Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.122
      1 /*	$NetBSD: uvm_aobj.c,v 1.122 2014/05/25 18:55:11 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.122 2014/05/25 18:55:11 riastradh Exp $");
     42 
     43 #include "opt_uvmhist.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/kmem.h>
     49 #include <sys/pool.h>
     50 #include <sys/atomic.h>
     51 
     52 #include <uvm/uvm.h>
     53 
     54 /*
     55  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
     56  * keeping the list of resident pages, it may also keep a list of allocated
     57  * swap blocks.  Depending on the size of the object, this list is either
     58  * stored in an array (small objects) or in a hash table (large objects).
     59  *
     60  * Lock order
     61  *
     62  *	uao_list_lock ->
     63  *		uvm_object::vmobjlock
     64  */
     65 
     66 /*
     67  * Note: for hash tables, we break the address space of the aobj into blocks
     68  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
     69  */
     70 
     71 #define	UAO_SWHASH_CLUSTER_SHIFT	4
     72 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
     73 
     74 /* Get the "tag" for this page index. */
     75 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
     76 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
     77     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     78 
     79 /* Given an ELT and a page index, find the swap slot. */
     80 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
     81     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
     82 
     83 /* Given an ELT, return its pageidx base. */
     84 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     85     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     86 
     87 /* The hash function. */
     88 #define	UAO_SWHASH_HASH(aobj, idx) \
     89     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
     90     & (aobj)->u_swhashmask)])
     91 
     92 /*
     93  * The threshold which determines whether we will use an array or a
     94  * hash table to store the list of allocated swap blocks.
     95  */
     96 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
     97 #define	UAO_USES_SWHASH(aobj) \
     98     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
     99 
    100 /* The number of buckets in a hash, with an upper bound. */
    101 #define	UAO_SWHASH_MAXBUCKETS		256
    102 #define	UAO_SWHASH_BUCKETS(aobj) \
    103     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
    104 
    105 /*
    106  * uao_swhash_elt: when a hash table is being used, this structure defines
    107  * the format of an entry in the bucket list.
    108  */
    109 
    110 struct uao_swhash_elt {
    111 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    112 	voff_t tag;				/* our 'tag' */
    113 	int count;				/* our number of active slots */
    114 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    115 };
    116 
    117 /*
    118  * uao_swhash: the swap hash table structure
    119  */
    120 
    121 LIST_HEAD(uao_swhash, uao_swhash_elt);
    122 
    123 /*
    124  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    125  * Note: pages for this pool must not come from a pageable kernel map.
    126  */
    127 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
    128 
    129 /*
    130  * uvm_aobj: the actual anon-backed uvm_object
    131  *
    132  * => the uvm_object is at the top of the structure, this allows
    133  *   (struct uvm_aobj *) == (struct uvm_object *)
    134  * => only one of u_swslots and u_swhash is used in any given aobj
    135  */
    136 
    137 struct uvm_aobj {
    138 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    139 	pgoff_t u_pages;	 /* number of pages in entire object */
    140 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    141 	int *u_swslots;		 /* array of offset->swapslot mappings */
    142 				 /*
    143 				  * hashtable of offset->swapslot mappings
    144 				  * (u_swhash is an array of bucket heads)
    145 				  */
    146 	struct uao_swhash *u_swhash;
    147 	u_long u_swhashmask;		/* mask for hashtable */
    148 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    149 	int u_freelist;		  /* freelist to allocate pages from */
    150 };
    151 
    152 static void	uao_free(struct uvm_aobj *);
    153 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    154 		    int *, int, vm_prot_t, int, int);
    155 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    156 
    157 #if defined(VMSWAP)
    158 static struct uao_swhash_elt *uao_find_swhash_elt
    159     (struct uvm_aobj *, int, bool);
    160 
    161 static bool uao_pagein(struct uvm_aobj *, int, int);
    162 static bool uao_pagein_page(struct uvm_aobj *, int);
    163 #endif /* defined(VMSWAP) */
    164 
    165 static struct vm_page	*uao_pagealloc(struct uvm_object *, voff_t, int);
    166 
    167 /*
    168  * aobj_pager
    169  *
    170  * note that some functions (e.g. put) are handled elsewhere
    171  */
    172 
    173 const struct uvm_pagerops aobj_pager = {
    174 	.pgo_reference = uao_reference,
    175 	.pgo_detach = uao_detach,
    176 	.pgo_get = uao_get,
    177 	.pgo_put = uao_put,
    178 };
    179 
    180 /*
    181  * uao_list: global list of active aobjs, locked by uao_list_lock
    182  */
    183 
    184 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
    185 static kmutex_t		uao_list_lock		__cacheline_aligned;
    186 
    187 /*
    188  * hash table/array related functions
    189  */
    190 
    191 #if defined(VMSWAP)
    192 
    193 /*
    194  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    195  * offset.
    196  *
    197  * => the object should be locked by the caller
    198  */
    199 
    200 static struct uao_swhash_elt *
    201 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    202 {
    203 	struct uao_swhash *swhash;
    204 	struct uao_swhash_elt *elt;
    205 	voff_t page_tag;
    206 
    207 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    208 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    209 
    210 	/*
    211 	 * now search the bucket for the requested tag
    212 	 */
    213 
    214 	LIST_FOREACH(elt, swhash, list) {
    215 		if (elt->tag == page_tag) {
    216 			return elt;
    217 		}
    218 	}
    219 	if (!create) {
    220 		return NULL;
    221 	}
    222 
    223 	/*
    224 	 * allocate a new entry for the bucket and init/insert it in
    225 	 */
    226 
    227 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    228 	if (elt == NULL) {
    229 		return NULL;
    230 	}
    231 	LIST_INSERT_HEAD(swhash, elt, list);
    232 	elt->tag = page_tag;
    233 	elt->count = 0;
    234 	memset(elt->slots, 0, sizeof(elt->slots));
    235 	return elt;
    236 }
    237 
    238 /*
    239  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    240  *
    241  * => object must be locked by caller
    242  */
    243 
    244 int
    245 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    246 {
    247 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    248 	struct uao_swhash_elt *elt;
    249 
    250 	/*
    251 	 * if noswap flag is set, then we never return a slot
    252 	 */
    253 
    254 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    255 		return 0;
    256 
    257 	/*
    258 	 * if hashing, look in hash table.
    259 	 */
    260 
    261 	if (UAO_USES_SWHASH(aobj)) {
    262 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    263 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
    264 	}
    265 
    266 	/*
    267 	 * otherwise, look in the array
    268 	 */
    269 
    270 	return aobj->u_swslots[pageidx];
    271 }
    272 
    273 /*
    274  * uao_set_swslot: set the swap slot for a page in an aobj.
    275  *
    276  * => setting a slot to zero frees the slot
    277  * => object must be locked by caller
    278  * => we return the old slot number, or -1 if we failed to allocate
    279  *    memory to record the new slot number
    280  */
    281 
    282 int
    283 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    284 {
    285 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    286 	struct uao_swhash_elt *elt;
    287 	int oldslot;
    288 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    289 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    290 	    aobj, pageidx, slot, 0);
    291 
    292 	KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
    293 
    294 	/*
    295 	 * if noswap flag is set, then we can't set a non-zero slot.
    296 	 */
    297 
    298 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    299 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
    300 		return 0;
    301 	}
    302 
    303 	/*
    304 	 * are we using a hash table?  if so, add it in the hash.
    305 	 */
    306 
    307 	if (UAO_USES_SWHASH(aobj)) {
    308 
    309 		/*
    310 		 * Avoid allocating an entry just to free it again if
    311 		 * the page had not swap slot in the first place, and
    312 		 * we are freeing.
    313 		 */
    314 
    315 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    316 		if (elt == NULL) {
    317 			return slot ? -1 : 0;
    318 		}
    319 
    320 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    321 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    322 
    323 		/*
    324 		 * now adjust the elt's reference counter and free it if we've
    325 		 * dropped it to zero.
    326 		 */
    327 
    328 		if (slot) {
    329 			if (oldslot == 0)
    330 				elt->count++;
    331 		} else {
    332 			if (oldslot)
    333 				elt->count--;
    334 
    335 			if (elt->count == 0) {
    336 				LIST_REMOVE(elt, list);
    337 				pool_put(&uao_swhash_elt_pool, elt);
    338 			}
    339 		}
    340 	} else {
    341 		/* we are using an array */
    342 		oldslot = aobj->u_swslots[pageidx];
    343 		aobj->u_swslots[pageidx] = slot;
    344 	}
    345 	return oldslot;
    346 }
    347 
    348 #endif /* defined(VMSWAP) */
    349 
    350 /*
    351  * end of hash/array functions
    352  */
    353 
    354 /*
    355  * uao_free: free all resources held by an aobj, and then free the aobj
    356  *
    357  * => the aobj should be dead
    358  */
    359 
    360 static void
    361 uao_free(struct uvm_aobj *aobj)
    362 {
    363 	struct uvm_object *uobj = &aobj->u_obj;
    364 
    365 	KASSERT(mutex_owned(uobj->vmobjlock));
    366 	uao_dropswap_range(uobj, 0, 0);
    367 	mutex_exit(uobj->vmobjlock);
    368 
    369 #if defined(VMSWAP)
    370 	if (UAO_USES_SWHASH(aobj)) {
    371 
    372 		/*
    373 		 * free the hash table itself.
    374 		 */
    375 
    376 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    377 	} else {
    378 
    379 		/*
    380 		 * free the array itsself.
    381 		 */
    382 
    383 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    384 	}
    385 #endif /* defined(VMSWAP) */
    386 
    387 	/*
    388 	 * finally free the aobj itself
    389 	 */
    390 
    391 	uvm_obj_destroy(uobj, true);
    392 	kmem_free(aobj, sizeof(struct uvm_aobj));
    393 }
    394 
    395 /*
    396  * pager functions
    397  */
    398 
    399 /*
    400  * uao_create: create an aobj of the given size and return its uvm_object.
    401  *
    402  * => for normal use, flags are always zero
    403  * => for the kernel object, the flags are:
    404  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    405  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    406  */
    407 
    408 struct uvm_object *
    409 uao_create(vsize_t size, int flags)
    410 {
    411 	static struct uvm_aobj kernel_object_store;
    412 	static kmutex_t kernel_object_lock;
    413 	static int kobj_alloced __diagused = 0;
    414 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    415 	struct uvm_aobj *aobj;
    416 	int refs;
    417 
    418 	/*
    419 	 * Allocate a new aobj, unless kernel object is requested.
    420 	 */
    421 
    422 	if (flags & UAO_FLAG_KERNOBJ) {
    423 		KASSERT(!kobj_alloced);
    424 		aobj = &kernel_object_store;
    425 		aobj->u_pages = pages;
    426 		aobj->u_flags = UAO_FLAG_NOSWAP;
    427 		refs = UVM_OBJ_KERN;
    428 		kobj_alloced = UAO_FLAG_KERNOBJ;
    429 	} else if (flags & UAO_FLAG_KERNSWAP) {
    430 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    431 		aobj = &kernel_object_store;
    432 		kobj_alloced = UAO_FLAG_KERNSWAP;
    433 		refs = 0xdeadbeaf; /* XXX: gcc */
    434 	} else {
    435 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    436 		aobj->u_pages = pages;
    437 		aobj->u_flags = 0;
    438 		refs = 1;
    439 	}
    440 
    441 	/*
    442 	 * no freelist by default
    443 	 */
    444 
    445 	aobj->u_freelist = VM_NFREELIST;
    446 
    447 	/*
    448  	 * allocate hash/array if necessary
    449  	 *
    450  	 * note: in the KERNSWAP case no need to worry about locking since
    451  	 * we are still booting we should be the only thread around.
    452  	 */
    453 
    454 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    455 #if defined(VMSWAP)
    456 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    457 
    458 		/* allocate hash table or array depending on object size */
    459 		if (UAO_USES_SWHASH(aobj)) {
    460 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    461 			    HASH_LIST, kernswap ? false : true,
    462 			    &aobj->u_swhashmask);
    463 			if (aobj->u_swhash == NULL)
    464 				panic("uao_create: hashinit swhash failed");
    465 		} else {
    466 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    467 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    468 			if (aobj->u_swslots == NULL)
    469 				panic("uao_create: swslots allocation failed");
    470 		}
    471 #endif /* defined(VMSWAP) */
    472 
    473 		if (flags) {
    474 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    475 			return &aobj->u_obj;
    476 		}
    477 	}
    478 
    479 	/*
    480 	 * Initialise UVM object.
    481 	 */
    482 
    483 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
    484 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
    485 	if (__predict_false(kernobj)) {
    486 		/* Initialisation only once, for UAO_FLAG_KERNOBJ. */
    487 		mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
    488 		uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
    489 	}
    490 
    491 	/*
    492  	 * now that aobj is ready, add it to the global list
    493  	 */
    494 
    495 	mutex_enter(&uao_list_lock);
    496 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    497 	mutex_exit(&uao_list_lock);
    498 	return(&aobj->u_obj);
    499 }
    500 
    501 /*
    502  * uao_set_pgfl: allocate pages only from the specified freelist.
    503  *
    504  * => must be called before any pages are allocated for the object.
    505  * => reset by setting it to VM_NFREELIST, meaning any freelist.
    506  */
    507 
    508 void
    509 uao_set_pgfl(struct uvm_object *uobj, int freelist)
    510 {
    511 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    512 
    513 	KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
    514 	KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
    515 	    freelist);
    516 
    517 	aobj->u_freelist = freelist;
    518 }
    519 
    520 /*
    521  * uao_pagealloc: allocate a page for aobj.
    522  */
    523 
    524 static inline struct vm_page *
    525 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
    526 {
    527 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    528 
    529 	if (__predict_true(aobj->u_freelist == VM_NFREELIST))
    530 		return uvm_pagealloc(uobj, offset, NULL, flags);
    531 	else
    532 		return uvm_pagealloc_strat(uobj, offset, NULL, flags,
    533 		    UVM_PGA_STRAT_ONLY, aobj->u_freelist);
    534 }
    535 
    536 /*
    537  * uao_init: set up aobj pager subsystem
    538  *
    539  * => called at boot time from uvm_pager_init()
    540  */
    541 
    542 void
    543 uao_init(void)
    544 {
    545 	static int uao_initialized;
    546 
    547 	if (uao_initialized)
    548 		return;
    549 	uao_initialized = true;
    550 	LIST_INIT(&uao_list);
    551 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    552 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    553 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    554 }
    555 
    556 /*
    557  * uao_reference: hold a reference to an anonymous UVM object.
    558  */
    559 void
    560 uao_reference(struct uvm_object *uobj)
    561 {
    562 	/* Kernel object is persistent. */
    563 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    564 		return;
    565 	}
    566 	atomic_inc_uint(&uobj->uo_refs);
    567 }
    568 
    569 /*
    570  * uao_detach: drop a reference to an anonymous UVM object.
    571  */
    572 void
    573 uao_detach(struct uvm_object *uobj)
    574 {
    575 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    576 	struct vm_page *pg;
    577 
    578 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    579 
    580 	/*
    581 	 * Detaching from kernel object is a NOP.
    582 	 */
    583 
    584 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    585 		return;
    586 
    587 	/*
    588 	 * Drop the reference.  If it was the last one, destroy the object.
    589 	 */
    590 
    591 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    592 	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
    593 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    594 		return;
    595 	}
    596 
    597 	/*
    598 	 * Remove the aobj from the global list.
    599 	 */
    600 
    601 	mutex_enter(&uao_list_lock);
    602 	LIST_REMOVE(aobj, u_list);
    603 	mutex_exit(&uao_list_lock);
    604 
    605 	/*
    606 	 * Free all the pages left in the aobj.  For each page, when the
    607 	 * page is no longer busy (and thus after any disk I/O that it is
    608 	 * involved in is complete), release any swap resources and free
    609 	 * the page itself.
    610 	 */
    611 
    612 	mutex_enter(uobj->vmobjlock);
    613 	mutex_enter(&uvm_pageqlock);
    614 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    615 		pmap_page_protect(pg, VM_PROT_NONE);
    616 		if (pg->flags & PG_BUSY) {
    617 			pg->flags |= PG_WANTED;
    618 			mutex_exit(&uvm_pageqlock);
    619 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
    620 			    "uao_det", 0);
    621 			mutex_enter(uobj->vmobjlock);
    622 			mutex_enter(&uvm_pageqlock);
    623 			continue;
    624 		}
    625 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    626 		uvm_pagefree(pg);
    627 	}
    628 	mutex_exit(&uvm_pageqlock);
    629 
    630 	/*
    631 	 * Finally, free the anonymous UVM object itself.
    632 	 */
    633 
    634 	uao_free(aobj);
    635 }
    636 
    637 /*
    638  * uao_put: flush pages out of a uvm object
    639  *
    640  * => object should be locked by caller.  we may _unlock_ the object
    641  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    642  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    643  *	XXXJRT a page, we simply just deactivate it.  Should probably
    644  *	XXXJRT handle this better, in the future (although "flushing"
    645  *	XXXJRT anonymous memory isn't terribly important).
    646  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    647  *	or block.
    648  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    649  *	for flushing.
    650  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    651  *	that new pages are inserted on the tail end of the list.  thus,
    652  *	we can make a complete pass through the object in one go by starting
    653  *	at the head and working towards the tail (new pages are put in
    654  *	front of us).
    655  * => NOTE: we are allowed to lock the page queues, so the caller
    656  *	must not be holding the lock on them [e.g. pagedaemon had
    657  *	better not call us with the queues locked]
    658  * => we return 0 unless we encountered some sort of I/O error
    659  *	XXXJRT currently never happens, as we never directly initiate
    660  *	XXXJRT I/O
    661  *
    662  * note on page traversal:
    663  *	we can traverse the pages in an object either by going down the
    664  *	linked list in "uobj->memq", or we can go over the address range
    665  *	by page doing hash table lookups for each address.  depending
    666  *	on how many pages are in the object it may be cheaper to do one
    667  *	or the other.  we set "by_list" to true if we are using memq.
    668  *	if the cost of a hash lookup was equal to the cost of the list
    669  *	traversal we could compare the number of pages in the start->stop
    670  *	range to the total number of pages in the object.  however, it
    671  *	seems that a hash table lookup is more expensive than the linked
    672  *	list traversal, so we multiply the number of pages in the
    673  *	start->stop range by a penalty which we define below.
    674  */
    675 
    676 static int
    677 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    678 {
    679 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    680 	struct vm_page *pg, *nextpg, curmp, endmp;
    681 	bool by_list;
    682 	voff_t curoff;
    683 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    684 
    685 	KASSERT(mutex_owned(uobj->vmobjlock));
    686 
    687 	curoff = 0;
    688 	if (flags & PGO_ALLPAGES) {
    689 		start = 0;
    690 		stop = aobj->u_pages << PAGE_SHIFT;
    691 		by_list = true;		/* always go by the list */
    692 	} else {
    693 		start = trunc_page(start);
    694 		if (stop == 0) {
    695 			stop = aobj->u_pages << PAGE_SHIFT;
    696 		} else {
    697 			stop = round_page(stop);
    698 		}
    699 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    700 			printf("uao_flush: strange, got an out of range "
    701 			    "flush (fixed)\n");
    702 			stop = aobj->u_pages << PAGE_SHIFT;
    703 		}
    704 		by_list = (uobj->uo_npages <=
    705 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    706 	}
    707 	UVMHIST_LOG(maphist,
    708 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    709 	    start, stop, by_list, flags);
    710 
    711 	/*
    712 	 * Don't need to do any work here if we're not freeing
    713 	 * or deactivating pages.
    714 	 */
    715 
    716 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    717 		mutex_exit(uobj->vmobjlock);
    718 		return 0;
    719 	}
    720 
    721 	/*
    722 	 * Initialize the marker pages.  See the comment in
    723 	 * genfs_putpages() also.
    724 	 */
    725 
    726 	curmp.flags = PG_MARKER;
    727 	endmp.flags = PG_MARKER;
    728 
    729 	/*
    730 	 * now do it.  note: we must update nextpg in the body of loop or we
    731 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    732 	 * because we may free "pg" before doing the next loop.
    733 	 */
    734 
    735 	if (by_list) {
    736 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    737 		nextpg = TAILQ_FIRST(&uobj->memq);
    738 	} else {
    739 		curoff = start;
    740 		nextpg = NULL;	/* Quell compiler warning */
    741 	}
    742 
    743 	/* locked: uobj */
    744 	for (;;) {
    745 		if (by_list) {
    746 			pg = nextpg;
    747 			if (pg == &endmp)
    748 				break;
    749 			nextpg = TAILQ_NEXT(pg, listq.queue);
    750 			if (pg->flags & PG_MARKER)
    751 				continue;
    752 			if (pg->offset < start || pg->offset >= stop)
    753 				continue;
    754 		} else {
    755 			if (curoff < stop) {
    756 				pg = uvm_pagelookup(uobj, curoff);
    757 				curoff += PAGE_SIZE;
    758 			} else
    759 				break;
    760 			if (pg == NULL)
    761 				continue;
    762 		}
    763 
    764 		/*
    765 		 * wait and try again if the page is busy.
    766 		 */
    767 
    768 		if (pg->flags & PG_BUSY) {
    769 			if (by_list) {
    770 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    771 			}
    772 			pg->flags |= PG_WANTED;
    773 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    774 			    "uao_put", 0);
    775 			mutex_enter(uobj->vmobjlock);
    776 			if (by_list) {
    777 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    778 				TAILQ_REMOVE(&uobj->memq, &curmp,
    779 				    listq.queue);
    780 			} else
    781 				curoff -= PAGE_SIZE;
    782 			continue;
    783 		}
    784 
    785 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    786 
    787 		/*
    788 		 * XXX In these first 3 cases, we always just
    789 		 * XXX deactivate the page.  We may want to
    790 		 * XXX handle the different cases more specifically
    791 		 * XXX in the future.
    792 		 */
    793 
    794 		case PGO_CLEANIT|PGO_FREE:
    795 		case PGO_CLEANIT|PGO_DEACTIVATE:
    796 		case PGO_DEACTIVATE:
    797  deactivate_it:
    798 			mutex_enter(&uvm_pageqlock);
    799 			/* skip the page if it's wired */
    800 			if (pg->wire_count == 0) {
    801 				uvm_pagedeactivate(pg);
    802 			}
    803 			mutex_exit(&uvm_pageqlock);
    804 			break;
    805 
    806 		case PGO_FREE:
    807 			/*
    808 			 * If there are multiple references to
    809 			 * the object, just deactivate the page.
    810 			 */
    811 
    812 			if (uobj->uo_refs > 1)
    813 				goto deactivate_it;
    814 
    815 			/*
    816 			 * free the swap slot and the page.
    817 			 */
    818 
    819 			pmap_page_protect(pg, VM_PROT_NONE);
    820 
    821 			/*
    822 			 * freeing swapslot here is not strictly necessary.
    823 			 * however, leaving it here doesn't save much
    824 			 * because we need to update swap accounting anyway.
    825 			 */
    826 
    827 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    828 			mutex_enter(&uvm_pageqlock);
    829 			uvm_pagefree(pg);
    830 			mutex_exit(&uvm_pageqlock);
    831 			break;
    832 
    833 		default:
    834 			panic("%s: impossible", __func__);
    835 		}
    836 	}
    837 	if (by_list) {
    838 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    839 	}
    840 	mutex_exit(uobj->vmobjlock);
    841 	return 0;
    842 }
    843 
    844 /*
    845  * uao_get: fetch me a page
    846  *
    847  * we have three cases:
    848  * 1: page is resident     -> just return the page.
    849  * 2: page is zero-fill    -> allocate a new page and zero it.
    850  * 3: page is swapped out  -> fetch the page from swap.
    851  *
    852  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    853  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    854  * then we will need to return EBUSY.
    855  *
    856  * => prefer map unlocked (not required)
    857  * => object must be locked!  we will _unlock_ it before starting any I/O.
    858  * => flags: PGO_ALLPAGES: get all of the pages
    859  *           PGO_LOCKED: fault data structures are locked
    860  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    861  * => NOTE: caller must check for released pages!!
    862  */
    863 
    864 static int
    865 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    866     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    867 {
    868 	voff_t current_offset;
    869 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    870 	int lcv, gotpages, maxpages, swslot, pageidx;
    871 	bool done;
    872 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    873 
    874 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    875 		    (struct uvm_aobj *)uobj, offset, flags,0);
    876 
    877 	/*
    878  	 * get number of pages
    879  	 */
    880 
    881 	maxpages = *npagesp;
    882 
    883 	/*
    884  	 * step 1: handled the case where fault data structures are locked.
    885  	 */
    886 
    887 	if (flags & PGO_LOCKED) {
    888 
    889 		/*
    890  		 * step 1a: get pages that are already resident.   only do
    891 		 * this if the data structures are locked (i.e. the first
    892 		 * time through).
    893  		 */
    894 
    895 		done = true;	/* be optimistic */
    896 		gotpages = 0;	/* # of pages we got so far */
    897 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    898 		    lcv++, current_offset += PAGE_SIZE) {
    899 			/* do we care about this page?  if not, skip it */
    900 			if (pps[lcv] == PGO_DONTCARE)
    901 				continue;
    902 			ptmp = uvm_pagelookup(uobj, current_offset);
    903 
    904 			/*
    905  			 * if page is new, attempt to allocate the page,
    906 			 * zero-fill'd.
    907  			 */
    908 
    909 			if (ptmp == NULL && uao_find_swslot(uobj,
    910 			    current_offset >> PAGE_SHIFT) == 0) {
    911 				ptmp = uao_pagealloc(uobj, current_offset,
    912 				    UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
    913 				if (ptmp) {
    914 					/* new page */
    915 					ptmp->flags &= ~(PG_FAKE);
    916 					ptmp->pqflags |= PQ_AOBJ;
    917 					goto gotpage;
    918 				}
    919 			}
    920 
    921 			/*
    922 			 * to be useful must get a non-busy page
    923 			 */
    924 
    925 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    926 				if (lcv == centeridx ||
    927 				    (flags & PGO_ALLPAGES) != 0)
    928 					/* need to do a wait or I/O! */
    929 					done = false;
    930 					continue;
    931 			}
    932 
    933 			/*
    934 			 * useful page: busy/lock it and plug it in our
    935 			 * result array
    936 			 */
    937 
    938 			/* caller must un-busy this page */
    939 			ptmp->flags |= PG_BUSY;
    940 			UVM_PAGE_OWN(ptmp, "uao_get1");
    941 gotpage:
    942 			pps[lcv] = ptmp;
    943 			gotpages++;
    944 		}
    945 
    946 		/*
    947  		 * step 1b: now we've either done everything needed or we
    948 		 * to unlock and do some waiting or I/O.
    949  		 */
    950 
    951 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
    952 		*npagesp = gotpages;
    953 		if (done)
    954 			return 0;
    955 		else
    956 			return EBUSY;
    957 	}
    958 
    959 	/*
    960  	 * step 2: get non-resident or busy pages.
    961  	 * object is locked.   data structures are unlocked.
    962  	 */
    963 
    964 	if ((flags & PGO_SYNCIO) == 0) {
    965 		goto done;
    966 	}
    967 
    968 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    969 	    lcv++, current_offset += PAGE_SIZE) {
    970 
    971 		/*
    972 		 * - skip over pages we've already gotten or don't want
    973 		 * - skip over pages we don't _have_ to get
    974 		 */
    975 
    976 		if (pps[lcv] != NULL ||
    977 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    978 			continue;
    979 
    980 		pageidx = current_offset >> PAGE_SHIFT;
    981 
    982 		/*
    983  		 * we have yet to locate the current page (pps[lcv]).   we
    984 		 * first look for a page that is already at the current offset.
    985 		 * if we find a page, we check to see if it is busy or
    986 		 * released.  if that is the case, then we sleep on the page
    987 		 * until it is no longer busy or released and repeat the lookup.
    988 		 * if the page we found is neither busy nor released, then we
    989 		 * busy it (so we own it) and plug it into pps[lcv].   this
    990 		 * 'break's the following while loop and indicates we are
    991 		 * ready to move on to the next page in the "lcv" loop above.
    992  		 *
    993  		 * if we exit the while loop with pps[lcv] still set to NULL,
    994 		 * then it means that we allocated a new busy/fake/clean page
    995 		 * ptmp in the object and we need to do I/O to fill in the data.
    996  		 */
    997 
    998 		/* top of "pps" while loop */
    999 		while (pps[lcv] == NULL) {
   1000 			/* look for a resident page */
   1001 			ptmp = uvm_pagelookup(uobj, current_offset);
   1002 
   1003 			/* not resident?   allocate one now (if we can) */
   1004 			if (ptmp == NULL) {
   1005 
   1006 				ptmp = uao_pagealloc(uobj, current_offset, 0);
   1007 
   1008 				/* out of RAM? */
   1009 				if (ptmp == NULL) {
   1010 					mutex_exit(uobj->vmobjlock);
   1011 					UVMHIST_LOG(pdhist,
   1012 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1013 					uvm_wait("uao_getpage");
   1014 					mutex_enter(uobj->vmobjlock);
   1015 					continue;
   1016 				}
   1017 
   1018 				/*
   1019 				 * safe with PQ's unlocked: because we just
   1020 				 * alloc'd the page
   1021 				 */
   1022 
   1023 				ptmp->pqflags |= PQ_AOBJ;
   1024 
   1025 				/*
   1026 				 * got new page ready for I/O.  break pps while
   1027 				 * loop.  pps[lcv] is still NULL.
   1028 				 */
   1029 
   1030 				break;
   1031 			}
   1032 
   1033 			/* page is there, see if we need to wait on it */
   1034 			if ((ptmp->flags & PG_BUSY) != 0) {
   1035 				ptmp->flags |= PG_WANTED;
   1036 				UVMHIST_LOG(pdhist,
   1037 				    "sleeping, ptmp->flags 0x%x\n",
   1038 				    ptmp->flags,0,0,0);
   1039 				UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
   1040 				    false, "uao_get", 0);
   1041 				mutex_enter(uobj->vmobjlock);
   1042 				continue;
   1043 			}
   1044 
   1045 			/*
   1046  			 * if we get here then the page has become resident and
   1047 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1048 			 * own it) and set pps[lcv] (so that we exit the while
   1049 			 * loop).
   1050  			 */
   1051 
   1052 			/* we own it, caller must un-busy */
   1053 			ptmp->flags |= PG_BUSY;
   1054 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1055 			pps[lcv] = ptmp;
   1056 		}
   1057 
   1058 		/*
   1059  		 * if we own the valid page at the correct offset, pps[lcv] will
   1060  		 * point to it.   nothing more to do except go to the next page.
   1061  		 */
   1062 
   1063 		if (pps[lcv])
   1064 			continue;			/* next lcv */
   1065 
   1066 		/*
   1067  		 * we have a "fake/busy/clean" page that we just allocated.
   1068  		 * do the needed "i/o", either reading from swap or zeroing.
   1069  		 */
   1070 
   1071 		swslot = uao_find_swslot(uobj, pageidx);
   1072 
   1073 		/*
   1074  		 * just zero the page if there's nothing in swap.
   1075  		 */
   1076 
   1077 		if (swslot == 0) {
   1078 
   1079 			/*
   1080 			 * page hasn't existed before, just zero it.
   1081 			 */
   1082 
   1083 			uvm_pagezero(ptmp);
   1084 		} else {
   1085 #if defined(VMSWAP)
   1086 			int error;
   1087 
   1088 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1089 			     swslot, 0,0,0);
   1090 
   1091 			/*
   1092 			 * page in the swapped-out page.
   1093 			 * unlock object for i/o, relock when done.
   1094 			 */
   1095 
   1096 			mutex_exit(uobj->vmobjlock);
   1097 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1098 			mutex_enter(uobj->vmobjlock);
   1099 
   1100 			/*
   1101 			 * I/O done.  check for errors.
   1102 			 */
   1103 
   1104 			if (error != 0) {
   1105 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1106 				    error,0,0,0);
   1107 				if (ptmp->flags & PG_WANTED)
   1108 					wakeup(ptmp);
   1109 
   1110 				/*
   1111 				 * remove the swap slot from the aobj
   1112 				 * and mark the aobj as having no real slot.
   1113 				 * don't free the swap slot, thus preventing
   1114 				 * it from being used again.
   1115 				 */
   1116 
   1117 				swslot = uao_set_swslot(uobj, pageidx,
   1118 				    SWSLOT_BAD);
   1119 				if (swslot > 0) {
   1120 					uvm_swap_markbad(swslot, 1);
   1121 				}
   1122 
   1123 				mutex_enter(&uvm_pageqlock);
   1124 				uvm_pagefree(ptmp);
   1125 				mutex_exit(&uvm_pageqlock);
   1126 				mutex_exit(uobj->vmobjlock);
   1127 				return error;
   1128 			}
   1129 #else /* defined(VMSWAP) */
   1130 			panic("%s: pagein", __func__);
   1131 #endif /* defined(VMSWAP) */
   1132 		}
   1133 
   1134 		if ((access_type & VM_PROT_WRITE) == 0) {
   1135 			ptmp->flags |= PG_CLEAN;
   1136 			pmap_clear_modify(ptmp);
   1137 		}
   1138 
   1139 		/*
   1140  		 * we got the page!   clear the fake flag (indicates valid
   1141 		 * data now in page) and plug into our result array.   note
   1142 		 * that page is still busy.
   1143  		 *
   1144  		 * it is the callers job to:
   1145  		 * => check if the page is released
   1146  		 * => unbusy the page
   1147  		 * => activate the page
   1148  		 */
   1149 
   1150 		ptmp->flags &= ~PG_FAKE;
   1151 		pps[lcv] = ptmp;
   1152 	}
   1153 
   1154 	/*
   1155  	 * finally, unlock object and return.
   1156  	 */
   1157 
   1158 done:
   1159 	mutex_exit(uobj->vmobjlock);
   1160 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1161 	return 0;
   1162 }
   1163 
   1164 #if defined(VMSWAP)
   1165 
   1166 /*
   1167  * uao_dropswap:  release any swap resources from this aobj page.
   1168  *
   1169  * => aobj must be locked or have a reference count of 0.
   1170  */
   1171 
   1172 void
   1173 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1174 {
   1175 	int slot;
   1176 
   1177 	slot = uao_set_swslot(uobj, pageidx, 0);
   1178 	if (slot) {
   1179 		uvm_swap_free(slot, 1);
   1180 	}
   1181 }
   1182 
   1183 /*
   1184  * page in every page in every aobj that is paged-out to a range of swslots.
   1185  *
   1186  * => nothing should be locked.
   1187  * => returns true if pagein was aborted due to lack of memory.
   1188  */
   1189 
   1190 bool
   1191 uao_swap_off(int startslot, int endslot)
   1192 {
   1193 	struct uvm_aobj *aobj;
   1194 
   1195 	/*
   1196 	 * Walk the list of all anonymous UVM objects.  Grab the first.
   1197 	 */
   1198 	mutex_enter(&uao_list_lock);
   1199 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
   1200 		mutex_exit(&uao_list_lock);
   1201 		return false;
   1202 	}
   1203 	uao_reference(&aobj->u_obj);
   1204 
   1205 	do {
   1206 		struct uvm_aobj *nextaobj;
   1207 		bool rv;
   1208 
   1209 		/*
   1210 		 * Prefetch the next object and immediately hold a reference
   1211 		 * on it, so neither the current nor the next entry could
   1212 		 * disappear while we are iterating.
   1213 		 */
   1214 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
   1215 			uao_reference(&nextaobj->u_obj);
   1216 		}
   1217 		mutex_exit(&uao_list_lock);
   1218 
   1219 		/*
   1220 		 * Page in all pages in the swap slot range.
   1221 		 */
   1222 		mutex_enter(aobj->u_obj.vmobjlock);
   1223 		rv = uao_pagein(aobj, startslot, endslot);
   1224 		mutex_exit(aobj->u_obj.vmobjlock);
   1225 
   1226 		/* Drop the reference of the current object. */
   1227 		uao_detach(&aobj->u_obj);
   1228 		if (rv) {
   1229 			if (nextaobj) {
   1230 				uao_detach(&nextaobj->u_obj);
   1231 			}
   1232 			return rv;
   1233 		}
   1234 
   1235 		aobj = nextaobj;
   1236 		mutex_enter(&uao_list_lock);
   1237 	} while (aobj);
   1238 
   1239 	mutex_exit(&uao_list_lock);
   1240 	return false;
   1241 }
   1242 
   1243 /*
   1244  * page in any pages from aobj in the given range.
   1245  *
   1246  * => aobj must be locked and is returned locked.
   1247  * => returns true if pagein was aborted due to lack of memory.
   1248  */
   1249 static bool
   1250 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1251 {
   1252 	bool rv;
   1253 
   1254 	if (UAO_USES_SWHASH(aobj)) {
   1255 		struct uao_swhash_elt *elt;
   1256 		int buck;
   1257 
   1258 restart:
   1259 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1260 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1261 			     elt != NULL;
   1262 			     elt = LIST_NEXT(elt, list)) {
   1263 				int i;
   1264 
   1265 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1266 					int slot = elt->slots[i];
   1267 
   1268 					/*
   1269 					 * if the slot isn't in range, skip it.
   1270 					 */
   1271 
   1272 					if (slot < startslot ||
   1273 					    slot >= endslot) {
   1274 						continue;
   1275 					}
   1276 
   1277 					/*
   1278 					 * process the page,
   1279 					 * the start over on this object
   1280 					 * since the swhash elt
   1281 					 * may have been freed.
   1282 					 */
   1283 
   1284 					rv = uao_pagein_page(aobj,
   1285 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1286 					if (rv) {
   1287 						return rv;
   1288 					}
   1289 					goto restart;
   1290 				}
   1291 			}
   1292 		}
   1293 	} else {
   1294 		int i;
   1295 
   1296 		for (i = 0; i < aobj->u_pages; i++) {
   1297 			int slot = aobj->u_swslots[i];
   1298 
   1299 			/*
   1300 			 * if the slot isn't in range, skip it
   1301 			 */
   1302 
   1303 			if (slot < startslot || slot >= endslot) {
   1304 				continue;
   1305 			}
   1306 
   1307 			/*
   1308 			 * process the page.
   1309 			 */
   1310 
   1311 			rv = uao_pagein_page(aobj, i);
   1312 			if (rv) {
   1313 				return rv;
   1314 			}
   1315 		}
   1316 	}
   1317 
   1318 	return false;
   1319 }
   1320 
   1321 /*
   1322  * uao_pagein_page: page in a single page from an anonymous UVM object.
   1323  *
   1324  * => Returns true if pagein was aborted due to lack of memory.
   1325  * => Object must be locked and is returned locked.
   1326  */
   1327 
   1328 static bool
   1329 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1330 {
   1331 	struct uvm_object *uobj = &aobj->u_obj;
   1332 	struct vm_page *pg;
   1333 	int rv, npages;
   1334 
   1335 	pg = NULL;
   1336 	npages = 1;
   1337 
   1338 	KASSERT(mutex_owned(uobj->vmobjlock));
   1339 	rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
   1340 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
   1341 
   1342 	/*
   1343 	 * relock and finish up.
   1344 	 */
   1345 
   1346 	mutex_enter(uobj->vmobjlock);
   1347 	switch (rv) {
   1348 	case 0:
   1349 		break;
   1350 
   1351 	case EIO:
   1352 	case ERESTART:
   1353 
   1354 		/*
   1355 		 * nothing more to do on errors.
   1356 		 * ERESTART can only mean that the anon was freed,
   1357 		 * so again there's nothing to do.
   1358 		 */
   1359 
   1360 		return false;
   1361 
   1362 	default:
   1363 		return true;
   1364 	}
   1365 
   1366 	/*
   1367 	 * ok, we've got the page now.
   1368 	 * mark it as dirty, clear its swslot and un-busy it.
   1369 	 */
   1370 	uao_dropswap(&aobj->u_obj, pageidx);
   1371 
   1372 	/*
   1373 	 * make sure it's on a page queue.
   1374 	 */
   1375 	mutex_enter(&uvm_pageqlock);
   1376 	if (pg->wire_count == 0)
   1377 		uvm_pageenqueue(pg);
   1378 	mutex_exit(&uvm_pageqlock);
   1379 
   1380 	if (pg->flags & PG_WANTED) {
   1381 		wakeup(pg);
   1382 	}
   1383 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1384 	UVM_PAGE_OWN(pg, NULL);
   1385 
   1386 	return false;
   1387 }
   1388 
   1389 /*
   1390  * uao_dropswap_range: drop swapslots in the range.
   1391  *
   1392  * => aobj must be locked and is returned locked.
   1393  * => start is inclusive.  end is exclusive.
   1394  */
   1395 
   1396 void
   1397 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1398 {
   1399 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1400 	int swpgonlydelta = 0;
   1401 
   1402 	KASSERT(mutex_owned(uobj->vmobjlock));
   1403 
   1404 	if (end == 0) {
   1405 		end = INT64_MAX;
   1406 	}
   1407 
   1408 	if (UAO_USES_SWHASH(aobj)) {
   1409 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1410 		voff_t taghi;
   1411 		voff_t taglo;
   1412 
   1413 		taglo = UAO_SWHASH_ELT_TAG(start);
   1414 		taghi = UAO_SWHASH_ELT_TAG(end);
   1415 
   1416 		for (i = 0; i < hashbuckets; i++) {
   1417 			struct uao_swhash_elt *elt, *next;
   1418 
   1419 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1420 			     elt != NULL;
   1421 			     elt = next) {
   1422 				int startidx, endidx;
   1423 				int j;
   1424 
   1425 				next = LIST_NEXT(elt, list);
   1426 
   1427 				if (elt->tag < taglo || taghi < elt->tag) {
   1428 					continue;
   1429 				}
   1430 
   1431 				if (elt->tag == taglo) {
   1432 					startidx =
   1433 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1434 				} else {
   1435 					startidx = 0;
   1436 				}
   1437 
   1438 				if (elt->tag == taghi) {
   1439 					endidx =
   1440 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1441 				} else {
   1442 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1443 				}
   1444 
   1445 				for (j = startidx; j < endidx; j++) {
   1446 					int slot = elt->slots[j];
   1447 
   1448 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1449 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1450 					    + j) << PAGE_SHIFT) == NULL);
   1451 					if (slot > 0) {
   1452 						uvm_swap_free(slot, 1);
   1453 						swpgonlydelta++;
   1454 						KASSERT(elt->count > 0);
   1455 						elt->slots[j] = 0;
   1456 						elt->count--;
   1457 					}
   1458 				}
   1459 
   1460 				if (elt->count == 0) {
   1461 					LIST_REMOVE(elt, list);
   1462 					pool_put(&uao_swhash_elt_pool, elt);
   1463 				}
   1464 			}
   1465 		}
   1466 	} else {
   1467 		int i;
   1468 
   1469 		if (aobj->u_pages < end) {
   1470 			end = aobj->u_pages;
   1471 		}
   1472 		for (i = start; i < end; i++) {
   1473 			int slot = aobj->u_swslots[i];
   1474 
   1475 			if (slot > 0) {
   1476 				uvm_swap_free(slot, 1);
   1477 				swpgonlydelta++;
   1478 			}
   1479 		}
   1480 	}
   1481 
   1482 	/*
   1483 	 * adjust the counter of pages only in swap for all
   1484 	 * the swap slots we've freed.
   1485 	 */
   1486 
   1487 	if (swpgonlydelta > 0) {
   1488 		mutex_enter(&uvm_swap_data_lock);
   1489 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1490 		uvmexp.swpgonly -= swpgonlydelta;
   1491 		mutex_exit(&uvm_swap_data_lock);
   1492 	}
   1493 }
   1494 
   1495 #endif /* defined(VMSWAP) */
   1496