Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.119
      1 /*	$NetBSD: uvm_aobj.c,v 1.119 2012/09/15 06:25:47 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.119 2012/09/15 06:25:47 matt Exp $");
     42 
     43 #include "opt_uvmhist.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/kmem.h>
     49 #include <sys/pool.h>
     50 #include <sys/atomic.h>
     51 
     52 #include <uvm/uvm.h>
     53 
     54 /*
     55  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
     56  * keeping the list of resident pages, it may also keep a list of allocated
     57  * swap blocks.  Depending on the size of the object, this list is either
     58  * stored in an array (small objects) or in a hash table (large objects).
     59  *
     60  * Lock order
     61  *
     62  *	uao_list_lock ->
     63  *		uvm_object::vmobjlock
     64  */
     65 
     66 /*
     67  * Note: for hash tables, we break the address space of the aobj into blocks
     68  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
     69  */
     70 
     71 #define	UAO_SWHASH_CLUSTER_SHIFT	4
     72 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
     73 
     74 /* Get the "tag" for this page index. */
     75 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
     76 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
     77     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     78 
     79 /* Given an ELT and a page index, find the swap slot. */
     80 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
     81     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
     82 
     83 /* Given an ELT, return its pageidx base. */
     84 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     85     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     86 
     87 /* The hash function. */
     88 #define	UAO_SWHASH_HASH(aobj, idx) \
     89     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
     90     & (aobj)->u_swhashmask)])
     91 
     92 /*
     93  * The threshold which determines whether we will use an array or a
     94  * hash table to store the list of allocated swap blocks.
     95  */
     96 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
     97 #define	UAO_USES_SWHASH(aobj) \
     98     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
     99 
    100 /* The number of buckets in a hash, with an upper bound. */
    101 #define	UAO_SWHASH_MAXBUCKETS		256
    102 #define	UAO_SWHASH_BUCKETS(aobj) \
    103     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
    104 
    105 /*
    106  * uao_swhash_elt: when a hash table is being used, this structure defines
    107  * the format of an entry in the bucket list.
    108  */
    109 
    110 struct uao_swhash_elt {
    111 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    112 	voff_t tag;				/* our 'tag' */
    113 	int count;				/* our number of active slots */
    114 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    115 };
    116 
    117 /*
    118  * uao_swhash: the swap hash table structure
    119  */
    120 
    121 LIST_HEAD(uao_swhash, uao_swhash_elt);
    122 
    123 /*
    124  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    125  * Note: pages for this pool must not come from a pageable kernel map.
    126  */
    127 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
    128 
    129 /*
    130  * uvm_aobj: the actual anon-backed uvm_object
    131  *
    132  * => the uvm_object is at the top of the structure, this allows
    133  *   (struct uvm_aobj *) == (struct uvm_object *)
    134  * => only one of u_swslots and u_swhash is used in any given aobj
    135  */
    136 
    137 struct uvm_aobj {
    138 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    139 	pgoff_t u_pages;	 /* number of pages in entire object */
    140 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    141 	int *u_swslots;		 /* array of offset->swapslot mappings */
    142 				 /*
    143 				  * hashtable of offset->swapslot mappings
    144 				  * (u_swhash is an array of bucket heads)
    145 				  */
    146 	struct uao_swhash *u_swhash;
    147 	u_long u_swhashmask;		/* mask for hashtable */
    148 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    149 };
    150 
    151 static void	uao_free(struct uvm_aobj *);
    152 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    153 		    int *, int, vm_prot_t, int, int);
    154 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    155 
    156 #if defined(VMSWAP)
    157 static struct uao_swhash_elt *uao_find_swhash_elt
    158     (struct uvm_aobj *, int, bool);
    159 
    160 static bool uao_pagein(struct uvm_aobj *, int, int);
    161 static bool uao_pagein_page(struct uvm_aobj *, int);
    162 #endif /* defined(VMSWAP) */
    163 
    164 /*
    165  * aobj_pager
    166  *
    167  * note that some functions (e.g. put) are handled elsewhere
    168  */
    169 
    170 const struct uvm_pagerops aobj_pager = {
    171 	.pgo_reference = uao_reference,
    172 	.pgo_detach = uao_detach,
    173 	.pgo_get = uao_get,
    174 	.pgo_put = uao_put,
    175 };
    176 
    177 /*
    178  * uao_list: global list of active aobjs, locked by uao_list_lock
    179  */
    180 
    181 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
    182 static kmutex_t		uao_list_lock		__cacheline_aligned;
    183 
    184 /*
    185  * hash table/array related functions
    186  */
    187 
    188 #if defined(VMSWAP)
    189 
    190 /*
    191  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    192  * offset.
    193  *
    194  * => the object should be locked by the caller
    195  */
    196 
    197 static struct uao_swhash_elt *
    198 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    199 {
    200 	struct uao_swhash *swhash;
    201 	struct uao_swhash_elt *elt;
    202 	voff_t page_tag;
    203 
    204 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    205 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    206 
    207 	/*
    208 	 * now search the bucket for the requested tag
    209 	 */
    210 
    211 	LIST_FOREACH(elt, swhash, list) {
    212 		if (elt->tag == page_tag) {
    213 			return elt;
    214 		}
    215 	}
    216 	if (!create) {
    217 		return NULL;
    218 	}
    219 
    220 	/*
    221 	 * allocate a new entry for the bucket and init/insert it in
    222 	 */
    223 
    224 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    225 	if (elt == NULL) {
    226 		return NULL;
    227 	}
    228 	LIST_INSERT_HEAD(swhash, elt, list);
    229 	elt->tag = page_tag;
    230 	elt->count = 0;
    231 	memset(elt->slots, 0, sizeof(elt->slots));
    232 	return elt;
    233 }
    234 
    235 /*
    236  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    237  *
    238  * => object must be locked by caller
    239  */
    240 
    241 int
    242 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    243 {
    244 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    245 	struct uao_swhash_elt *elt;
    246 
    247 	/*
    248 	 * if noswap flag is set, then we never return a slot
    249 	 */
    250 
    251 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    252 		return 0;
    253 
    254 	/*
    255 	 * if hashing, look in hash table.
    256 	 */
    257 
    258 	if (UAO_USES_SWHASH(aobj)) {
    259 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    260 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
    261 	}
    262 
    263 	/*
    264 	 * otherwise, look in the array
    265 	 */
    266 
    267 	return aobj->u_swslots[pageidx];
    268 }
    269 
    270 /*
    271  * uao_set_swslot: set the swap slot for a page in an aobj.
    272  *
    273  * => setting a slot to zero frees the slot
    274  * => object must be locked by caller
    275  * => we return the old slot number, or -1 if we failed to allocate
    276  *    memory to record the new slot number
    277  */
    278 
    279 int
    280 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    281 {
    282 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    283 	struct uao_swhash_elt *elt;
    284 	int oldslot;
    285 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    286 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    287 	    aobj, pageidx, slot, 0);
    288 
    289 	KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
    290 
    291 	/*
    292 	 * if noswap flag is set, then we can't set a non-zero slot.
    293 	 */
    294 
    295 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    296 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
    297 		return 0;
    298 	}
    299 
    300 	/*
    301 	 * are we using a hash table?  if so, add it in the hash.
    302 	 */
    303 
    304 	if (UAO_USES_SWHASH(aobj)) {
    305 
    306 		/*
    307 		 * Avoid allocating an entry just to free it again if
    308 		 * the page had not swap slot in the first place, and
    309 		 * we are freeing.
    310 		 */
    311 
    312 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    313 		if (elt == NULL) {
    314 			return slot ? -1 : 0;
    315 		}
    316 
    317 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    318 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    319 
    320 		/*
    321 		 * now adjust the elt's reference counter and free it if we've
    322 		 * dropped it to zero.
    323 		 */
    324 
    325 		if (slot) {
    326 			if (oldslot == 0)
    327 				elt->count++;
    328 		} else {
    329 			if (oldslot)
    330 				elt->count--;
    331 
    332 			if (elt->count == 0) {
    333 				LIST_REMOVE(elt, list);
    334 				pool_put(&uao_swhash_elt_pool, elt);
    335 			}
    336 		}
    337 	} else {
    338 		/* we are using an array */
    339 		oldslot = aobj->u_swslots[pageidx];
    340 		aobj->u_swslots[pageidx] = slot;
    341 	}
    342 	return oldslot;
    343 }
    344 
    345 #endif /* defined(VMSWAP) */
    346 
    347 /*
    348  * end of hash/array functions
    349  */
    350 
    351 /*
    352  * uao_free: free all resources held by an aobj, and then free the aobj
    353  *
    354  * => the aobj should be dead
    355  */
    356 
    357 static void
    358 uao_free(struct uvm_aobj *aobj)
    359 {
    360 	struct uvm_object *uobj = &aobj->u_obj;
    361 
    362 	KASSERT(mutex_owned(uobj->vmobjlock));
    363 	uao_dropswap_range(uobj, 0, 0);
    364 	mutex_exit(uobj->vmobjlock);
    365 
    366 #if defined(VMSWAP)
    367 	if (UAO_USES_SWHASH(aobj)) {
    368 
    369 		/*
    370 		 * free the hash table itself.
    371 		 */
    372 
    373 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    374 	} else {
    375 
    376 		/*
    377 		 * free the array itsself.
    378 		 */
    379 
    380 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    381 	}
    382 #endif /* defined(VMSWAP) */
    383 
    384 	/*
    385 	 * finally free the aobj itself
    386 	 */
    387 
    388 	uvm_obj_destroy(uobj, true);
    389 	kmem_free(aobj, sizeof(struct uvm_aobj));
    390 }
    391 
    392 /*
    393  * pager functions
    394  */
    395 
    396 /*
    397  * uao_create: create an aobj of the given size and return its uvm_object.
    398  *
    399  * => for normal use, flags are always zero
    400  * => for the kernel object, the flags are:
    401  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    402  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    403  */
    404 
    405 struct uvm_object *
    406 uao_create(vsize_t size, int flags)
    407 {
    408 	static struct uvm_aobj kernel_object_store;
    409 	static kmutex_t kernel_object_lock;
    410 	static int kobj_alloced = 0;
    411 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    412 	struct uvm_aobj *aobj;
    413 	int refs;
    414 
    415 	/*
    416 	 * Allocate a new aobj, unless kernel object is requested.
    417 	 */
    418 
    419 	if (flags & UAO_FLAG_KERNOBJ) {
    420 		KASSERT(!kobj_alloced);
    421 		aobj = &kernel_object_store;
    422 		aobj->u_pages = pages;
    423 		aobj->u_flags = UAO_FLAG_NOSWAP;
    424 		refs = UVM_OBJ_KERN;
    425 		kobj_alloced = UAO_FLAG_KERNOBJ;
    426 	} else if (flags & UAO_FLAG_KERNSWAP) {
    427 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    428 		aobj = &kernel_object_store;
    429 		kobj_alloced = UAO_FLAG_KERNSWAP;
    430 		refs = 0xdeadbeaf; /* XXX: gcc */
    431 	} else {
    432 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    433 		aobj->u_pages = pages;
    434 		aobj->u_flags = 0;
    435 		refs = 1;
    436 	}
    437 
    438 	/*
    439  	 * allocate hash/array if necessary
    440  	 *
    441  	 * note: in the KERNSWAP case no need to worry about locking since
    442  	 * we are still booting we should be the only thread around.
    443  	 */
    444 
    445 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    446 #if defined(VMSWAP)
    447 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    448 
    449 		/* allocate hash table or array depending on object size */
    450 		if (UAO_USES_SWHASH(aobj)) {
    451 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    452 			    HASH_LIST, kernswap ? false : true,
    453 			    &aobj->u_swhashmask);
    454 			if (aobj->u_swhash == NULL)
    455 				panic("uao_create: hashinit swhash failed");
    456 		} else {
    457 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    458 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    459 			if (aobj->u_swslots == NULL)
    460 				panic("uao_create: swslots allocation failed");
    461 		}
    462 #endif /* defined(VMSWAP) */
    463 
    464 		if (flags) {
    465 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    466 			return &aobj->u_obj;
    467 		}
    468 	}
    469 
    470 	/*
    471 	 * Initialise UVM object.
    472 	 */
    473 
    474 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
    475 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
    476 	if (__predict_false(kernobj)) {
    477 		/* Initialisation only once, for UAO_FLAG_KERNOBJ. */
    478 		mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
    479 		uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
    480 	}
    481 
    482 	/*
    483  	 * now that aobj is ready, add it to the global list
    484  	 */
    485 
    486 	mutex_enter(&uao_list_lock);
    487 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    488 	mutex_exit(&uao_list_lock);
    489 	return(&aobj->u_obj);
    490 }
    491 
    492 /*
    493  * uao_init: set up aobj pager subsystem
    494  *
    495  * => called at boot time from uvm_pager_init()
    496  */
    497 
    498 void
    499 uao_init(void)
    500 {
    501 	static int uao_initialized;
    502 
    503 	if (uao_initialized)
    504 		return;
    505 	uao_initialized = true;
    506 	LIST_INIT(&uao_list);
    507 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    508 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    509 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    510 }
    511 
    512 /*
    513  * uao_reference: hold a reference to an anonymous UVM object.
    514  */
    515 void
    516 uao_reference(struct uvm_object *uobj)
    517 {
    518 	/* Kernel object is persistent. */
    519 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    520 		return;
    521 	}
    522 	atomic_inc_uint(&uobj->uo_refs);
    523 }
    524 
    525 /*
    526  * uao_detach: drop a reference to an anonymous UVM object.
    527  */
    528 void
    529 uao_detach(struct uvm_object *uobj)
    530 {
    531 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    532 	struct vm_page *pg;
    533 
    534 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    535 
    536 	/*
    537 	 * Detaching from kernel object is a NOP.
    538 	 */
    539 
    540 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    541 		return;
    542 
    543 	/*
    544 	 * Drop the reference.  If it was the last one, destroy the object.
    545 	 */
    546 
    547 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    548 	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
    549 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    550 		return;
    551 	}
    552 
    553 	/*
    554 	 * Remove the aobj from the global list.
    555 	 */
    556 
    557 	mutex_enter(&uao_list_lock);
    558 	LIST_REMOVE(aobj, u_list);
    559 	mutex_exit(&uao_list_lock);
    560 
    561 	/*
    562 	 * Free all the pages left in the aobj.  For each page, when the
    563 	 * page is no longer busy (and thus after any disk I/O that it is
    564 	 * involved in is complete), release any swap resources and free
    565 	 * the page itself.
    566 	 */
    567 
    568 	mutex_enter(uobj->vmobjlock);
    569 	mutex_enter(&uvm_pageqlock);
    570 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    571 		pmap_page_protect(pg, VM_PROT_NONE);
    572 		if (pg->flags & PG_BUSY) {
    573 			pg->flags |= PG_WANTED;
    574 			mutex_exit(&uvm_pageqlock);
    575 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
    576 			    "uao_det", 0);
    577 			mutex_enter(uobj->vmobjlock);
    578 			mutex_enter(&uvm_pageqlock);
    579 			continue;
    580 		}
    581 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    582 		uvm_pagefree(pg);
    583 	}
    584 	mutex_exit(&uvm_pageqlock);
    585 
    586 	/*
    587 	 * Finally, free the anonymous UVM object itself.
    588 	 */
    589 
    590 	uao_free(aobj);
    591 }
    592 
    593 /*
    594  * uao_put: flush pages out of a uvm object
    595  *
    596  * => object should be locked by caller.  we may _unlock_ the object
    597  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    598  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    599  *	XXXJRT a page, we simply just deactivate it.  Should probably
    600  *	XXXJRT handle this better, in the future (although "flushing"
    601  *	XXXJRT anonymous memory isn't terribly important).
    602  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    603  *	or block.
    604  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    605  *	for flushing.
    606  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    607  *	that new pages are inserted on the tail end of the list.  thus,
    608  *	we can make a complete pass through the object in one go by starting
    609  *	at the head and working towards the tail (new pages are put in
    610  *	front of us).
    611  * => NOTE: we are allowed to lock the page queues, so the caller
    612  *	must not be holding the lock on them [e.g. pagedaemon had
    613  *	better not call us with the queues locked]
    614  * => we return 0 unless we encountered some sort of I/O error
    615  *	XXXJRT currently never happens, as we never directly initiate
    616  *	XXXJRT I/O
    617  *
    618  * note on page traversal:
    619  *	we can traverse the pages in an object either by going down the
    620  *	linked list in "uobj->memq", or we can go over the address range
    621  *	by page doing hash table lookups for each address.  depending
    622  *	on how many pages are in the object it may be cheaper to do one
    623  *	or the other.  we set "by_list" to true if we are using memq.
    624  *	if the cost of a hash lookup was equal to the cost of the list
    625  *	traversal we could compare the number of pages in the start->stop
    626  *	range to the total number of pages in the object.  however, it
    627  *	seems that a hash table lookup is more expensive than the linked
    628  *	list traversal, so we multiply the number of pages in the
    629  *	start->stop range by a penalty which we define below.
    630  */
    631 
    632 static int
    633 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    634 {
    635 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    636 	struct vm_page *pg, *nextpg, curmp, endmp;
    637 	bool by_list;
    638 	voff_t curoff;
    639 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    640 
    641 	KASSERT(mutex_owned(uobj->vmobjlock));
    642 
    643 	curoff = 0;
    644 	if (flags & PGO_ALLPAGES) {
    645 		start = 0;
    646 		stop = aobj->u_pages << PAGE_SHIFT;
    647 		by_list = true;		/* always go by the list */
    648 	} else {
    649 		start = trunc_page(start);
    650 		if (stop == 0) {
    651 			stop = aobj->u_pages << PAGE_SHIFT;
    652 		} else {
    653 			stop = round_page(stop);
    654 		}
    655 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    656 			printf("uao_flush: strange, got an out of range "
    657 			    "flush (fixed)\n");
    658 			stop = aobj->u_pages << PAGE_SHIFT;
    659 		}
    660 		by_list = (uobj->uo_npages <=
    661 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    662 	}
    663 	UVMHIST_LOG(maphist,
    664 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    665 	    start, stop, by_list, flags);
    666 
    667 	/*
    668 	 * Don't need to do any work here if we're not freeing
    669 	 * or deactivating pages.
    670 	 */
    671 
    672 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    673 		mutex_exit(uobj->vmobjlock);
    674 		return 0;
    675 	}
    676 
    677 	/*
    678 	 * Initialize the marker pages.  See the comment in
    679 	 * genfs_putpages() also.
    680 	 */
    681 
    682 	curmp.flags = PG_MARKER;
    683 	endmp.flags = PG_MARKER;
    684 
    685 	/*
    686 	 * now do it.  note: we must update nextpg in the body of loop or we
    687 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    688 	 * because we may free "pg" before doing the next loop.
    689 	 */
    690 
    691 	if (by_list) {
    692 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    693 		nextpg = TAILQ_FIRST(&uobj->memq);
    694 	} else {
    695 		curoff = start;
    696 		nextpg = NULL;	/* Quell compiler warning */
    697 	}
    698 
    699 	/* locked: uobj */
    700 	for (;;) {
    701 		if (by_list) {
    702 			pg = nextpg;
    703 			if (pg == &endmp)
    704 				break;
    705 			nextpg = TAILQ_NEXT(pg, listq.queue);
    706 			if (pg->flags & PG_MARKER)
    707 				continue;
    708 			if (pg->offset < start || pg->offset >= stop)
    709 				continue;
    710 		} else {
    711 			if (curoff < stop) {
    712 				pg = uvm_pagelookup(uobj, curoff);
    713 				curoff += PAGE_SIZE;
    714 			} else
    715 				break;
    716 			if (pg == NULL)
    717 				continue;
    718 		}
    719 
    720 		/*
    721 		 * wait and try again if the page is busy.
    722 		 */
    723 
    724 		if (pg->flags & PG_BUSY) {
    725 			if (by_list) {
    726 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    727 			}
    728 			pg->flags |= PG_WANTED;
    729 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    730 			    "uao_put", 0);
    731 			mutex_enter(uobj->vmobjlock);
    732 			if (by_list) {
    733 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    734 				TAILQ_REMOVE(&uobj->memq, &curmp,
    735 				    listq.queue);
    736 			} else
    737 				curoff -= PAGE_SIZE;
    738 			continue;
    739 		}
    740 
    741 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    742 
    743 		/*
    744 		 * XXX In these first 3 cases, we always just
    745 		 * XXX deactivate the page.  We may want to
    746 		 * XXX handle the different cases more specifically
    747 		 * XXX in the future.
    748 		 */
    749 
    750 		case PGO_CLEANIT|PGO_FREE:
    751 		case PGO_CLEANIT|PGO_DEACTIVATE:
    752 		case PGO_DEACTIVATE:
    753  deactivate_it:
    754 			mutex_enter(&uvm_pageqlock);
    755 			/* skip the page if it's wired */
    756 			if (pg->wire_count == 0) {
    757 				uvm_pagedeactivate(pg);
    758 			}
    759 			mutex_exit(&uvm_pageqlock);
    760 			break;
    761 
    762 		case PGO_FREE:
    763 			/*
    764 			 * If there are multiple references to
    765 			 * the object, just deactivate the page.
    766 			 */
    767 
    768 			if (uobj->uo_refs > 1)
    769 				goto deactivate_it;
    770 
    771 			/*
    772 			 * free the swap slot and the page.
    773 			 */
    774 
    775 			pmap_page_protect(pg, VM_PROT_NONE);
    776 
    777 			/*
    778 			 * freeing swapslot here is not strictly necessary.
    779 			 * however, leaving it here doesn't save much
    780 			 * because we need to update swap accounting anyway.
    781 			 */
    782 
    783 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    784 			mutex_enter(&uvm_pageqlock);
    785 			uvm_pagefree(pg);
    786 			mutex_exit(&uvm_pageqlock);
    787 			break;
    788 
    789 		default:
    790 			panic("%s: impossible", __func__);
    791 		}
    792 	}
    793 	if (by_list) {
    794 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    795 	}
    796 	mutex_exit(uobj->vmobjlock);
    797 	return 0;
    798 }
    799 
    800 /*
    801  * uao_get: fetch me a page
    802  *
    803  * we have three cases:
    804  * 1: page is resident     -> just return the page.
    805  * 2: page is zero-fill    -> allocate a new page and zero it.
    806  * 3: page is swapped out  -> fetch the page from swap.
    807  *
    808  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    809  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    810  * then we will need to return EBUSY.
    811  *
    812  * => prefer map unlocked (not required)
    813  * => object must be locked!  we will _unlock_ it before starting any I/O.
    814  * => flags: PGO_ALLPAGES: get all of the pages
    815  *           PGO_LOCKED: fault data structures are locked
    816  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    817  * => NOTE: caller must check for released pages!!
    818  */
    819 
    820 static int
    821 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    822     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    823 {
    824 	voff_t current_offset;
    825 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    826 	int lcv, gotpages, maxpages, swslot, pageidx;
    827 	bool done;
    828 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    829 
    830 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    831 		    (struct uvm_aobj *)uobj, offset, flags,0);
    832 
    833 	/*
    834  	 * get number of pages
    835  	 */
    836 
    837 	maxpages = *npagesp;
    838 
    839 	/*
    840  	 * step 1: handled the case where fault data structures are locked.
    841  	 */
    842 
    843 	if (flags & PGO_LOCKED) {
    844 
    845 		/*
    846  		 * step 1a: get pages that are already resident.   only do
    847 		 * this if the data structures are locked (i.e. the first
    848 		 * time through).
    849  		 */
    850 
    851 		done = true;	/* be optimistic */
    852 		gotpages = 0;	/* # of pages we got so far */
    853 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    854 		    lcv++, current_offset += PAGE_SIZE) {
    855 			/* do we care about this page?  if not, skip it */
    856 			if (pps[lcv] == PGO_DONTCARE)
    857 				continue;
    858 			ptmp = uvm_pagelookup(uobj, current_offset);
    859 
    860 			/*
    861  			 * if page is new, attempt to allocate the page,
    862 			 * zero-fill'd.
    863  			 */
    864 
    865 			if (ptmp == NULL && uao_find_swslot(uobj,
    866 			    current_offset >> PAGE_SHIFT) == 0) {
    867 				ptmp = uvm_pagealloc(uobj, current_offset,
    868 				    NULL, UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
    869 				if (ptmp) {
    870 					/* new page */
    871 					ptmp->flags &= ~(PG_FAKE);
    872 					ptmp->pqflags |= PQ_AOBJ;
    873 					goto gotpage;
    874 				}
    875 			}
    876 
    877 			/*
    878 			 * to be useful must get a non-busy page
    879 			 */
    880 
    881 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    882 				if (lcv == centeridx ||
    883 				    (flags & PGO_ALLPAGES) != 0)
    884 					/* need to do a wait or I/O! */
    885 					done = false;
    886 					continue;
    887 			}
    888 
    889 			/*
    890 			 * useful page: busy/lock it and plug it in our
    891 			 * result array
    892 			 */
    893 
    894 			/* caller must un-busy this page */
    895 			ptmp->flags |= PG_BUSY;
    896 			UVM_PAGE_OWN(ptmp, "uao_get1");
    897 gotpage:
    898 			pps[lcv] = ptmp;
    899 			gotpages++;
    900 		}
    901 
    902 		/*
    903  		 * step 1b: now we've either done everything needed or we
    904 		 * to unlock and do some waiting or I/O.
    905  		 */
    906 
    907 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
    908 		*npagesp = gotpages;
    909 		if (done)
    910 			return 0;
    911 		else
    912 			return EBUSY;
    913 	}
    914 
    915 	/*
    916  	 * step 2: get non-resident or busy pages.
    917  	 * object is locked.   data structures are unlocked.
    918  	 */
    919 
    920 	if ((flags & PGO_SYNCIO) == 0) {
    921 		goto done;
    922 	}
    923 
    924 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    925 	    lcv++, current_offset += PAGE_SIZE) {
    926 
    927 		/*
    928 		 * - skip over pages we've already gotten or don't want
    929 		 * - skip over pages we don't _have_ to get
    930 		 */
    931 
    932 		if (pps[lcv] != NULL ||
    933 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    934 			continue;
    935 
    936 		pageidx = current_offset >> PAGE_SHIFT;
    937 
    938 		/*
    939  		 * we have yet to locate the current page (pps[lcv]).   we
    940 		 * first look for a page that is already at the current offset.
    941 		 * if we find a page, we check to see if it is busy or
    942 		 * released.  if that is the case, then we sleep on the page
    943 		 * until it is no longer busy or released and repeat the lookup.
    944 		 * if the page we found is neither busy nor released, then we
    945 		 * busy it (so we own it) and plug it into pps[lcv].   this
    946 		 * 'break's the following while loop and indicates we are
    947 		 * ready to move on to the next page in the "lcv" loop above.
    948  		 *
    949  		 * if we exit the while loop with pps[lcv] still set to NULL,
    950 		 * then it means that we allocated a new busy/fake/clean page
    951 		 * ptmp in the object and we need to do I/O to fill in the data.
    952  		 */
    953 
    954 		/* top of "pps" while loop */
    955 		while (pps[lcv] == NULL) {
    956 			/* look for a resident page */
    957 			ptmp = uvm_pagelookup(uobj, current_offset);
    958 
    959 			/* not resident?   allocate one now (if we can) */
    960 			if (ptmp == NULL) {
    961 
    962 				ptmp = uvm_pagealloc(uobj, current_offset,
    963 				    NULL, 0);
    964 
    965 				/* out of RAM? */
    966 				if (ptmp == NULL) {
    967 					mutex_exit(uobj->vmobjlock);
    968 					UVMHIST_LOG(pdhist,
    969 					    "sleeping, ptmp == NULL\n",0,0,0,0);
    970 					uvm_wait("uao_getpage");
    971 					mutex_enter(uobj->vmobjlock);
    972 					continue;
    973 				}
    974 
    975 				/*
    976 				 * safe with PQ's unlocked: because we just
    977 				 * alloc'd the page
    978 				 */
    979 
    980 				ptmp->pqflags |= PQ_AOBJ;
    981 
    982 				/*
    983 				 * got new page ready for I/O.  break pps while
    984 				 * loop.  pps[lcv] is still NULL.
    985 				 */
    986 
    987 				break;
    988 			}
    989 
    990 			/* page is there, see if we need to wait on it */
    991 			if ((ptmp->flags & PG_BUSY) != 0) {
    992 				ptmp->flags |= PG_WANTED;
    993 				UVMHIST_LOG(pdhist,
    994 				    "sleeping, ptmp->flags 0x%x\n",
    995 				    ptmp->flags,0,0,0);
    996 				UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
    997 				    false, "uao_get", 0);
    998 				mutex_enter(uobj->vmobjlock);
    999 				continue;
   1000 			}
   1001 
   1002 			/*
   1003  			 * if we get here then the page has become resident and
   1004 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1005 			 * own it) and set pps[lcv] (so that we exit the while
   1006 			 * loop).
   1007  			 */
   1008 
   1009 			/* we own it, caller must un-busy */
   1010 			ptmp->flags |= PG_BUSY;
   1011 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1012 			pps[lcv] = ptmp;
   1013 		}
   1014 
   1015 		/*
   1016  		 * if we own the valid page at the correct offset, pps[lcv] will
   1017  		 * point to it.   nothing more to do except go to the next page.
   1018  		 */
   1019 
   1020 		if (pps[lcv])
   1021 			continue;			/* next lcv */
   1022 
   1023 		/*
   1024  		 * we have a "fake/busy/clean" page that we just allocated.
   1025  		 * do the needed "i/o", either reading from swap or zeroing.
   1026  		 */
   1027 
   1028 		swslot = uao_find_swslot(uobj, pageidx);
   1029 
   1030 		/*
   1031  		 * just zero the page if there's nothing in swap.
   1032  		 */
   1033 
   1034 		if (swslot == 0) {
   1035 
   1036 			/*
   1037 			 * page hasn't existed before, just zero it.
   1038 			 */
   1039 
   1040 			uvm_pagezero(ptmp);
   1041 		} else {
   1042 #if defined(VMSWAP)
   1043 			int error;
   1044 
   1045 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1046 			     swslot, 0,0,0);
   1047 
   1048 			/*
   1049 			 * page in the swapped-out page.
   1050 			 * unlock object for i/o, relock when done.
   1051 			 */
   1052 
   1053 			mutex_exit(uobj->vmobjlock);
   1054 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1055 			mutex_enter(uobj->vmobjlock);
   1056 
   1057 			/*
   1058 			 * I/O done.  check for errors.
   1059 			 */
   1060 
   1061 			if (error != 0) {
   1062 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1063 				    error,0,0,0);
   1064 				if (ptmp->flags & PG_WANTED)
   1065 					wakeup(ptmp);
   1066 
   1067 				/*
   1068 				 * remove the swap slot from the aobj
   1069 				 * and mark the aobj as having no real slot.
   1070 				 * don't free the swap slot, thus preventing
   1071 				 * it from being used again.
   1072 				 */
   1073 
   1074 				swslot = uao_set_swslot(uobj, pageidx,
   1075 				    SWSLOT_BAD);
   1076 				if (swslot > 0) {
   1077 					uvm_swap_markbad(swslot, 1);
   1078 				}
   1079 
   1080 				mutex_enter(&uvm_pageqlock);
   1081 				uvm_pagefree(ptmp);
   1082 				mutex_exit(&uvm_pageqlock);
   1083 				mutex_exit(uobj->vmobjlock);
   1084 				return error;
   1085 			}
   1086 #else /* defined(VMSWAP) */
   1087 			panic("%s: pagein", __func__);
   1088 #endif /* defined(VMSWAP) */
   1089 		}
   1090 
   1091 		if ((access_type & VM_PROT_WRITE) == 0) {
   1092 			ptmp->flags |= PG_CLEAN;
   1093 			pmap_clear_modify(ptmp);
   1094 		}
   1095 
   1096 		/*
   1097  		 * we got the page!   clear the fake flag (indicates valid
   1098 		 * data now in page) and plug into our result array.   note
   1099 		 * that page is still busy.
   1100  		 *
   1101  		 * it is the callers job to:
   1102  		 * => check if the page is released
   1103  		 * => unbusy the page
   1104  		 * => activate the page
   1105  		 */
   1106 
   1107 		ptmp->flags &= ~PG_FAKE;
   1108 		pps[lcv] = ptmp;
   1109 	}
   1110 
   1111 	/*
   1112  	 * finally, unlock object and return.
   1113  	 */
   1114 
   1115 done:
   1116 	mutex_exit(uobj->vmobjlock);
   1117 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1118 	return 0;
   1119 }
   1120 
   1121 #if defined(VMSWAP)
   1122 
   1123 /*
   1124  * uao_dropswap:  release any swap resources from this aobj page.
   1125  *
   1126  * => aobj must be locked or have a reference count of 0.
   1127  */
   1128 
   1129 void
   1130 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1131 {
   1132 	int slot;
   1133 
   1134 	slot = uao_set_swslot(uobj, pageidx, 0);
   1135 	if (slot) {
   1136 		uvm_swap_free(slot, 1);
   1137 	}
   1138 }
   1139 
   1140 /*
   1141  * page in every page in every aobj that is paged-out to a range of swslots.
   1142  *
   1143  * => nothing should be locked.
   1144  * => returns true if pagein was aborted due to lack of memory.
   1145  */
   1146 
   1147 bool
   1148 uao_swap_off(int startslot, int endslot)
   1149 {
   1150 	struct uvm_aobj *aobj;
   1151 
   1152 	/*
   1153 	 * Walk the list of all anonymous UVM objects.  Grab the first.
   1154 	 */
   1155 	mutex_enter(&uao_list_lock);
   1156 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
   1157 		mutex_exit(&uao_list_lock);
   1158 		return false;
   1159 	}
   1160 	uao_reference(&aobj->u_obj);
   1161 
   1162 	do {
   1163 		struct uvm_aobj *nextaobj;
   1164 		bool rv;
   1165 
   1166 		/*
   1167 		 * Prefetch the next object and immediately hold a reference
   1168 		 * on it, so neither the current nor the next entry could
   1169 		 * disappear while we are iterating.
   1170 		 */
   1171 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
   1172 			uao_reference(&nextaobj->u_obj);
   1173 		}
   1174 		mutex_exit(&uao_list_lock);
   1175 
   1176 		/*
   1177 		 * Page in all pages in the swap slot range.
   1178 		 */
   1179 		mutex_enter(aobj->u_obj.vmobjlock);
   1180 		rv = uao_pagein(aobj, startslot, endslot);
   1181 		mutex_exit(aobj->u_obj.vmobjlock);
   1182 
   1183 		/* Drop the reference of the current object. */
   1184 		uao_detach(&aobj->u_obj);
   1185 		if (rv) {
   1186 			if (nextaobj) {
   1187 				uao_detach(&nextaobj->u_obj);
   1188 			}
   1189 			return rv;
   1190 		}
   1191 
   1192 		aobj = nextaobj;
   1193 		mutex_enter(&uao_list_lock);
   1194 	} while (aobj);
   1195 
   1196 	mutex_exit(&uao_list_lock);
   1197 	return false;
   1198 }
   1199 
   1200 /*
   1201  * page in any pages from aobj in the given range.
   1202  *
   1203  * => aobj must be locked and is returned locked.
   1204  * => returns true if pagein was aborted due to lack of memory.
   1205  */
   1206 static bool
   1207 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1208 {
   1209 	bool rv;
   1210 
   1211 	if (UAO_USES_SWHASH(aobj)) {
   1212 		struct uao_swhash_elt *elt;
   1213 		int buck;
   1214 
   1215 restart:
   1216 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1217 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1218 			     elt != NULL;
   1219 			     elt = LIST_NEXT(elt, list)) {
   1220 				int i;
   1221 
   1222 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1223 					int slot = elt->slots[i];
   1224 
   1225 					/*
   1226 					 * if the slot isn't in range, skip it.
   1227 					 */
   1228 
   1229 					if (slot < startslot ||
   1230 					    slot >= endslot) {
   1231 						continue;
   1232 					}
   1233 
   1234 					/*
   1235 					 * process the page,
   1236 					 * the start over on this object
   1237 					 * since the swhash elt
   1238 					 * may have been freed.
   1239 					 */
   1240 
   1241 					rv = uao_pagein_page(aobj,
   1242 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1243 					if (rv) {
   1244 						return rv;
   1245 					}
   1246 					goto restart;
   1247 				}
   1248 			}
   1249 		}
   1250 	} else {
   1251 		int i;
   1252 
   1253 		for (i = 0; i < aobj->u_pages; i++) {
   1254 			int slot = aobj->u_swslots[i];
   1255 
   1256 			/*
   1257 			 * if the slot isn't in range, skip it
   1258 			 */
   1259 
   1260 			if (slot < startslot || slot >= endslot) {
   1261 				continue;
   1262 			}
   1263 
   1264 			/*
   1265 			 * process the page.
   1266 			 */
   1267 
   1268 			rv = uao_pagein_page(aobj, i);
   1269 			if (rv) {
   1270 				return rv;
   1271 			}
   1272 		}
   1273 	}
   1274 
   1275 	return false;
   1276 }
   1277 
   1278 /*
   1279  * uao_pagein_page: page in a single page from an anonymous UVM object.
   1280  *
   1281  * => Returns true if pagein was aborted due to lack of memory.
   1282  * => Object must be locked and is returned locked.
   1283  */
   1284 
   1285 static bool
   1286 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1287 {
   1288 	struct uvm_object *uobj = &aobj->u_obj;
   1289 	struct vm_page *pg;
   1290 	int rv, npages;
   1291 
   1292 	pg = NULL;
   1293 	npages = 1;
   1294 
   1295 	KASSERT(mutex_owned(uobj->vmobjlock));
   1296 	rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
   1297 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
   1298 
   1299 	/*
   1300 	 * relock and finish up.
   1301 	 */
   1302 
   1303 	mutex_enter(uobj->vmobjlock);
   1304 	switch (rv) {
   1305 	case 0:
   1306 		break;
   1307 
   1308 	case EIO:
   1309 	case ERESTART:
   1310 
   1311 		/*
   1312 		 * nothing more to do on errors.
   1313 		 * ERESTART can only mean that the anon was freed,
   1314 		 * so again there's nothing to do.
   1315 		 */
   1316 
   1317 		return false;
   1318 
   1319 	default:
   1320 		return true;
   1321 	}
   1322 
   1323 	/*
   1324 	 * ok, we've got the page now.
   1325 	 * mark it as dirty, clear its swslot and un-busy it.
   1326 	 */
   1327 	uao_dropswap(&aobj->u_obj, pageidx);
   1328 
   1329 	/*
   1330 	 * make sure it's on a page queue.
   1331 	 */
   1332 	mutex_enter(&uvm_pageqlock);
   1333 	if (pg->wire_count == 0)
   1334 		uvm_pageenqueue(pg);
   1335 	mutex_exit(&uvm_pageqlock);
   1336 
   1337 	if (pg->flags & PG_WANTED) {
   1338 		wakeup(pg);
   1339 	}
   1340 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1341 	UVM_PAGE_OWN(pg, NULL);
   1342 
   1343 	return false;
   1344 }
   1345 
   1346 /*
   1347  * uao_dropswap_range: drop swapslots in the range.
   1348  *
   1349  * => aobj must be locked and is returned locked.
   1350  * => start is inclusive.  end is exclusive.
   1351  */
   1352 
   1353 void
   1354 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1355 {
   1356 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1357 	int swpgonlydelta = 0;
   1358 
   1359 	KASSERT(mutex_owned(uobj->vmobjlock));
   1360 
   1361 	if (end == 0) {
   1362 		end = INT64_MAX;
   1363 	}
   1364 
   1365 	if (UAO_USES_SWHASH(aobj)) {
   1366 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1367 		voff_t taghi;
   1368 		voff_t taglo;
   1369 
   1370 		taglo = UAO_SWHASH_ELT_TAG(start);
   1371 		taghi = UAO_SWHASH_ELT_TAG(end);
   1372 
   1373 		for (i = 0; i < hashbuckets; i++) {
   1374 			struct uao_swhash_elt *elt, *next;
   1375 
   1376 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1377 			     elt != NULL;
   1378 			     elt = next) {
   1379 				int startidx, endidx;
   1380 				int j;
   1381 
   1382 				next = LIST_NEXT(elt, list);
   1383 
   1384 				if (elt->tag < taglo || taghi < elt->tag) {
   1385 					continue;
   1386 				}
   1387 
   1388 				if (elt->tag == taglo) {
   1389 					startidx =
   1390 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1391 				} else {
   1392 					startidx = 0;
   1393 				}
   1394 
   1395 				if (elt->tag == taghi) {
   1396 					endidx =
   1397 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1398 				} else {
   1399 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1400 				}
   1401 
   1402 				for (j = startidx; j < endidx; j++) {
   1403 					int slot = elt->slots[j];
   1404 
   1405 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1406 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1407 					    + j) << PAGE_SHIFT) == NULL);
   1408 					if (slot > 0) {
   1409 						uvm_swap_free(slot, 1);
   1410 						swpgonlydelta++;
   1411 						KASSERT(elt->count > 0);
   1412 						elt->slots[j] = 0;
   1413 						elt->count--;
   1414 					}
   1415 				}
   1416 
   1417 				if (elt->count == 0) {
   1418 					LIST_REMOVE(elt, list);
   1419 					pool_put(&uao_swhash_elt_pool, elt);
   1420 				}
   1421 			}
   1422 		}
   1423 	} else {
   1424 		int i;
   1425 
   1426 		if (aobj->u_pages < end) {
   1427 			end = aobj->u_pages;
   1428 		}
   1429 		for (i = start; i < end; i++) {
   1430 			int slot = aobj->u_swslots[i];
   1431 
   1432 			if (slot > 0) {
   1433 				uvm_swap_free(slot, 1);
   1434 				swpgonlydelta++;
   1435 			}
   1436 		}
   1437 	}
   1438 
   1439 	/*
   1440 	 * adjust the counter of pages only in swap for all
   1441 	 * the swap slots we've freed.
   1442 	 */
   1443 
   1444 	if (swpgonlydelta > 0) {
   1445 		mutex_enter(&uvm_swap_data_lock);
   1446 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1447 		uvmexp.swpgonly -= swpgonlydelta;
   1448 		mutex_exit(&uvm_swap_data_lock);
   1449 	}
   1450 }
   1451 
   1452 #endif /* defined(VMSWAP) */
   1453