Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.118
      1 /*	$NetBSD: uvm_aobj.c,v 1.118 2012/09/14 22:20:50 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.118 2012/09/14 22:20:50 rmind Exp $");
     42 
     43 #include "opt_uvmhist.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/kmem.h>
     49 #include <sys/pool.h>
     50 
     51 #include <uvm/uvm.h>
     52 
     53 /*
     54  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
     55  * keeping the list of resident pages, it may also keep a list of allocated
     56  * swap blocks.  Depending on the size of the object, this list is either
     57  * stored in an array (small objects) or in a hash table (large objects).
     58  *
     59  * Lock order
     60  *
     61  *	uao_list_lock ->
     62  *		uvm_object::vmobjlock
     63  */
     64 
     65 /*
     66  * Note: for hash tables, we break the address space of the aobj into blocks
     67  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
     68  */
     69 
     70 #define	UAO_SWHASH_CLUSTER_SHIFT	4
     71 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
     72 
     73 /* Get the "tag" for this page index. */
     74 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
     75 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
     76     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     77 
     78 /* Given an ELT and a page index, find the swap slot. */
     79 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
     80     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
     81 
     82 /* Given an ELT, return its pageidx base. */
     83 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     84     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     85 
     86 /* The hash function. */
     87 #define	UAO_SWHASH_HASH(aobj, idx) \
     88     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
     89     & (aobj)->u_swhashmask)])
     90 
     91 /*
     92  * The threshold which determines whether we will use an array or a
     93  * hash table to store the list of allocated swap blocks.
     94  */
     95 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
     96 #define	UAO_USES_SWHASH(aobj) \
     97     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
     98 
     99 /* The number of buckets in a hash, with an upper bound. */
    100 #define	UAO_SWHASH_MAXBUCKETS		256
    101 #define	UAO_SWHASH_BUCKETS(aobj) \
    102     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
    103 
    104 /*
    105  * uao_swhash_elt: when a hash table is being used, this structure defines
    106  * the format of an entry in the bucket list.
    107  */
    108 
    109 struct uao_swhash_elt {
    110 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    111 	voff_t tag;				/* our 'tag' */
    112 	int count;				/* our number of active slots */
    113 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    114 };
    115 
    116 /*
    117  * uao_swhash: the swap hash table structure
    118  */
    119 
    120 LIST_HEAD(uao_swhash, uao_swhash_elt);
    121 
    122 /*
    123  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    124  * Note: pages for this pool must not come from a pageable kernel map.
    125  */
    126 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
    127 
    128 /*
    129  * uvm_aobj: the actual anon-backed uvm_object
    130  *
    131  * => the uvm_object is at the top of the structure, this allows
    132  *   (struct uvm_aobj *) == (struct uvm_object *)
    133  * => only one of u_swslots and u_swhash is used in any given aobj
    134  */
    135 
    136 struct uvm_aobj {
    137 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    138 	pgoff_t u_pages;	 /* number of pages in entire object */
    139 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    140 	int *u_swslots;		 /* array of offset->swapslot mappings */
    141 				 /*
    142 				  * hashtable of offset->swapslot mappings
    143 				  * (u_swhash is an array of bucket heads)
    144 				  */
    145 	struct uao_swhash *u_swhash;
    146 	u_long u_swhashmask;		/* mask for hashtable */
    147 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    148 };
    149 
    150 static void	uao_free(struct uvm_aobj *);
    151 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    152 		    int *, int, vm_prot_t, int, int);
    153 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    154 
    155 #if defined(VMSWAP)
    156 static struct uao_swhash_elt *uao_find_swhash_elt
    157     (struct uvm_aobj *, int, bool);
    158 
    159 static bool uao_pagein(struct uvm_aobj *, int, int);
    160 static bool uao_pagein_page(struct uvm_aobj *, int);
    161 #endif /* defined(VMSWAP) */
    162 
    163 /*
    164  * aobj_pager
    165  *
    166  * note that some functions (e.g. put) are handled elsewhere
    167  */
    168 
    169 const struct uvm_pagerops aobj_pager = {
    170 	.pgo_reference = uao_reference,
    171 	.pgo_detach = uao_detach,
    172 	.pgo_get = uao_get,
    173 	.pgo_put = uao_put,
    174 };
    175 
    176 /*
    177  * uao_list: global list of active aobjs, locked by uao_list_lock
    178  */
    179 
    180 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
    181 static kmutex_t		uao_list_lock		__cacheline_aligned;
    182 
    183 /*
    184  * hash table/array related functions
    185  */
    186 
    187 #if defined(VMSWAP)
    188 
    189 /*
    190  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    191  * offset.
    192  *
    193  * => the object should be locked by the caller
    194  */
    195 
    196 static struct uao_swhash_elt *
    197 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    198 {
    199 	struct uao_swhash *swhash;
    200 	struct uao_swhash_elt *elt;
    201 	voff_t page_tag;
    202 
    203 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    204 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    205 
    206 	/*
    207 	 * now search the bucket for the requested tag
    208 	 */
    209 
    210 	LIST_FOREACH(elt, swhash, list) {
    211 		if (elt->tag == page_tag) {
    212 			return elt;
    213 		}
    214 	}
    215 	if (!create) {
    216 		return NULL;
    217 	}
    218 
    219 	/*
    220 	 * allocate a new entry for the bucket and init/insert it in
    221 	 */
    222 
    223 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    224 	if (elt == NULL) {
    225 		return NULL;
    226 	}
    227 	LIST_INSERT_HEAD(swhash, elt, list);
    228 	elt->tag = page_tag;
    229 	elt->count = 0;
    230 	memset(elt->slots, 0, sizeof(elt->slots));
    231 	return elt;
    232 }
    233 
    234 /*
    235  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    236  *
    237  * => object must be locked by caller
    238  */
    239 
    240 int
    241 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    242 {
    243 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    244 	struct uao_swhash_elt *elt;
    245 
    246 	/*
    247 	 * if noswap flag is set, then we never return a slot
    248 	 */
    249 
    250 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    251 		return 0;
    252 
    253 	/*
    254 	 * if hashing, look in hash table.
    255 	 */
    256 
    257 	if (UAO_USES_SWHASH(aobj)) {
    258 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    259 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
    260 	}
    261 
    262 	/*
    263 	 * otherwise, look in the array
    264 	 */
    265 
    266 	return aobj->u_swslots[pageidx];
    267 }
    268 
    269 /*
    270  * uao_set_swslot: set the swap slot for a page in an aobj.
    271  *
    272  * => setting a slot to zero frees the slot
    273  * => object must be locked by caller
    274  * => we return the old slot number, or -1 if we failed to allocate
    275  *    memory to record the new slot number
    276  */
    277 
    278 int
    279 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    280 {
    281 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    282 	struct uao_swhash_elt *elt;
    283 	int oldslot;
    284 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    285 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    286 	    aobj, pageidx, slot, 0);
    287 
    288 	KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
    289 
    290 	/*
    291 	 * if noswap flag is set, then we can't set a non-zero slot.
    292 	 */
    293 
    294 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    295 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
    296 		return 0;
    297 	}
    298 
    299 	/*
    300 	 * are we using a hash table?  if so, add it in the hash.
    301 	 */
    302 
    303 	if (UAO_USES_SWHASH(aobj)) {
    304 
    305 		/*
    306 		 * Avoid allocating an entry just to free it again if
    307 		 * the page had not swap slot in the first place, and
    308 		 * we are freeing.
    309 		 */
    310 
    311 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    312 		if (elt == NULL) {
    313 			return slot ? -1 : 0;
    314 		}
    315 
    316 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    317 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    318 
    319 		/*
    320 		 * now adjust the elt's reference counter and free it if we've
    321 		 * dropped it to zero.
    322 		 */
    323 
    324 		if (slot) {
    325 			if (oldslot == 0)
    326 				elt->count++;
    327 		} else {
    328 			if (oldslot)
    329 				elt->count--;
    330 
    331 			if (elt->count == 0) {
    332 				LIST_REMOVE(elt, list);
    333 				pool_put(&uao_swhash_elt_pool, elt);
    334 			}
    335 		}
    336 	} else {
    337 		/* we are using an array */
    338 		oldslot = aobj->u_swslots[pageidx];
    339 		aobj->u_swslots[pageidx] = slot;
    340 	}
    341 	return oldslot;
    342 }
    343 
    344 #endif /* defined(VMSWAP) */
    345 
    346 /*
    347  * end of hash/array functions
    348  */
    349 
    350 /*
    351  * uao_free: free all resources held by an aobj, and then free the aobj
    352  *
    353  * => the aobj should be dead
    354  */
    355 
    356 static void
    357 uao_free(struct uvm_aobj *aobj)
    358 {
    359 	struct uvm_object *uobj = &aobj->u_obj;
    360 
    361 	KASSERT(mutex_owned(uobj->vmobjlock));
    362 	uao_dropswap_range(uobj, 0, 0);
    363 	mutex_exit(uobj->vmobjlock);
    364 
    365 #if defined(VMSWAP)
    366 	if (UAO_USES_SWHASH(aobj)) {
    367 
    368 		/*
    369 		 * free the hash table itself.
    370 		 */
    371 
    372 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    373 	} else {
    374 
    375 		/*
    376 		 * free the array itsself.
    377 		 */
    378 
    379 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    380 	}
    381 #endif /* defined(VMSWAP) */
    382 
    383 	/*
    384 	 * finally free the aobj itself
    385 	 */
    386 
    387 	uvm_obj_destroy(uobj, true);
    388 	kmem_free(aobj, sizeof(struct uvm_aobj));
    389 }
    390 
    391 /*
    392  * pager functions
    393  */
    394 
    395 /*
    396  * uao_create: create an aobj of the given size and return its uvm_object.
    397  *
    398  * => for normal use, flags are always zero
    399  * => for the kernel object, the flags are:
    400  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    401  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    402  */
    403 
    404 struct uvm_object *
    405 uao_create(vsize_t size, int flags)
    406 {
    407 	static struct uvm_aobj kernel_object_store;
    408 	static kmutex_t kernel_object_lock;
    409 	static int kobj_alloced = 0;
    410 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    411 	struct uvm_aobj *aobj;
    412 	int refs;
    413 
    414 	/*
    415 	 * Allocate a new aobj, unless kernel object is requested.
    416 	 */
    417 
    418 	if (flags & UAO_FLAG_KERNOBJ) {
    419 		KASSERT(!kobj_alloced);
    420 		aobj = &kernel_object_store;
    421 		aobj->u_pages = pages;
    422 		aobj->u_flags = UAO_FLAG_NOSWAP;
    423 		refs = UVM_OBJ_KERN;
    424 		kobj_alloced = UAO_FLAG_KERNOBJ;
    425 	} else if (flags & UAO_FLAG_KERNSWAP) {
    426 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    427 		aobj = &kernel_object_store;
    428 		kobj_alloced = UAO_FLAG_KERNSWAP;
    429 		refs = 0xdeadbeaf; /* XXX: gcc */
    430 	} else {
    431 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    432 		aobj->u_pages = pages;
    433 		aobj->u_flags = 0;
    434 		refs = 1;
    435 	}
    436 
    437 	/*
    438  	 * allocate hash/array if necessary
    439  	 *
    440  	 * note: in the KERNSWAP case no need to worry about locking since
    441  	 * we are still booting we should be the only thread around.
    442  	 */
    443 
    444 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    445 #if defined(VMSWAP)
    446 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    447 
    448 		/* allocate hash table or array depending on object size */
    449 		if (UAO_USES_SWHASH(aobj)) {
    450 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    451 			    HASH_LIST, kernswap ? false : true,
    452 			    &aobj->u_swhashmask);
    453 			if (aobj->u_swhash == NULL)
    454 				panic("uao_create: hashinit swhash failed");
    455 		} else {
    456 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    457 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    458 			if (aobj->u_swslots == NULL)
    459 				panic("uao_create: swslots allocation failed");
    460 		}
    461 #endif /* defined(VMSWAP) */
    462 
    463 		if (flags) {
    464 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    465 			return &aobj->u_obj;
    466 		}
    467 	}
    468 
    469 	/*
    470 	 * Initialise UVM object.
    471 	 */
    472 
    473 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
    474 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
    475 	if (__predict_false(kernobj)) {
    476 		/* Initialisation only once, for UAO_FLAG_KERNOBJ. */
    477 		mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
    478 		uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
    479 	}
    480 
    481 	/*
    482  	 * now that aobj is ready, add it to the global list
    483  	 */
    484 
    485 	mutex_enter(&uao_list_lock);
    486 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    487 	mutex_exit(&uao_list_lock);
    488 	return(&aobj->u_obj);
    489 }
    490 
    491 /*
    492  * uao_init: set up aobj pager subsystem
    493  *
    494  * => called at boot time from uvm_pager_init()
    495  */
    496 
    497 void
    498 uao_init(void)
    499 {
    500 	static int uao_initialized;
    501 
    502 	if (uao_initialized)
    503 		return;
    504 	uao_initialized = true;
    505 	LIST_INIT(&uao_list);
    506 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    507 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    508 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    509 }
    510 
    511 /*
    512  * uao_reference: hold a reference to an anonymous UVM object.
    513  */
    514 void
    515 uao_reference(struct uvm_object *uobj)
    516 {
    517 	/* Kernel object is persistent. */
    518 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    519 		return;
    520 	}
    521 	atomic_inc_uint(&uobj->uo_refs);
    522 }
    523 
    524 /*
    525  * uao_detach: drop a reference to an anonymous UVM object.
    526  */
    527 void
    528 uao_detach(struct uvm_object *uobj)
    529 {
    530 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    531 	struct vm_page *pg;
    532 
    533 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    534 
    535 	/*
    536 	 * Detaching from kernel object is a NOP.
    537 	 */
    538 
    539 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    540 		return;
    541 
    542 	/*
    543 	 * Drop the reference.  If it was the last one, destroy the object.
    544 	 */
    545 
    546 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    547 	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
    548 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    549 		return;
    550 	}
    551 
    552 	/*
    553 	 * Remove the aobj from the global list.
    554 	 */
    555 
    556 	mutex_enter(&uao_list_lock);
    557 	LIST_REMOVE(aobj, u_list);
    558 	mutex_exit(&uao_list_lock);
    559 
    560 	/*
    561 	 * Free all the pages left in the aobj.  For each page, when the
    562 	 * page is no longer busy (and thus after any disk I/O that it is
    563 	 * involved in is complete), release any swap resources and free
    564 	 * the page itself.
    565 	 */
    566 
    567 	mutex_enter(uobj->vmobjlock);
    568 	mutex_enter(&uvm_pageqlock);
    569 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    570 		pmap_page_protect(pg, VM_PROT_NONE);
    571 		if (pg->flags & PG_BUSY) {
    572 			pg->flags |= PG_WANTED;
    573 			mutex_exit(&uvm_pageqlock);
    574 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
    575 			    "uao_det", 0);
    576 			mutex_enter(uobj->vmobjlock);
    577 			mutex_enter(&uvm_pageqlock);
    578 			continue;
    579 		}
    580 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    581 		uvm_pagefree(pg);
    582 	}
    583 	mutex_exit(&uvm_pageqlock);
    584 
    585 	/*
    586 	 * Finally, free the anonymous UVM object itself.
    587 	 */
    588 
    589 	uao_free(aobj);
    590 }
    591 
    592 /*
    593  * uao_put: flush pages out of a uvm object
    594  *
    595  * => object should be locked by caller.  we may _unlock_ the object
    596  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    597  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    598  *	XXXJRT a page, we simply just deactivate it.  Should probably
    599  *	XXXJRT handle this better, in the future (although "flushing"
    600  *	XXXJRT anonymous memory isn't terribly important).
    601  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    602  *	or block.
    603  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    604  *	for flushing.
    605  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    606  *	that new pages are inserted on the tail end of the list.  thus,
    607  *	we can make a complete pass through the object in one go by starting
    608  *	at the head and working towards the tail (new pages are put in
    609  *	front of us).
    610  * => NOTE: we are allowed to lock the page queues, so the caller
    611  *	must not be holding the lock on them [e.g. pagedaemon had
    612  *	better not call us with the queues locked]
    613  * => we return 0 unless we encountered some sort of I/O error
    614  *	XXXJRT currently never happens, as we never directly initiate
    615  *	XXXJRT I/O
    616  *
    617  * note on page traversal:
    618  *	we can traverse the pages in an object either by going down the
    619  *	linked list in "uobj->memq", or we can go over the address range
    620  *	by page doing hash table lookups for each address.  depending
    621  *	on how many pages are in the object it may be cheaper to do one
    622  *	or the other.  we set "by_list" to true if we are using memq.
    623  *	if the cost of a hash lookup was equal to the cost of the list
    624  *	traversal we could compare the number of pages in the start->stop
    625  *	range to the total number of pages in the object.  however, it
    626  *	seems that a hash table lookup is more expensive than the linked
    627  *	list traversal, so we multiply the number of pages in the
    628  *	start->stop range by a penalty which we define below.
    629  */
    630 
    631 static int
    632 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    633 {
    634 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    635 	struct vm_page *pg, *nextpg, curmp, endmp;
    636 	bool by_list;
    637 	voff_t curoff;
    638 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    639 
    640 	KASSERT(mutex_owned(uobj->vmobjlock));
    641 
    642 	curoff = 0;
    643 	if (flags & PGO_ALLPAGES) {
    644 		start = 0;
    645 		stop = aobj->u_pages << PAGE_SHIFT;
    646 		by_list = true;		/* always go by the list */
    647 	} else {
    648 		start = trunc_page(start);
    649 		if (stop == 0) {
    650 			stop = aobj->u_pages << PAGE_SHIFT;
    651 		} else {
    652 			stop = round_page(stop);
    653 		}
    654 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    655 			printf("uao_flush: strange, got an out of range "
    656 			    "flush (fixed)\n");
    657 			stop = aobj->u_pages << PAGE_SHIFT;
    658 		}
    659 		by_list = (uobj->uo_npages <=
    660 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    661 	}
    662 	UVMHIST_LOG(maphist,
    663 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    664 	    start, stop, by_list, flags);
    665 
    666 	/*
    667 	 * Don't need to do any work here if we're not freeing
    668 	 * or deactivating pages.
    669 	 */
    670 
    671 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    672 		mutex_exit(uobj->vmobjlock);
    673 		return 0;
    674 	}
    675 
    676 	/*
    677 	 * Initialize the marker pages.  See the comment in
    678 	 * genfs_putpages() also.
    679 	 */
    680 
    681 	curmp.flags = PG_MARKER;
    682 	endmp.flags = PG_MARKER;
    683 
    684 	/*
    685 	 * now do it.  note: we must update nextpg in the body of loop or we
    686 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    687 	 * because we may free "pg" before doing the next loop.
    688 	 */
    689 
    690 	if (by_list) {
    691 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    692 		nextpg = TAILQ_FIRST(&uobj->memq);
    693 	} else {
    694 		curoff = start;
    695 		nextpg = NULL;	/* Quell compiler warning */
    696 	}
    697 
    698 	/* locked: uobj */
    699 	for (;;) {
    700 		if (by_list) {
    701 			pg = nextpg;
    702 			if (pg == &endmp)
    703 				break;
    704 			nextpg = TAILQ_NEXT(pg, listq.queue);
    705 			if (pg->flags & PG_MARKER)
    706 				continue;
    707 			if (pg->offset < start || pg->offset >= stop)
    708 				continue;
    709 		} else {
    710 			if (curoff < stop) {
    711 				pg = uvm_pagelookup(uobj, curoff);
    712 				curoff += PAGE_SIZE;
    713 			} else
    714 				break;
    715 			if (pg == NULL)
    716 				continue;
    717 		}
    718 
    719 		/*
    720 		 * wait and try again if the page is busy.
    721 		 */
    722 
    723 		if (pg->flags & PG_BUSY) {
    724 			if (by_list) {
    725 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    726 			}
    727 			pg->flags |= PG_WANTED;
    728 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    729 			    "uao_put", 0);
    730 			mutex_enter(uobj->vmobjlock);
    731 			if (by_list) {
    732 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    733 				TAILQ_REMOVE(&uobj->memq, &curmp,
    734 				    listq.queue);
    735 			} else
    736 				curoff -= PAGE_SIZE;
    737 			continue;
    738 		}
    739 
    740 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    741 
    742 		/*
    743 		 * XXX In these first 3 cases, we always just
    744 		 * XXX deactivate the page.  We may want to
    745 		 * XXX handle the different cases more specifically
    746 		 * XXX in the future.
    747 		 */
    748 
    749 		case PGO_CLEANIT|PGO_FREE:
    750 		case PGO_CLEANIT|PGO_DEACTIVATE:
    751 		case PGO_DEACTIVATE:
    752  deactivate_it:
    753 			mutex_enter(&uvm_pageqlock);
    754 			/* skip the page if it's wired */
    755 			if (pg->wire_count == 0) {
    756 				uvm_pagedeactivate(pg);
    757 			}
    758 			mutex_exit(&uvm_pageqlock);
    759 			break;
    760 
    761 		case PGO_FREE:
    762 			/*
    763 			 * If there are multiple references to
    764 			 * the object, just deactivate the page.
    765 			 */
    766 
    767 			if (uobj->uo_refs > 1)
    768 				goto deactivate_it;
    769 
    770 			/*
    771 			 * free the swap slot and the page.
    772 			 */
    773 
    774 			pmap_page_protect(pg, VM_PROT_NONE);
    775 
    776 			/*
    777 			 * freeing swapslot here is not strictly necessary.
    778 			 * however, leaving it here doesn't save much
    779 			 * because we need to update swap accounting anyway.
    780 			 */
    781 
    782 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    783 			mutex_enter(&uvm_pageqlock);
    784 			uvm_pagefree(pg);
    785 			mutex_exit(&uvm_pageqlock);
    786 			break;
    787 
    788 		default:
    789 			panic("%s: impossible", __func__);
    790 		}
    791 	}
    792 	if (by_list) {
    793 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    794 	}
    795 	mutex_exit(uobj->vmobjlock);
    796 	return 0;
    797 }
    798 
    799 /*
    800  * uao_get: fetch me a page
    801  *
    802  * we have three cases:
    803  * 1: page is resident     -> just return the page.
    804  * 2: page is zero-fill    -> allocate a new page and zero it.
    805  * 3: page is swapped out  -> fetch the page from swap.
    806  *
    807  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    808  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    809  * then we will need to return EBUSY.
    810  *
    811  * => prefer map unlocked (not required)
    812  * => object must be locked!  we will _unlock_ it before starting any I/O.
    813  * => flags: PGO_ALLPAGES: get all of the pages
    814  *           PGO_LOCKED: fault data structures are locked
    815  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    816  * => NOTE: caller must check for released pages!!
    817  */
    818 
    819 static int
    820 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    821     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    822 {
    823 	voff_t current_offset;
    824 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    825 	int lcv, gotpages, maxpages, swslot, pageidx;
    826 	bool done;
    827 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    828 
    829 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    830 		    (struct uvm_aobj *)uobj, offset, flags,0);
    831 
    832 	/*
    833  	 * get number of pages
    834  	 */
    835 
    836 	maxpages = *npagesp;
    837 
    838 	/*
    839  	 * step 1: handled the case where fault data structures are locked.
    840  	 */
    841 
    842 	if (flags & PGO_LOCKED) {
    843 
    844 		/*
    845  		 * step 1a: get pages that are already resident.   only do
    846 		 * this if the data structures are locked (i.e. the first
    847 		 * time through).
    848  		 */
    849 
    850 		done = true;	/* be optimistic */
    851 		gotpages = 0;	/* # of pages we got so far */
    852 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    853 		    lcv++, current_offset += PAGE_SIZE) {
    854 			/* do we care about this page?  if not, skip it */
    855 			if (pps[lcv] == PGO_DONTCARE)
    856 				continue;
    857 			ptmp = uvm_pagelookup(uobj, current_offset);
    858 
    859 			/*
    860  			 * if page is new, attempt to allocate the page,
    861 			 * zero-fill'd.
    862  			 */
    863 
    864 			if (ptmp == NULL && uao_find_swslot(uobj,
    865 			    current_offset >> PAGE_SHIFT) == 0) {
    866 				ptmp = uvm_pagealloc(uobj, current_offset,
    867 				    NULL, UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
    868 				if (ptmp) {
    869 					/* new page */
    870 					ptmp->flags &= ~(PG_FAKE);
    871 					ptmp->pqflags |= PQ_AOBJ;
    872 					goto gotpage;
    873 				}
    874 			}
    875 
    876 			/*
    877 			 * to be useful must get a non-busy page
    878 			 */
    879 
    880 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    881 				if (lcv == centeridx ||
    882 				    (flags & PGO_ALLPAGES) != 0)
    883 					/* need to do a wait or I/O! */
    884 					done = false;
    885 					continue;
    886 			}
    887 
    888 			/*
    889 			 * useful page: busy/lock it and plug it in our
    890 			 * result array
    891 			 */
    892 
    893 			/* caller must un-busy this page */
    894 			ptmp->flags |= PG_BUSY;
    895 			UVM_PAGE_OWN(ptmp, "uao_get1");
    896 gotpage:
    897 			pps[lcv] = ptmp;
    898 			gotpages++;
    899 		}
    900 
    901 		/*
    902  		 * step 1b: now we've either done everything needed or we
    903 		 * to unlock and do some waiting or I/O.
    904  		 */
    905 
    906 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
    907 		*npagesp = gotpages;
    908 		if (done)
    909 			return 0;
    910 		else
    911 			return EBUSY;
    912 	}
    913 
    914 	/*
    915  	 * step 2: get non-resident or busy pages.
    916  	 * object is locked.   data structures are unlocked.
    917  	 */
    918 
    919 	if ((flags & PGO_SYNCIO) == 0) {
    920 		goto done;
    921 	}
    922 
    923 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    924 	    lcv++, current_offset += PAGE_SIZE) {
    925 
    926 		/*
    927 		 * - skip over pages we've already gotten or don't want
    928 		 * - skip over pages we don't _have_ to get
    929 		 */
    930 
    931 		if (pps[lcv] != NULL ||
    932 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    933 			continue;
    934 
    935 		pageidx = current_offset >> PAGE_SHIFT;
    936 
    937 		/*
    938  		 * we have yet to locate the current page (pps[lcv]).   we
    939 		 * first look for a page that is already at the current offset.
    940 		 * if we find a page, we check to see if it is busy or
    941 		 * released.  if that is the case, then we sleep on the page
    942 		 * until it is no longer busy or released and repeat the lookup.
    943 		 * if the page we found is neither busy nor released, then we
    944 		 * busy it (so we own it) and plug it into pps[lcv].   this
    945 		 * 'break's the following while loop and indicates we are
    946 		 * ready to move on to the next page in the "lcv" loop above.
    947  		 *
    948  		 * if we exit the while loop with pps[lcv] still set to NULL,
    949 		 * then it means that we allocated a new busy/fake/clean page
    950 		 * ptmp in the object and we need to do I/O to fill in the data.
    951  		 */
    952 
    953 		/* top of "pps" while loop */
    954 		while (pps[lcv] == NULL) {
    955 			/* look for a resident page */
    956 			ptmp = uvm_pagelookup(uobj, current_offset);
    957 
    958 			/* not resident?   allocate one now (if we can) */
    959 			if (ptmp == NULL) {
    960 
    961 				ptmp = uvm_pagealloc(uobj, current_offset,
    962 				    NULL, 0);
    963 
    964 				/* out of RAM? */
    965 				if (ptmp == NULL) {
    966 					mutex_exit(uobj->vmobjlock);
    967 					UVMHIST_LOG(pdhist,
    968 					    "sleeping, ptmp == NULL\n",0,0,0,0);
    969 					uvm_wait("uao_getpage");
    970 					mutex_enter(uobj->vmobjlock);
    971 					continue;
    972 				}
    973 
    974 				/*
    975 				 * safe with PQ's unlocked: because we just
    976 				 * alloc'd the page
    977 				 */
    978 
    979 				ptmp->pqflags |= PQ_AOBJ;
    980 
    981 				/*
    982 				 * got new page ready for I/O.  break pps while
    983 				 * loop.  pps[lcv] is still NULL.
    984 				 */
    985 
    986 				break;
    987 			}
    988 
    989 			/* page is there, see if we need to wait on it */
    990 			if ((ptmp->flags & PG_BUSY) != 0) {
    991 				ptmp->flags |= PG_WANTED;
    992 				UVMHIST_LOG(pdhist,
    993 				    "sleeping, ptmp->flags 0x%x\n",
    994 				    ptmp->flags,0,0,0);
    995 				UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
    996 				    false, "uao_get", 0);
    997 				mutex_enter(uobj->vmobjlock);
    998 				continue;
    999 			}
   1000 
   1001 			/*
   1002  			 * if we get here then the page has become resident and
   1003 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1004 			 * own it) and set pps[lcv] (so that we exit the while
   1005 			 * loop).
   1006  			 */
   1007 
   1008 			/* we own it, caller must un-busy */
   1009 			ptmp->flags |= PG_BUSY;
   1010 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1011 			pps[lcv] = ptmp;
   1012 		}
   1013 
   1014 		/*
   1015  		 * if we own the valid page at the correct offset, pps[lcv] will
   1016  		 * point to it.   nothing more to do except go to the next page.
   1017  		 */
   1018 
   1019 		if (pps[lcv])
   1020 			continue;			/* next lcv */
   1021 
   1022 		/*
   1023  		 * we have a "fake/busy/clean" page that we just allocated.
   1024  		 * do the needed "i/o", either reading from swap or zeroing.
   1025  		 */
   1026 
   1027 		swslot = uao_find_swslot(uobj, pageidx);
   1028 
   1029 		/*
   1030  		 * just zero the page if there's nothing in swap.
   1031  		 */
   1032 
   1033 		if (swslot == 0) {
   1034 
   1035 			/*
   1036 			 * page hasn't existed before, just zero it.
   1037 			 */
   1038 
   1039 			uvm_pagezero(ptmp);
   1040 		} else {
   1041 #if defined(VMSWAP)
   1042 			int error;
   1043 
   1044 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1045 			     swslot, 0,0,0);
   1046 
   1047 			/*
   1048 			 * page in the swapped-out page.
   1049 			 * unlock object for i/o, relock when done.
   1050 			 */
   1051 
   1052 			mutex_exit(uobj->vmobjlock);
   1053 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1054 			mutex_enter(uobj->vmobjlock);
   1055 
   1056 			/*
   1057 			 * I/O done.  check for errors.
   1058 			 */
   1059 
   1060 			if (error != 0) {
   1061 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1062 				    error,0,0,0);
   1063 				if (ptmp->flags & PG_WANTED)
   1064 					wakeup(ptmp);
   1065 
   1066 				/*
   1067 				 * remove the swap slot from the aobj
   1068 				 * and mark the aobj as having no real slot.
   1069 				 * don't free the swap slot, thus preventing
   1070 				 * it from being used again.
   1071 				 */
   1072 
   1073 				swslot = uao_set_swslot(uobj, pageidx,
   1074 				    SWSLOT_BAD);
   1075 				if (swslot > 0) {
   1076 					uvm_swap_markbad(swslot, 1);
   1077 				}
   1078 
   1079 				mutex_enter(&uvm_pageqlock);
   1080 				uvm_pagefree(ptmp);
   1081 				mutex_exit(&uvm_pageqlock);
   1082 				mutex_exit(uobj->vmobjlock);
   1083 				return error;
   1084 			}
   1085 #else /* defined(VMSWAP) */
   1086 			panic("%s: pagein", __func__);
   1087 #endif /* defined(VMSWAP) */
   1088 		}
   1089 
   1090 		if ((access_type & VM_PROT_WRITE) == 0) {
   1091 			ptmp->flags |= PG_CLEAN;
   1092 			pmap_clear_modify(ptmp);
   1093 		}
   1094 
   1095 		/*
   1096  		 * we got the page!   clear the fake flag (indicates valid
   1097 		 * data now in page) and plug into our result array.   note
   1098 		 * that page is still busy.
   1099  		 *
   1100  		 * it is the callers job to:
   1101  		 * => check if the page is released
   1102  		 * => unbusy the page
   1103  		 * => activate the page
   1104  		 */
   1105 
   1106 		ptmp->flags &= ~PG_FAKE;
   1107 		pps[lcv] = ptmp;
   1108 	}
   1109 
   1110 	/*
   1111  	 * finally, unlock object and return.
   1112  	 */
   1113 
   1114 done:
   1115 	mutex_exit(uobj->vmobjlock);
   1116 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1117 	return 0;
   1118 }
   1119 
   1120 #if defined(VMSWAP)
   1121 
   1122 /*
   1123  * uao_dropswap:  release any swap resources from this aobj page.
   1124  *
   1125  * => aobj must be locked or have a reference count of 0.
   1126  */
   1127 
   1128 void
   1129 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1130 {
   1131 	int slot;
   1132 
   1133 	slot = uao_set_swslot(uobj, pageidx, 0);
   1134 	if (slot) {
   1135 		uvm_swap_free(slot, 1);
   1136 	}
   1137 }
   1138 
   1139 /*
   1140  * page in every page in every aobj that is paged-out to a range of swslots.
   1141  *
   1142  * => nothing should be locked.
   1143  * => returns true if pagein was aborted due to lack of memory.
   1144  */
   1145 
   1146 bool
   1147 uao_swap_off(int startslot, int endslot)
   1148 {
   1149 	struct uvm_aobj *aobj;
   1150 
   1151 	/*
   1152 	 * Walk the list of all anonymous UVM objects.  Grab the first.
   1153 	 */
   1154 	mutex_enter(&uao_list_lock);
   1155 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
   1156 		mutex_exit(&uao_list_lock);
   1157 		return false;
   1158 	}
   1159 	uao_reference(&aobj->u_obj);
   1160 
   1161 	do {
   1162 		struct uvm_aobj *nextaobj;
   1163 		bool rv;
   1164 
   1165 		/*
   1166 		 * Prefetch the next object and immediately hold a reference
   1167 		 * on it, so neither the current nor the next entry could
   1168 		 * disappear while we are iterating.
   1169 		 */
   1170 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
   1171 			uao_reference(&nextaobj->u_obj);
   1172 		}
   1173 		mutex_exit(&uao_list_lock);
   1174 
   1175 		/*
   1176 		 * Page in all pages in the swap slot range.
   1177 		 */
   1178 		mutex_enter(aobj->u_obj.vmobjlock);
   1179 		rv = uao_pagein(aobj, startslot, endslot);
   1180 		mutex_exit(aobj->u_obj.vmobjlock);
   1181 
   1182 		/* Drop the reference of the current object. */
   1183 		uao_detach(&aobj->u_obj);
   1184 		if (rv) {
   1185 			if (nextaobj) {
   1186 				uao_detach(&nextaobj->u_obj);
   1187 			}
   1188 			return rv;
   1189 		}
   1190 
   1191 		aobj = nextaobj;
   1192 		mutex_enter(&uao_list_lock);
   1193 	} while (aobj);
   1194 
   1195 	mutex_exit(&uao_list_lock);
   1196 	return false;
   1197 }
   1198 
   1199 /*
   1200  * page in any pages from aobj in the given range.
   1201  *
   1202  * => aobj must be locked and is returned locked.
   1203  * => returns true if pagein was aborted due to lack of memory.
   1204  */
   1205 static bool
   1206 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1207 {
   1208 	bool rv;
   1209 
   1210 	if (UAO_USES_SWHASH(aobj)) {
   1211 		struct uao_swhash_elt *elt;
   1212 		int buck;
   1213 
   1214 restart:
   1215 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1216 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1217 			     elt != NULL;
   1218 			     elt = LIST_NEXT(elt, list)) {
   1219 				int i;
   1220 
   1221 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1222 					int slot = elt->slots[i];
   1223 
   1224 					/*
   1225 					 * if the slot isn't in range, skip it.
   1226 					 */
   1227 
   1228 					if (slot < startslot ||
   1229 					    slot >= endslot) {
   1230 						continue;
   1231 					}
   1232 
   1233 					/*
   1234 					 * process the page,
   1235 					 * the start over on this object
   1236 					 * since the swhash elt
   1237 					 * may have been freed.
   1238 					 */
   1239 
   1240 					rv = uao_pagein_page(aobj,
   1241 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1242 					if (rv) {
   1243 						return rv;
   1244 					}
   1245 					goto restart;
   1246 				}
   1247 			}
   1248 		}
   1249 	} else {
   1250 		int i;
   1251 
   1252 		for (i = 0; i < aobj->u_pages; i++) {
   1253 			int slot = aobj->u_swslots[i];
   1254 
   1255 			/*
   1256 			 * if the slot isn't in range, skip it
   1257 			 */
   1258 
   1259 			if (slot < startslot || slot >= endslot) {
   1260 				continue;
   1261 			}
   1262 
   1263 			/*
   1264 			 * process the page.
   1265 			 */
   1266 
   1267 			rv = uao_pagein_page(aobj, i);
   1268 			if (rv) {
   1269 				return rv;
   1270 			}
   1271 		}
   1272 	}
   1273 
   1274 	return false;
   1275 }
   1276 
   1277 /*
   1278  * uao_pagein_page: page in a single page from an anonymous UVM object.
   1279  *
   1280  * => Returns true if pagein was aborted due to lack of memory.
   1281  * => Object must be locked and is returned locked.
   1282  */
   1283 
   1284 static bool
   1285 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1286 {
   1287 	struct uvm_object *uobj = &aobj->u_obj;
   1288 	struct vm_page *pg;
   1289 	int rv, npages;
   1290 
   1291 	pg = NULL;
   1292 	npages = 1;
   1293 
   1294 	KASSERT(mutex_owned(uobj->vmobjlock));
   1295 	rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
   1296 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
   1297 
   1298 	/*
   1299 	 * relock and finish up.
   1300 	 */
   1301 
   1302 	mutex_enter(uobj->vmobjlock);
   1303 	switch (rv) {
   1304 	case 0:
   1305 		break;
   1306 
   1307 	case EIO:
   1308 	case ERESTART:
   1309 
   1310 		/*
   1311 		 * nothing more to do on errors.
   1312 		 * ERESTART can only mean that the anon was freed,
   1313 		 * so again there's nothing to do.
   1314 		 */
   1315 
   1316 		return false;
   1317 
   1318 	default:
   1319 		return true;
   1320 	}
   1321 
   1322 	/*
   1323 	 * ok, we've got the page now.
   1324 	 * mark it as dirty, clear its swslot and un-busy it.
   1325 	 */
   1326 	uao_dropswap(&aobj->u_obj, pageidx);
   1327 
   1328 	/*
   1329 	 * make sure it's on a page queue.
   1330 	 */
   1331 	mutex_enter(&uvm_pageqlock);
   1332 	if (pg->wire_count == 0)
   1333 		uvm_pageenqueue(pg);
   1334 	mutex_exit(&uvm_pageqlock);
   1335 
   1336 	if (pg->flags & PG_WANTED) {
   1337 		wakeup(pg);
   1338 	}
   1339 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1340 	UVM_PAGE_OWN(pg, NULL);
   1341 
   1342 	return false;
   1343 }
   1344 
   1345 /*
   1346  * uao_dropswap_range: drop swapslots in the range.
   1347  *
   1348  * => aobj must be locked and is returned locked.
   1349  * => start is inclusive.  end is exclusive.
   1350  */
   1351 
   1352 void
   1353 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1354 {
   1355 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1356 	int swpgonlydelta = 0;
   1357 
   1358 	KASSERT(mutex_owned(uobj->vmobjlock));
   1359 
   1360 	if (end == 0) {
   1361 		end = INT64_MAX;
   1362 	}
   1363 
   1364 	if (UAO_USES_SWHASH(aobj)) {
   1365 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1366 		voff_t taghi;
   1367 		voff_t taglo;
   1368 
   1369 		taglo = UAO_SWHASH_ELT_TAG(start);
   1370 		taghi = UAO_SWHASH_ELT_TAG(end);
   1371 
   1372 		for (i = 0; i < hashbuckets; i++) {
   1373 			struct uao_swhash_elt *elt, *next;
   1374 
   1375 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1376 			     elt != NULL;
   1377 			     elt = next) {
   1378 				int startidx, endidx;
   1379 				int j;
   1380 
   1381 				next = LIST_NEXT(elt, list);
   1382 
   1383 				if (elt->tag < taglo || taghi < elt->tag) {
   1384 					continue;
   1385 				}
   1386 
   1387 				if (elt->tag == taglo) {
   1388 					startidx =
   1389 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1390 				} else {
   1391 					startidx = 0;
   1392 				}
   1393 
   1394 				if (elt->tag == taghi) {
   1395 					endidx =
   1396 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1397 				} else {
   1398 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1399 				}
   1400 
   1401 				for (j = startidx; j < endidx; j++) {
   1402 					int slot = elt->slots[j];
   1403 
   1404 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1405 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1406 					    + j) << PAGE_SHIFT) == NULL);
   1407 					if (slot > 0) {
   1408 						uvm_swap_free(slot, 1);
   1409 						swpgonlydelta++;
   1410 						KASSERT(elt->count > 0);
   1411 						elt->slots[j] = 0;
   1412 						elt->count--;
   1413 					}
   1414 				}
   1415 
   1416 				if (elt->count == 0) {
   1417 					LIST_REMOVE(elt, list);
   1418 					pool_put(&uao_swhash_elt_pool, elt);
   1419 				}
   1420 			}
   1421 		}
   1422 	} else {
   1423 		int i;
   1424 
   1425 		if (aobj->u_pages < end) {
   1426 			end = aobj->u_pages;
   1427 		}
   1428 		for (i = start; i < end; i++) {
   1429 			int slot = aobj->u_swslots[i];
   1430 
   1431 			if (slot > 0) {
   1432 				uvm_swap_free(slot, 1);
   1433 				swpgonlydelta++;
   1434 			}
   1435 		}
   1436 	}
   1437 
   1438 	/*
   1439 	 * adjust the counter of pages only in swap for all
   1440 	 * the swap slots we've freed.
   1441 	 */
   1442 
   1443 	if (swpgonlydelta > 0) {
   1444 		mutex_enter(&uvm_swap_data_lock);
   1445 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1446 		uvmexp.swpgonly -= swpgonlydelta;
   1447 		mutex_exit(&uvm_swap_data_lock);
   1448 	}
   1449 }
   1450 
   1451 #endif /* defined(VMSWAP) */
   1452