uvm_aobj.c revision 1.125 1 /* $NetBSD: uvm_aobj.c,v 1.125 2017/05/30 17:09:17 chs Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.125 2017/05/30 17:09:17 chs Exp $");
42
43 #ifdef _KERNEL_OPT
44 #include "opt_uvmhist.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/pool.h>
52 #include <sys/atomic.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to
58 * keeping the list of resident pages, it may also keep a list of allocated
59 * swap blocks. Depending on the size of the object, this list is either
60 * stored in an array (small objects) or in a hash table (large objects).
61 *
62 * Lock order
63 *
64 * uao_list_lock ->
65 * uvm_object::vmobjlock
66 */
67
68 /*
69 * Note: for hash tables, we break the address space of the aobj into blocks
70 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
71 */
72
73 #define UAO_SWHASH_CLUSTER_SHIFT 4
74 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
75
76 /* Get the "tag" for this page index. */
77 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
78 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
79 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
80
81 /* Given an ELT and a page index, find the swap slot. */
82 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
83 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
84
85 /* Given an ELT, return its pageidx base. */
86 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
87 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
88
89 /* The hash function. */
90 #define UAO_SWHASH_HASH(aobj, idx) \
91 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
92 & (aobj)->u_swhashmask)])
93
94 /*
95 * The threshold which determines whether we will use an array or a
96 * hash table to store the list of allocated swap blocks.
97 */
98 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
99 #define UAO_USES_SWHASH(aobj) \
100 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
101
102 /* The number of buckets in a hash, with an upper bound. */
103 #define UAO_SWHASH_MAXBUCKETS 256
104 #define UAO_SWHASH_BUCKETS(aobj) \
105 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
106
107 /*
108 * uao_swhash_elt: when a hash table is being used, this structure defines
109 * the format of an entry in the bucket list.
110 */
111
112 struct uao_swhash_elt {
113 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
114 voff_t tag; /* our 'tag' */
115 int count; /* our number of active slots */
116 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
117 };
118
119 /*
120 * uao_swhash: the swap hash table structure
121 */
122
123 LIST_HEAD(uao_swhash, uao_swhash_elt);
124
125 /*
126 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
127 * Note: pages for this pool must not come from a pageable kernel map.
128 */
129 static struct pool uao_swhash_elt_pool __cacheline_aligned;
130
131 /*
132 * uvm_aobj: the actual anon-backed uvm_object
133 *
134 * => the uvm_object is at the top of the structure, this allows
135 * (struct uvm_aobj *) == (struct uvm_object *)
136 * => only one of u_swslots and u_swhash is used in any given aobj
137 */
138
139 struct uvm_aobj {
140 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
141 pgoff_t u_pages; /* number of pages in entire object */
142 int u_flags; /* the flags (see uvm_aobj.h) */
143 int *u_swslots; /* array of offset->swapslot mappings */
144 /*
145 * hashtable of offset->swapslot mappings
146 * (u_swhash is an array of bucket heads)
147 */
148 struct uao_swhash *u_swhash;
149 u_long u_swhashmask; /* mask for hashtable */
150 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
151 int u_freelist; /* freelist to allocate pages from */
152 };
153
154 static void uao_free(struct uvm_aobj *);
155 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
156 int *, int, vm_prot_t, int, int);
157 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
158
159 #if defined(VMSWAP)
160 static struct uao_swhash_elt *uao_find_swhash_elt
161 (struct uvm_aobj *, int, bool);
162
163 static bool uao_pagein(struct uvm_aobj *, int, int);
164 static bool uao_pagein_page(struct uvm_aobj *, int);
165 #endif /* defined(VMSWAP) */
166
167 static struct vm_page *uao_pagealloc(struct uvm_object *, voff_t, int);
168
169 /*
170 * aobj_pager
171 *
172 * note that some functions (e.g. put) are handled elsewhere
173 */
174
175 const struct uvm_pagerops aobj_pager = {
176 .pgo_reference = uao_reference,
177 .pgo_detach = uao_detach,
178 .pgo_get = uao_get,
179 .pgo_put = uao_put,
180 };
181
182 /*
183 * uao_list: global list of active aobjs, locked by uao_list_lock
184 */
185
186 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned;
187 static kmutex_t uao_list_lock __cacheline_aligned;
188
189 /*
190 * hash table/array related functions
191 */
192
193 #if defined(VMSWAP)
194
195 /*
196 * uao_find_swhash_elt: find (or create) a hash table entry for a page
197 * offset.
198 *
199 * => the object should be locked by the caller
200 */
201
202 static struct uao_swhash_elt *
203 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
204 {
205 struct uao_swhash *swhash;
206 struct uao_swhash_elt *elt;
207 voff_t page_tag;
208
209 swhash = UAO_SWHASH_HASH(aobj, pageidx);
210 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
211
212 /*
213 * now search the bucket for the requested tag
214 */
215
216 LIST_FOREACH(elt, swhash, list) {
217 if (elt->tag == page_tag) {
218 return elt;
219 }
220 }
221 if (!create) {
222 return NULL;
223 }
224
225 /*
226 * allocate a new entry for the bucket and init/insert it in
227 */
228
229 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
230 if (elt == NULL) {
231 return NULL;
232 }
233 LIST_INSERT_HEAD(swhash, elt, list);
234 elt->tag = page_tag;
235 elt->count = 0;
236 memset(elt->slots, 0, sizeof(elt->slots));
237 return elt;
238 }
239
240 /*
241 * uao_find_swslot: find the swap slot number for an aobj/pageidx
242 *
243 * => object must be locked by caller
244 */
245
246 int
247 uao_find_swslot(struct uvm_object *uobj, int pageidx)
248 {
249 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
250 struct uao_swhash_elt *elt;
251
252 /*
253 * if noswap flag is set, then we never return a slot
254 */
255
256 if (aobj->u_flags & UAO_FLAG_NOSWAP)
257 return 0;
258
259 /*
260 * if hashing, look in hash table.
261 */
262
263 if (UAO_USES_SWHASH(aobj)) {
264 elt = uao_find_swhash_elt(aobj, pageidx, false);
265 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
266 }
267
268 /*
269 * otherwise, look in the array
270 */
271
272 return aobj->u_swslots[pageidx];
273 }
274
275 /*
276 * uao_set_swslot: set the swap slot for a page in an aobj.
277 *
278 * => setting a slot to zero frees the slot
279 * => object must be locked by caller
280 * => we return the old slot number, or -1 if we failed to allocate
281 * memory to record the new slot number
282 */
283
284 int
285 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
286 {
287 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
288 struct uao_swhash_elt *elt;
289 int oldslot;
290 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
291 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
292 aobj, pageidx, slot, 0);
293
294 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
295
296 /*
297 * if noswap flag is set, then we can't set a non-zero slot.
298 */
299
300 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
301 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
302 return 0;
303 }
304
305 /*
306 * are we using a hash table? if so, add it in the hash.
307 */
308
309 if (UAO_USES_SWHASH(aobj)) {
310
311 /*
312 * Avoid allocating an entry just to free it again if
313 * the page had not swap slot in the first place, and
314 * we are freeing.
315 */
316
317 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
318 if (elt == NULL) {
319 return slot ? -1 : 0;
320 }
321
322 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
323 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
324
325 /*
326 * now adjust the elt's reference counter and free it if we've
327 * dropped it to zero.
328 */
329
330 if (slot) {
331 if (oldslot == 0)
332 elt->count++;
333 } else {
334 if (oldslot)
335 elt->count--;
336
337 if (elt->count == 0) {
338 LIST_REMOVE(elt, list);
339 pool_put(&uao_swhash_elt_pool, elt);
340 }
341 }
342 } else {
343 /* we are using an array */
344 oldslot = aobj->u_swslots[pageidx];
345 aobj->u_swslots[pageidx] = slot;
346 }
347 return oldslot;
348 }
349
350 #endif /* defined(VMSWAP) */
351
352 /*
353 * end of hash/array functions
354 */
355
356 /*
357 * uao_free: free all resources held by an aobj, and then free the aobj
358 *
359 * => the aobj should be dead
360 */
361
362 static void
363 uao_free(struct uvm_aobj *aobj)
364 {
365 struct uvm_object *uobj = &aobj->u_obj;
366
367 KASSERT(mutex_owned(uobj->vmobjlock));
368 uao_dropswap_range(uobj, 0, 0);
369 mutex_exit(uobj->vmobjlock);
370
371 #if defined(VMSWAP)
372 if (UAO_USES_SWHASH(aobj)) {
373
374 /*
375 * free the hash table itself.
376 */
377
378 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
379 } else {
380
381 /*
382 * free the array itsself.
383 */
384
385 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
386 }
387 #endif /* defined(VMSWAP) */
388
389 /*
390 * finally free the aobj itself
391 */
392
393 uvm_obj_destroy(uobj, true);
394 kmem_free(aobj, sizeof(struct uvm_aobj));
395 }
396
397 /*
398 * pager functions
399 */
400
401 /*
402 * uao_create: create an aobj of the given size and return its uvm_object.
403 *
404 * => for normal use, flags are always zero
405 * => for the kernel object, the flags are:
406 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
407 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
408 */
409
410 struct uvm_object *
411 uao_create(vsize_t size, int flags)
412 {
413 static struct uvm_aobj kernel_object_store;
414 static kmutex_t kernel_object_lock;
415 static int kobj_alloced __diagused = 0;
416 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
417 struct uvm_aobj *aobj;
418 int refs;
419
420 /*
421 * Allocate a new aobj, unless kernel object is requested.
422 */
423
424 if (flags & UAO_FLAG_KERNOBJ) {
425 KASSERT(!kobj_alloced);
426 aobj = &kernel_object_store;
427 aobj->u_pages = pages;
428 aobj->u_flags = UAO_FLAG_NOSWAP;
429 refs = UVM_OBJ_KERN;
430 kobj_alloced = UAO_FLAG_KERNOBJ;
431 } else if (flags & UAO_FLAG_KERNSWAP) {
432 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
433 aobj = &kernel_object_store;
434 kobj_alloced = UAO_FLAG_KERNSWAP;
435 refs = 0xdeadbeaf; /* XXX: gcc */
436 } else {
437 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
438 aobj->u_pages = pages;
439 aobj->u_flags = 0;
440 refs = 1;
441 }
442
443 /*
444 * no freelist by default
445 */
446
447 aobj->u_freelist = VM_NFREELIST;
448
449 /*
450 * allocate hash/array if necessary
451 *
452 * note: in the KERNSWAP case no need to worry about locking since
453 * we are still booting we should be the only thread around.
454 */
455
456 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
457 #if defined(VMSWAP)
458 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
459
460 /* allocate hash table or array depending on object size */
461 if (UAO_USES_SWHASH(aobj)) {
462 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
463 HASH_LIST, kernswap ? false : true,
464 &aobj->u_swhashmask);
465 if (aobj->u_swhash == NULL)
466 panic("uao_create: hashinit swhash failed");
467 } else {
468 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
469 kernswap ? KM_NOSLEEP : KM_SLEEP);
470 if (aobj->u_swslots == NULL)
471 panic("uao_create: swslots allocation failed");
472 }
473 #endif /* defined(VMSWAP) */
474
475 if (flags) {
476 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
477 return &aobj->u_obj;
478 }
479 }
480
481 /*
482 * Initialise UVM object.
483 */
484
485 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
486 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
487 if (__predict_false(kernobj)) {
488 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
489 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
490 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
491 }
492
493 /*
494 * now that aobj is ready, add it to the global list
495 */
496
497 mutex_enter(&uao_list_lock);
498 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
499 mutex_exit(&uao_list_lock);
500 return(&aobj->u_obj);
501 }
502
503 /*
504 * uao_set_pgfl: allocate pages only from the specified freelist.
505 *
506 * => must be called before any pages are allocated for the object.
507 * => reset by setting it to VM_NFREELIST, meaning any freelist.
508 */
509
510 void
511 uao_set_pgfl(struct uvm_object *uobj, int freelist)
512 {
513 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
514
515 KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
516 KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
517 freelist);
518
519 aobj->u_freelist = freelist;
520 }
521
522 /*
523 * uao_pagealloc: allocate a page for aobj.
524 */
525
526 static inline struct vm_page *
527 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
528 {
529 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
530
531 if (__predict_true(aobj->u_freelist == VM_NFREELIST))
532 return uvm_pagealloc(uobj, offset, NULL, flags);
533 else
534 return uvm_pagealloc_strat(uobj, offset, NULL, flags,
535 UVM_PGA_STRAT_ONLY, aobj->u_freelist);
536 }
537
538 /*
539 * uao_init: set up aobj pager subsystem
540 *
541 * => called at boot time from uvm_pager_init()
542 */
543
544 void
545 uao_init(void)
546 {
547 static int uao_initialized;
548
549 if (uao_initialized)
550 return;
551 uao_initialized = true;
552 LIST_INIT(&uao_list);
553 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
554 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
555 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
556 }
557
558 /*
559 * uao_reference: hold a reference to an anonymous UVM object.
560 */
561 void
562 uao_reference(struct uvm_object *uobj)
563 {
564 /* Kernel object is persistent. */
565 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
566 return;
567 }
568 atomic_inc_uint(&uobj->uo_refs);
569 }
570
571 /*
572 * uao_detach: drop a reference to an anonymous UVM object.
573 */
574 void
575 uao_detach(struct uvm_object *uobj)
576 {
577 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
578 struct vm_page *pg;
579
580 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
581
582 /*
583 * Detaching from kernel object is a NOP.
584 */
585
586 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
587 return;
588
589 /*
590 * Drop the reference. If it was the last one, destroy the object.
591 */
592
593 KASSERT(uobj->uo_refs > 0);
594 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
595 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
596 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
597 return;
598 }
599
600 /*
601 * Remove the aobj from the global list.
602 */
603
604 mutex_enter(&uao_list_lock);
605 LIST_REMOVE(aobj, u_list);
606 mutex_exit(&uao_list_lock);
607
608 /*
609 * Free all the pages left in the aobj. For each page, when the
610 * page is no longer busy (and thus after any disk I/O that it is
611 * involved in is complete), release any swap resources and free
612 * the page itself.
613 */
614
615 mutex_enter(uobj->vmobjlock);
616 mutex_enter(&uvm_pageqlock);
617 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
618 pmap_page_protect(pg, VM_PROT_NONE);
619 if (pg->flags & PG_BUSY) {
620 pg->flags |= PG_WANTED;
621 mutex_exit(&uvm_pageqlock);
622 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
623 "uao_det", 0);
624 mutex_enter(uobj->vmobjlock);
625 mutex_enter(&uvm_pageqlock);
626 continue;
627 }
628 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
629 uvm_pagefree(pg);
630 }
631 mutex_exit(&uvm_pageqlock);
632
633 /*
634 * Finally, free the anonymous UVM object itself.
635 */
636
637 uao_free(aobj);
638 }
639
640 /*
641 * uao_put: flush pages out of a uvm object
642 *
643 * => object should be locked by caller. we may _unlock_ the object
644 * if (and only if) we need to clean a page (PGO_CLEANIT).
645 * XXXJRT Currently, however, we don't. In the case of cleaning
646 * XXXJRT a page, we simply just deactivate it. Should probably
647 * XXXJRT handle this better, in the future (although "flushing"
648 * XXXJRT anonymous memory isn't terribly important).
649 * => if PGO_CLEANIT is not set, then we will neither unlock the object
650 * or block.
651 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
652 * for flushing.
653 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
654 * that new pages are inserted on the tail end of the list. thus,
655 * we can make a complete pass through the object in one go by starting
656 * at the head and working towards the tail (new pages are put in
657 * front of us).
658 * => NOTE: we are allowed to lock the page queues, so the caller
659 * must not be holding the lock on them [e.g. pagedaemon had
660 * better not call us with the queues locked]
661 * => we return 0 unless we encountered some sort of I/O error
662 * XXXJRT currently never happens, as we never directly initiate
663 * XXXJRT I/O
664 *
665 * note on page traversal:
666 * we can traverse the pages in an object either by going down the
667 * linked list in "uobj->memq", or we can go over the address range
668 * by page doing hash table lookups for each address. depending
669 * on how many pages are in the object it may be cheaper to do one
670 * or the other. we set "by_list" to true if we are using memq.
671 * if the cost of a hash lookup was equal to the cost of the list
672 * traversal we could compare the number of pages in the start->stop
673 * range to the total number of pages in the object. however, it
674 * seems that a hash table lookup is more expensive than the linked
675 * list traversal, so we multiply the number of pages in the
676 * start->stop range by a penalty which we define below.
677 */
678
679 static int
680 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
681 {
682 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
683 struct vm_page *pg, *nextpg, curmp, endmp;
684 bool by_list;
685 voff_t curoff;
686 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
687
688 KASSERT(mutex_owned(uobj->vmobjlock));
689
690 curoff = 0;
691 if (flags & PGO_ALLPAGES) {
692 start = 0;
693 stop = aobj->u_pages << PAGE_SHIFT;
694 by_list = true; /* always go by the list */
695 } else {
696 start = trunc_page(start);
697 if (stop == 0) {
698 stop = aobj->u_pages << PAGE_SHIFT;
699 } else {
700 stop = round_page(stop);
701 }
702 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
703 printf("uao_flush: strange, got an out of range "
704 "flush (fixed)\n");
705 stop = aobj->u_pages << PAGE_SHIFT;
706 }
707 by_list = (uobj->uo_npages <=
708 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
709 }
710 UVMHIST_LOG(maphist,
711 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
712 start, stop, by_list, flags);
713
714 /*
715 * Don't need to do any work here if we're not freeing
716 * or deactivating pages.
717 */
718
719 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
720 mutex_exit(uobj->vmobjlock);
721 return 0;
722 }
723
724 /*
725 * Initialize the marker pages. See the comment in
726 * genfs_putpages() also.
727 */
728
729 curmp.flags = PG_MARKER;
730 endmp.flags = PG_MARKER;
731
732 /*
733 * now do it. note: we must update nextpg in the body of loop or we
734 * will get stuck. we need to use nextpg if we'll traverse the list
735 * because we may free "pg" before doing the next loop.
736 */
737
738 if (by_list) {
739 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
740 nextpg = TAILQ_FIRST(&uobj->memq);
741 } else {
742 curoff = start;
743 nextpg = NULL; /* Quell compiler warning */
744 }
745
746 /* locked: uobj */
747 for (;;) {
748 if (by_list) {
749 pg = nextpg;
750 if (pg == &endmp)
751 break;
752 nextpg = TAILQ_NEXT(pg, listq.queue);
753 if (pg->flags & PG_MARKER)
754 continue;
755 if (pg->offset < start || pg->offset >= stop)
756 continue;
757 } else {
758 if (curoff < stop) {
759 pg = uvm_pagelookup(uobj, curoff);
760 curoff += PAGE_SIZE;
761 } else
762 break;
763 if (pg == NULL)
764 continue;
765 }
766
767 /*
768 * wait and try again if the page is busy.
769 */
770
771 if (pg->flags & PG_BUSY) {
772 if (by_list) {
773 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
774 }
775 pg->flags |= PG_WANTED;
776 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
777 "uao_put", 0);
778 mutex_enter(uobj->vmobjlock);
779 if (by_list) {
780 nextpg = TAILQ_NEXT(&curmp, listq.queue);
781 TAILQ_REMOVE(&uobj->memq, &curmp,
782 listq.queue);
783 } else
784 curoff -= PAGE_SIZE;
785 continue;
786 }
787
788 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
789
790 /*
791 * XXX In these first 3 cases, we always just
792 * XXX deactivate the page. We may want to
793 * XXX handle the different cases more specifically
794 * XXX in the future.
795 */
796
797 case PGO_CLEANIT|PGO_FREE:
798 case PGO_CLEANIT|PGO_DEACTIVATE:
799 case PGO_DEACTIVATE:
800 deactivate_it:
801 mutex_enter(&uvm_pageqlock);
802 /* skip the page if it's wired */
803 if (pg->wire_count == 0) {
804 uvm_pagedeactivate(pg);
805 }
806 mutex_exit(&uvm_pageqlock);
807 break;
808
809 case PGO_FREE:
810 /*
811 * If there are multiple references to
812 * the object, just deactivate the page.
813 */
814
815 if (uobj->uo_refs > 1)
816 goto deactivate_it;
817
818 /*
819 * free the swap slot and the page.
820 */
821
822 pmap_page_protect(pg, VM_PROT_NONE);
823
824 /*
825 * freeing swapslot here is not strictly necessary.
826 * however, leaving it here doesn't save much
827 * because we need to update swap accounting anyway.
828 */
829
830 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
831 mutex_enter(&uvm_pageqlock);
832 uvm_pagefree(pg);
833 mutex_exit(&uvm_pageqlock);
834 break;
835
836 default:
837 panic("%s: impossible", __func__);
838 }
839 }
840 if (by_list) {
841 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
842 }
843 mutex_exit(uobj->vmobjlock);
844 return 0;
845 }
846
847 /*
848 * uao_get: fetch me a page
849 *
850 * we have three cases:
851 * 1: page is resident -> just return the page.
852 * 2: page is zero-fill -> allocate a new page and zero it.
853 * 3: page is swapped out -> fetch the page from swap.
854 *
855 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
856 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
857 * then we will need to return EBUSY.
858 *
859 * => prefer map unlocked (not required)
860 * => object must be locked! we will _unlock_ it before starting any I/O.
861 * => flags: PGO_ALLPAGES: get all of the pages
862 * PGO_LOCKED: fault data structures are locked
863 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
864 * => NOTE: caller must check for released pages!!
865 */
866
867 static int
868 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
869 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
870 {
871 voff_t current_offset;
872 struct vm_page *ptmp = NULL; /* Quell compiler warning */
873 int lcv, gotpages, maxpages, swslot, pageidx;
874 bool done;
875 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
876
877 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
878 (struct uvm_aobj *)uobj, offset, flags,0);
879
880 /*
881 * get number of pages
882 */
883
884 maxpages = *npagesp;
885
886 /*
887 * step 1: handled the case where fault data structures are locked.
888 */
889
890 if (flags & PGO_LOCKED) {
891
892 /*
893 * step 1a: get pages that are already resident. only do
894 * this if the data structures are locked (i.e. the first
895 * time through).
896 */
897
898 done = true; /* be optimistic */
899 gotpages = 0; /* # of pages we got so far */
900 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
901 lcv++, current_offset += PAGE_SIZE) {
902 /* do we care about this page? if not, skip it */
903 if (pps[lcv] == PGO_DONTCARE)
904 continue;
905 ptmp = uvm_pagelookup(uobj, current_offset);
906
907 /*
908 * if page is new, attempt to allocate the page,
909 * zero-fill'd.
910 */
911
912 if (ptmp == NULL && uao_find_swslot(uobj,
913 current_offset >> PAGE_SHIFT) == 0) {
914 ptmp = uao_pagealloc(uobj, current_offset,
915 UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
916 if (ptmp) {
917 /* new page */
918 ptmp->flags &= ~(PG_FAKE);
919 ptmp->pqflags |= PQ_AOBJ;
920 goto gotpage;
921 }
922 }
923
924 /*
925 * to be useful must get a non-busy page
926 */
927
928 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
929 if (lcv == centeridx ||
930 (flags & PGO_ALLPAGES) != 0)
931 /* need to do a wait or I/O! */
932 done = false;
933 continue;
934 }
935
936 /*
937 * useful page: busy/lock it and plug it in our
938 * result array
939 */
940
941 /* caller must un-busy this page */
942 ptmp->flags |= PG_BUSY;
943 UVM_PAGE_OWN(ptmp, "uao_get1");
944 gotpage:
945 pps[lcv] = ptmp;
946 gotpages++;
947 }
948
949 /*
950 * step 1b: now we've either done everything needed or we
951 * to unlock and do some waiting or I/O.
952 */
953
954 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
955 *npagesp = gotpages;
956 if (done)
957 return 0;
958 else
959 return EBUSY;
960 }
961
962 /*
963 * step 2: get non-resident or busy pages.
964 * object is locked. data structures are unlocked.
965 */
966
967 if ((flags & PGO_SYNCIO) == 0) {
968 goto done;
969 }
970
971 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
972 lcv++, current_offset += PAGE_SIZE) {
973
974 /*
975 * - skip over pages we've already gotten or don't want
976 * - skip over pages we don't _have_ to get
977 */
978
979 if (pps[lcv] != NULL ||
980 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
981 continue;
982
983 pageidx = current_offset >> PAGE_SHIFT;
984
985 /*
986 * we have yet to locate the current page (pps[lcv]). we
987 * first look for a page that is already at the current offset.
988 * if we find a page, we check to see if it is busy or
989 * released. if that is the case, then we sleep on the page
990 * until it is no longer busy or released and repeat the lookup.
991 * if the page we found is neither busy nor released, then we
992 * busy it (so we own it) and plug it into pps[lcv]. this
993 * 'break's the following while loop and indicates we are
994 * ready to move on to the next page in the "lcv" loop above.
995 *
996 * if we exit the while loop with pps[lcv] still set to NULL,
997 * then it means that we allocated a new busy/fake/clean page
998 * ptmp in the object and we need to do I/O to fill in the data.
999 */
1000
1001 /* top of "pps" while loop */
1002 while (pps[lcv] == NULL) {
1003 /* look for a resident page */
1004 ptmp = uvm_pagelookup(uobj, current_offset);
1005
1006 /* not resident? allocate one now (if we can) */
1007 if (ptmp == NULL) {
1008
1009 ptmp = uao_pagealloc(uobj, current_offset, 0);
1010
1011 /* out of RAM? */
1012 if (ptmp == NULL) {
1013 mutex_exit(uobj->vmobjlock);
1014 UVMHIST_LOG(pdhist,
1015 "sleeping, ptmp == NULL\n",0,0,0,0);
1016 uvm_wait("uao_getpage");
1017 mutex_enter(uobj->vmobjlock);
1018 continue;
1019 }
1020
1021 /*
1022 * safe with PQ's unlocked: because we just
1023 * alloc'd the page
1024 */
1025
1026 ptmp->pqflags |= PQ_AOBJ;
1027
1028 /*
1029 * got new page ready for I/O. break pps while
1030 * loop. pps[lcv] is still NULL.
1031 */
1032
1033 break;
1034 }
1035
1036 /* page is there, see if we need to wait on it */
1037 if ((ptmp->flags & PG_BUSY) != 0) {
1038 ptmp->flags |= PG_WANTED;
1039 UVMHIST_LOG(pdhist,
1040 "sleeping, ptmp->flags 0x%x\n",
1041 ptmp->flags,0,0,0);
1042 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
1043 false, "uao_get", 0);
1044 mutex_enter(uobj->vmobjlock);
1045 continue;
1046 }
1047
1048 /*
1049 * if we get here then the page has become resident and
1050 * unbusy between steps 1 and 2. we busy it now (so we
1051 * own it) and set pps[lcv] (so that we exit the while
1052 * loop).
1053 */
1054
1055 /* we own it, caller must un-busy */
1056 ptmp->flags |= PG_BUSY;
1057 UVM_PAGE_OWN(ptmp, "uao_get2");
1058 pps[lcv] = ptmp;
1059 }
1060
1061 /*
1062 * if we own the valid page at the correct offset, pps[lcv] will
1063 * point to it. nothing more to do except go to the next page.
1064 */
1065
1066 if (pps[lcv])
1067 continue; /* next lcv */
1068
1069 /*
1070 * we have a "fake/busy/clean" page that we just allocated.
1071 * do the needed "i/o", either reading from swap or zeroing.
1072 */
1073
1074 swslot = uao_find_swslot(uobj, pageidx);
1075
1076 /*
1077 * just zero the page if there's nothing in swap.
1078 */
1079
1080 if (swslot == 0) {
1081
1082 /*
1083 * page hasn't existed before, just zero it.
1084 */
1085
1086 uvm_pagezero(ptmp);
1087 } else {
1088 #if defined(VMSWAP)
1089 int error;
1090
1091 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1092 swslot, 0,0,0);
1093
1094 /*
1095 * page in the swapped-out page.
1096 * unlock object for i/o, relock when done.
1097 */
1098
1099 mutex_exit(uobj->vmobjlock);
1100 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1101 mutex_enter(uobj->vmobjlock);
1102
1103 /*
1104 * I/O done. check for errors.
1105 */
1106
1107 if (error != 0) {
1108 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1109 error,0,0,0);
1110 if (ptmp->flags & PG_WANTED)
1111 wakeup(ptmp);
1112
1113 /*
1114 * remove the swap slot from the aobj
1115 * and mark the aobj as having no real slot.
1116 * don't free the swap slot, thus preventing
1117 * it from being used again.
1118 */
1119
1120 swslot = uao_set_swslot(uobj, pageidx,
1121 SWSLOT_BAD);
1122 if (swslot > 0) {
1123 uvm_swap_markbad(swslot, 1);
1124 }
1125
1126 mutex_enter(&uvm_pageqlock);
1127 uvm_pagefree(ptmp);
1128 mutex_exit(&uvm_pageqlock);
1129 mutex_exit(uobj->vmobjlock);
1130 return error;
1131 }
1132 #else /* defined(VMSWAP) */
1133 panic("%s: pagein", __func__);
1134 #endif /* defined(VMSWAP) */
1135 }
1136
1137 if ((access_type & VM_PROT_WRITE) == 0) {
1138 ptmp->flags |= PG_CLEAN;
1139 pmap_clear_modify(ptmp);
1140 }
1141
1142 /*
1143 * we got the page! clear the fake flag (indicates valid
1144 * data now in page) and plug into our result array. note
1145 * that page is still busy.
1146 *
1147 * it is the callers job to:
1148 * => check if the page is released
1149 * => unbusy the page
1150 * => activate the page
1151 */
1152
1153 ptmp->flags &= ~PG_FAKE;
1154 pps[lcv] = ptmp;
1155 }
1156
1157 /*
1158 * finally, unlock object and return.
1159 */
1160
1161 done:
1162 mutex_exit(uobj->vmobjlock);
1163 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1164 return 0;
1165 }
1166
1167 #if defined(VMSWAP)
1168
1169 /*
1170 * uao_dropswap: release any swap resources from this aobj page.
1171 *
1172 * => aobj must be locked or have a reference count of 0.
1173 */
1174
1175 void
1176 uao_dropswap(struct uvm_object *uobj, int pageidx)
1177 {
1178 int slot;
1179
1180 slot = uao_set_swslot(uobj, pageidx, 0);
1181 if (slot) {
1182 uvm_swap_free(slot, 1);
1183 }
1184 }
1185
1186 /*
1187 * page in every page in every aobj that is paged-out to a range of swslots.
1188 *
1189 * => nothing should be locked.
1190 * => returns true if pagein was aborted due to lack of memory.
1191 */
1192
1193 bool
1194 uao_swap_off(int startslot, int endslot)
1195 {
1196 struct uvm_aobj *aobj;
1197
1198 /*
1199 * Walk the list of all anonymous UVM objects. Grab the first.
1200 */
1201 mutex_enter(&uao_list_lock);
1202 if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1203 mutex_exit(&uao_list_lock);
1204 return false;
1205 }
1206 uao_reference(&aobj->u_obj);
1207
1208 do {
1209 struct uvm_aobj *nextaobj;
1210 bool rv;
1211
1212 /*
1213 * Prefetch the next object and immediately hold a reference
1214 * on it, so neither the current nor the next entry could
1215 * disappear while we are iterating.
1216 */
1217 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1218 uao_reference(&nextaobj->u_obj);
1219 }
1220 mutex_exit(&uao_list_lock);
1221
1222 /*
1223 * Page in all pages in the swap slot range.
1224 */
1225 mutex_enter(aobj->u_obj.vmobjlock);
1226 rv = uao_pagein(aobj, startslot, endslot);
1227 mutex_exit(aobj->u_obj.vmobjlock);
1228
1229 /* Drop the reference of the current object. */
1230 uao_detach(&aobj->u_obj);
1231 if (rv) {
1232 if (nextaobj) {
1233 uao_detach(&nextaobj->u_obj);
1234 }
1235 return rv;
1236 }
1237
1238 aobj = nextaobj;
1239 mutex_enter(&uao_list_lock);
1240 } while (aobj);
1241
1242 mutex_exit(&uao_list_lock);
1243 return false;
1244 }
1245
1246 /*
1247 * page in any pages from aobj in the given range.
1248 *
1249 * => aobj must be locked and is returned locked.
1250 * => returns true if pagein was aborted due to lack of memory.
1251 */
1252 static bool
1253 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1254 {
1255 bool rv;
1256
1257 if (UAO_USES_SWHASH(aobj)) {
1258 struct uao_swhash_elt *elt;
1259 int buck;
1260
1261 restart:
1262 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1263 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1264 elt != NULL;
1265 elt = LIST_NEXT(elt, list)) {
1266 int i;
1267
1268 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1269 int slot = elt->slots[i];
1270
1271 /*
1272 * if the slot isn't in range, skip it.
1273 */
1274
1275 if (slot < startslot ||
1276 slot >= endslot) {
1277 continue;
1278 }
1279
1280 /*
1281 * process the page,
1282 * the start over on this object
1283 * since the swhash elt
1284 * may have been freed.
1285 */
1286
1287 rv = uao_pagein_page(aobj,
1288 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1289 if (rv) {
1290 return rv;
1291 }
1292 goto restart;
1293 }
1294 }
1295 }
1296 } else {
1297 int i;
1298
1299 for (i = 0; i < aobj->u_pages; i++) {
1300 int slot = aobj->u_swslots[i];
1301
1302 /*
1303 * if the slot isn't in range, skip it
1304 */
1305
1306 if (slot < startslot || slot >= endslot) {
1307 continue;
1308 }
1309
1310 /*
1311 * process the page.
1312 */
1313
1314 rv = uao_pagein_page(aobj, i);
1315 if (rv) {
1316 return rv;
1317 }
1318 }
1319 }
1320
1321 return false;
1322 }
1323
1324 /*
1325 * uao_pagein_page: page in a single page from an anonymous UVM object.
1326 *
1327 * => Returns true if pagein was aborted due to lack of memory.
1328 * => Object must be locked and is returned locked.
1329 */
1330
1331 static bool
1332 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1333 {
1334 struct uvm_object *uobj = &aobj->u_obj;
1335 struct vm_page *pg;
1336 int rv, npages;
1337
1338 pg = NULL;
1339 npages = 1;
1340
1341 KASSERT(mutex_owned(uobj->vmobjlock));
1342 rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
1343 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1344
1345 /*
1346 * relock and finish up.
1347 */
1348
1349 mutex_enter(uobj->vmobjlock);
1350 switch (rv) {
1351 case 0:
1352 break;
1353
1354 case EIO:
1355 case ERESTART:
1356
1357 /*
1358 * nothing more to do on errors.
1359 * ERESTART can only mean that the anon was freed,
1360 * so again there's nothing to do.
1361 */
1362
1363 return false;
1364
1365 default:
1366 return true;
1367 }
1368
1369 /*
1370 * ok, we've got the page now.
1371 * mark it as dirty, clear its swslot and un-busy it.
1372 */
1373 uao_dropswap(&aobj->u_obj, pageidx);
1374
1375 /*
1376 * make sure it's on a page queue.
1377 */
1378 mutex_enter(&uvm_pageqlock);
1379 if (pg->wire_count == 0)
1380 uvm_pageenqueue(pg);
1381 mutex_exit(&uvm_pageqlock);
1382
1383 if (pg->flags & PG_WANTED) {
1384 wakeup(pg);
1385 }
1386 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1387 UVM_PAGE_OWN(pg, NULL);
1388
1389 return false;
1390 }
1391
1392 /*
1393 * uao_dropswap_range: drop swapslots in the range.
1394 *
1395 * => aobj must be locked and is returned locked.
1396 * => start is inclusive. end is exclusive.
1397 */
1398
1399 void
1400 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1401 {
1402 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1403 int swpgonlydelta = 0;
1404
1405 KASSERT(mutex_owned(uobj->vmobjlock));
1406
1407 if (end == 0) {
1408 end = INT64_MAX;
1409 }
1410
1411 if (UAO_USES_SWHASH(aobj)) {
1412 int i, hashbuckets = aobj->u_swhashmask + 1;
1413 voff_t taghi;
1414 voff_t taglo;
1415
1416 taglo = UAO_SWHASH_ELT_TAG(start);
1417 taghi = UAO_SWHASH_ELT_TAG(end);
1418
1419 for (i = 0; i < hashbuckets; i++) {
1420 struct uao_swhash_elt *elt, *next;
1421
1422 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1423 elt != NULL;
1424 elt = next) {
1425 int startidx, endidx;
1426 int j;
1427
1428 next = LIST_NEXT(elt, list);
1429
1430 if (elt->tag < taglo || taghi < elt->tag) {
1431 continue;
1432 }
1433
1434 if (elt->tag == taglo) {
1435 startidx =
1436 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1437 } else {
1438 startidx = 0;
1439 }
1440
1441 if (elt->tag == taghi) {
1442 endidx =
1443 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1444 } else {
1445 endidx = UAO_SWHASH_CLUSTER_SIZE;
1446 }
1447
1448 for (j = startidx; j < endidx; j++) {
1449 int slot = elt->slots[j];
1450
1451 KASSERT(uvm_pagelookup(&aobj->u_obj,
1452 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1453 + j) << PAGE_SHIFT) == NULL);
1454 if (slot > 0) {
1455 uvm_swap_free(slot, 1);
1456 swpgonlydelta++;
1457 KASSERT(elt->count > 0);
1458 elt->slots[j] = 0;
1459 elt->count--;
1460 }
1461 }
1462
1463 if (elt->count == 0) {
1464 LIST_REMOVE(elt, list);
1465 pool_put(&uao_swhash_elt_pool, elt);
1466 }
1467 }
1468 }
1469 } else {
1470 int i;
1471
1472 if (aobj->u_pages < end) {
1473 end = aobj->u_pages;
1474 }
1475 for (i = start; i < end; i++) {
1476 int slot = aobj->u_swslots[i];
1477
1478 if (slot > 0) {
1479 uvm_swap_free(slot, 1);
1480 swpgonlydelta++;
1481 }
1482 }
1483 }
1484
1485 /*
1486 * adjust the counter of pages only in swap for all
1487 * the swap slots we've freed.
1488 */
1489
1490 if (swpgonlydelta > 0) {
1491 mutex_enter(&uvm_swap_data_lock);
1492 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1493 uvmexp.swpgonly -= swpgonlydelta;
1494 mutex_exit(&uvm_swap_data_lock);
1495 }
1496 }
1497
1498 #endif /* defined(VMSWAP) */
1499