uvm_aobj.c revision 1.122 1 /* $NetBSD: uvm_aobj.c,v 1.122 2014/05/25 18:55:11 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.122 2014/05/25 18:55:11 riastradh Exp $");
42
43 #include "opt_uvmhist.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/kmem.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51
52 #include <uvm/uvm.h>
53
54 /*
55 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to
56 * keeping the list of resident pages, it may also keep a list of allocated
57 * swap blocks. Depending on the size of the object, this list is either
58 * stored in an array (small objects) or in a hash table (large objects).
59 *
60 * Lock order
61 *
62 * uao_list_lock ->
63 * uvm_object::vmobjlock
64 */
65
66 /*
67 * Note: for hash tables, we break the address space of the aobj into blocks
68 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
69 */
70
71 #define UAO_SWHASH_CLUSTER_SHIFT 4
72 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
73
74 /* Get the "tag" for this page index. */
75 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
76 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
77 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
78
79 /* Given an ELT and a page index, find the swap slot. */
80 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
81 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
82
83 /* Given an ELT, return its pageidx base. */
84 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
85 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
86
87 /* The hash function. */
88 #define UAO_SWHASH_HASH(aobj, idx) \
89 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
90 & (aobj)->u_swhashmask)])
91
92 /*
93 * The threshold which determines whether we will use an array or a
94 * hash table to store the list of allocated swap blocks.
95 */
96 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
97 #define UAO_USES_SWHASH(aobj) \
98 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
99
100 /* The number of buckets in a hash, with an upper bound. */
101 #define UAO_SWHASH_MAXBUCKETS 256
102 #define UAO_SWHASH_BUCKETS(aobj) \
103 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
104
105 /*
106 * uao_swhash_elt: when a hash table is being used, this structure defines
107 * the format of an entry in the bucket list.
108 */
109
110 struct uao_swhash_elt {
111 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
112 voff_t tag; /* our 'tag' */
113 int count; /* our number of active slots */
114 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
115 };
116
117 /*
118 * uao_swhash: the swap hash table structure
119 */
120
121 LIST_HEAD(uao_swhash, uao_swhash_elt);
122
123 /*
124 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
125 * Note: pages for this pool must not come from a pageable kernel map.
126 */
127 static struct pool uao_swhash_elt_pool __cacheline_aligned;
128
129 /*
130 * uvm_aobj: the actual anon-backed uvm_object
131 *
132 * => the uvm_object is at the top of the structure, this allows
133 * (struct uvm_aobj *) == (struct uvm_object *)
134 * => only one of u_swslots and u_swhash is used in any given aobj
135 */
136
137 struct uvm_aobj {
138 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
139 pgoff_t u_pages; /* number of pages in entire object */
140 int u_flags; /* the flags (see uvm_aobj.h) */
141 int *u_swslots; /* array of offset->swapslot mappings */
142 /*
143 * hashtable of offset->swapslot mappings
144 * (u_swhash is an array of bucket heads)
145 */
146 struct uao_swhash *u_swhash;
147 u_long u_swhashmask; /* mask for hashtable */
148 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
149 int u_freelist; /* freelist to allocate pages from */
150 };
151
152 static void uao_free(struct uvm_aobj *);
153 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
154 int *, int, vm_prot_t, int, int);
155 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
156
157 #if defined(VMSWAP)
158 static struct uao_swhash_elt *uao_find_swhash_elt
159 (struct uvm_aobj *, int, bool);
160
161 static bool uao_pagein(struct uvm_aobj *, int, int);
162 static bool uao_pagein_page(struct uvm_aobj *, int);
163 #endif /* defined(VMSWAP) */
164
165 static struct vm_page *uao_pagealloc(struct uvm_object *, voff_t, int);
166
167 /*
168 * aobj_pager
169 *
170 * note that some functions (e.g. put) are handled elsewhere
171 */
172
173 const struct uvm_pagerops aobj_pager = {
174 .pgo_reference = uao_reference,
175 .pgo_detach = uao_detach,
176 .pgo_get = uao_get,
177 .pgo_put = uao_put,
178 };
179
180 /*
181 * uao_list: global list of active aobjs, locked by uao_list_lock
182 */
183
184 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned;
185 static kmutex_t uao_list_lock __cacheline_aligned;
186
187 /*
188 * hash table/array related functions
189 */
190
191 #if defined(VMSWAP)
192
193 /*
194 * uao_find_swhash_elt: find (or create) a hash table entry for a page
195 * offset.
196 *
197 * => the object should be locked by the caller
198 */
199
200 static struct uao_swhash_elt *
201 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
202 {
203 struct uao_swhash *swhash;
204 struct uao_swhash_elt *elt;
205 voff_t page_tag;
206
207 swhash = UAO_SWHASH_HASH(aobj, pageidx);
208 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
209
210 /*
211 * now search the bucket for the requested tag
212 */
213
214 LIST_FOREACH(elt, swhash, list) {
215 if (elt->tag == page_tag) {
216 return elt;
217 }
218 }
219 if (!create) {
220 return NULL;
221 }
222
223 /*
224 * allocate a new entry for the bucket and init/insert it in
225 */
226
227 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
228 if (elt == NULL) {
229 return NULL;
230 }
231 LIST_INSERT_HEAD(swhash, elt, list);
232 elt->tag = page_tag;
233 elt->count = 0;
234 memset(elt->slots, 0, sizeof(elt->slots));
235 return elt;
236 }
237
238 /*
239 * uao_find_swslot: find the swap slot number for an aobj/pageidx
240 *
241 * => object must be locked by caller
242 */
243
244 int
245 uao_find_swslot(struct uvm_object *uobj, int pageidx)
246 {
247 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
248 struct uao_swhash_elt *elt;
249
250 /*
251 * if noswap flag is set, then we never return a slot
252 */
253
254 if (aobj->u_flags & UAO_FLAG_NOSWAP)
255 return 0;
256
257 /*
258 * if hashing, look in hash table.
259 */
260
261 if (UAO_USES_SWHASH(aobj)) {
262 elt = uao_find_swhash_elt(aobj, pageidx, false);
263 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
264 }
265
266 /*
267 * otherwise, look in the array
268 */
269
270 return aobj->u_swslots[pageidx];
271 }
272
273 /*
274 * uao_set_swslot: set the swap slot for a page in an aobj.
275 *
276 * => setting a slot to zero frees the slot
277 * => object must be locked by caller
278 * => we return the old slot number, or -1 if we failed to allocate
279 * memory to record the new slot number
280 */
281
282 int
283 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
284 {
285 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
286 struct uao_swhash_elt *elt;
287 int oldslot;
288 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
289 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
290 aobj, pageidx, slot, 0);
291
292 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
293
294 /*
295 * if noswap flag is set, then we can't set a non-zero slot.
296 */
297
298 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
299 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
300 return 0;
301 }
302
303 /*
304 * are we using a hash table? if so, add it in the hash.
305 */
306
307 if (UAO_USES_SWHASH(aobj)) {
308
309 /*
310 * Avoid allocating an entry just to free it again if
311 * the page had not swap slot in the first place, and
312 * we are freeing.
313 */
314
315 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
316 if (elt == NULL) {
317 return slot ? -1 : 0;
318 }
319
320 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
321 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
322
323 /*
324 * now adjust the elt's reference counter and free it if we've
325 * dropped it to zero.
326 */
327
328 if (slot) {
329 if (oldslot == 0)
330 elt->count++;
331 } else {
332 if (oldslot)
333 elt->count--;
334
335 if (elt->count == 0) {
336 LIST_REMOVE(elt, list);
337 pool_put(&uao_swhash_elt_pool, elt);
338 }
339 }
340 } else {
341 /* we are using an array */
342 oldslot = aobj->u_swslots[pageidx];
343 aobj->u_swslots[pageidx] = slot;
344 }
345 return oldslot;
346 }
347
348 #endif /* defined(VMSWAP) */
349
350 /*
351 * end of hash/array functions
352 */
353
354 /*
355 * uao_free: free all resources held by an aobj, and then free the aobj
356 *
357 * => the aobj should be dead
358 */
359
360 static void
361 uao_free(struct uvm_aobj *aobj)
362 {
363 struct uvm_object *uobj = &aobj->u_obj;
364
365 KASSERT(mutex_owned(uobj->vmobjlock));
366 uao_dropswap_range(uobj, 0, 0);
367 mutex_exit(uobj->vmobjlock);
368
369 #if defined(VMSWAP)
370 if (UAO_USES_SWHASH(aobj)) {
371
372 /*
373 * free the hash table itself.
374 */
375
376 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
377 } else {
378
379 /*
380 * free the array itsself.
381 */
382
383 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
384 }
385 #endif /* defined(VMSWAP) */
386
387 /*
388 * finally free the aobj itself
389 */
390
391 uvm_obj_destroy(uobj, true);
392 kmem_free(aobj, sizeof(struct uvm_aobj));
393 }
394
395 /*
396 * pager functions
397 */
398
399 /*
400 * uao_create: create an aobj of the given size and return its uvm_object.
401 *
402 * => for normal use, flags are always zero
403 * => for the kernel object, the flags are:
404 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
405 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
406 */
407
408 struct uvm_object *
409 uao_create(vsize_t size, int flags)
410 {
411 static struct uvm_aobj kernel_object_store;
412 static kmutex_t kernel_object_lock;
413 static int kobj_alloced __diagused = 0;
414 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
415 struct uvm_aobj *aobj;
416 int refs;
417
418 /*
419 * Allocate a new aobj, unless kernel object is requested.
420 */
421
422 if (flags & UAO_FLAG_KERNOBJ) {
423 KASSERT(!kobj_alloced);
424 aobj = &kernel_object_store;
425 aobj->u_pages = pages;
426 aobj->u_flags = UAO_FLAG_NOSWAP;
427 refs = UVM_OBJ_KERN;
428 kobj_alloced = UAO_FLAG_KERNOBJ;
429 } else if (flags & UAO_FLAG_KERNSWAP) {
430 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
431 aobj = &kernel_object_store;
432 kobj_alloced = UAO_FLAG_KERNSWAP;
433 refs = 0xdeadbeaf; /* XXX: gcc */
434 } else {
435 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
436 aobj->u_pages = pages;
437 aobj->u_flags = 0;
438 refs = 1;
439 }
440
441 /*
442 * no freelist by default
443 */
444
445 aobj->u_freelist = VM_NFREELIST;
446
447 /*
448 * allocate hash/array if necessary
449 *
450 * note: in the KERNSWAP case no need to worry about locking since
451 * we are still booting we should be the only thread around.
452 */
453
454 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
455 #if defined(VMSWAP)
456 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
457
458 /* allocate hash table or array depending on object size */
459 if (UAO_USES_SWHASH(aobj)) {
460 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
461 HASH_LIST, kernswap ? false : true,
462 &aobj->u_swhashmask);
463 if (aobj->u_swhash == NULL)
464 panic("uao_create: hashinit swhash failed");
465 } else {
466 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
467 kernswap ? KM_NOSLEEP : KM_SLEEP);
468 if (aobj->u_swslots == NULL)
469 panic("uao_create: swslots allocation failed");
470 }
471 #endif /* defined(VMSWAP) */
472
473 if (flags) {
474 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
475 return &aobj->u_obj;
476 }
477 }
478
479 /*
480 * Initialise UVM object.
481 */
482
483 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
484 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
485 if (__predict_false(kernobj)) {
486 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
487 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
488 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
489 }
490
491 /*
492 * now that aobj is ready, add it to the global list
493 */
494
495 mutex_enter(&uao_list_lock);
496 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
497 mutex_exit(&uao_list_lock);
498 return(&aobj->u_obj);
499 }
500
501 /*
502 * uao_set_pgfl: allocate pages only from the specified freelist.
503 *
504 * => must be called before any pages are allocated for the object.
505 * => reset by setting it to VM_NFREELIST, meaning any freelist.
506 */
507
508 void
509 uao_set_pgfl(struct uvm_object *uobj, int freelist)
510 {
511 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
512
513 KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
514 KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
515 freelist);
516
517 aobj->u_freelist = freelist;
518 }
519
520 /*
521 * uao_pagealloc: allocate a page for aobj.
522 */
523
524 static inline struct vm_page *
525 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
526 {
527 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
528
529 if (__predict_true(aobj->u_freelist == VM_NFREELIST))
530 return uvm_pagealloc(uobj, offset, NULL, flags);
531 else
532 return uvm_pagealloc_strat(uobj, offset, NULL, flags,
533 UVM_PGA_STRAT_ONLY, aobj->u_freelist);
534 }
535
536 /*
537 * uao_init: set up aobj pager subsystem
538 *
539 * => called at boot time from uvm_pager_init()
540 */
541
542 void
543 uao_init(void)
544 {
545 static int uao_initialized;
546
547 if (uao_initialized)
548 return;
549 uao_initialized = true;
550 LIST_INIT(&uao_list);
551 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
552 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
553 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
554 }
555
556 /*
557 * uao_reference: hold a reference to an anonymous UVM object.
558 */
559 void
560 uao_reference(struct uvm_object *uobj)
561 {
562 /* Kernel object is persistent. */
563 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
564 return;
565 }
566 atomic_inc_uint(&uobj->uo_refs);
567 }
568
569 /*
570 * uao_detach: drop a reference to an anonymous UVM object.
571 */
572 void
573 uao_detach(struct uvm_object *uobj)
574 {
575 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
576 struct vm_page *pg;
577
578 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
579
580 /*
581 * Detaching from kernel object is a NOP.
582 */
583
584 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
585 return;
586
587 /*
588 * Drop the reference. If it was the last one, destroy the object.
589 */
590
591 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
592 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
593 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
594 return;
595 }
596
597 /*
598 * Remove the aobj from the global list.
599 */
600
601 mutex_enter(&uao_list_lock);
602 LIST_REMOVE(aobj, u_list);
603 mutex_exit(&uao_list_lock);
604
605 /*
606 * Free all the pages left in the aobj. For each page, when the
607 * page is no longer busy (and thus after any disk I/O that it is
608 * involved in is complete), release any swap resources and free
609 * the page itself.
610 */
611
612 mutex_enter(uobj->vmobjlock);
613 mutex_enter(&uvm_pageqlock);
614 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
615 pmap_page_protect(pg, VM_PROT_NONE);
616 if (pg->flags & PG_BUSY) {
617 pg->flags |= PG_WANTED;
618 mutex_exit(&uvm_pageqlock);
619 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
620 "uao_det", 0);
621 mutex_enter(uobj->vmobjlock);
622 mutex_enter(&uvm_pageqlock);
623 continue;
624 }
625 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
626 uvm_pagefree(pg);
627 }
628 mutex_exit(&uvm_pageqlock);
629
630 /*
631 * Finally, free the anonymous UVM object itself.
632 */
633
634 uao_free(aobj);
635 }
636
637 /*
638 * uao_put: flush pages out of a uvm object
639 *
640 * => object should be locked by caller. we may _unlock_ the object
641 * if (and only if) we need to clean a page (PGO_CLEANIT).
642 * XXXJRT Currently, however, we don't. In the case of cleaning
643 * XXXJRT a page, we simply just deactivate it. Should probably
644 * XXXJRT handle this better, in the future (although "flushing"
645 * XXXJRT anonymous memory isn't terribly important).
646 * => if PGO_CLEANIT is not set, then we will neither unlock the object
647 * or block.
648 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
649 * for flushing.
650 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
651 * that new pages are inserted on the tail end of the list. thus,
652 * we can make a complete pass through the object in one go by starting
653 * at the head and working towards the tail (new pages are put in
654 * front of us).
655 * => NOTE: we are allowed to lock the page queues, so the caller
656 * must not be holding the lock on them [e.g. pagedaemon had
657 * better not call us with the queues locked]
658 * => we return 0 unless we encountered some sort of I/O error
659 * XXXJRT currently never happens, as we never directly initiate
660 * XXXJRT I/O
661 *
662 * note on page traversal:
663 * we can traverse the pages in an object either by going down the
664 * linked list in "uobj->memq", or we can go over the address range
665 * by page doing hash table lookups for each address. depending
666 * on how many pages are in the object it may be cheaper to do one
667 * or the other. we set "by_list" to true if we are using memq.
668 * if the cost of a hash lookup was equal to the cost of the list
669 * traversal we could compare the number of pages in the start->stop
670 * range to the total number of pages in the object. however, it
671 * seems that a hash table lookup is more expensive than the linked
672 * list traversal, so we multiply the number of pages in the
673 * start->stop range by a penalty which we define below.
674 */
675
676 static int
677 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
678 {
679 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
680 struct vm_page *pg, *nextpg, curmp, endmp;
681 bool by_list;
682 voff_t curoff;
683 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
684
685 KASSERT(mutex_owned(uobj->vmobjlock));
686
687 curoff = 0;
688 if (flags & PGO_ALLPAGES) {
689 start = 0;
690 stop = aobj->u_pages << PAGE_SHIFT;
691 by_list = true; /* always go by the list */
692 } else {
693 start = trunc_page(start);
694 if (stop == 0) {
695 stop = aobj->u_pages << PAGE_SHIFT;
696 } else {
697 stop = round_page(stop);
698 }
699 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
700 printf("uao_flush: strange, got an out of range "
701 "flush (fixed)\n");
702 stop = aobj->u_pages << PAGE_SHIFT;
703 }
704 by_list = (uobj->uo_npages <=
705 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
706 }
707 UVMHIST_LOG(maphist,
708 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
709 start, stop, by_list, flags);
710
711 /*
712 * Don't need to do any work here if we're not freeing
713 * or deactivating pages.
714 */
715
716 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
717 mutex_exit(uobj->vmobjlock);
718 return 0;
719 }
720
721 /*
722 * Initialize the marker pages. See the comment in
723 * genfs_putpages() also.
724 */
725
726 curmp.flags = PG_MARKER;
727 endmp.flags = PG_MARKER;
728
729 /*
730 * now do it. note: we must update nextpg in the body of loop or we
731 * will get stuck. we need to use nextpg if we'll traverse the list
732 * because we may free "pg" before doing the next loop.
733 */
734
735 if (by_list) {
736 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
737 nextpg = TAILQ_FIRST(&uobj->memq);
738 } else {
739 curoff = start;
740 nextpg = NULL; /* Quell compiler warning */
741 }
742
743 /* locked: uobj */
744 for (;;) {
745 if (by_list) {
746 pg = nextpg;
747 if (pg == &endmp)
748 break;
749 nextpg = TAILQ_NEXT(pg, listq.queue);
750 if (pg->flags & PG_MARKER)
751 continue;
752 if (pg->offset < start || pg->offset >= stop)
753 continue;
754 } else {
755 if (curoff < stop) {
756 pg = uvm_pagelookup(uobj, curoff);
757 curoff += PAGE_SIZE;
758 } else
759 break;
760 if (pg == NULL)
761 continue;
762 }
763
764 /*
765 * wait and try again if the page is busy.
766 */
767
768 if (pg->flags & PG_BUSY) {
769 if (by_list) {
770 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
771 }
772 pg->flags |= PG_WANTED;
773 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
774 "uao_put", 0);
775 mutex_enter(uobj->vmobjlock);
776 if (by_list) {
777 nextpg = TAILQ_NEXT(&curmp, listq.queue);
778 TAILQ_REMOVE(&uobj->memq, &curmp,
779 listq.queue);
780 } else
781 curoff -= PAGE_SIZE;
782 continue;
783 }
784
785 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
786
787 /*
788 * XXX In these first 3 cases, we always just
789 * XXX deactivate the page. We may want to
790 * XXX handle the different cases more specifically
791 * XXX in the future.
792 */
793
794 case PGO_CLEANIT|PGO_FREE:
795 case PGO_CLEANIT|PGO_DEACTIVATE:
796 case PGO_DEACTIVATE:
797 deactivate_it:
798 mutex_enter(&uvm_pageqlock);
799 /* skip the page if it's wired */
800 if (pg->wire_count == 0) {
801 uvm_pagedeactivate(pg);
802 }
803 mutex_exit(&uvm_pageqlock);
804 break;
805
806 case PGO_FREE:
807 /*
808 * If there are multiple references to
809 * the object, just deactivate the page.
810 */
811
812 if (uobj->uo_refs > 1)
813 goto deactivate_it;
814
815 /*
816 * free the swap slot and the page.
817 */
818
819 pmap_page_protect(pg, VM_PROT_NONE);
820
821 /*
822 * freeing swapslot here is not strictly necessary.
823 * however, leaving it here doesn't save much
824 * because we need to update swap accounting anyway.
825 */
826
827 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
828 mutex_enter(&uvm_pageqlock);
829 uvm_pagefree(pg);
830 mutex_exit(&uvm_pageqlock);
831 break;
832
833 default:
834 panic("%s: impossible", __func__);
835 }
836 }
837 if (by_list) {
838 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
839 }
840 mutex_exit(uobj->vmobjlock);
841 return 0;
842 }
843
844 /*
845 * uao_get: fetch me a page
846 *
847 * we have three cases:
848 * 1: page is resident -> just return the page.
849 * 2: page is zero-fill -> allocate a new page and zero it.
850 * 3: page is swapped out -> fetch the page from swap.
851 *
852 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
853 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
854 * then we will need to return EBUSY.
855 *
856 * => prefer map unlocked (not required)
857 * => object must be locked! we will _unlock_ it before starting any I/O.
858 * => flags: PGO_ALLPAGES: get all of the pages
859 * PGO_LOCKED: fault data structures are locked
860 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
861 * => NOTE: caller must check for released pages!!
862 */
863
864 static int
865 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
866 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
867 {
868 voff_t current_offset;
869 struct vm_page *ptmp = NULL; /* Quell compiler warning */
870 int lcv, gotpages, maxpages, swslot, pageidx;
871 bool done;
872 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
873
874 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
875 (struct uvm_aobj *)uobj, offset, flags,0);
876
877 /*
878 * get number of pages
879 */
880
881 maxpages = *npagesp;
882
883 /*
884 * step 1: handled the case where fault data structures are locked.
885 */
886
887 if (flags & PGO_LOCKED) {
888
889 /*
890 * step 1a: get pages that are already resident. only do
891 * this if the data structures are locked (i.e. the first
892 * time through).
893 */
894
895 done = true; /* be optimistic */
896 gotpages = 0; /* # of pages we got so far */
897 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
898 lcv++, current_offset += PAGE_SIZE) {
899 /* do we care about this page? if not, skip it */
900 if (pps[lcv] == PGO_DONTCARE)
901 continue;
902 ptmp = uvm_pagelookup(uobj, current_offset);
903
904 /*
905 * if page is new, attempt to allocate the page,
906 * zero-fill'd.
907 */
908
909 if (ptmp == NULL && uao_find_swslot(uobj,
910 current_offset >> PAGE_SHIFT) == 0) {
911 ptmp = uao_pagealloc(uobj, current_offset,
912 UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
913 if (ptmp) {
914 /* new page */
915 ptmp->flags &= ~(PG_FAKE);
916 ptmp->pqflags |= PQ_AOBJ;
917 goto gotpage;
918 }
919 }
920
921 /*
922 * to be useful must get a non-busy page
923 */
924
925 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
926 if (lcv == centeridx ||
927 (flags & PGO_ALLPAGES) != 0)
928 /* need to do a wait or I/O! */
929 done = false;
930 continue;
931 }
932
933 /*
934 * useful page: busy/lock it and plug it in our
935 * result array
936 */
937
938 /* caller must un-busy this page */
939 ptmp->flags |= PG_BUSY;
940 UVM_PAGE_OWN(ptmp, "uao_get1");
941 gotpage:
942 pps[lcv] = ptmp;
943 gotpages++;
944 }
945
946 /*
947 * step 1b: now we've either done everything needed or we
948 * to unlock and do some waiting or I/O.
949 */
950
951 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
952 *npagesp = gotpages;
953 if (done)
954 return 0;
955 else
956 return EBUSY;
957 }
958
959 /*
960 * step 2: get non-resident or busy pages.
961 * object is locked. data structures are unlocked.
962 */
963
964 if ((flags & PGO_SYNCIO) == 0) {
965 goto done;
966 }
967
968 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
969 lcv++, current_offset += PAGE_SIZE) {
970
971 /*
972 * - skip over pages we've already gotten or don't want
973 * - skip over pages we don't _have_ to get
974 */
975
976 if (pps[lcv] != NULL ||
977 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
978 continue;
979
980 pageidx = current_offset >> PAGE_SHIFT;
981
982 /*
983 * we have yet to locate the current page (pps[lcv]). we
984 * first look for a page that is already at the current offset.
985 * if we find a page, we check to see if it is busy or
986 * released. if that is the case, then we sleep on the page
987 * until it is no longer busy or released and repeat the lookup.
988 * if the page we found is neither busy nor released, then we
989 * busy it (so we own it) and plug it into pps[lcv]. this
990 * 'break's the following while loop and indicates we are
991 * ready to move on to the next page in the "lcv" loop above.
992 *
993 * if we exit the while loop with pps[lcv] still set to NULL,
994 * then it means that we allocated a new busy/fake/clean page
995 * ptmp in the object and we need to do I/O to fill in the data.
996 */
997
998 /* top of "pps" while loop */
999 while (pps[lcv] == NULL) {
1000 /* look for a resident page */
1001 ptmp = uvm_pagelookup(uobj, current_offset);
1002
1003 /* not resident? allocate one now (if we can) */
1004 if (ptmp == NULL) {
1005
1006 ptmp = uao_pagealloc(uobj, current_offset, 0);
1007
1008 /* out of RAM? */
1009 if (ptmp == NULL) {
1010 mutex_exit(uobj->vmobjlock);
1011 UVMHIST_LOG(pdhist,
1012 "sleeping, ptmp == NULL\n",0,0,0,0);
1013 uvm_wait("uao_getpage");
1014 mutex_enter(uobj->vmobjlock);
1015 continue;
1016 }
1017
1018 /*
1019 * safe with PQ's unlocked: because we just
1020 * alloc'd the page
1021 */
1022
1023 ptmp->pqflags |= PQ_AOBJ;
1024
1025 /*
1026 * got new page ready for I/O. break pps while
1027 * loop. pps[lcv] is still NULL.
1028 */
1029
1030 break;
1031 }
1032
1033 /* page is there, see if we need to wait on it */
1034 if ((ptmp->flags & PG_BUSY) != 0) {
1035 ptmp->flags |= PG_WANTED;
1036 UVMHIST_LOG(pdhist,
1037 "sleeping, ptmp->flags 0x%x\n",
1038 ptmp->flags,0,0,0);
1039 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
1040 false, "uao_get", 0);
1041 mutex_enter(uobj->vmobjlock);
1042 continue;
1043 }
1044
1045 /*
1046 * if we get here then the page has become resident and
1047 * unbusy between steps 1 and 2. we busy it now (so we
1048 * own it) and set pps[lcv] (so that we exit the while
1049 * loop).
1050 */
1051
1052 /* we own it, caller must un-busy */
1053 ptmp->flags |= PG_BUSY;
1054 UVM_PAGE_OWN(ptmp, "uao_get2");
1055 pps[lcv] = ptmp;
1056 }
1057
1058 /*
1059 * if we own the valid page at the correct offset, pps[lcv] will
1060 * point to it. nothing more to do except go to the next page.
1061 */
1062
1063 if (pps[lcv])
1064 continue; /* next lcv */
1065
1066 /*
1067 * we have a "fake/busy/clean" page that we just allocated.
1068 * do the needed "i/o", either reading from swap or zeroing.
1069 */
1070
1071 swslot = uao_find_swslot(uobj, pageidx);
1072
1073 /*
1074 * just zero the page if there's nothing in swap.
1075 */
1076
1077 if (swslot == 0) {
1078
1079 /*
1080 * page hasn't existed before, just zero it.
1081 */
1082
1083 uvm_pagezero(ptmp);
1084 } else {
1085 #if defined(VMSWAP)
1086 int error;
1087
1088 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1089 swslot, 0,0,0);
1090
1091 /*
1092 * page in the swapped-out page.
1093 * unlock object for i/o, relock when done.
1094 */
1095
1096 mutex_exit(uobj->vmobjlock);
1097 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1098 mutex_enter(uobj->vmobjlock);
1099
1100 /*
1101 * I/O done. check for errors.
1102 */
1103
1104 if (error != 0) {
1105 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1106 error,0,0,0);
1107 if (ptmp->flags & PG_WANTED)
1108 wakeup(ptmp);
1109
1110 /*
1111 * remove the swap slot from the aobj
1112 * and mark the aobj as having no real slot.
1113 * don't free the swap slot, thus preventing
1114 * it from being used again.
1115 */
1116
1117 swslot = uao_set_swslot(uobj, pageidx,
1118 SWSLOT_BAD);
1119 if (swslot > 0) {
1120 uvm_swap_markbad(swslot, 1);
1121 }
1122
1123 mutex_enter(&uvm_pageqlock);
1124 uvm_pagefree(ptmp);
1125 mutex_exit(&uvm_pageqlock);
1126 mutex_exit(uobj->vmobjlock);
1127 return error;
1128 }
1129 #else /* defined(VMSWAP) */
1130 panic("%s: pagein", __func__);
1131 #endif /* defined(VMSWAP) */
1132 }
1133
1134 if ((access_type & VM_PROT_WRITE) == 0) {
1135 ptmp->flags |= PG_CLEAN;
1136 pmap_clear_modify(ptmp);
1137 }
1138
1139 /*
1140 * we got the page! clear the fake flag (indicates valid
1141 * data now in page) and plug into our result array. note
1142 * that page is still busy.
1143 *
1144 * it is the callers job to:
1145 * => check if the page is released
1146 * => unbusy the page
1147 * => activate the page
1148 */
1149
1150 ptmp->flags &= ~PG_FAKE;
1151 pps[lcv] = ptmp;
1152 }
1153
1154 /*
1155 * finally, unlock object and return.
1156 */
1157
1158 done:
1159 mutex_exit(uobj->vmobjlock);
1160 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1161 return 0;
1162 }
1163
1164 #if defined(VMSWAP)
1165
1166 /*
1167 * uao_dropswap: release any swap resources from this aobj page.
1168 *
1169 * => aobj must be locked or have a reference count of 0.
1170 */
1171
1172 void
1173 uao_dropswap(struct uvm_object *uobj, int pageidx)
1174 {
1175 int slot;
1176
1177 slot = uao_set_swslot(uobj, pageidx, 0);
1178 if (slot) {
1179 uvm_swap_free(slot, 1);
1180 }
1181 }
1182
1183 /*
1184 * page in every page in every aobj that is paged-out to a range of swslots.
1185 *
1186 * => nothing should be locked.
1187 * => returns true if pagein was aborted due to lack of memory.
1188 */
1189
1190 bool
1191 uao_swap_off(int startslot, int endslot)
1192 {
1193 struct uvm_aobj *aobj;
1194
1195 /*
1196 * Walk the list of all anonymous UVM objects. Grab the first.
1197 */
1198 mutex_enter(&uao_list_lock);
1199 if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1200 mutex_exit(&uao_list_lock);
1201 return false;
1202 }
1203 uao_reference(&aobj->u_obj);
1204
1205 do {
1206 struct uvm_aobj *nextaobj;
1207 bool rv;
1208
1209 /*
1210 * Prefetch the next object and immediately hold a reference
1211 * on it, so neither the current nor the next entry could
1212 * disappear while we are iterating.
1213 */
1214 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1215 uao_reference(&nextaobj->u_obj);
1216 }
1217 mutex_exit(&uao_list_lock);
1218
1219 /*
1220 * Page in all pages in the swap slot range.
1221 */
1222 mutex_enter(aobj->u_obj.vmobjlock);
1223 rv = uao_pagein(aobj, startslot, endslot);
1224 mutex_exit(aobj->u_obj.vmobjlock);
1225
1226 /* Drop the reference of the current object. */
1227 uao_detach(&aobj->u_obj);
1228 if (rv) {
1229 if (nextaobj) {
1230 uao_detach(&nextaobj->u_obj);
1231 }
1232 return rv;
1233 }
1234
1235 aobj = nextaobj;
1236 mutex_enter(&uao_list_lock);
1237 } while (aobj);
1238
1239 mutex_exit(&uao_list_lock);
1240 return false;
1241 }
1242
1243 /*
1244 * page in any pages from aobj in the given range.
1245 *
1246 * => aobj must be locked and is returned locked.
1247 * => returns true if pagein was aborted due to lack of memory.
1248 */
1249 static bool
1250 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1251 {
1252 bool rv;
1253
1254 if (UAO_USES_SWHASH(aobj)) {
1255 struct uao_swhash_elt *elt;
1256 int buck;
1257
1258 restart:
1259 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1260 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1261 elt != NULL;
1262 elt = LIST_NEXT(elt, list)) {
1263 int i;
1264
1265 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1266 int slot = elt->slots[i];
1267
1268 /*
1269 * if the slot isn't in range, skip it.
1270 */
1271
1272 if (slot < startslot ||
1273 slot >= endslot) {
1274 continue;
1275 }
1276
1277 /*
1278 * process the page,
1279 * the start over on this object
1280 * since the swhash elt
1281 * may have been freed.
1282 */
1283
1284 rv = uao_pagein_page(aobj,
1285 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1286 if (rv) {
1287 return rv;
1288 }
1289 goto restart;
1290 }
1291 }
1292 }
1293 } else {
1294 int i;
1295
1296 for (i = 0; i < aobj->u_pages; i++) {
1297 int slot = aobj->u_swslots[i];
1298
1299 /*
1300 * if the slot isn't in range, skip it
1301 */
1302
1303 if (slot < startslot || slot >= endslot) {
1304 continue;
1305 }
1306
1307 /*
1308 * process the page.
1309 */
1310
1311 rv = uao_pagein_page(aobj, i);
1312 if (rv) {
1313 return rv;
1314 }
1315 }
1316 }
1317
1318 return false;
1319 }
1320
1321 /*
1322 * uao_pagein_page: page in a single page from an anonymous UVM object.
1323 *
1324 * => Returns true if pagein was aborted due to lack of memory.
1325 * => Object must be locked and is returned locked.
1326 */
1327
1328 static bool
1329 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1330 {
1331 struct uvm_object *uobj = &aobj->u_obj;
1332 struct vm_page *pg;
1333 int rv, npages;
1334
1335 pg = NULL;
1336 npages = 1;
1337
1338 KASSERT(mutex_owned(uobj->vmobjlock));
1339 rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
1340 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1341
1342 /*
1343 * relock and finish up.
1344 */
1345
1346 mutex_enter(uobj->vmobjlock);
1347 switch (rv) {
1348 case 0:
1349 break;
1350
1351 case EIO:
1352 case ERESTART:
1353
1354 /*
1355 * nothing more to do on errors.
1356 * ERESTART can only mean that the anon was freed,
1357 * so again there's nothing to do.
1358 */
1359
1360 return false;
1361
1362 default:
1363 return true;
1364 }
1365
1366 /*
1367 * ok, we've got the page now.
1368 * mark it as dirty, clear its swslot and un-busy it.
1369 */
1370 uao_dropswap(&aobj->u_obj, pageidx);
1371
1372 /*
1373 * make sure it's on a page queue.
1374 */
1375 mutex_enter(&uvm_pageqlock);
1376 if (pg->wire_count == 0)
1377 uvm_pageenqueue(pg);
1378 mutex_exit(&uvm_pageqlock);
1379
1380 if (pg->flags & PG_WANTED) {
1381 wakeup(pg);
1382 }
1383 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1384 UVM_PAGE_OWN(pg, NULL);
1385
1386 return false;
1387 }
1388
1389 /*
1390 * uao_dropswap_range: drop swapslots in the range.
1391 *
1392 * => aobj must be locked and is returned locked.
1393 * => start is inclusive. end is exclusive.
1394 */
1395
1396 void
1397 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1398 {
1399 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1400 int swpgonlydelta = 0;
1401
1402 KASSERT(mutex_owned(uobj->vmobjlock));
1403
1404 if (end == 0) {
1405 end = INT64_MAX;
1406 }
1407
1408 if (UAO_USES_SWHASH(aobj)) {
1409 int i, hashbuckets = aobj->u_swhashmask + 1;
1410 voff_t taghi;
1411 voff_t taglo;
1412
1413 taglo = UAO_SWHASH_ELT_TAG(start);
1414 taghi = UAO_SWHASH_ELT_TAG(end);
1415
1416 for (i = 0; i < hashbuckets; i++) {
1417 struct uao_swhash_elt *elt, *next;
1418
1419 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1420 elt != NULL;
1421 elt = next) {
1422 int startidx, endidx;
1423 int j;
1424
1425 next = LIST_NEXT(elt, list);
1426
1427 if (elt->tag < taglo || taghi < elt->tag) {
1428 continue;
1429 }
1430
1431 if (elt->tag == taglo) {
1432 startidx =
1433 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1434 } else {
1435 startidx = 0;
1436 }
1437
1438 if (elt->tag == taghi) {
1439 endidx =
1440 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1441 } else {
1442 endidx = UAO_SWHASH_CLUSTER_SIZE;
1443 }
1444
1445 for (j = startidx; j < endidx; j++) {
1446 int slot = elt->slots[j];
1447
1448 KASSERT(uvm_pagelookup(&aobj->u_obj,
1449 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1450 + j) << PAGE_SHIFT) == NULL);
1451 if (slot > 0) {
1452 uvm_swap_free(slot, 1);
1453 swpgonlydelta++;
1454 KASSERT(elt->count > 0);
1455 elt->slots[j] = 0;
1456 elt->count--;
1457 }
1458 }
1459
1460 if (elt->count == 0) {
1461 LIST_REMOVE(elt, list);
1462 pool_put(&uao_swhash_elt_pool, elt);
1463 }
1464 }
1465 }
1466 } else {
1467 int i;
1468
1469 if (aobj->u_pages < end) {
1470 end = aobj->u_pages;
1471 }
1472 for (i = start; i < end; i++) {
1473 int slot = aobj->u_swslots[i];
1474
1475 if (slot > 0) {
1476 uvm_swap_free(slot, 1);
1477 swpgonlydelta++;
1478 }
1479 }
1480 }
1481
1482 /*
1483 * adjust the counter of pages only in swap for all
1484 * the swap slots we've freed.
1485 */
1486
1487 if (swpgonlydelta > 0) {
1488 mutex_enter(&uvm_swap_data_lock);
1489 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1490 uvmexp.swpgonly -= swpgonlydelta;
1491 mutex_exit(&uvm_swap_data_lock);
1492 }
1493 }
1494
1495 #endif /* defined(VMSWAP) */
1496