uvm_aobj.c revision 1.119 1 /* $NetBSD: uvm_aobj.c,v 1.119 2012/09/15 06:25:47 matt Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.119 2012/09/15 06:25:47 matt Exp $");
42
43 #include "opt_uvmhist.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/kmem.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51
52 #include <uvm/uvm.h>
53
54 /*
55 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to
56 * keeping the list of resident pages, it may also keep a list of allocated
57 * swap blocks. Depending on the size of the object, this list is either
58 * stored in an array (small objects) or in a hash table (large objects).
59 *
60 * Lock order
61 *
62 * uao_list_lock ->
63 * uvm_object::vmobjlock
64 */
65
66 /*
67 * Note: for hash tables, we break the address space of the aobj into blocks
68 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
69 */
70
71 #define UAO_SWHASH_CLUSTER_SHIFT 4
72 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
73
74 /* Get the "tag" for this page index. */
75 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
76 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
77 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
78
79 /* Given an ELT and a page index, find the swap slot. */
80 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
81 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
82
83 /* Given an ELT, return its pageidx base. */
84 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
85 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
86
87 /* The hash function. */
88 #define UAO_SWHASH_HASH(aobj, idx) \
89 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
90 & (aobj)->u_swhashmask)])
91
92 /*
93 * The threshold which determines whether we will use an array or a
94 * hash table to store the list of allocated swap blocks.
95 */
96 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
97 #define UAO_USES_SWHASH(aobj) \
98 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
99
100 /* The number of buckets in a hash, with an upper bound. */
101 #define UAO_SWHASH_MAXBUCKETS 256
102 #define UAO_SWHASH_BUCKETS(aobj) \
103 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
104
105 /*
106 * uao_swhash_elt: when a hash table is being used, this structure defines
107 * the format of an entry in the bucket list.
108 */
109
110 struct uao_swhash_elt {
111 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
112 voff_t tag; /* our 'tag' */
113 int count; /* our number of active slots */
114 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
115 };
116
117 /*
118 * uao_swhash: the swap hash table structure
119 */
120
121 LIST_HEAD(uao_swhash, uao_swhash_elt);
122
123 /*
124 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
125 * Note: pages for this pool must not come from a pageable kernel map.
126 */
127 static struct pool uao_swhash_elt_pool __cacheline_aligned;
128
129 /*
130 * uvm_aobj: the actual anon-backed uvm_object
131 *
132 * => the uvm_object is at the top of the structure, this allows
133 * (struct uvm_aobj *) == (struct uvm_object *)
134 * => only one of u_swslots and u_swhash is used in any given aobj
135 */
136
137 struct uvm_aobj {
138 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
139 pgoff_t u_pages; /* number of pages in entire object */
140 int u_flags; /* the flags (see uvm_aobj.h) */
141 int *u_swslots; /* array of offset->swapslot mappings */
142 /*
143 * hashtable of offset->swapslot mappings
144 * (u_swhash is an array of bucket heads)
145 */
146 struct uao_swhash *u_swhash;
147 u_long u_swhashmask; /* mask for hashtable */
148 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
149 };
150
151 static void uao_free(struct uvm_aobj *);
152 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
153 int *, int, vm_prot_t, int, int);
154 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
155
156 #if defined(VMSWAP)
157 static struct uao_swhash_elt *uao_find_swhash_elt
158 (struct uvm_aobj *, int, bool);
159
160 static bool uao_pagein(struct uvm_aobj *, int, int);
161 static bool uao_pagein_page(struct uvm_aobj *, int);
162 #endif /* defined(VMSWAP) */
163
164 /*
165 * aobj_pager
166 *
167 * note that some functions (e.g. put) are handled elsewhere
168 */
169
170 const struct uvm_pagerops aobj_pager = {
171 .pgo_reference = uao_reference,
172 .pgo_detach = uao_detach,
173 .pgo_get = uao_get,
174 .pgo_put = uao_put,
175 };
176
177 /*
178 * uao_list: global list of active aobjs, locked by uao_list_lock
179 */
180
181 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned;
182 static kmutex_t uao_list_lock __cacheline_aligned;
183
184 /*
185 * hash table/array related functions
186 */
187
188 #if defined(VMSWAP)
189
190 /*
191 * uao_find_swhash_elt: find (or create) a hash table entry for a page
192 * offset.
193 *
194 * => the object should be locked by the caller
195 */
196
197 static struct uao_swhash_elt *
198 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
199 {
200 struct uao_swhash *swhash;
201 struct uao_swhash_elt *elt;
202 voff_t page_tag;
203
204 swhash = UAO_SWHASH_HASH(aobj, pageidx);
205 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
206
207 /*
208 * now search the bucket for the requested tag
209 */
210
211 LIST_FOREACH(elt, swhash, list) {
212 if (elt->tag == page_tag) {
213 return elt;
214 }
215 }
216 if (!create) {
217 return NULL;
218 }
219
220 /*
221 * allocate a new entry for the bucket and init/insert it in
222 */
223
224 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
225 if (elt == NULL) {
226 return NULL;
227 }
228 LIST_INSERT_HEAD(swhash, elt, list);
229 elt->tag = page_tag;
230 elt->count = 0;
231 memset(elt->slots, 0, sizeof(elt->slots));
232 return elt;
233 }
234
235 /*
236 * uao_find_swslot: find the swap slot number for an aobj/pageidx
237 *
238 * => object must be locked by caller
239 */
240
241 int
242 uao_find_swslot(struct uvm_object *uobj, int pageidx)
243 {
244 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
245 struct uao_swhash_elt *elt;
246
247 /*
248 * if noswap flag is set, then we never return a slot
249 */
250
251 if (aobj->u_flags & UAO_FLAG_NOSWAP)
252 return 0;
253
254 /*
255 * if hashing, look in hash table.
256 */
257
258 if (UAO_USES_SWHASH(aobj)) {
259 elt = uao_find_swhash_elt(aobj, pageidx, false);
260 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
261 }
262
263 /*
264 * otherwise, look in the array
265 */
266
267 return aobj->u_swslots[pageidx];
268 }
269
270 /*
271 * uao_set_swslot: set the swap slot for a page in an aobj.
272 *
273 * => setting a slot to zero frees the slot
274 * => object must be locked by caller
275 * => we return the old slot number, or -1 if we failed to allocate
276 * memory to record the new slot number
277 */
278
279 int
280 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
281 {
282 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
283 struct uao_swhash_elt *elt;
284 int oldslot;
285 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
286 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
287 aobj, pageidx, slot, 0);
288
289 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
290
291 /*
292 * if noswap flag is set, then we can't set a non-zero slot.
293 */
294
295 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
296 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
297 return 0;
298 }
299
300 /*
301 * are we using a hash table? if so, add it in the hash.
302 */
303
304 if (UAO_USES_SWHASH(aobj)) {
305
306 /*
307 * Avoid allocating an entry just to free it again if
308 * the page had not swap slot in the first place, and
309 * we are freeing.
310 */
311
312 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
313 if (elt == NULL) {
314 return slot ? -1 : 0;
315 }
316
317 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
318 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
319
320 /*
321 * now adjust the elt's reference counter and free it if we've
322 * dropped it to zero.
323 */
324
325 if (slot) {
326 if (oldslot == 0)
327 elt->count++;
328 } else {
329 if (oldslot)
330 elt->count--;
331
332 if (elt->count == 0) {
333 LIST_REMOVE(elt, list);
334 pool_put(&uao_swhash_elt_pool, elt);
335 }
336 }
337 } else {
338 /* we are using an array */
339 oldslot = aobj->u_swslots[pageidx];
340 aobj->u_swslots[pageidx] = slot;
341 }
342 return oldslot;
343 }
344
345 #endif /* defined(VMSWAP) */
346
347 /*
348 * end of hash/array functions
349 */
350
351 /*
352 * uao_free: free all resources held by an aobj, and then free the aobj
353 *
354 * => the aobj should be dead
355 */
356
357 static void
358 uao_free(struct uvm_aobj *aobj)
359 {
360 struct uvm_object *uobj = &aobj->u_obj;
361
362 KASSERT(mutex_owned(uobj->vmobjlock));
363 uao_dropswap_range(uobj, 0, 0);
364 mutex_exit(uobj->vmobjlock);
365
366 #if defined(VMSWAP)
367 if (UAO_USES_SWHASH(aobj)) {
368
369 /*
370 * free the hash table itself.
371 */
372
373 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
374 } else {
375
376 /*
377 * free the array itsself.
378 */
379
380 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
381 }
382 #endif /* defined(VMSWAP) */
383
384 /*
385 * finally free the aobj itself
386 */
387
388 uvm_obj_destroy(uobj, true);
389 kmem_free(aobj, sizeof(struct uvm_aobj));
390 }
391
392 /*
393 * pager functions
394 */
395
396 /*
397 * uao_create: create an aobj of the given size and return its uvm_object.
398 *
399 * => for normal use, flags are always zero
400 * => for the kernel object, the flags are:
401 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
402 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
403 */
404
405 struct uvm_object *
406 uao_create(vsize_t size, int flags)
407 {
408 static struct uvm_aobj kernel_object_store;
409 static kmutex_t kernel_object_lock;
410 static int kobj_alloced = 0;
411 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
412 struct uvm_aobj *aobj;
413 int refs;
414
415 /*
416 * Allocate a new aobj, unless kernel object is requested.
417 */
418
419 if (flags & UAO_FLAG_KERNOBJ) {
420 KASSERT(!kobj_alloced);
421 aobj = &kernel_object_store;
422 aobj->u_pages = pages;
423 aobj->u_flags = UAO_FLAG_NOSWAP;
424 refs = UVM_OBJ_KERN;
425 kobj_alloced = UAO_FLAG_KERNOBJ;
426 } else if (flags & UAO_FLAG_KERNSWAP) {
427 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
428 aobj = &kernel_object_store;
429 kobj_alloced = UAO_FLAG_KERNSWAP;
430 refs = 0xdeadbeaf; /* XXX: gcc */
431 } else {
432 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
433 aobj->u_pages = pages;
434 aobj->u_flags = 0;
435 refs = 1;
436 }
437
438 /*
439 * allocate hash/array if necessary
440 *
441 * note: in the KERNSWAP case no need to worry about locking since
442 * we are still booting we should be the only thread around.
443 */
444
445 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
446 #if defined(VMSWAP)
447 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
448
449 /* allocate hash table or array depending on object size */
450 if (UAO_USES_SWHASH(aobj)) {
451 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
452 HASH_LIST, kernswap ? false : true,
453 &aobj->u_swhashmask);
454 if (aobj->u_swhash == NULL)
455 panic("uao_create: hashinit swhash failed");
456 } else {
457 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
458 kernswap ? KM_NOSLEEP : KM_SLEEP);
459 if (aobj->u_swslots == NULL)
460 panic("uao_create: swslots allocation failed");
461 }
462 #endif /* defined(VMSWAP) */
463
464 if (flags) {
465 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
466 return &aobj->u_obj;
467 }
468 }
469
470 /*
471 * Initialise UVM object.
472 */
473
474 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
475 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
476 if (__predict_false(kernobj)) {
477 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
478 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
479 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
480 }
481
482 /*
483 * now that aobj is ready, add it to the global list
484 */
485
486 mutex_enter(&uao_list_lock);
487 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
488 mutex_exit(&uao_list_lock);
489 return(&aobj->u_obj);
490 }
491
492 /*
493 * uao_init: set up aobj pager subsystem
494 *
495 * => called at boot time from uvm_pager_init()
496 */
497
498 void
499 uao_init(void)
500 {
501 static int uao_initialized;
502
503 if (uao_initialized)
504 return;
505 uao_initialized = true;
506 LIST_INIT(&uao_list);
507 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
508 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
509 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
510 }
511
512 /*
513 * uao_reference: hold a reference to an anonymous UVM object.
514 */
515 void
516 uao_reference(struct uvm_object *uobj)
517 {
518 /* Kernel object is persistent. */
519 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
520 return;
521 }
522 atomic_inc_uint(&uobj->uo_refs);
523 }
524
525 /*
526 * uao_detach: drop a reference to an anonymous UVM object.
527 */
528 void
529 uao_detach(struct uvm_object *uobj)
530 {
531 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
532 struct vm_page *pg;
533
534 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
535
536 /*
537 * Detaching from kernel object is a NOP.
538 */
539
540 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
541 return;
542
543 /*
544 * Drop the reference. If it was the last one, destroy the object.
545 */
546
547 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
548 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
549 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
550 return;
551 }
552
553 /*
554 * Remove the aobj from the global list.
555 */
556
557 mutex_enter(&uao_list_lock);
558 LIST_REMOVE(aobj, u_list);
559 mutex_exit(&uao_list_lock);
560
561 /*
562 * Free all the pages left in the aobj. For each page, when the
563 * page is no longer busy (and thus after any disk I/O that it is
564 * involved in is complete), release any swap resources and free
565 * the page itself.
566 */
567
568 mutex_enter(uobj->vmobjlock);
569 mutex_enter(&uvm_pageqlock);
570 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
571 pmap_page_protect(pg, VM_PROT_NONE);
572 if (pg->flags & PG_BUSY) {
573 pg->flags |= PG_WANTED;
574 mutex_exit(&uvm_pageqlock);
575 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
576 "uao_det", 0);
577 mutex_enter(uobj->vmobjlock);
578 mutex_enter(&uvm_pageqlock);
579 continue;
580 }
581 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
582 uvm_pagefree(pg);
583 }
584 mutex_exit(&uvm_pageqlock);
585
586 /*
587 * Finally, free the anonymous UVM object itself.
588 */
589
590 uao_free(aobj);
591 }
592
593 /*
594 * uao_put: flush pages out of a uvm object
595 *
596 * => object should be locked by caller. we may _unlock_ the object
597 * if (and only if) we need to clean a page (PGO_CLEANIT).
598 * XXXJRT Currently, however, we don't. In the case of cleaning
599 * XXXJRT a page, we simply just deactivate it. Should probably
600 * XXXJRT handle this better, in the future (although "flushing"
601 * XXXJRT anonymous memory isn't terribly important).
602 * => if PGO_CLEANIT is not set, then we will neither unlock the object
603 * or block.
604 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
605 * for flushing.
606 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
607 * that new pages are inserted on the tail end of the list. thus,
608 * we can make a complete pass through the object in one go by starting
609 * at the head and working towards the tail (new pages are put in
610 * front of us).
611 * => NOTE: we are allowed to lock the page queues, so the caller
612 * must not be holding the lock on them [e.g. pagedaemon had
613 * better not call us with the queues locked]
614 * => we return 0 unless we encountered some sort of I/O error
615 * XXXJRT currently never happens, as we never directly initiate
616 * XXXJRT I/O
617 *
618 * note on page traversal:
619 * we can traverse the pages in an object either by going down the
620 * linked list in "uobj->memq", or we can go over the address range
621 * by page doing hash table lookups for each address. depending
622 * on how many pages are in the object it may be cheaper to do one
623 * or the other. we set "by_list" to true if we are using memq.
624 * if the cost of a hash lookup was equal to the cost of the list
625 * traversal we could compare the number of pages in the start->stop
626 * range to the total number of pages in the object. however, it
627 * seems that a hash table lookup is more expensive than the linked
628 * list traversal, so we multiply the number of pages in the
629 * start->stop range by a penalty which we define below.
630 */
631
632 static int
633 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
634 {
635 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
636 struct vm_page *pg, *nextpg, curmp, endmp;
637 bool by_list;
638 voff_t curoff;
639 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
640
641 KASSERT(mutex_owned(uobj->vmobjlock));
642
643 curoff = 0;
644 if (flags & PGO_ALLPAGES) {
645 start = 0;
646 stop = aobj->u_pages << PAGE_SHIFT;
647 by_list = true; /* always go by the list */
648 } else {
649 start = trunc_page(start);
650 if (stop == 0) {
651 stop = aobj->u_pages << PAGE_SHIFT;
652 } else {
653 stop = round_page(stop);
654 }
655 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
656 printf("uao_flush: strange, got an out of range "
657 "flush (fixed)\n");
658 stop = aobj->u_pages << PAGE_SHIFT;
659 }
660 by_list = (uobj->uo_npages <=
661 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
662 }
663 UVMHIST_LOG(maphist,
664 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
665 start, stop, by_list, flags);
666
667 /*
668 * Don't need to do any work here if we're not freeing
669 * or deactivating pages.
670 */
671
672 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
673 mutex_exit(uobj->vmobjlock);
674 return 0;
675 }
676
677 /*
678 * Initialize the marker pages. See the comment in
679 * genfs_putpages() also.
680 */
681
682 curmp.flags = PG_MARKER;
683 endmp.flags = PG_MARKER;
684
685 /*
686 * now do it. note: we must update nextpg in the body of loop or we
687 * will get stuck. we need to use nextpg if we'll traverse the list
688 * because we may free "pg" before doing the next loop.
689 */
690
691 if (by_list) {
692 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
693 nextpg = TAILQ_FIRST(&uobj->memq);
694 } else {
695 curoff = start;
696 nextpg = NULL; /* Quell compiler warning */
697 }
698
699 /* locked: uobj */
700 for (;;) {
701 if (by_list) {
702 pg = nextpg;
703 if (pg == &endmp)
704 break;
705 nextpg = TAILQ_NEXT(pg, listq.queue);
706 if (pg->flags & PG_MARKER)
707 continue;
708 if (pg->offset < start || pg->offset >= stop)
709 continue;
710 } else {
711 if (curoff < stop) {
712 pg = uvm_pagelookup(uobj, curoff);
713 curoff += PAGE_SIZE;
714 } else
715 break;
716 if (pg == NULL)
717 continue;
718 }
719
720 /*
721 * wait and try again if the page is busy.
722 */
723
724 if (pg->flags & PG_BUSY) {
725 if (by_list) {
726 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
727 }
728 pg->flags |= PG_WANTED;
729 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
730 "uao_put", 0);
731 mutex_enter(uobj->vmobjlock);
732 if (by_list) {
733 nextpg = TAILQ_NEXT(&curmp, listq.queue);
734 TAILQ_REMOVE(&uobj->memq, &curmp,
735 listq.queue);
736 } else
737 curoff -= PAGE_SIZE;
738 continue;
739 }
740
741 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
742
743 /*
744 * XXX In these first 3 cases, we always just
745 * XXX deactivate the page. We may want to
746 * XXX handle the different cases more specifically
747 * XXX in the future.
748 */
749
750 case PGO_CLEANIT|PGO_FREE:
751 case PGO_CLEANIT|PGO_DEACTIVATE:
752 case PGO_DEACTIVATE:
753 deactivate_it:
754 mutex_enter(&uvm_pageqlock);
755 /* skip the page if it's wired */
756 if (pg->wire_count == 0) {
757 uvm_pagedeactivate(pg);
758 }
759 mutex_exit(&uvm_pageqlock);
760 break;
761
762 case PGO_FREE:
763 /*
764 * If there are multiple references to
765 * the object, just deactivate the page.
766 */
767
768 if (uobj->uo_refs > 1)
769 goto deactivate_it;
770
771 /*
772 * free the swap slot and the page.
773 */
774
775 pmap_page_protect(pg, VM_PROT_NONE);
776
777 /*
778 * freeing swapslot here is not strictly necessary.
779 * however, leaving it here doesn't save much
780 * because we need to update swap accounting anyway.
781 */
782
783 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
784 mutex_enter(&uvm_pageqlock);
785 uvm_pagefree(pg);
786 mutex_exit(&uvm_pageqlock);
787 break;
788
789 default:
790 panic("%s: impossible", __func__);
791 }
792 }
793 if (by_list) {
794 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
795 }
796 mutex_exit(uobj->vmobjlock);
797 return 0;
798 }
799
800 /*
801 * uao_get: fetch me a page
802 *
803 * we have three cases:
804 * 1: page is resident -> just return the page.
805 * 2: page is zero-fill -> allocate a new page and zero it.
806 * 3: page is swapped out -> fetch the page from swap.
807 *
808 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
809 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
810 * then we will need to return EBUSY.
811 *
812 * => prefer map unlocked (not required)
813 * => object must be locked! we will _unlock_ it before starting any I/O.
814 * => flags: PGO_ALLPAGES: get all of the pages
815 * PGO_LOCKED: fault data structures are locked
816 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
817 * => NOTE: caller must check for released pages!!
818 */
819
820 static int
821 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
822 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
823 {
824 voff_t current_offset;
825 struct vm_page *ptmp = NULL; /* Quell compiler warning */
826 int lcv, gotpages, maxpages, swslot, pageidx;
827 bool done;
828 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
829
830 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
831 (struct uvm_aobj *)uobj, offset, flags,0);
832
833 /*
834 * get number of pages
835 */
836
837 maxpages = *npagesp;
838
839 /*
840 * step 1: handled the case where fault data structures are locked.
841 */
842
843 if (flags & PGO_LOCKED) {
844
845 /*
846 * step 1a: get pages that are already resident. only do
847 * this if the data structures are locked (i.e. the first
848 * time through).
849 */
850
851 done = true; /* be optimistic */
852 gotpages = 0; /* # of pages we got so far */
853 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
854 lcv++, current_offset += PAGE_SIZE) {
855 /* do we care about this page? if not, skip it */
856 if (pps[lcv] == PGO_DONTCARE)
857 continue;
858 ptmp = uvm_pagelookup(uobj, current_offset);
859
860 /*
861 * if page is new, attempt to allocate the page,
862 * zero-fill'd.
863 */
864
865 if (ptmp == NULL && uao_find_swslot(uobj,
866 current_offset >> PAGE_SHIFT) == 0) {
867 ptmp = uvm_pagealloc(uobj, current_offset,
868 NULL, UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
869 if (ptmp) {
870 /* new page */
871 ptmp->flags &= ~(PG_FAKE);
872 ptmp->pqflags |= PQ_AOBJ;
873 goto gotpage;
874 }
875 }
876
877 /*
878 * to be useful must get a non-busy page
879 */
880
881 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
882 if (lcv == centeridx ||
883 (flags & PGO_ALLPAGES) != 0)
884 /* need to do a wait or I/O! */
885 done = false;
886 continue;
887 }
888
889 /*
890 * useful page: busy/lock it and plug it in our
891 * result array
892 */
893
894 /* caller must un-busy this page */
895 ptmp->flags |= PG_BUSY;
896 UVM_PAGE_OWN(ptmp, "uao_get1");
897 gotpage:
898 pps[lcv] = ptmp;
899 gotpages++;
900 }
901
902 /*
903 * step 1b: now we've either done everything needed or we
904 * to unlock and do some waiting or I/O.
905 */
906
907 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
908 *npagesp = gotpages;
909 if (done)
910 return 0;
911 else
912 return EBUSY;
913 }
914
915 /*
916 * step 2: get non-resident or busy pages.
917 * object is locked. data structures are unlocked.
918 */
919
920 if ((flags & PGO_SYNCIO) == 0) {
921 goto done;
922 }
923
924 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
925 lcv++, current_offset += PAGE_SIZE) {
926
927 /*
928 * - skip over pages we've already gotten or don't want
929 * - skip over pages we don't _have_ to get
930 */
931
932 if (pps[lcv] != NULL ||
933 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
934 continue;
935
936 pageidx = current_offset >> PAGE_SHIFT;
937
938 /*
939 * we have yet to locate the current page (pps[lcv]). we
940 * first look for a page that is already at the current offset.
941 * if we find a page, we check to see if it is busy or
942 * released. if that is the case, then we sleep on the page
943 * until it is no longer busy or released and repeat the lookup.
944 * if the page we found is neither busy nor released, then we
945 * busy it (so we own it) and plug it into pps[lcv]. this
946 * 'break's the following while loop and indicates we are
947 * ready to move on to the next page in the "lcv" loop above.
948 *
949 * if we exit the while loop with pps[lcv] still set to NULL,
950 * then it means that we allocated a new busy/fake/clean page
951 * ptmp in the object and we need to do I/O to fill in the data.
952 */
953
954 /* top of "pps" while loop */
955 while (pps[lcv] == NULL) {
956 /* look for a resident page */
957 ptmp = uvm_pagelookup(uobj, current_offset);
958
959 /* not resident? allocate one now (if we can) */
960 if (ptmp == NULL) {
961
962 ptmp = uvm_pagealloc(uobj, current_offset,
963 NULL, 0);
964
965 /* out of RAM? */
966 if (ptmp == NULL) {
967 mutex_exit(uobj->vmobjlock);
968 UVMHIST_LOG(pdhist,
969 "sleeping, ptmp == NULL\n",0,0,0,0);
970 uvm_wait("uao_getpage");
971 mutex_enter(uobj->vmobjlock);
972 continue;
973 }
974
975 /*
976 * safe with PQ's unlocked: because we just
977 * alloc'd the page
978 */
979
980 ptmp->pqflags |= PQ_AOBJ;
981
982 /*
983 * got new page ready for I/O. break pps while
984 * loop. pps[lcv] is still NULL.
985 */
986
987 break;
988 }
989
990 /* page is there, see if we need to wait on it */
991 if ((ptmp->flags & PG_BUSY) != 0) {
992 ptmp->flags |= PG_WANTED;
993 UVMHIST_LOG(pdhist,
994 "sleeping, ptmp->flags 0x%x\n",
995 ptmp->flags,0,0,0);
996 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
997 false, "uao_get", 0);
998 mutex_enter(uobj->vmobjlock);
999 continue;
1000 }
1001
1002 /*
1003 * if we get here then the page has become resident and
1004 * unbusy between steps 1 and 2. we busy it now (so we
1005 * own it) and set pps[lcv] (so that we exit the while
1006 * loop).
1007 */
1008
1009 /* we own it, caller must un-busy */
1010 ptmp->flags |= PG_BUSY;
1011 UVM_PAGE_OWN(ptmp, "uao_get2");
1012 pps[lcv] = ptmp;
1013 }
1014
1015 /*
1016 * if we own the valid page at the correct offset, pps[lcv] will
1017 * point to it. nothing more to do except go to the next page.
1018 */
1019
1020 if (pps[lcv])
1021 continue; /* next lcv */
1022
1023 /*
1024 * we have a "fake/busy/clean" page that we just allocated.
1025 * do the needed "i/o", either reading from swap or zeroing.
1026 */
1027
1028 swslot = uao_find_swslot(uobj, pageidx);
1029
1030 /*
1031 * just zero the page if there's nothing in swap.
1032 */
1033
1034 if (swslot == 0) {
1035
1036 /*
1037 * page hasn't existed before, just zero it.
1038 */
1039
1040 uvm_pagezero(ptmp);
1041 } else {
1042 #if defined(VMSWAP)
1043 int error;
1044
1045 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1046 swslot, 0,0,0);
1047
1048 /*
1049 * page in the swapped-out page.
1050 * unlock object for i/o, relock when done.
1051 */
1052
1053 mutex_exit(uobj->vmobjlock);
1054 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1055 mutex_enter(uobj->vmobjlock);
1056
1057 /*
1058 * I/O done. check for errors.
1059 */
1060
1061 if (error != 0) {
1062 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1063 error,0,0,0);
1064 if (ptmp->flags & PG_WANTED)
1065 wakeup(ptmp);
1066
1067 /*
1068 * remove the swap slot from the aobj
1069 * and mark the aobj as having no real slot.
1070 * don't free the swap slot, thus preventing
1071 * it from being used again.
1072 */
1073
1074 swslot = uao_set_swslot(uobj, pageidx,
1075 SWSLOT_BAD);
1076 if (swslot > 0) {
1077 uvm_swap_markbad(swslot, 1);
1078 }
1079
1080 mutex_enter(&uvm_pageqlock);
1081 uvm_pagefree(ptmp);
1082 mutex_exit(&uvm_pageqlock);
1083 mutex_exit(uobj->vmobjlock);
1084 return error;
1085 }
1086 #else /* defined(VMSWAP) */
1087 panic("%s: pagein", __func__);
1088 #endif /* defined(VMSWAP) */
1089 }
1090
1091 if ((access_type & VM_PROT_WRITE) == 0) {
1092 ptmp->flags |= PG_CLEAN;
1093 pmap_clear_modify(ptmp);
1094 }
1095
1096 /*
1097 * we got the page! clear the fake flag (indicates valid
1098 * data now in page) and plug into our result array. note
1099 * that page is still busy.
1100 *
1101 * it is the callers job to:
1102 * => check if the page is released
1103 * => unbusy the page
1104 * => activate the page
1105 */
1106
1107 ptmp->flags &= ~PG_FAKE;
1108 pps[lcv] = ptmp;
1109 }
1110
1111 /*
1112 * finally, unlock object and return.
1113 */
1114
1115 done:
1116 mutex_exit(uobj->vmobjlock);
1117 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1118 return 0;
1119 }
1120
1121 #if defined(VMSWAP)
1122
1123 /*
1124 * uao_dropswap: release any swap resources from this aobj page.
1125 *
1126 * => aobj must be locked or have a reference count of 0.
1127 */
1128
1129 void
1130 uao_dropswap(struct uvm_object *uobj, int pageidx)
1131 {
1132 int slot;
1133
1134 slot = uao_set_swslot(uobj, pageidx, 0);
1135 if (slot) {
1136 uvm_swap_free(slot, 1);
1137 }
1138 }
1139
1140 /*
1141 * page in every page in every aobj that is paged-out to a range of swslots.
1142 *
1143 * => nothing should be locked.
1144 * => returns true if pagein was aborted due to lack of memory.
1145 */
1146
1147 bool
1148 uao_swap_off(int startslot, int endslot)
1149 {
1150 struct uvm_aobj *aobj;
1151
1152 /*
1153 * Walk the list of all anonymous UVM objects. Grab the first.
1154 */
1155 mutex_enter(&uao_list_lock);
1156 if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1157 mutex_exit(&uao_list_lock);
1158 return false;
1159 }
1160 uao_reference(&aobj->u_obj);
1161
1162 do {
1163 struct uvm_aobj *nextaobj;
1164 bool rv;
1165
1166 /*
1167 * Prefetch the next object and immediately hold a reference
1168 * on it, so neither the current nor the next entry could
1169 * disappear while we are iterating.
1170 */
1171 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1172 uao_reference(&nextaobj->u_obj);
1173 }
1174 mutex_exit(&uao_list_lock);
1175
1176 /*
1177 * Page in all pages in the swap slot range.
1178 */
1179 mutex_enter(aobj->u_obj.vmobjlock);
1180 rv = uao_pagein(aobj, startslot, endslot);
1181 mutex_exit(aobj->u_obj.vmobjlock);
1182
1183 /* Drop the reference of the current object. */
1184 uao_detach(&aobj->u_obj);
1185 if (rv) {
1186 if (nextaobj) {
1187 uao_detach(&nextaobj->u_obj);
1188 }
1189 return rv;
1190 }
1191
1192 aobj = nextaobj;
1193 mutex_enter(&uao_list_lock);
1194 } while (aobj);
1195
1196 mutex_exit(&uao_list_lock);
1197 return false;
1198 }
1199
1200 /*
1201 * page in any pages from aobj in the given range.
1202 *
1203 * => aobj must be locked and is returned locked.
1204 * => returns true if pagein was aborted due to lack of memory.
1205 */
1206 static bool
1207 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1208 {
1209 bool rv;
1210
1211 if (UAO_USES_SWHASH(aobj)) {
1212 struct uao_swhash_elt *elt;
1213 int buck;
1214
1215 restart:
1216 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1217 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1218 elt != NULL;
1219 elt = LIST_NEXT(elt, list)) {
1220 int i;
1221
1222 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1223 int slot = elt->slots[i];
1224
1225 /*
1226 * if the slot isn't in range, skip it.
1227 */
1228
1229 if (slot < startslot ||
1230 slot >= endslot) {
1231 continue;
1232 }
1233
1234 /*
1235 * process the page,
1236 * the start over on this object
1237 * since the swhash elt
1238 * may have been freed.
1239 */
1240
1241 rv = uao_pagein_page(aobj,
1242 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1243 if (rv) {
1244 return rv;
1245 }
1246 goto restart;
1247 }
1248 }
1249 }
1250 } else {
1251 int i;
1252
1253 for (i = 0; i < aobj->u_pages; i++) {
1254 int slot = aobj->u_swslots[i];
1255
1256 /*
1257 * if the slot isn't in range, skip it
1258 */
1259
1260 if (slot < startslot || slot >= endslot) {
1261 continue;
1262 }
1263
1264 /*
1265 * process the page.
1266 */
1267
1268 rv = uao_pagein_page(aobj, i);
1269 if (rv) {
1270 return rv;
1271 }
1272 }
1273 }
1274
1275 return false;
1276 }
1277
1278 /*
1279 * uao_pagein_page: page in a single page from an anonymous UVM object.
1280 *
1281 * => Returns true if pagein was aborted due to lack of memory.
1282 * => Object must be locked and is returned locked.
1283 */
1284
1285 static bool
1286 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1287 {
1288 struct uvm_object *uobj = &aobj->u_obj;
1289 struct vm_page *pg;
1290 int rv, npages;
1291
1292 pg = NULL;
1293 npages = 1;
1294
1295 KASSERT(mutex_owned(uobj->vmobjlock));
1296 rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
1297 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1298
1299 /*
1300 * relock and finish up.
1301 */
1302
1303 mutex_enter(uobj->vmobjlock);
1304 switch (rv) {
1305 case 0:
1306 break;
1307
1308 case EIO:
1309 case ERESTART:
1310
1311 /*
1312 * nothing more to do on errors.
1313 * ERESTART can only mean that the anon was freed,
1314 * so again there's nothing to do.
1315 */
1316
1317 return false;
1318
1319 default:
1320 return true;
1321 }
1322
1323 /*
1324 * ok, we've got the page now.
1325 * mark it as dirty, clear its swslot and un-busy it.
1326 */
1327 uao_dropswap(&aobj->u_obj, pageidx);
1328
1329 /*
1330 * make sure it's on a page queue.
1331 */
1332 mutex_enter(&uvm_pageqlock);
1333 if (pg->wire_count == 0)
1334 uvm_pageenqueue(pg);
1335 mutex_exit(&uvm_pageqlock);
1336
1337 if (pg->flags & PG_WANTED) {
1338 wakeup(pg);
1339 }
1340 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1341 UVM_PAGE_OWN(pg, NULL);
1342
1343 return false;
1344 }
1345
1346 /*
1347 * uao_dropswap_range: drop swapslots in the range.
1348 *
1349 * => aobj must be locked and is returned locked.
1350 * => start is inclusive. end is exclusive.
1351 */
1352
1353 void
1354 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1355 {
1356 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1357 int swpgonlydelta = 0;
1358
1359 KASSERT(mutex_owned(uobj->vmobjlock));
1360
1361 if (end == 0) {
1362 end = INT64_MAX;
1363 }
1364
1365 if (UAO_USES_SWHASH(aobj)) {
1366 int i, hashbuckets = aobj->u_swhashmask + 1;
1367 voff_t taghi;
1368 voff_t taglo;
1369
1370 taglo = UAO_SWHASH_ELT_TAG(start);
1371 taghi = UAO_SWHASH_ELT_TAG(end);
1372
1373 for (i = 0; i < hashbuckets; i++) {
1374 struct uao_swhash_elt *elt, *next;
1375
1376 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1377 elt != NULL;
1378 elt = next) {
1379 int startidx, endidx;
1380 int j;
1381
1382 next = LIST_NEXT(elt, list);
1383
1384 if (elt->tag < taglo || taghi < elt->tag) {
1385 continue;
1386 }
1387
1388 if (elt->tag == taglo) {
1389 startidx =
1390 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1391 } else {
1392 startidx = 0;
1393 }
1394
1395 if (elt->tag == taghi) {
1396 endidx =
1397 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1398 } else {
1399 endidx = UAO_SWHASH_CLUSTER_SIZE;
1400 }
1401
1402 for (j = startidx; j < endidx; j++) {
1403 int slot = elt->slots[j];
1404
1405 KASSERT(uvm_pagelookup(&aobj->u_obj,
1406 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1407 + j) << PAGE_SHIFT) == NULL);
1408 if (slot > 0) {
1409 uvm_swap_free(slot, 1);
1410 swpgonlydelta++;
1411 KASSERT(elt->count > 0);
1412 elt->slots[j] = 0;
1413 elt->count--;
1414 }
1415 }
1416
1417 if (elt->count == 0) {
1418 LIST_REMOVE(elt, list);
1419 pool_put(&uao_swhash_elt_pool, elt);
1420 }
1421 }
1422 }
1423 } else {
1424 int i;
1425
1426 if (aobj->u_pages < end) {
1427 end = aobj->u_pages;
1428 }
1429 for (i = start; i < end; i++) {
1430 int slot = aobj->u_swslots[i];
1431
1432 if (slot > 0) {
1433 uvm_swap_free(slot, 1);
1434 swpgonlydelta++;
1435 }
1436 }
1437 }
1438
1439 /*
1440 * adjust the counter of pages only in swap for all
1441 * the swap slots we've freed.
1442 */
1443
1444 if (swpgonlydelta > 0) {
1445 mutex_enter(&uvm_swap_data_lock);
1446 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1447 uvmexp.swpgonly -= swpgonlydelta;
1448 mutex_exit(&uvm_swap_data_lock);
1449 }
1450 }
1451
1452 #endif /* defined(VMSWAP) */
1453