uvm_aobj.c revision 1.121 1 /* $NetBSD: uvm_aobj.c,v 1.121 2014/05/22 14:01:46 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.121 2014/05/22 14:01:46 riastradh Exp $");
42
43 #include "opt_uvmhist.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/kmem.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51
52 #include <uvm/uvm.h>
53
54 /*
55 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to
56 * keeping the list of resident pages, it may also keep a list of allocated
57 * swap blocks. Depending on the size of the object, this list is either
58 * stored in an array (small objects) or in a hash table (large objects).
59 *
60 * Lock order
61 *
62 * uao_list_lock ->
63 * uvm_object::vmobjlock
64 */
65
66 /*
67 * Note: for hash tables, we break the address space of the aobj into blocks
68 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
69 */
70
71 #define UAO_SWHASH_CLUSTER_SHIFT 4
72 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
73
74 /* Get the "tag" for this page index. */
75 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
76 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
77 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
78
79 /* Given an ELT and a page index, find the swap slot. */
80 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
81 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
82
83 /* Given an ELT, return its pageidx base. */
84 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
85 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
86
87 /* The hash function. */
88 #define UAO_SWHASH_HASH(aobj, idx) \
89 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
90 & (aobj)->u_swhashmask)])
91
92 /*
93 * The threshold which determines whether we will use an array or a
94 * hash table to store the list of allocated swap blocks.
95 */
96 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
97 #define UAO_USES_SWHASH(aobj) \
98 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
99
100 /* The number of buckets in a hash, with an upper bound. */
101 #define UAO_SWHASH_MAXBUCKETS 256
102 #define UAO_SWHASH_BUCKETS(aobj) \
103 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
104
105 /*
106 * uao_swhash_elt: when a hash table is being used, this structure defines
107 * the format of an entry in the bucket list.
108 */
109
110 struct uao_swhash_elt {
111 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
112 voff_t tag; /* our 'tag' */
113 int count; /* our number of active slots */
114 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
115 };
116
117 /*
118 * uao_swhash: the swap hash table structure
119 */
120
121 LIST_HEAD(uao_swhash, uao_swhash_elt);
122
123 /*
124 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
125 * Note: pages for this pool must not come from a pageable kernel map.
126 */
127 static struct pool uao_swhash_elt_pool __cacheline_aligned;
128
129 /*
130 * uvm_aobj: the actual anon-backed uvm_object
131 *
132 * => the uvm_object is at the top of the structure, this allows
133 * (struct uvm_aobj *) == (struct uvm_object *)
134 * => only one of u_swslots and u_swhash is used in any given aobj
135 */
136
137 struct uvm_aobj {
138 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
139 pgoff_t u_pages; /* number of pages in entire object */
140 int u_flags; /* the flags (see uvm_aobj.h) */
141 int *u_swslots; /* array of offset->swapslot mappings */
142 /*
143 * hashtable of offset->swapslot mappings
144 * (u_swhash is an array of bucket heads)
145 */
146 struct uao_swhash *u_swhash;
147 u_long u_swhashmask; /* mask for hashtable */
148 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
149 int u_freelist; /* freelist to allocate pages from */
150 };
151
152 static void uao_free(struct uvm_aobj *);
153 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
154 int *, int, vm_prot_t, int, int);
155 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
156
157 #if defined(VMSWAP)
158 static struct uao_swhash_elt *uao_find_swhash_elt
159 (struct uvm_aobj *, int, bool);
160
161 static bool uao_pagein(struct uvm_aobj *, int, int);
162 static bool uao_pagein_page(struct uvm_aobj *, int);
163 #endif /* defined(VMSWAP) */
164
165 static struct vm_page *uao_pagealloc(struct uvm_object *, voff_t, int);
166
167 /*
168 * aobj_pager
169 *
170 * note that some functions (e.g. put) are handled elsewhere
171 */
172
173 const struct uvm_pagerops aobj_pager = {
174 .pgo_reference = uao_reference,
175 .pgo_detach = uao_detach,
176 .pgo_get = uao_get,
177 .pgo_put = uao_put,
178 };
179
180 /*
181 * uao_list: global list of active aobjs, locked by uao_list_lock
182 */
183
184 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned;
185 static kmutex_t uao_list_lock __cacheline_aligned;
186
187 /*
188 * hash table/array related functions
189 */
190
191 #if defined(VMSWAP)
192
193 /*
194 * uao_find_swhash_elt: find (or create) a hash table entry for a page
195 * offset.
196 *
197 * => the object should be locked by the caller
198 */
199
200 static struct uao_swhash_elt *
201 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
202 {
203 struct uao_swhash *swhash;
204 struct uao_swhash_elt *elt;
205 voff_t page_tag;
206
207 swhash = UAO_SWHASH_HASH(aobj, pageidx);
208 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
209
210 /*
211 * now search the bucket for the requested tag
212 */
213
214 LIST_FOREACH(elt, swhash, list) {
215 if (elt->tag == page_tag) {
216 return elt;
217 }
218 }
219 if (!create) {
220 return NULL;
221 }
222
223 /*
224 * allocate a new entry for the bucket and init/insert it in
225 */
226
227 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
228 if (elt == NULL) {
229 return NULL;
230 }
231 LIST_INSERT_HEAD(swhash, elt, list);
232 elt->tag = page_tag;
233 elt->count = 0;
234 memset(elt->slots, 0, sizeof(elt->slots));
235 return elt;
236 }
237
238 /*
239 * uao_find_swslot: find the swap slot number for an aobj/pageidx
240 *
241 * => object must be locked by caller
242 */
243
244 int
245 uao_find_swslot(struct uvm_object *uobj, int pageidx)
246 {
247 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
248 struct uao_swhash_elt *elt;
249
250 /*
251 * if noswap flag is set, then we never return a slot
252 */
253
254 if (aobj->u_flags & UAO_FLAG_NOSWAP)
255 return 0;
256
257 /*
258 * if hashing, look in hash table.
259 */
260
261 if (UAO_USES_SWHASH(aobj)) {
262 elt = uao_find_swhash_elt(aobj, pageidx, false);
263 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
264 }
265
266 /*
267 * otherwise, look in the array
268 */
269
270 return aobj->u_swslots[pageidx];
271 }
272
273 /*
274 * uao_set_swslot: set the swap slot for a page in an aobj.
275 *
276 * => setting a slot to zero frees the slot
277 * => object must be locked by caller
278 * => we return the old slot number, or -1 if we failed to allocate
279 * memory to record the new slot number
280 */
281
282 int
283 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
284 {
285 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
286 struct uao_swhash_elt *elt;
287 int oldslot;
288 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
289 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
290 aobj, pageidx, slot, 0);
291
292 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
293
294 /*
295 * if noswap flag is set, then we can't set a non-zero slot.
296 */
297
298 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
299 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
300 return 0;
301 }
302
303 /*
304 * are we using a hash table? if so, add it in the hash.
305 */
306
307 if (UAO_USES_SWHASH(aobj)) {
308
309 /*
310 * Avoid allocating an entry just to free it again if
311 * the page had not swap slot in the first place, and
312 * we are freeing.
313 */
314
315 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
316 if (elt == NULL) {
317 return slot ? -1 : 0;
318 }
319
320 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
321 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
322
323 /*
324 * now adjust the elt's reference counter and free it if we've
325 * dropped it to zero.
326 */
327
328 if (slot) {
329 if (oldslot == 0)
330 elt->count++;
331 } else {
332 if (oldslot)
333 elt->count--;
334
335 if (elt->count == 0) {
336 LIST_REMOVE(elt, list);
337 pool_put(&uao_swhash_elt_pool, elt);
338 }
339 }
340 } else {
341 /* we are using an array */
342 oldslot = aobj->u_swslots[pageidx];
343 aobj->u_swslots[pageidx] = slot;
344 }
345 return oldslot;
346 }
347
348 #endif /* defined(VMSWAP) */
349
350 /*
351 * end of hash/array functions
352 */
353
354 /*
355 * uao_free: free all resources held by an aobj, and then free the aobj
356 *
357 * => the aobj should be dead
358 */
359
360 static void
361 uao_free(struct uvm_aobj *aobj)
362 {
363 struct uvm_object *uobj = &aobj->u_obj;
364
365 KASSERT(mutex_owned(uobj->vmobjlock));
366 uao_dropswap_range(uobj, 0, 0);
367 mutex_exit(uobj->vmobjlock);
368
369 #if defined(VMSWAP)
370 if (UAO_USES_SWHASH(aobj)) {
371
372 /*
373 * free the hash table itself.
374 */
375
376 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
377 } else {
378
379 /*
380 * free the array itsself.
381 */
382
383 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
384 }
385 #endif /* defined(VMSWAP) */
386
387 /*
388 * finally free the aobj itself
389 */
390
391 uvm_obj_destroy(uobj, true);
392 kmem_free(aobj, sizeof(struct uvm_aobj));
393 }
394
395 /*
396 * pager functions
397 */
398
399 /*
400 * uao_create: create an aobj of the given size and return its uvm_object.
401 *
402 * => for normal use, flags are always zero
403 * => for the kernel object, the flags are:
404 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
405 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
406 */
407
408 struct uvm_object *
409 uao_create(vsize_t size, int flags)
410 {
411 static struct uvm_aobj kernel_object_store;
412 static kmutex_t kernel_object_lock;
413 static int kobj_alloced __diagused = 0;
414 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
415 struct uvm_aobj *aobj;
416 int refs;
417
418 /*
419 * Allocate a new aobj, unless kernel object is requested.
420 */
421
422 if (flags & UAO_FLAG_KERNOBJ) {
423 KASSERT(!kobj_alloced);
424 aobj = &kernel_object_store;
425 aobj->u_pages = pages;
426 aobj->u_flags = UAO_FLAG_NOSWAP;
427 refs = UVM_OBJ_KERN;
428 kobj_alloced = UAO_FLAG_KERNOBJ;
429 } else if (flags & UAO_FLAG_KERNSWAP) {
430 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
431 aobj = &kernel_object_store;
432 kobj_alloced = UAO_FLAG_KERNSWAP;
433 refs = 0xdeadbeaf; /* XXX: gcc */
434 } else {
435 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
436 aobj->u_pages = pages;
437 aobj->u_flags = 0;
438 refs = 1;
439 }
440
441 /*
442 * no freelist by default
443 */
444
445 aobj->u_freelist = VM_NFREELIST;
446
447 /*
448 * allocate hash/array if necessary
449 *
450 * note: in the KERNSWAP case no need to worry about locking since
451 * we are still booting we should be the only thread around.
452 */
453
454 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
455 #if defined(VMSWAP)
456 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
457
458 /* allocate hash table or array depending on object size */
459 if (UAO_USES_SWHASH(aobj)) {
460 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
461 HASH_LIST, kernswap ? false : true,
462 &aobj->u_swhashmask);
463 if (aobj->u_swhash == NULL)
464 panic("uao_create: hashinit swhash failed");
465 } else {
466 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
467 kernswap ? KM_NOSLEEP : KM_SLEEP);
468 if (aobj->u_swslots == NULL)
469 panic("uao_create: swslots allocation failed");
470 }
471 #endif /* defined(VMSWAP) */
472
473 if (flags) {
474 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
475 return &aobj->u_obj;
476 }
477 }
478
479 /*
480 * Initialise UVM object.
481 */
482
483 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
484 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
485 if (__predict_false(kernobj)) {
486 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
487 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
488 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
489 }
490
491 /*
492 * now that aobj is ready, add it to the global list
493 */
494
495 mutex_enter(&uao_list_lock);
496 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
497 mutex_exit(&uao_list_lock);
498 return(&aobj->u_obj);
499 }
500
501 /*
502 * uao_set_pgfl: allocate pages only from the specified freelist.
503 *
504 * => must be called before any pages are allocated for the object.
505 */
506
507 void
508 uao_set_pgfl(struct uvm_object *uobj, int freelist)
509 {
510 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
511
512 KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
513 KASSERTMSG((freelist < VM_NFREELIST), "invalid freelist %d", freelist);
514
515 aobj->u_freelist = freelist;
516 }
517
518 /*
519 * uao_pagealloc: allocate a page for aobj.
520 */
521
522 static inline struct vm_page *
523 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
524 {
525 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
526
527 if (__predict_true(aobj->u_freelist == VM_NFREELIST))
528 return uvm_pagealloc(uobj, offset, NULL, flags);
529 else
530 return uvm_pagealloc_strat(uobj, offset, NULL, flags,
531 UVM_PGA_STRAT_ONLY, aobj->u_freelist);
532 }
533
534 /*
535 * uao_init: set up aobj pager subsystem
536 *
537 * => called at boot time from uvm_pager_init()
538 */
539
540 void
541 uao_init(void)
542 {
543 static int uao_initialized;
544
545 if (uao_initialized)
546 return;
547 uao_initialized = true;
548 LIST_INIT(&uao_list);
549 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
550 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
551 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
552 }
553
554 /*
555 * uao_reference: hold a reference to an anonymous UVM object.
556 */
557 void
558 uao_reference(struct uvm_object *uobj)
559 {
560 /* Kernel object is persistent. */
561 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
562 return;
563 }
564 atomic_inc_uint(&uobj->uo_refs);
565 }
566
567 /*
568 * uao_detach: drop a reference to an anonymous UVM object.
569 */
570 void
571 uao_detach(struct uvm_object *uobj)
572 {
573 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
574 struct vm_page *pg;
575
576 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
577
578 /*
579 * Detaching from kernel object is a NOP.
580 */
581
582 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
583 return;
584
585 /*
586 * Drop the reference. If it was the last one, destroy the object.
587 */
588
589 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
590 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
591 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
592 return;
593 }
594
595 /*
596 * Remove the aobj from the global list.
597 */
598
599 mutex_enter(&uao_list_lock);
600 LIST_REMOVE(aobj, u_list);
601 mutex_exit(&uao_list_lock);
602
603 /*
604 * Free all the pages left in the aobj. For each page, when the
605 * page is no longer busy (and thus after any disk I/O that it is
606 * involved in is complete), release any swap resources and free
607 * the page itself.
608 */
609
610 mutex_enter(uobj->vmobjlock);
611 mutex_enter(&uvm_pageqlock);
612 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
613 pmap_page_protect(pg, VM_PROT_NONE);
614 if (pg->flags & PG_BUSY) {
615 pg->flags |= PG_WANTED;
616 mutex_exit(&uvm_pageqlock);
617 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
618 "uao_det", 0);
619 mutex_enter(uobj->vmobjlock);
620 mutex_enter(&uvm_pageqlock);
621 continue;
622 }
623 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
624 uvm_pagefree(pg);
625 }
626 mutex_exit(&uvm_pageqlock);
627
628 /*
629 * Finally, free the anonymous UVM object itself.
630 */
631
632 uao_free(aobj);
633 }
634
635 /*
636 * uao_put: flush pages out of a uvm object
637 *
638 * => object should be locked by caller. we may _unlock_ the object
639 * if (and only if) we need to clean a page (PGO_CLEANIT).
640 * XXXJRT Currently, however, we don't. In the case of cleaning
641 * XXXJRT a page, we simply just deactivate it. Should probably
642 * XXXJRT handle this better, in the future (although "flushing"
643 * XXXJRT anonymous memory isn't terribly important).
644 * => if PGO_CLEANIT is not set, then we will neither unlock the object
645 * or block.
646 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
647 * for flushing.
648 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
649 * that new pages are inserted on the tail end of the list. thus,
650 * we can make a complete pass through the object in one go by starting
651 * at the head and working towards the tail (new pages are put in
652 * front of us).
653 * => NOTE: we are allowed to lock the page queues, so the caller
654 * must not be holding the lock on them [e.g. pagedaemon had
655 * better not call us with the queues locked]
656 * => we return 0 unless we encountered some sort of I/O error
657 * XXXJRT currently never happens, as we never directly initiate
658 * XXXJRT I/O
659 *
660 * note on page traversal:
661 * we can traverse the pages in an object either by going down the
662 * linked list in "uobj->memq", or we can go over the address range
663 * by page doing hash table lookups for each address. depending
664 * on how many pages are in the object it may be cheaper to do one
665 * or the other. we set "by_list" to true if we are using memq.
666 * if the cost of a hash lookup was equal to the cost of the list
667 * traversal we could compare the number of pages in the start->stop
668 * range to the total number of pages in the object. however, it
669 * seems that a hash table lookup is more expensive than the linked
670 * list traversal, so we multiply the number of pages in the
671 * start->stop range by a penalty which we define below.
672 */
673
674 static int
675 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
676 {
677 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
678 struct vm_page *pg, *nextpg, curmp, endmp;
679 bool by_list;
680 voff_t curoff;
681 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
682
683 KASSERT(mutex_owned(uobj->vmobjlock));
684
685 curoff = 0;
686 if (flags & PGO_ALLPAGES) {
687 start = 0;
688 stop = aobj->u_pages << PAGE_SHIFT;
689 by_list = true; /* always go by the list */
690 } else {
691 start = trunc_page(start);
692 if (stop == 0) {
693 stop = aobj->u_pages << PAGE_SHIFT;
694 } else {
695 stop = round_page(stop);
696 }
697 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
698 printf("uao_flush: strange, got an out of range "
699 "flush (fixed)\n");
700 stop = aobj->u_pages << PAGE_SHIFT;
701 }
702 by_list = (uobj->uo_npages <=
703 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
704 }
705 UVMHIST_LOG(maphist,
706 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
707 start, stop, by_list, flags);
708
709 /*
710 * Don't need to do any work here if we're not freeing
711 * or deactivating pages.
712 */
713
714 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
715 mutex_exit(uobj->vmobjlock);
716 return 0;
717 }
718
719 /*
720 * Initialize the marker pages. See the comment in
721 * genfs_putpages() also.
722 */
723
724 curmp.flags = PG_MARKER;
725 endmp.flags = PG_MARKER;
726
727 /*
728 * now do it. note: we must update nextpg in the body of loop or we
729 * will get stuck. we need to use nextpg if we'll traverse the list
730 * because we may free "pg" before doing the next loop.
731 */
732
733 if (by_list) {
734 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
735 nextpg = TAILQ_FIRST(&uobj->memq);
736 } else {
737 curoff = start;
738 nextpg = NULL; /* Quell compiler warning */
739 }
740
741 /* locked: uobj */
742 for (;;) {
743 if (by_list) {
744 pg = nextpg;
745 if (pg == &endmp)
746 break;
747 nextpg = TAILQ_NEXT(pg, listq.queue);
748 if (pg->flags & PG_MARKER)
749 continue;
750 if (pg->offset < start || pg->offset >= stop)
751 continue;
752 } else {
753 if (curoff < stop) {
754 pg = uvm_pagelookup(uobj, curoff);
755 curoff += PAGE_SIZE;
756 } else
757 break;
758 if (pg == NULL)
759 continue;
760 }
761
762 /*
763 * wait and try again if the page is busy.
764 */
765
766 if (pg->flags & PG_BUSY) {
767 if (by_list) {
768 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
769 }
770 pg->flags |= PG_WANTED;
771 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
772 "uao_put", 0);
773 mutex_enter(uobj->vmobjlock);
774 if (by_list) {
775 nextpg = TAILQ_NEXT(&curmp, listq.queue);
776 TAILQ_REMOVE(&uobj->memq, &curmp,
777 listq.queue);
778 } else
779 curoff -= PAGE_SIZE;
780 continue;
781 }
782
783 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
784
785 /*
786 * XXX In these first 3 cases, we always just
787 * XXX deactivate the page. We may want to
788 * XXX handle the different cases more specifically
789 * XXX in the future.
790 */
791
792 case PGO_CLEANIT|PGO_FREE:
793 case PGO_CLEANIT|PGO_DEACTIVATE:
794 case PGO_DEACTIVATE:
795 deactivate_it:
796 mutex_enter(&uvm_pageqlock);
797 /* skip the page if it's wired */
798 if (pg->wire_count == 0) {
799 uvm_pagedeactivate(pg);
800 }
801 mutex_exit(&uvm_pageqlock);
802 break;
803
804 case PGO_FREE:
805 /*
806 * If there are multiple references to
807 * the object, just deactivate the page.
808 */
809
810 if (uobj->uo_refs > 1)
811 goto deactivate_it;
812
813 /*
814 * free the swap slot and the page.
815 */
816
817 pmap_page_protect(pg, VM_PROT_NONE);
818
819 /*
820 * freeing swapslot here is not strictly necessary.
821 * however, leaving it here doesn't save much
822 * because we need to update swap accounting anyway.
823 */
824
825 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
826 mutex_enter(&uvm_pageqlock);
827 uvm_pagefree(pg);
828 mutex_exit(&uvm_pageqlock);
829 break;
830
831 default:
832 panic("%s: impossible", __func__);
833 }
834 }
835 if (by_list) {
836 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
837 }
838 mutex_exit(uobj->vmobjlock);
839 return 0;
840 }
841
842 /*
843 * uao_get: fetch me a page
844 *
845 * we have three cases:
846 * 1: page is resident -> just return the page.
847 * 2: page is zero-fill -> allocate a new page and zero it.
848 * 3: page is swapped out -> fetch the page from swap.
849 *
850 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
851 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
852 * then we will need to return EBUSY.
853 *
854 * => prefer map unlocked (not required)
855 * => object must be locked! we will _unlock_ it before starting any I/O.
856 * => flags: PGO_ALLPAGES: get all of the pages
857 * PGO_LOCKED: fault data structures are locked
858 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
859 * => NOTE: caller must check for released pages!!
860 */
861
862 static int
863 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
864 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
865 {
866 voff_t current_offset;
867 struct vm_page *ptmp = NULL; /* Quell compiler warning */
868 int lcv, gotpages, maxpages, swslot, pageidx;
869 bool done;
870 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
871
872 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
873 (struct uvm_aobj *)uobj, offset, flags,0);
874
875 /*
876 * get number of pages
877 */
878
879 maxpages = *npagesp;
880
881 /*
882 * step 1: handled the case where fault data structures are locked.
883 */
884
885 if (flags & PGO_LOCKED) {
886
887 /*
888 * step 1a: get pages that are already resident. only do
889 * this if the data structures are locked (i.e. the first
890 * time through).
891 */
892
893 done = true; /* be optimistic */
894 gotpages = 0; /* # of pages we got so far */
895 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
896 lcv++, current_offset += PAGE_SIZE) {
897 /* do we care about this page? if not, skip it */
898 if (pps[lcv] == PGO_DONTCARE)
899 continue;
900 ptmp = uvm_pagelookup(uobj, current_offset);
901
902 /*
903 * if page is new, attempt to allocate the page,
904 * zero-fill'd.
905 */
906
907 if (ptmp == NULL && uao_find_swslot(uobj,
908 current_offset >> PAGE_SHIFT) == 0) {
909 ptmp = uao_pagealloc(uobj, current_offset,
910 UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
911 if (ptmp) {
912 /* new page */
913 ptmp->flags &= ~(PG_FAKE);
914 ptmp->pqflags |= PQ_AOBJ;
915 goto gotpage;
916 }
917 }
918
919 /*
920 * to be useful must get a non-busy page
921 */
922
923 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
924 if (lcv == centeridx ||
925 (flags & PGO_ALLPAGES) != 0)
926 /* need to do a wait or I/O! */
927 done = false;
928 continue;
929 }
930
931 /*
932 * useful page: busy/lock it and plug it in our
933 * result array
934 */
935
936 /* caller must un-busy this page */
937 ptmp->flags |= PG_BUSY;
938 UVM_PAGE_OWN(ptmp, "uao_get1");
939 gotpage:
940 pps[lcv] = ptmp;
941 gotpages++;
942 }
943
944 /*
945 * step 1b: now we've either done everything needed or we
946 * to unlock and do some waiting or I/O.
947 */
948
949 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
950 *npagesp = gotpages;
951 if (done)
952 return 0;
953 else
954 return EBUSY;
955 }
956
957 /*
958 * step 2: get non-resident or busy pages.
959 * object is locked. data structures are unlocked.
960 */
961
962 if ((flags & PGO_SYNCIO) == 0) {
963 goto done;
964 }
965
966 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
967 lcv++, current_offset += PAGE_SIZE) {
968
969 /*
970 * - skip over pages we've already gotten or don't want
971 * - skip over pages we don't _have_ to get
972 */
973
974 if (pps[lcv] != NULL ||
975 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
976 continue;
977
978 pageidx = current_offset >> PAGE_SHIFT;
979
980 /*
981 * we have yet to locate the current page (pps[lcv]). we
982 * first look for a page that is already at the current offset.
983 * if we find a page, we check to see if it is busy or
984 * released. if that is the case, then we sleep on the page
985 * until it is no longer busy or released and repeat the lookup.
986 * if the page we found is neither busy nor released, then we
987 * busy it (so we own it) and plug it into pps[lcv]. this
988 * 'break's the following while loop and indicates we are
989 * ready to move on to the next page in the "lcv" loop above.
990 *
991 * if we exit the while loop with pps[lcv] still set to NULL,
992 * then it means that we allocated a new busy/fake/clean page
993 * ptmp in the object and we need to do I/O to fill in the data.
994 */
995
996 /* top of "pps" while loop */
997 while (pps[lcv] == NULL) {
998 /* look for a resident page */
999 ptmp = uvm_pagelookup(uobj, current_offset);
1000
1001 /* not resident? allocate one now (if we can) */
1002 if (ptmp == NULL) {
1003
1004 ptmp = uao_pagealloc(uobj, current_offset, 0);
1005
1006 /* out of RAM? */
1007 if (ptmp == NULL) {
1008 mutex_exit(uobj->vmobjlock);
1009 UVMHIST_LOG(pdhist,
1010 "sleeping, ptmp == NULL\n",0,0,0,0);
1011 uvm_wait("uao_getpage");
1012 mutex_enter(uobj->vmobjlock);
1013 continue;
1014 }
1015
1016 /*
1017 * safe with PQ's unlocked: because we just
1018 * alloc'd the page
1019 */
1020
1021 ptmp->pqflags |= PQ_AOBJ;
1022
1023 /*
1024 * got new page ready for I/O. break pps while
1025 * loop. pps[lcv] is still NULL.
1026 */
1027
1028 break;
1029 }
1030
1031 /* page is there, see if we need to wait on it */
1032 if ((ptmp->flags & PG_BUSY) != 0) {
1033 ptmp->flags |= PG_WANTED;
1034 UVMHIST_LOG(pdhist,
1035 "sleeping, ptmp->flags 0x%x\n",
1036 ptmp->flags,0,0,0);
1037 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
1038 false, "uao_get", 0);
1039 mutex_enter(uobj->vmobjlock);
1040 continue;
1041 }
1042
1043 /*
1044 * if we get here then the page has become resident and
1045 * unbusy between steps 1 and 2. we busy it now (so we
1046 * own it) and set pps[lcv] (so that we exit the while
1047 * loop).
1048 */
1049
1050 /* we own it, caller must un-busy */
1051 ptmp->flags |= PG_BUSY;
1052 UVM_PAGE_OWN(ptmp, "uao_get2");
1053 pps[lcv] = ptmp;
1054 }
1055
1056 /*
1057 * if we own the valid page at the correct offset, pps[lcv] will
1058 * point to it. nothing more to do except go to the next page.
1059 */
1060
1061 if (pps[lcv])
1062 continue; /* next lcv */
1063
1064 /*
1065 * we have a "fake/busy/clean" page that we just allocated.
1066 * do the needed "i/o", either reading from swap or zeroing.
1067 */
1068
1069 swslot = uao_find_swslot(uobj, pageidx);
1070
1071 /*
1072 * just zero the page if there's nothing in swap.
1073 */
1074
1075 if (swslot == 0) {
1076
1077 /*
1078 * page hasn't existed before, just zero it.
1079 */
1080
1081 uvm_pagezero(ptmp);
1082 } else {
1083 #if defined(VMSWAP)
1084 int error;
1085
1086 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1087 swslot, 0,0,0);
1088
1089 /*
1090 * page in the swapped-out page.
1091 * unlock object for i/o, relock when done.
1092 */
1093
1094 mutex_exit(uobj->vmobjlock);
1095 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1096 mutex_enter(uobj->vmobjlock);
1097
1098 /*
1099 * I/O done. check for errors.
1100 */
1101
1102 if (error != 0) {
1103 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1104 error,0,0,0);
1105 if (ptmp->flags & PG_WANTED)
1106 wakeup(ptmp);
1107
1108 /*
1109 * remove the swap slot from the aobj
1110 * and mark the aobj as having no real slot.
1111 * don't free the swap slot, thus preventing
1112 * it from being used again.
1113 */
1114
1115 swslot = uao_set_swslot(uobj, pageidx,
1116 SWSLOT_BAD);
1117 if (swslot > 0) {
1118 uvm_swap_markbad(swslot, 1);
1119 }
1120
1121 mutex_enter(&uvm_pageqlock);
1122 uvm_pagefree(ptmp);
1123 mutex_exit(&uvm_pageqlock);
1124 mutex_exit(uobj->vmobjlock);
1125 return error;
1126 }
1127 #else /* defined(VMSWAP) */
1128 panic("%s: pagein", __func__);
1129 #endif /* defined(VMSWAP) */
1130 }
1131
1132 if ((access_type & VM_PROT_WRITE) == 0) {
1133 ptmp->flags |= PG_CLEAN;
1134 pmap_clear_modify(ptmp);
1135 }
1136
1137 /*
1138 * we got the page! clear the fake flag (indicates valid
1139 * data now in page) and plug into our result array. note
1140 * that page is still busy.
1141 *
1142 * it is the callers job to:
1143 * => check if the page is released
1144 * => unbusy the page
1145 * => activate the page
1146 */
1147
1148 ptmp->flags &= ~PG_FAKE;
1149 pps[lcv] = ptmp;
1150 }
1151
1152 /*
1153 * finally, unlock object and return.
1154 */
1155
1156 done:
1157 mutex_exit(uobj->vmobjlock);
1158 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1159 return 0;
1160 }
1161
1162 #if defined(VMSWAP)
1163
1164 /*
1165 * uao_dropswap: release any swap resources from this aobj page.
1166 *
1167 * => aobj must be locked or have a reference count of 0.
1168 */
1169
1170 void
1171 uao_dropswap(struct uvm_object *uobj, int pageidx)
1172 {
1173 int slot;
1174
1175 slot = uao_set_swslot(uobj, pageidx, 0);
1176 if (slot) {
1177 uvm_swap_free(slot, 1);
1178 }
1179 }
1180
1181 /*
1182 * page in every page in every aobj that is paged-out to a range of swslots.
1183 *
1184 * => nothing should be locked.
1185 * => returns true if pagein was aborted due to lack of memory.
1186 */
1187
1188 bool
1189 uao_swap_off(int startslot, int endslot)
1190 {
1191 struct uvm_aobj *aobj;
1192
1193 /*
1194 * Walk the list of all anonymous UVM objects. Grab the first.
1195 */
1196 mutex_enter(&uao_list_lock);
1197 if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1198 mutex_exit(&uao_list_lock);
1199 return false;
1200 }
1201 uao_reference(&aobj->u_obj);
1202
1203 do {
1204 struct uvm_aobj *nextaobj;
1205 bool rv;
1206
1207 /*
1208 * Prefetch the next object and immediately hold a reference
1209 * on it, so neither the current nor the next entry could
1210 * disappear while we are iterating.
1211 */
1212 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1213 uao_reference(&nextaobj->u_obj);
1214 }
1215 mutex_exit(&uao_list_lock);
1216
1217 /*
1218 * Page in all pages in the swap slot range.
1219 */
1220 mutex_enter(aobj->u_obj.vmobjlock);
1221 rv = uao_pagein(aobj, startslot, endslot);
1222 mutex_exit(aobj->u_obj.vmobjlock);
1223
1224 /* Drop the reference of the current object. */
1225 uao_detach(&aobj->u_obj);
1226 if (rv) {
1227 if (nextaobj) {
1228 uao_detach(&nextaobj->u_obj);
1229 }
1230 return rv;
1231 }
1232
1233 aobj = nextaobj;
1234 mutex_enter(&uao_list_lock);
1235 } while (aobj);
1236
1237 mutex_exit(&uao_list_lock);
1238 return false;
1239 }
1240
1241 /*
1242 * page in any pages from aobj in the given range.
1243 *
1244 * => aobj must be locked and is returned locked.
1245 * => returns true if pagein was aborted due to lack of memory.
1246 */
1247 static bool
1248 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1249 {
1250 bool rv;
1251
1252 if (UAO_USES_SWHASH(aobj)) {
1253 struct uao_swhash_elt *elt;
1254 int buck;
1255
1256 restart:
1257 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1258 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1259 elt != NULL;
1260 elt = LIST_NEXT(elt, list)) {
1261 int i;
1262
1263 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1264 int slot = elt->slots[i];
1265
1266 /*
1267 * if the slot isn't in range, skip it.
1268 */
1269
1270 if (slot < startslot ||
1271 slot >= endslot) {
1272 continue;
1273 }
1274
1275 /*
1276 * process the page,
1277 * the start over on this object
1278 * since the swhash elt
1279 * may have been freed.
1280 */
1281
1282 rv = uao_pagein_page(aobj,
1283 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1284 if (rv) {
1285 return rv;
1286 }
1287 goto restart;
1288 }
1289 }
1290 }
1291 } else {
1292 int i;
1293
1294 for (i = 0; i < aobj->u_pages; i++) {
1295 int slot = aobj->u_swslots[i];
1296
1297 /*
1298 * if the slot isn't in range, skip it
1299 */
1300
1301 if (slot < startslot || slot >= endslot) {
1302 continue;
1303 }
1304
1305 /*
1306 * process the page.
1307 */
1308
1309 rv = uao_pagein_page(aobj, i);
1310 if (rv) {
1311 return rv;
1312 }
1313 }
1314 }
1315
1316 return false;
1317 }
1318
1319 /*
1320 * uao_pagein_page: page in a single page from an anonymous UVM object.
1321 *
1322 * => Returns true if pagein was aborted due to lack of memory.
1323 * => Object must be locked and is returned locked.
1324 */
1325
1326 static bool
1327 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1328 {
1329 struct uvm_object *uobj = &aobj->u_obj;
1330 struct vm_page *pg;
1331 int rv, npages;
1332
1333 pg = NULL;
1334 npages = 1;
1335
1336 KASSERT(mutex_owned(uobj->vmobjlock));
1337 rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
1338 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1339
1340 /*
1341 * relock and finish up.
1342 */
1343
1344 mutex_enter(uobj->vmobjlock);
1345 switch (rv) {
1346 case 0:
1347 break;
1348
1349 case EIO:
1350 case ERESTART:
1351
1352 /*
1353 * nothing more to do on errors.
1354 * ERESTART can only mean that the anon was freed,
1355 * so again there's nothing to do.
1356 */
1357
1358 return false;
1359
1360 default:
1361 return true;
1362 }
1363
1364 /*
1365 * ok, we've got the page now.
1366 * mark it as dirty, clear its swslot and un-busy it.
1367 */
1368 uao_dropswap(&aobj->u_obj, pageidx);
1369
1370 /*
1371 * make sure it's on a page queue.
1372 */
1373 mutex_enter(&uvm_pageqlock);
1374 if (pg->wire_count == 0)
1375 uvm_pageenqueue(pg);
1376 mutex_exit(&uvm_pageqlock);
1377
1378 if (pg->flags & PG_WANTED) {
1379 wakeup(pg);
1380 }
1381 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1382 UVM_PAGE_OWN(pg, NULL);
1383
1384 return false;
1385 }
1386
1387 /*
1388 * uao_dropswap_range: drop swapslots in the range.
1389 *
1390 * => aobj must be locked and is returned locked.
1391 * => start is inclusive. end is exclusive.
1392 */
1393
1394 void
1395 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1396 {
1397 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1398 int swpgonlydelta = 0;
1399
1400 KASSERT(mutex_owned(uobj->vmobjlock));
1401
1402 if (end == 0) {
1403 end = INT64_MAX;
1404 }
1405
1406 if (UAO_USES_SWHASH(aobj)) {
1407 int i, hashbuckets = aobj->u_swhashmask + 1;
1408 voff_t taghi;
1409 voff_t taglo;
1410
1411 taglo = UAO_SWHASH_ELT_TAG(start);
1412 taghi = UAO_SWHASH_ELT_TAG(end);
1413
1414 for (i = 0; i < hashbuckets; i++) {
1415 struct uao_swhash_elt *elt, *next;
1416
1417 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1418 elt != NULL;
1419 elt = next) {
1420 int startidx, endidx;
1421 int j;
1422
1423 next = LIST_NEXT(elt, list);
1424
1425 if (elt->tag < taglo || taghi < elt->tag) {
1426 continue;
1427 }
1428
1429 if (elt->tag == taglo) {
1430 startidx =
1431 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1432 } else {
1433 startidx = 0;
1434 }
1435
1436 if (elt->tag == taghi) {
1437 endidx =
1438 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1439 } else {
1440 endidx = UAO_SWHASH_CLUSTER_SIZE;
1441 }
1442
1443 for (j = startidx; j < endidx; j++) {
1444 int slot = elt->slots[j];
1445
1446 KASSERT(uvm_pagelookup(&aobj->u_obj,
1447 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1448 + j) << PAGE_SHIFT) == NULL);
1449 if (slot > 0) {
1450 uvm_swap_free(slot, 1);
1451 swpgonlydelta++;
1452 KASSERT(elt->count > 0);
1453 elt->slots[j] = 0;
1454 elt->count--;
1455 }
1456 }
1457
1458 if (elt->count == 0) {
1459 LIST_REMOVE(elt, list);
1460 pool_put(&uao_swhash_elt_pool, elt);
1461 }
1462 }
1463 }
1464 } else {
1465 int i;
1466
1467 if (aobj->u_pages < end) {
1468 end = aobj->u_pages;
1469 }
1470 for (i = start; i < end; i++) {
1471 int slot = aobj->u_swslots[i];
1472
1473 if (slot > 0) {
1474 uvm_swap_free(slot, 1);
1475 swpgonlydelta++;
1476 }
1477 }
1478 }
1479
1480 /*
1481 * adjust the counter of pages only in swap for all
1482 * the swap slots we've freed.
1483 */
1484
1485 if (swpgonlydelta > 0) {
1486 mutex_enter(&uvm_swap_data_lock);
1487 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1488 uvmexp.swpgonly -= swpgonlydelta;
1489 mutex_exit(&uvm_swap_data_lock);
1490 }
1491 }
1492
1493 #endif /* defined(VMSWAP) */
1494