the swap slot and the page.
    837 			 */
    838 
    839 			pmap_page_protect(pg, VM_PROT_NONE);
    840 
    841 			/*
    842 			 * freeing swapslot here is not strictly necessary.
    843 			 * however, leaving it here doesn't save much
    844 			 * because we need to update swap accounting anyway.
    845 			 */
    846 
    847 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    848 			mutex_enter(&uvm_pageqlock);
    849 			uvm_pagefree(pg);
    850 			mutex_exit(&uvm_pageqlock);
    851 			break;
    852 
    853 		default:
    854 			panic("%s: impossible", __func__);
    855 		}
    856 	}
    857 	if (by_list) {
    858 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    859 	}
    860 	mutex_exit(uobj->vmobjlock);
    861 	return 0;
    862 }
    863 
    864 /*
    865  * uao_get: fetch me a page
    866  *
    867  * we have three cases:
    868  * 1: page is resident     -> just return the page.
    869  * 2: page is zero-fill    -> allocate a new page and zero it.
    870  * 3: page is swapped out  -> fetch the page from swap.
    871  *
    872  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    873  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    874  * then we will need to return EBUSY.
    875  *
    876  * => prefer map unlocked (not required)
    877  * => object must be locked!  we will _unlock_ it before starting any I/O.
    878  * => flags: PGO_ALLPAGES: get all of the pages
    879  *           PGO_LOCKED: fault data structures are locked
    880  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    881  * => NOTE: caller must check for released pages!!
    882  */
    883 
    884 static int
    885 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    886     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    887 {
    888 	voff_t current_offset;
    889 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    890 	int lcv, gotpages, maxpages, swslot, pageidx;
    891 	bool done;
    892 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    893 
    894 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    895 		    (struct uvm_aobj *)uobj, offset, flags,0);
    896 
    897 	/*
    898  	 * get number of pages
    899  	 */
    900 
    901 	maxpages = *npagesp;
    902 
    903 	/*
    904  	 * step 1: handled the case where fault data structures are locked.
    905  	 */
    906 
    907 	if (flags & PGO_LOCKED) {
    908 
    909 		/*
    910  		 * step 1a: get pages that are already resident.   only do
    911 		 * this if the data structures are locked (i.e. the first
    912 		 * time through).
    913  		 */
    914 
    915 		done = true;	/* be optimistic */
    916 		gotpages = 0;	/* # of pages we got so far */
    917 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    918 		    lcv++, current_offset += PAGE_SIZE) {
    919 			/* do we care about this page?  if not, skip it */
    920 			if (pps[lcv] == PGO_DONTCARE)
    921 				continue;
    922 			ptmp = uvm_pagelookup(uobj, current_offset);
    923 
    924 			/*
    925  			 * if page is new, attempt to allocate the page,
    926 			 * zero-fill'd.
    927  			 */
    928 
    929 			if (ptmp == NULL && uao_find_swslot(uobj,
    930 			    current_offset >> PAGE_SHIFT) == 0) {
    931 				ptmp = uvm_pagealloc(uobj, current_offset,
    932 				    NULL, UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
    933 				if (ptmp) {
    934 					/* new page */
    935 					ptmp->flags &= ~(PG_FAKE);
    936 					ptmp->pqflags |= PQ_AOBJ;
    937 					goto gotpage;
    938 				}
    939 			}
    940 
    941 			/*
    942 			 * to be useful must get a non-busy page
    943 			 */
    944 
    945 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    946 				if (lcv == centeridx ||
    947 				    (flags & PGO_ALLPAGES) != 0)
    948 					/* need to do a wait or I/O! */
    949 					done = false;
    950 					continue;
    951 			}
    952 
    953 			/*
    954 			 * useful page: busy/lock it and plug it in our
    955 			 * result array
    956 			 */
    957 
    958 			/* caller must un-busy this page */
    959 			ptmp->flags |= PG_BUSY;
    960 			UVM_PAGE_OWN(ptmp, "uao_get1");
    961 gotpage:
    962 			pps[lcv] = ptmp;
    963 			gotpages++;
    964 		}
    965 
    966 		/*
    967  		 * step 1b: now we've either done everything needed or we
    968 		 * to unlock and do some waiting or I/O.
    969  		 */
    970 
    971 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
    972 		*npagesp = gotpages;
    973 		if (done)
    974 			return 0;
    975 		else
    976 			return EBUSY;
    977 	}
    978 
    979 	/*
    980  	 * step 2: get non-resident or busy pages.
    981  	 * object is locked.   data structures are unlocked.
    982  	 */
    983 
    984 	if ((flags & PGO_SYNCIO) == 0) {
    985 		goto done;
    986 	}
    987 
    988 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    989 	    lcv++, current_offset += PAGE_SIZE) {
    990 
    991 		/*
    992 		 * - skip over pages we've already gotten or don't want
    993 		 * - skip over pages we don't _have_ to get
    994 		 */
    995 
    996 		if (pps[lcv] != NULL ||
    997 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    998 			continue;
    999 
   1000 		pageidx = current_offset >> PAGE_SHIFT;
   1001 
   1002 		/*
   1003  		 * we have yet to locate the current page (pps[lcv]).   we
   1004 		 * first look for a page that is already at the current offset.
   1005 		 * if we find a page, we check to see if it is busy or
   1006 		 * released.  if that is the case, then we sleep on the page
   1007 		 * until it is no longer busy or released and repeat the lookup.
   1008 		 * if the page we found is neither busy nor released, then we
   1009 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1010 		 * 'break's the following while loop and indicates we are
   1011 		 * ready to move on to the next page in the "lcv" loop above.
   1012  		 *
   1013  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1014 		 * then it means that we allocated a new busy/fake/clean page
   1015 		 * ptmp in the object and we need to do I/O to fill in the data.
   1016  		 */
   1017 
   1018 		/* top of "pps" while loop */
   1019 		while (pps[lcv] == NULL) {
   1020 			/* look for a resident page */
   1021 			ptmp = uvm_pagelookup(uobj, current_offset);
   1022 
   1023 			/* not resident?   allocate one now (if we can) */
   1024 			if (ptmp == NULL) {
   1025 
   1026 				ptmp = uvm_pagealloc(uobj, current_offset,
   1027 				    NULL, 0);
   1028 
   1029 				/* out of RAM? */
   1030 				if (ptmp == NULL) {
   1031 					mutex_exit(uobj->vmobjlock);
   1032 					UVMHIST_LOG(pdhist,
   1033 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1034 					uvm_wait("uao_getpage");
   1035 					mutex_enter(uobj->vmobjlock);
   1036 					continue;
   1037 				}
   1038 
   1039 				/*
   1040 				 * safe with PQ's unlocked: because we just
   1041 				 * alloc'd the page
   1042 				 */
   1043 
   1044 				ptmp->pqflags |= PQ_AOBJ;
   1045 
   1046 				/*
   1047 				 * got new page ready for I/O.  break pps while
   1048 				 * loop.  pps[lcv] is still NULL.
   1049 				 */
   1050 
   1051 				break;
   1052 			}
   1053 
   1054 			/* page is there, see if we need to wait on it */
   1055 			if ((ptmp->flags & PG_BUSY) != 0) {
   1056 				ptmp->flags |= PG_WANTED;
   1057 				UVMHIST_LOG(pdhist,
   1058 				    "sleeping, ptmp->flags 0x%x\n",
   1059 				    ptmp->flags,0,0,0);
   1060 				UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
   1061 				    false, "uao_get", 0);
   1062 				mutex_enter(uobj->vmobjlock);
   1063 				continue;
   1064 			}
   1065 
   1066 			/*
   1067  			 * if we get here then the page has become resident and
   1068 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1069 			 * own it) and set pps[lcv] (so that we exit the while
   1070 			 * loop).
   1071  			 */
   1072 
   1073 			/* we own it, caller must un-busy */
   1074 			ptmp->flags |= PG_BUSY;
   1075 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1076 			pps[lcv] = ptmp;
   1077 		}
   1078 
   1079 		/*
   1080  		 * if we own the valid page at the correct offset, pps[lcv] will
   1081  		 * point to it.   nothing more to do except go to the next page.
   1082  		 */
   1083 
   1084 		if (pps[lcv])
   1085 			continue;			/* next lcv */
   1086 
   1087 		/*
   1088  		 * we have a "fake/busy/clean" page that we just allocated.
   1089  		 * do the needed "i/o", either reading from swap or zeroing.
   1090  		 */
   1091 
   1092 		swslot = uao_find_swslot(uobj, pageidx);
   1093 
   1094 		/*
   1095  		 * just zero the page if there's nothing in swap.
   1096  		 */
   1097 
   1098 		if (swslot == 0) {
   1099 
   1100 			/*
   1101 			 * page hasn't existed before, just zero it.
   1102 			 */
   1103 
   1104 			uvm_pagezero(ptmp);
   1105 		} else {
   1106 #if defined(VMSWAP)
   1107 			int error;
   1108 
   1109 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1110 			     swslot, 0,0,0);
   1111 
   1112 			/*
   1113 			 * page in the swapped-out page.
   1114 			 * unlock object for i/o, relock when done.
   1115 			 */
   1116 
   1117 			mutex_exit(uobj->vmobjlock);
   1118 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1119 			mutex_enter(uobj->vmobjlock);
   1120 
   1121 			/*
   1122 			 * I/O done.  check for errors.
   1123 			 */
   1124 
   1125 			if (error != 0) {
   1126 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1127 				    error,0,0,0);
   1128 				if (ptmp->flags & PG_WANTED)
   1129 					wakeup(ptmp);
   1130 
   1131 				/*
   1132 				 * remove the swap slot from the aobj
   1133 				 * and mark the aobj as having no real slot.
   1134 				 * don't free the swap slot, thus preventing
   1135 				 * it from being used again.
   1136 				 */
   1137 
   1138 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1139 							SWSLOT_BAD);
   1140 				if (swslot > 0) {
   1141 					uvm_swap_markbad(swslot, 1);
   1142 				}
   1143 
   1144 				mutex_enter(&uvm_pageqlock);
   1145 				uvm_pagefree(ptmp);
   1146 				mutex_exit(&uvm_pageqlock);
   1147 				mutex_exit(uobj->vmobjlock);
   1148 				return error;
   1149 			}
   1150 #else /* defined(VMSWAP) */
   1151 			panic("%s: pagein", __func__);
   1152 #endif /* defined(VMSWAP) */
   1153 		}
   1154 
   1155 		if ((access_type & VM_PROT_WRITE) == 0) {
   1156 			ptmp->flags |= PG_CLEAN;
   1157 			pmap_clear_modify(ptmp);
   1158 		}
   1159 
   1160 		/*
   1161  		 * we got the page!   clear the fake flag (indicates valid
   1162 		 * data now in page) and plug into our result array.   note
   1163 		 * that page is still busy.
   1164  		 *
   1165  		 * it is the callers job to:
   1166  		 * => check if the page is released
   1167  		 * => unbusy the page
   1168  		 * => activate the page
   1169  		 */
   1170 
   1171 		ptmp->flags &= ~PG_FAKE;
   1172 		pps[lcv] = ptmp;
   1173 	}
   1174 
   1175 	/*
   1176  	 * finally, unlock object and return.
   1177  	 */
   1178 
   1179 done:
   1180 	mutex_exit(uobj->vmobjlock);
   1181 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1182 	return 0;
   1183 }
   1184 
   1185 #if defined(VMSWAP)
   1186 
   1187 /*
   1188  * uao_dropswap:  release any swap resources from this aobj page.
   1189  *
   1190  * => aobj must be locked or have a reference count of 0.
   1191  */
   1192 
   1193 void
   1194 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1195 {
   1196 	int slot;
   1197 
   1198 	slot = uao_set_swslot(uobj, pageidx, 0);
   1199 	if (slot) {
   1200 		uvm_swap_free(slot, 1);
   1201 	}
   1202 }
   1203 
   1204 /*
   1205  * page in every page in every aobj that is paged-out to a range of swslots.
   1206  *
   1207  * => nothing should be locked.
   1208  * => returns true if pagein was aborted due to lack of memory.
   1209  */
   1210 
   1211 bool
   1212 uao_swap_off(int startslot, int endslot)
   1213 {
   1214 	struct uvm_aobj *aobj, *nextaobj;
   1215 	bool rv;
   1216 
   1217 	/*
   1218 	 * walk the list of all aobjs.
   1219 	 */
   1220 
   1221 restart:
   1222 	mutex_enter(&uao_list_lock);
   1223 	for (aobj = LIST_FIRST(&uao_list);
   1224 	     aobj != NULL;
   1225 	     aobj = nextaobj) {
   1226 
   1227 		/*
   1228 		 * try to get the object lock, start all over if we fail.
   1229 		 * most of the time we'll get the aobj lock,
   1230 		 * so this should be a rare case.
   1231 		 */
   1232 
   1233 		if (!mutex_tryenter(aobj->u_obj.vmobjlock)) {
   1234 			mutex_exit(&uao_list_lock);
   1235 			/* XXX Better than yielding but inadequate. */
   1236 			kpause("livelock", false, 1, NULL);
   1237 			goto restart;
   1238 		}
   1239 
   1240 		/*
   1241 		 * add a ref to the aobj so it doesn't disappear
   1242 		 * while we're working.
   1243 		 */
   1244 
   1245 		uao_reference_locked(&aobj->u_obj);
   1246 
   1247 		/*
   1248 		 * now it's safe to unlock the uao list.
   1249 		 */
   1250 
   1251 		mutex_exit(&uao_list_lock);
   1252 
   1253 		/*
   1254 		 * page in any pages in the swslot range.
   1255 		 * if there's an error, abort and return the error.
   1256 		 */
   1257 
   1258 		rv = uao_pagein(aobj, startslot, endslot);
   1259 		if (rv) {
   1260 			uao_detach_locked(&aobj->u_obj);
   1261 			return rv;
   1262 		}
   1263 
   1264 		/*
   1265 		 * we're done with this aobj.
   1266 		 * relock the list and drop our ref on the aobj.
   1267 		 */
   1268 
   1269 		mutex_enter(&uao_list_lock);
   1270 		nextaobj = LIST_NEXT(aobj, u_list);
   1271 		uao_detach_locked(&aobj->u_obj);
   1272 	}
   1273 
   1274 	/*
   1275 	 * done with traversal, unlock the list
   1276 	 */
   1277 	mutex_exit(&uao_list_lock);
   1278 	return false;
   1279 }
   1280 
   1281 
   1282 /*
   1283  * page in any pages from aobj in the given range.
   1284  *
   1285  * => aobj must be locked and is returned locked.
   1286  * => returns true if pagein was aborted due to lack of memory.
   1287  */
   1288 static bool
   1289 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1290 {
   1291 	bool rv;
   1292 
   1293 	if (UAO_USES_SWHASH(aobj)) {
   1294 		struct uao_swhash_elt *elt;
   1295 		int buck;
   1296 
   1297 restart:
   1298 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1299 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1300 			     elt != NULL;
   1301 			     elt = LIST_NEXT(elt, list)) {
   1302 				int i;
   1303 
   1304 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1305 					int slot = elt->slots[i];
   1306 
   1307 					/*
   1308 					 * if the slot isn't in range, skip it.
   1309 					 */
   1310 
   1311 					if (slot < startslot ||
   1312 					    slot >= endslot) {
   1313 						continue;
   1314 					}
   1315 
   1316 					/*
   1317 					 * process the page,
   1318 					 * the start over on this object
   1319 					 * since the swhash elt
   1320 					 * may have been freed.
   1321 					 */
   1322 
   1323 					rv = uao_pagein_page(aobj,
   1324 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1325 					if (rv) {
   1326 						return rv;
   1327 					}
   1328 					goto restart;
   1329 				}
   1330 			}
   1331 		}
   1332 	} else {
   1333 		int i;
   1334 
   1335 		for (i = 0; i < aobj->u_pages; i++) {
   1336 			int slot = aobj->u_swslots[i];
   1337 
   1338 			/*
   1339 			 * if the slot isn't in range, skip it
   1340 			 */
   1341 
   1342 			if (slot < startslot || slot >= endslot) {
   1343 				continue;
   1344 			}
   1345 
   1346 			/*
   1347 			 * process the page.
   1348 			 */
   1349 
   1350 			rv = uao_pagein_page(aobj, i);
   1351 			if (rv) {
   1352 				return rv;
   1353 			}
   1354 		}
   1355 	}
   1356 
   1357 	return false;
   1358 }
   1359 
   1360 /*
   1361  * uao_pagein_page: page in a single page from an anonymous UVM object.
   1362  *
   1363  * => Returns true if pagein was aborted due to lack of memory.
   1364  * => Object must be locked and is returned locked.
   1365  */
   1366 
   1367 static bool
   1368 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1369 {
   1370 	struct uvm_object *uobj = &aobj->u_obj;
   1371 	struct vm_page *pg;
   1372 	int rv, npages;
   1373 
   1374 	pg = NULL;
   1375 	npages = 1;
   1376 
   1377 	KASSERT(mutex_owned(uobj->vmobjlock));
   1378 	rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
   1379 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
   1380 
   1381 	/*
   1382 	 * relock and finish up.
   1383 	 */
   1384 
   1385 	mutex_enter(uobj->vmobjlock);
   1386 	switch (rv) {
   1387 	case 0:
   1388 		break;
   1389 
   1390 	case EIO:
   1391 	case ERESTART:
   1392 
   1393 		/*
   1394 		 * nothing more to do on errors.
   1395 		 * ERESTART can only mean that the anon was freed,
   1396 		 * so again there's nothing to do.
   1397 		 */
   1398 
   1399 		return false;
   1400 
   1401 	default:
   1402 		return true;
   1403 	}
   1404 
   1405 	/*
   1406 	 * ok, we've got the page now.
   1407 	 * mark it as dirty, clear its swslot and un-busy it.
   1408 	 */
   1409 	uao_dropswap(&aobj->u_obj, pageidx);
   1410 
   1411 	/*
   1412 	 * make sure it's on a page queue.
   1413 	 */
   1414 	mutex_enter(&uvm_pageqlock);
   1415 	if (pg->wire_count == 0)
   1416 		uvm_pageenqueue(pg);
   1417 	mutex_exit(&uvm_pageqlock);
   1418 
   1419 	if (pg->flags & PG_WANTED) {
   1420 		wakeup(pg);
   1421 	}
   1422 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1423 	UVM_PAGE_OWN(pg, NULL);
   1424 
   1425 	return false;
   1426 }
   1427 
   1428 /*
   1429  * uao_dropswap_range: drop swapslots in the range.
   1430  *
   1431  * => aobj must be locked and is returned locked.
   1432  * => start is inclusive.  end is exclusive.
   1433  */
   1434 
   1435 void
   1436 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1437 {
   1438 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1439 	int swpgonlydelta = 0;
   1440 
   1441 	KASSERT(mutex_owned(uobj->vmobjlock));
   1442 
   1443 	if (end == 0) {
   1444 		end = INT64_MAX;
   1445 	}
   1446 
   1447 	if (UAO_USES_SWHASH(aobj)) {
   1448 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1449 		voff_t taghi;
   1450 		voff_t taglo;
   1451 
   1452 		taglo = UAO_SWHASH_ELT_TAG(start);
   1453 		taghi = UAO_SWHASH_ELT_TAG(end);
   1454 
   1455 		for (i = 0; i < hashbuckets; i++) {
   1456 			struct uao_swhash_elt *elt, *next;
   1457 
   1458 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1459 			     elt != NULL;
   1460 			     elt = next) {
   1461 				int startidx, endidx;
   1462 				int j;
   1463 
   1464 				next = LIST_NEXT(elt, list);
   1465 
   1466 				if (elt->tag < taglo || taghi < elt->tag) {
   1467 					continue;
   1468 				}
   1469 
   1470 				if (elt->tag == taglo) {
   1471 					startidx =
   1472 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1473 				} else {
   1474 					startidx = 0;
   1475 				}
   1476 
   1477 				if (elt->tag == taghi) {
   1478 					endidx =
   1479 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1480 				} else {
   1481 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1482 				}
   1483 
   1484 				for (j = startidx; j < endidx; j++) {
   1485 					int slot = elt->slots[j];
   1486 
   1487 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1488 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1489 					    + j) << PAGE_SHIFT) == NULL);
   1490 					if (slot > 0) {
   1491 						uvm_swap_free(slot, 1);
   1492 						swpgonlydelta++;
   1493 						KASSERT(elt->count > 0);
   1494 						elt->slots[j] = 0;
   1495 						elt->count--;
   1496 					}
   1497 				}
   1498 
   1499 				if (elt->count == 0) {
   1500 					LIST_REMOVE(elt, list);
   1501 					pool_put(&uao_swhash_elt_pool, elt);
   1502 				}
   1503 			}
   1504 		}
   1505 	} else {
   1506 		int i;
   1507 
   1508 		if (aobj->u_pages < end) {
   1509 			end = aobj->u_pages;
   1510 		}
   1511 		for (i = start; i < end; i++) {
   1512 			int slot = aobj->u_swslots[i];
   1513 
   1514 			if (slot > 0) {
   1515 				uvm_swap_free(slot, 1);
   1516 				swpgonlydelta++;
   1517 			}
   1518 		}
   1519 	}
   1520 
   1521 	/*
   1522 	 * adjust the counter of pages only in swap for all
   1523 	 * the swap slots we've freed.
   1524 	 */
   1525 
   1526 	if (swpgonlydelta > 0) {
   1527 		mutex_enter(&uvm_swap_data_lock);
   1528 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1529 		uvmexp.swpgonly -= swpgonlydelta;
   1530 		mutex_exit(&uvm_swap_data_lock);
   1531 	}
   1532 }
   1533 
   1534 #endif /* defined(VMSWAP) */
   1535