Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.126.2.1
      1 /*	$NetBSD: uvm_aobj.c,v 1.126.2.1 2018/06/25 07:26:08 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.126.2.1 2018/06/25 07:26:08 pgoyette Exp $");
     42 
     43 #ifdef _KERNEL_OPT
     44 #include "opt_uvmhist.h"
     45 #endif
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/pool.h>
     52 #include <sys/atomic.h>
     53 
     54 #include <uvm/uvm.h>
     55 
     56 /*
     57  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
     58  * keeping the list of resident pages, it may also keep a list of allocated
     59  * swap blocks.  Depending on the size of the object, this list is either
     60  * stored in an array (small objects) or in a hash table (large objects).
     61  *
     62  * Lock order
     63  *
     64  *	uao_list_lock ->
     65  *		uvm_object::vmobjlock
     66  */
     67 
     68 /*
     69  * Note: for hash tables, we break the address space of the aobj into blocks
     70  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
     71  */
     72 
     73 #define	UAO_SWHASH_CLUSTER_SHIFT	4
     74 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
     75 
     76 /* Get the "tag" for this page index. */
     77 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
     78 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
     79     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     80 
     81 /* Given an ELT and a page index, find the swap slot. */
     82 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
     83     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
     84 
     85 /* Given an ELT, return its pageidx base. */
     86 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     87     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     88 
     89 /* The hash function. */
     90 #define	UAO_SWHASH_HASH(aobj, idx) \
     91     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
     92     & (aobj)->u_swhashmask)])
     93 
     94 /*
     95  * The threshold which determines whether we will use an array or a
     96  * hash table to store the list of allocated swap blocks.
     97  */
     98 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
     99 #define	UAO_USES_SWHASH(aobj) \
    100     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
    101 
    102 /* The number of buckets in a hash, with an upper bound. */
    103 #define	UAO_SWHASH_MAXBUCKETS		256
    104 #define	UAO_SWHASH_BUCKETS(aobj) \
    105     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
    106 
    107 /*
    108  * uao_swhash_elt: when a hash table is being used, this structure defines
    109  * the format of an entry in the bucket list.
    110  */
    111 
    112 struct uao_swhash_elt {
    113 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    114 	voff_t tag;				/* our 'tag' */
    115 	int count;				/* our number of active slots */
    116 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    117 };
    118 
    119 /*
    120  * uao_swhash: the swap hash table structure
    121  */
    122 
    123 LIST_HEAD(uao_swhash, uao_swhash_elt);
    124 
    125 /*
    126  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    127  * Note: pages for this pool must not come from a pageable kernel map.
    128  */
    129 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
    130 
    131 /*
    132  * uvm_aobj: the actual anon-backed uvm_object
    133  *
    134  * => the uvm_object is at the top of the structure, this allows
    135  *   (struct uvm_aobj *) == (struct uvm_object *)
    136  * => only one of u_swslots and u_swhash is used in any given aobj
    137  */
    138 
    139 struct uvm_aobj {
    140 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    141 	pgoff_t u_pages;	 /* number of pages in entire object */
    142 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    143 	int *u_swslots;		 /* array of offset->swapslot mappings */
    144 				 /*
    145 				  * hashtable of offset->swapslot mappings
    146 				  * (u_swhash is an array of bucket heads)
    147 				  */
    148 	struct uao_swhash *u_swhash;
    149 	u_long u_swhashmask;		/* mask for hashtable */
    150 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    151 	int u_freelist;		  /* freelist to allocate pages from */
    152 };
    153 
    154 static void	uao_free(struct uvm_aobj *);
    155 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    156 		    int *, int, vm_prot_t, int, int);
    157 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    158 
    159 #if defined(VMSWAP)
    160 static struct uao_swhash_elt *uao_find_swhash_elt
    161     (struct uvm_aobj *, int, bool);
    162 
    163 static bool uao_pagein(struct uvm_aobj *, int, int);
    164 static bool uao_pagein_page(struct uvm_aobj *, int);
    165 #endif /* defined(VMSWAP) */
    166 
    167 static struct vm_page	*uao_pagealloc(struct uvm_object *, voff_t, int);
    168 
    169 /*
    170  * aobj_pager
    171  *
    172  * note that some functions (e.g. put) are handled elsewhere
    173  */
    174 
    175 const struct uvm_pagerops aobj_pager = {
    176 	.pgo_reference = uao_reference,
    177 	.pgo_detach = uao_detach,
    178 	.pgo_get = uao_get,
    179 	.pgo_put = uao_put,
    180 };
    181 
    182 /*
    183  * uao_list: global list of active aobjs, locked by uao_list_lock
    184  */
    185 
    186 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
    187 static kmutex_t		uao_list_lock		__cacheline_aligned;
    188 
    189 /*
    190  * hash table/array related functions
    191  */
    192 
    193 #if defined(VMSWAP)
    194 
    195 /*
    196  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    197  * offset.
    198  *
    199  * => the object should be locked by the caller
    200  */
    201 
    202 static struct uao_swhash_elt *
    203 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    204 {
    205 	struct uao_swhash *swhash;
    206 	struct uao_swhash_elt *elt;
    207 	voff_t page_tag;
    208 
    209 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    210 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    211 
    212 	/*
    213 	 * now search the bucket for the requested tag
    214 	 */
    215 
    216 	LIST_FOREACH(elt, swhash, list) {
    217 		if (elt->tag == page_tag) {
    218 			return elt;
    219 		}
    220 	}
    221 	if (!create) {
    222 		return NULL;
    223 	}
    224 
    225 	/*
    226 	 * allocate a new entry for the bucket and init/insert it in
    227 	 */
    228 
    229 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    230 	if (elt == NULL) {
    231 		return NULL;
    232 	}
    233 	LIST_INSERT_HEAD(swhash, elt, list);
    234 	elt->tag = page_tag;
    235 	elt->count = 0;
    236 	memset(elt->slots, 0, sizeof(elt->slots));
    237 	return elt;
    238 }
    239 
    240 /*
    241  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    242  *
    243  * => object must be locked by caller
    244  */
    245 
    246 int
    247 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    248 {
    249 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    250 	struct uao_swhash_elt *elt;
    251 
    252 	/*
    253 	 * if noswap flag is set, then we never return a slot
    254 	 */
    255 
    256 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    257 		return 0;
    258 
    259 	/*
    260 	 * if hashing, look in hash table.
    261 	 */
    262 
    263 	if (UAO_USES_SWHASH(aobj)) {
    264 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    265 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
    266 	}
    267 
    268 	/*
    269 	 * otherwise, look in the array
    270 	 */
    271 
    272 	return aobj->u_swslots[pageidx];
    273 }
    274 
    275 /*
    276  * uao_set_swslot: set the swap slot for a page in an aobj.
    277  *
    278  * => setting a slot to zero frees the slot
    279  * => object must be locked by caller
    280  * => we return the old slot number, or -1 if we failed to allocate
    281  *    memory to record the new slot number
    282  */
    283 
    284 int
    285 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    286 {
    287 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    288 	struct uao_swhash_elt *elt;
    289 	int oldslot;
    290 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    291 	UVMHIST_LOG(pdhist, "aobj %#jx pageidx %jd slot %jd",
    292 	    (uintptr_t)aobj, pageidx, slot, 0);
    293 
    294 	KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
    295 
    296 	/*
    297 	 * if noswap flag is set, then we can't set a non-zero slot.
    298 	 */
    299 
    300 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    301 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
    302 		return 0;
    303 	}
    304 
    305 	/*
    306 	 * are we using a hash table?  if so, add it in the hash.
    307 	 */
    308 
    309 	if (UAO_USES_SWHASH(aobj)) {
    310 
    311 		/*
    312 		 * Avoid allocating an entry just to free it again if
    313 		 * the page had not swap slot in the first place, and
    314 		 * we are freeing.
    315 		 */
    316 
    317 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    318 		if (elt == NULL) {
    319 			return slot ? -1 : 0;
    320 		}
    321 
    322 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    323 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    324 
    325 		/*
    326 		 * now adjust the elt's reference counter and free it if we've
    327 		 * dropped it to zero.
    328 		 */
    329 
    330 		if (slot) {
    331 			if (oldslot == 0)
    332 				elt->count++;
    333 		} else {
    334 			if (oldslot)
    335 				elt->count--;
    336 
    337 			if (elt->count == 0) {
    338 				LIST_REMOVE(elt, list);
    339 				pool_put(&uao_swhash_elt_pool, elt);
    340 			}
    341 		}
    342 	} else {
    343 		/* we are using an array */
    344 		oldslot = aobj->u_swslots[pageidx];
    345 		aobj->u_swslots[pageidx] = slot;
    346 	}
    347 	return oldslot;
    348 }
    349 
    350 #endif /* defined(VMSWAP) */
    351 
    352 /*
    353  * end of hash/array functions
    354  */
    355 
    356 /*
    357  * uao_free: free all resources held by an aobj, and then free the aobj
    358  *
    359  * => the aobj should be dead
    360  */
    361 
    362 static void
    363 uao_free(struct uvm_aobj *aobj)
    364 {
    365 	struct uvm_object *uobj = &aobj->u_obj;
    366 
    367 	KASSERT(mutex_owned(uobj->vmobjlock));
    368 	uao_dropswap_range(uobj, 0, 0);
    369 	mutex_exit(uobj->vmobjlock);
    370 
    371 #if defined(VMSWAP)
    372 	if (UAO_USES_SWHASH(aobj)) {
    373 
    374 		/*
    375 		 * free the hash table itself.
    376 		 */
    377 
    378 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    379 	} else {
    380 
    381 		/*
    382 		 * free the array itsself.
    383 		 */
    384 
    385 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    386 	}
    387 #endif /* defined(VMSWAP) */
    388 
    389 	/*
    390 	 * finally free the aobj itself
    391 	 */
    392 
    393 	uvm_obj_destroy(uobj, true);
    394 	kmem_free(aobj, sizeof(struct uvm_aobj));
    395 }
    396 
    397 /*
    398  * pager functions
    399  */
    400 
    401 /*
    402  * uao_create: create an aobj of the given size and return its uvm_object.
    403  *
    404  * => for normal use, flags are always zero
    405  * => for the kernel object, the flags are:
    406  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    407  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    408  */
    409 
    410 struct uvm_object *
    411 uao_create(voff_t size, int flags)
    412 {
    413 	static struct uvm_aobj kernel_object_store;
    414 	static kmutex_t kernel_object_lock;
    415 	static int kobj_alloced __diagused = 0;
    416 	pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT;
    417 	struct uvm_aobj *aobj;
    418 	int refs;
    419 
    420 	/*
    421 	 * Allocate a new aobj, unless kernel object is requested.
    422 	 */
    423 
    424 	if (flags & UAO_FLAG_KERNOBJ) {
    425 		KASSERT(!kobj_alloced);
    426 		aobj = &kernel_object_store;
    427 		aobj->u_pages = pages;
    428 		aobj->u_flags = UAO_FLAG_NOSWAP;
    429 		refs = UVM_OBJ_KERN;
    430 		kobj_alloced = UAO_FLAG_KERNOBJ;
    431 	} else if (flags & UAO_FLAG_KERNSWAP) {
    432 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    433 		aobj = &kernel_object_store;
    434 		kobj_alloced = UAO_FLAG_KERNSWAP;
    435 		refs = 0xdeadbeaf; /* XXX: gcc */
    436 	} else {
    437 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    438 		aobj->u_pages = pages;
    439 		aobj->u_flags = 0;
    440 		refs = 1;
    441 	}
    442 
    443 	/*
    444 	 * no freelist by default
    445 	 */
    446 
    447 	aobj->u_freelist = VM_NFREELIST;
    448 
    449 	/*
    450  	 * allocate hash/array if necessary
    451  	 *
    452  	 * note: in the KERNSWAP case no need to worry about locking since
    453  	 * we are still booting we should be the only thread around.
    454  	 */
    455 
    456 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    457 #if defined(VMSWAP)
    458 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    459 
    460 		/* allocate hash table or array depending on object size */
    461 		if (UAO_USES_SWHASH(aobj)) {
    462 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    463 			    HASH_LIST, kernswap ? false : true,
    464 			    &aobj->u_swhashmask);
    465 			if (aobj->u_swhash == NULL)
    466 				panic("uao_create: hashinit swhash failed");
    467 		} else {
    468 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    469 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    470 			if (aobj->u_swslots == NULL)
    471 				panic("uao_create: swslots allocation failed");
    472 		}
    473 #endif /* defined(VMSWAP) */
    474 
    475 		if (flags) {
    476 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    477 			return &aobj->u_obj;
    478 		}
    479 	}
    480 
    481 	/*
    482 	 * Initialise UVM object.
    483 	 */
    484 
    485 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
    486 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
    487 	if (__predict_false(kernobj)) {
    488 		/* Initialisation only once, for UAO_FLAG_KERNOBJ. */
    489 		mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
    490 		uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
    491 	}
    492 
    493 	/*
    494  	 * now that aobj is ready, add it to the global list
    495  	 */
    496 
    497 	mutex_enter(&uao_list_lock);
    498 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    499 	mutex_exit(&uao_list_lock);
    500 	return(&aobj->u_obj);
    501 }
    502 
    503 /*
    504  * uao_set_pgfl: allocate pages only from the specified freelist.
    505  *
    506  * => must be called before any pages are allocated for the object.
    507  * => reset by setting it to VM_NFREELIST, meaning any freelist.
    508  */
    509 
    510 void
    511 uao_set_pgfl(struct uvm_object *uobj, int freelist)
    512 {
    513 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    514 
    515 	KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
    516 	KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
    517 	    freelist);
    518 
    519 	aobj->u_freelist = freelist;
    520 }
    521 
    522 /*
    523  * uao_pagealloc: allocate a page for aobj.
    524  */
    525 
    526 static inline struct vm_page *
    527 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
    528 {
    529 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    530 
    531 	if (__predict_true(aobj->u_freelist == VM_NFREELIST))
    532 		return uvm_pagealloc(uobj, offset, NULL, flags);
    533 	else
    534 		return uvm_pagealloc_strat(uobj, offset, NULL, flags,
    535 		    UVM_PGA_STRAT_ONLY, aobj->u_freelist);
    536 }
    537 
    538 /*
    539  * uao_init: set up aobj pager subsystem
    540  *
    541  * => called at boot time from uvm_pager_init()
    542  */
    543 
    544 void
    545 uao_init(void)
    546 {
    547 	static int uao_initialized;
    548 
    549 	if (uao_initialized)
    550 		return;
    551 	uao_initialized = true;
    552 	LIST_INIT(&uao_list);
    553 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    554 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    555 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    556 }
    557 
    558 /*
    559  * uao_reference: hold a reference to an anonymous UVM object.
    560  */
    561 void
    562 uao_reference(struct uvm_object *uobj)
    563 {
    564 	/* Kernel object is persistent. */
    565 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    566 		return;
    567 	}
    568 	atomic_inc_uint(&uobj->uo_refs);
    569 }
    570 
    571 /*
    572  * uao_detach: drop a reference to an anonymous UVM object.
    573  */
    574 void
    575 uao_detach(struct uvm_object *uobj)
    576 {
    577 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    578 	struct vm_page *pg;
    579 
    580 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    581 
    582 	/*
    583 	 * Detaching from kernel object is a NOP.
    584 	 */
    585 
    586 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    587 		return;
    588 
    589 	/*
    590 	 * Drop the reference.  If it was the last one, destroy the object.
    591 	 */
    592 
    593 	KASSERT(uobj->uo_refs > 0);
    594 	UVMHIST_LOG(maphist,"  (uobj=0x%#jx)  ref=%jd",
    595 	    (uintptr_t)uobj, uobj->uo_refs, 0, 0);
    596 	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
    597 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    598 		return;
    599 	}
    600 
    601 	/*
    602 	 * Remove the aobj from the global list.
    603 	 */
    604 
    605 	mutex_enter(&uao_list_lock);
    606 	LIST_REMOVE(aobj, u_list);
    607 	mutex_exit(&uao_list_lock);
    608 
    609 	/*
    610 	 * Free all the pages left in the aobj.  For each page, when the
    611 	 * page is no longer busy (and thus after any disk I/O that it is
    612 	 * involved in is complete), release any swap resources and free
    613 	 * the page itself.
    614 	 */
    615 
    616 	mutex_enter(uobj->vmobjlock);
    617 	mutex_enter(&uvm_pageqlock);
    618 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    619 		pmap_page_protect(pg, VM_PROT_NONE);
    620 		if (pg->flags & PG_BUSY) {
    621 			pg->flags |= PG_WANTED;
    622 			mutex_exit(&uvm_pageqlock);
    623 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
    624 			    "uao_det", 0);
    625 			mutex_enter(uobj->vmobjlock);
    626 			mutex_enter(&uvm_pageqlock);
    627 			continue;
    628 		}
    629 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    630 		uvm_pagefree(pg);
    631 	}
    632 	mutex_exit(&uvm_pageqlock);
    633 
    634 	/*
    635 	 * Finally, free the anonymous UVM object itself.
    636 	 */
    637 
    638 	uao_free(aobj);
    639 }
    640 
    641 /*
    642  * uao_put: flush pages out of a uvm object
    643  *
    644  * => object should be locked by caller.  we may _unlock_ the object
    645  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    646  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    647  *	XXXJRT a page, we simply just deactivate it.  Should probably
    648  *	XXXJRT handle this better, in the future (although "flushing"
    649  *	XXXJRT anonymous memory isn't terribly important).
    650  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    651  *	or block.
    652  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    653  *	for flushing.
    654  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    655  *	that new pages are inserted on the tail end of the list.  thus,
    656  *	we can make a complete pass through the object in one go by starting
    657  *	at the head and working towards the tail (new pages are put in
    658  *	front of us).
    659  * => NOTE: we are allowed to lock the page queues, so the caller
    660  *	must not be holding the lock on them [e.g. pagedaemon had
    661  *	better not call us with the queues locked]
    662  * => we return 0 unless we encountered some sort of I/O error
    663  *	XXXJRT currently never happens, as we never directly initiate
    664  *	XXXJRT I/O
    665  *
    666  * note on page traversal:
    667  *	we can traverse the pages in an object either by going down the
    668  *	linked list in "uobj->memq", or we can go over the address range
    669  *	by page doing hash table lookups for each address.  depending
    670  *	on how many pages are in the object it may be cheaper to do one
    671  *	or the other.  we set "by_list" to true if we are using memq.
    672  *	if the cost of a hash lookup was equal to the cost of the list
    673  *	traversal we could compare the number of pages in the start->stop
    674  *	range to the total number of pages in the object.  however, it
    675  *	seems that a hash table lookup is more expensive than the linked
    676  *	list traversal, so we multiply the number of pages in the
    677  *	start->stop range by a penalty which we define below.
    678  */
    679 
    680 static int
    681 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    682 {
    683 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    684 	struct vm_page *pg, *nextpg, curmp, endmp;
    685 	bool by_list;
    686 	voff_t curoff;
    687 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    688 
    689 	KASSERT(mutex_owned(uobj->vmobjlock));
    690 
    691 	curoff = 0;
    692 	if (flags & PGO_ALLPAGES) {
    693 		start = 0;
    694 		stop = aobj->u_pages << PAGE_SHIFT;
    695 		by_list = true;		/* always go by the list */
    696 	} else {
    697 		start = trunc_page(start);
    698 		if (stop == 0) {
    699 			stop = aobj->u_pages << PAGE_SHIFT;
    700 		} else {
    701 			stop = round_page(stop);
    702 		}
    703 		if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) {
    704 			printf("uao_put: strange, got an out of range "
    705 			    "flush 0x%jx > 0x%jx (fixed)\n",
    706 			    (uintmax_t)stop,
    707 			    (uintmax_t)(aobj->u_pages << PAGE_SHIFT));
    708 			stop = aobj->u_pages << PAGE_SHIFT;
    709 		}
    710 		by_list = (uobj->uo_npages <=
    711 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    712 	}
    713 	UVMHIST_LOG(maphist,
    714 	    " flush start=0x%jx, stop=0x%jx, by_list=%jd, flags=0x%jx",
    715 	    start, stop, by_list, flags);
    716 
    717 	/*
    718 	 * Don't need to do any work here if we're not freeing
    719 	 * or deactivating pages.
    720 	 */
    721 
    722 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    723 		mutex_exit(uobj->vmobjlock);
    724 		return 0;
    725 	}
    726 
    727 	/*
    728 	 * Initialize the marker pages.  See the comment in
    729 	 * genfs_putpages() also.
    730 	 */
    731 
    732 	curmp.flags = PG_MARKER;
    733 	endmp.flags = PG_MARKER;
    734 
    735 	/*
    736 	 * now do it.  note: we must update nextpg in the body of loop or we
    737 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    738 	 * because we may free "pg" before doing the next loop.
    739 	 */
    740 
    741 	if (by_list) {
    742 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    743 		nextpg = TAILQ_FIRST(&uobj->memq);
    744 	} else {
    745 		curoff = start;
    746 		nextpg = NULL;	/* Quell compiler warning */
    747 	}
    748 
    749 	/* locked: uobj */
    750 	for (;;) {
    751 		if (by_list) {
    752 			pg = nextpg;
    753 			if (pg == &endmp)
    754 				break;
    755 			nextpg = TAILQ_NEXT(pg, listq.queue);
    756 			if (pg->flags & PG_MARKER)
    757 				continue;
    758 			if (pg->offset < start || pg->offset >= stop)
    759 				continue;
    760 		} else {
    761 			if (curoff < stop) {
    762 				pg = uvm_pagelookup(uobj, curoff);
    763 				curoff += PAGE_SIZE;
    764 			} else
    765 				break;
    766 			if (pg == NULL)
    767 				continue;
    768 		}
    769 
    770 		/*
    771 		 * wait and try again if the page is busy.
    772 		 */
    773 
    774 		if (pg->flags & PG_BUSY) {
    775 			if (by_list) {
    776 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    777 			}
    778 			pg->flags |= PG_WANTED;
    779 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    780 			    "uao_put", 0);
    781 			mutex_enter(uobj->vmobjlock);
    782 			if (by_list) {
    783 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    784 				TAILQ_REMOVE(&uobj->memq, &curmp,
    785 				    listq.queue);
    786 			} else
    787 				curoff -= PAGE_SIZE;
    788 			continue;
    789 		}
    790 
    791 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    792 
    793 		/*
    794 		 * XXX In these first 3 cases, we always just
    795 		 * XXX deactivate the page.  We may want to
    796 		 * XXX handle the different cases more specifically
    797 		 * XXX in the future.
    798 		 */
    799 
    800 		case PGO_CLEANIT|PGO_FREE:
    801 		case PGO_CLEANIT|PGO_DEACTIVATE:
    802 		case PGO_DEACTIVATE:
    803  deactivate_it:
    804 			mutex_enter(&uvm_pageqlock);
    805 			/* skip the page if it's wired */
    806 			if (pg->wire_count == 0) {
    807 				uvm_pagedeactivate(pg);
    808 			}
    809 			mutex_exit(&uvm_pageqlock);
    810 			break;
    811 
    812 		case PGO_FREE:
    813 			/*
    814 			 * If there are multiple references to
    815 			 * the object, just deactivate the page.
    816 			 */
    817 
    818 			if (uobj->uo_refs > 1)
    819 				goto deactivate_it;
    820 
    821 			/*
    822 			 * free the swap slot and the page.
    823 			 */
    824 
    825 			pmap_page_protect(pg, VM_PROT_NONE);
    826 
    827 			/*
    828 			 * freeing swapslot here is not strictly necessary.
    829 			 * however, leaving it here doesn't save much
    830 			 * because we need to update swap accounting anyway.
    831 			 */
    832 
    833 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    834 			mutex_enter(&uvm_pageqlock);
    835 			uvm_pagefree(pg);
    836 			mutex_exit(&uvm_pageqlock);
    837 			break;
    838 
    839 		default:
    840 			panic("%s: impossible", __func__);
    841 		}
    842 	}
    843 	if (by_list) {
    844 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    845 	}
    846 	mutex_exit(uobj->vmobjlock);
    847 	return 0;
    848 }
    849 
    850 /*
    851  * uao_get: fetch me a page
    852  *
    853  * we have three cases:
    854  * 1: page is resident     -> just return the page.
    855  * 2: page is zero-fill    -> allocate a new page and zero it.
    856  * 3: page is swapped out  -> fetch the page from swap.
    857  *
    858  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    859  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    860  * then we will need to return EBUSY.
    861  *
    862  * => prefer map unlocked (not required)
    863  * => object must be locked!  we will _unlock_ it before starting any I/O.
    864  * => flags: PGO_ALLPAGES: get all of the pages
    865  *           PGO_LOCKED: fault data structures are locked
    866  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    867  * => NOTE: caller must check for released pages!!
    868  */
    869 
    870 static int
    871 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    872     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    873 {
    874 	voff_t current_offset;
    875 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    876 	int lcv, gotpages, maxpages, swslot, pageidx;
    877 	bool done;
    878 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    879 
    880 	UVMHIST_LOG(pdhist, "aobj=%#jx offset=%jd, flags=%jd",
    881 		    (uintptr_t)uobj, offset, flags,0);
    882 
    883 	/*
    884  	 * get number of pages
    885  	 */
    886 
    887 	maxpages = *npagesp;
    888 
    889 	/*
    890  	 * step 1: handled the case where fault data structures are locked.
    891  	 */
    892 
    893 	if (flags & PGO_LOCKED) {
    894 
    895 		/*
    896  		 * step 1a: get pages that are already resident.   only do
    897 		 * this if the data structures are locked (i.e. the first
    898 		 * time through).
    899  		 */
    900 
    901 		done = true;	/* be optimistic */
    902 		gotpages = 0;	/* # of pages we got so far */
    903 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    904 		    lcv++, current_offset += PAGE_SIZE) {
    905 			/* do we care about this page?  if not, skip it */
    906 			if (pps[lcv] == PGO_DONTCARE)
    907 				continue;
    908 			ptmp = uvm_pagelookup(uobj, current_offset);
    909 
    910 			/*
    911  			 * if page is new, attempt to allocate the page,
    912 			 * zero-fill'd.
    913  			 */
    914 
    915 			if (ptmp == NULL && uao_find_swslot(uobj,
    916 			    current_offset >> PAGE_SHIFT) == 0) {
    917 				ptmp = uao_pagealloc(uobj, current_offset,
    918 				    UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
    919 				if (ptmp) {
    920 					/* new page */
    921 					ptmp->flags &= ~(PG_FAKE);
    922 					ptmp->pqflags |= PQ_AOBJ;
    923 					goto gotpage;
    924 				}
    925 			}
    926 
    927 			/*
    928 			 * to be useful must get a non-busy page
    929 			 */
    930 
    931 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    932 				if (lcv == centeridx ||
    933 				    (flags & PGO_ALLPAGES) != 0)
    934 					/* need to do a wait or I/O! */
    935 					done = false;
    936 				continue;
    937 			}
    938 
    939 			/*
    940 			 * useful page: busy/lock it and plug it in our
    941 			 * result array
    942 			 */
    943 
    944 			/* caller must un-busy this page */
    945 			ptmp->flags |= PG_BUSY;
    946 			UVM_PAGE_OWN(ptmp, "uao_get1");
    947 gotpage:
    948 			pps[lcv] = ptmp;
    949 			gotpages++;
    950 		}
    951 
    952 		/*
    953  		 * step 1b: now we've either done everything needed or we
    954 		 * to unlock and do some waiting or I/O.
    955  		 */
    956 
    957 		UVMHIST_LOG(pdhist, "<- done (done=%jd)", done, 0,0,0);
    958 		*npagesp = gotpages;
    959 		if (done)
    960 			return 0;
    961 		else
    962 			return EBUSY;
    963 	}
    964 
    965 	/*
    966  	 * step 2: get non-resident or busy pages.
    967  	 * object is locked.   data structures are unlocked.
    968  	 */
    969 
    970 	if ((flags & PGO_SYNCIO) == 0) {
    971 		goto done;
    972 	}
    973 
    974 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    975 	    lcv++, current_offset += PAGE_SIZE) {
    976 
    977 		/*
    978 		 * - skip over pages we've already gotten or don't want
    979 		 * - skip over pages we don't _have_ to get
    980 		 */
    981 
    982 		if (pps[lcv] != NULL ||
    983 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    984 			continue;
    985 
    986 		pageidx = current_offset >> PAGE_SHIFT;
    987 
    988 		/*
    989  		 * we have yet to locate the current page (pps[lcv]).   we
    990 		 * first look for a page that is already at the current offset.
    991 		 * if we find a page, we check to see if it is busy or
    992 		 * released.  if that is the case, then we sleep on the page
    993 		 * until it is no longer busy or released and repeat the lookup.
    994 		 * if the page we found is neither busy nor released, then we
    995 		 * busy it (so we own it) and plug it into pps[lcv].   this
    996 		 * 'break's the following while loop and indicates we are
    997 		 * ready to move on to the next page in the "lcv" loop above.
    998  		 *
    999  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1000 		 * then it means that we allocated a new busy/fake/clean page
   1001 		 * ptmp in the object and we need to do I/O to fill in the data.
   1002  		 */
   1003 
   1004 		/* top of "pps" while loop */
   1005 		while (pps[lcv] == NULL) {
   1006 			/* look for a resident page */
   1007 			ptmp = uvm_pagelookup(uobj, current_offset);
   1008 
   1009 			/* not resident?   allocate one now (if we can) */
   1010 			if (ptmp == NULL) {
   1011 
   1012 				ptmp = uao_pagealloc(uobj, current_offset, 0);
   1013 
   1014 				/* out of RAM? */
   1015 				if (ptmp == NULL) {
   1016 					mutex_exit(uobj->vmobjlock);
   1017 					UVMHIST_LOG(pdhist,
   1018 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1019 					uvm_wait("uao_getpage");
   1020 					mutex_enter(uobj->vmobjlock);
   1021 					continue;
   1022 				}
   1023 
   1024 				/*
   1025 				 * safe with PQ's unlocked: because we just
   1026 				 * alloc'd the page
   1027 				 */
   1028 
   1029 				ptmp->pqflags |= PQ_AOBJ;
   1030 
   1031 				/*
   1032 				 * got new page ready for I/O.  break pps while
   1033 				 * loop.  pps[lcv] is still NULL.
   1034 				 */
   1035 
   1036 				break;
   1037 			}
   1038 
   1039 			/* page is there, see if we need to wait on it */
   1040 			if ((ptmp->flags & PG_BUSY) != 0) {
   1041 				ptmp->flags |= PG_WANTED;
   1042 				UVMHIST_LOG(pdhist,
   1043 				    "sleeping, ptmp->flags 0x%jx\n",
   1044 				    ptmp->flags,0,0,0);
   1045 				UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
   1046 				    false, "uao_get", 0);
   1047 				mutex_enter(uobj->vmobjlock);
   1048 				continue;
   1049 			}
   1050 
   1051 			/*
   1052  			 * if we get here then the page has become resident and
   1053 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1054 			 * own it) and set pps[lcv] (so that we exit the while
   1055 			 * loop).
   1056  			 */
   1057 
   1058 			/* we own it, caller must un-busy */
   1059 			ptmp->flags |= PG_BUSY;
   1060 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1061 			pps[lcv] = ptmp;
   1062 		}
   1063 
   1064 		/*
   1065  		 * if we own the valid page at the correct offset, pps[lcv] will
   1066  		 * point to it.   nothing more to do except go to the next page.
   1067  		 */
   1068 
   1069 		if (pps[lcv])
   1070 			continue;			/* next lcv */
   1071 
   1072 		/*
   1073  		 * we have a "fake/busy/clean" page that we just allocated.
   1074  		 * do the needed "i/o", either reading from swap or zeroing.
   1075  		 */
   1076 
   1077 		swslot = uao_find_swslot(uobj, pageidx);
   1078 
   1079 		/*
   1080  		 * just zero the page if there's nothing in swap.
   1081  		 */
   1082 
   1083 		if (swslot == 0) {
   1084 
   1085 			/*
   1086 			 * page hasn't existed before, just zero it.
   1087 			 */
   1088 
   1089 			uvm_pagezero(ptmp);
   1090 		} else {
   1091 #if defined(VMSWAP)
   1092 			int error;
   1093 
   1094 			UVMHIST_LOG(pdhist, "pagein from swslot %jd",
   1095 			     swslot, 0,0,0);
   1096 
   1097 			/*
   1098 			 * page in the swapped-out page.
   1099 			 * unlock object for i/o, relock when done.
   1100 			 */
   1101 
   1102 			mutex_exit(uobj->vmobjlock);
   1103 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1104 			mutex_enter(uobj->vmobjlock);
   1105 
   1106 			/*
   1107 			 * I/O done.  check for errors.
   1108 			 */
   1109 
   1110 			if (error != 0) {
   1111 				UVMHIST_LOG(pdhist, "<- done (error=%jd)",
   1112 				    error,0,0,0);
   1113 				if (ptmp->flags & PG_WANTED)
   1114 					wakeup(ptmp);
   1115 
   1116 				/*
   1117 				 * remove the swap slot from the aobj
   1118 				 * and mark the aobj as having no real slot.
   1119 				 * don't free the swap slot, thus preventing
   1120 				 * it from being used again.
   1121 				 */
   1122 
   1123 				swslot = uao_set_swslot(uobj, pageidx,
   1124 				    SWSLOT_BAD);
   1125 				if (swslot > 0) {
   1126 					uvm_swap_markbad(swslot, 1);
   1127 				}
   1128 
   1129 				mutex_enter(&uvm_pageqlock);
   1130 				uvm_pagefree(ptmp);
   1131 				mutex_exit(&uvm_pageqlock);
   1132 				mutex_exit(uobj->vmobjlock);
   1133 				return error;
   1134 			}
   1135 #else /* defined(VMSWAP) */
   1136 			panic("%s: pagein", __func__);
   1137 #endif /* defined(VMSWAP) */
   1138 		}
   1139 
   1140 		if ((access_type & VM_PROT_WRITE) == 0) {
   1141 			ptmp->flags |= PG_CLEAN;
   1142 			pmap_clear_modify(ptmp);
   1143 		}
   1144 
   1145 		/*
   1146  		 * we got the page!   clear the fake flag (indicates valid
   1147 		 * data now in page) and plug into our result array.   note
   1148 		 * that page is still busy.
   1149  		 *
   1150  		 * it is the callers job to:
   1151  		 * => check if the page is released
   1152  		 * => unbusy the page
   1153  		 * => activate the page
   1154  		 */
   1155 
   1156 		ptmp->flags &= ~PG_FAKE;
   1157 		pps[lcv] = ptmp;
   1158 	}
   1159 
   1160 	/*
   1161  	 * finally, unlock object and return.
   1162  	 */
   1163 
   1164 done:
   1165 	mutex_exit(uobj->vmobjlock);
   1166 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1167 	return 0;
   1168 }
   1169 
   1170 #if defined(VMSWAP)
   1171 
   1172 /*
   1173  * uao_dropswap:  release any swap resources from this aobj page.
   1174  *
   1175  * => aobj must be locked or have a reference count of 0.
   1176  */
   1177 
   1178 void
   1179 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1180 {
   1181 	int slot;
   1182 
   1183 	slot = uao_set_swslot(uobj, pageidx, 0);
   1184 	if (slot) {
   1185 		uvm_swap_free(slot, 1);
   1186 	}
   1187 }
   1188 
   1189 /*
   1190  * page in every page in every aobj that is paged-out to a range of swslots.
   1191  *
   1192  * => nothing should be locked.
   1193  * => returns true if pagein was aborted due to lack of memory.
   1194  */
   1195 
   1196 bool
   1197 uao_swap_off(int startslot, int endslot)
   1198 {
   1199 	struct uvm_aobj *aobj;
   1200 
   1201 	/*
   1202 	 * Walk the list of all anonymous UVM objects.  Grab the first.
   1203 	 */
   1204 	mutex_enter(&uao_list_lock);
   1205 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
   1206 		mutex_exit(&uao_list_lock);
   1207 		return false;
   1208 	}
   1209 	uao_reference(&aobj->u_obj);
   1210 
   1211 	do {
   1212 		struct uvm_aobj *nextaobj;
   1213 		bool rv;
   1214 
   1215 		/*
   1216 		 * Prefetch the next object and immediately hold a reference
   1217 		 * on it, so neither the current nor the next entry could
   1218 		 * disappear while we are iterating.
   1219 		 */
   1220 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
   1221 			uao_reference(&nextaobj->u_obj);
   1222 		}
   1223 		mutex_exit(&uao_list_lock);
   1224 
   1225 		/*
   1226 		 * Page in all pages in the swap slot range.
   1227 		 */
   1228 		mutex_enter(aobj->u_obj.vmobjlock);
   1229 		rv = uao_pagein(aobj, startslot, endslot);
   1230 		mutex_exit(aobj->u_obj.vmobjlock);
   1231 
   1232 		/* Drop the reference of the current object. */
   1233 		uao_detach(&aobj->u_obj);
   1234 		if (rv) {
   1235 			if (nextaobj) {
   1236 				uao_detach(&nextaobj->u_obj);
   1237 			}
   1238 			return rv;
   1239 		}
   1240 
   1241 		aobj = nextaobj;
   1242 		mutex_enter(&uao_list_lock);
   1243 	} while (aobj);
   1244 
   1245 	mutex_exit(&uao_list_lock);
   1246 	return false;
   1247 }
   1248 
   1249 /*
   1250  * page in any pages from aobj in the given range.
   1251  *
   1252  * => aobj must be locked and is returned locked.
   1253  * => returns true if pagein was aborted due to lack of memory.
   1254  */
   1255 static bool
   1256 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1257 {
   1258 	bool rv;
   1259 
   1260 	if (UAO_USES_SWHASH(aobj)) {
   1261 		struct uao_swhash_elt *elt;
   1262 		int buck;
   1263 
   1264 restart:
   1265 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1266 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1267 			     elt != NULL;
   1268 			     elt = LIST_NEXT(elt, list)) {
   1269 				int i;
   1270 
   1271 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1272 					int slot = elt->slots[i];
   1273 
   1274 					/*
   1275 					 * if the slot isn't in range, skip it.
   1276 					 */
   1277 
   1278 					if (slot < startslot ||
   1279 					    slot >= endslot) {
   1280 						continue;
   1281 					}
   1282 
   1283 					/*
   1284 					 * process the page,
   1285 					 * the start over on this object
   1286 					 * since the swhash elt
   1287 					 * may have been freed.
   1288 					 */
   1289 
   1290 					rv = uao_pagein_page(aobj,
   1291 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1292 					if (rv) {
   1293 						return rv;
   1294 					}
   1295 					goto restart;
   1296 				}
   1297 			}
   1298 		}
   1299 	} else {
   1300 		int i;
   1301 
   1302 		for (i = 0; i < aobj->u_pages; i++) {
   1303 			int slot = aobj->u_swslots[i];
   1304 
   1305 			/*
   1306 			 * if the slot isn't in range, skip it
   1307 			 */
   1308 
   1309 			if (slot < startslot || slot >= endslot) {
   1310 				continue;
   1311 			}
   1312 
   1313 			/*
   1314 			 * process the page.
   1315 			 */
   1316 
   1317 			rv = uao_pagein_page(aobj, i);
   1318 			if (rv) {
   1319 				return rv;
   1320 			}
   1321 		}
   1322 	}
   1323 
   1324 	return false;
   1325 }
   1326 
   1327 /*
   1328  * uao_pagein_page: page in a single page from an anonymous UVM object.
   1329  *
   1330  * => Returns true if pagein was aborted due to lack of memory.
   1331  * => Object must be locked and is returned locked.
   1332  */
   1333 
   1334 static bool
   1335 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1336 {
   1337 	struct uvm_object *uobj = &aobj->u_obj;
   1338 	struct vm_page *pg;
   1339 	int rv, npages;
   1340 
   1341 	pg = NULL;
   1342 	npages = 1;
   1343 
   1344 	KASSERT(mutex_owned(uobj->vmobjlock));
   1345 	rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
   1346 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
   1347 
   1348 	/*
   1349 	 * relock and finish up.
   1350 	 */
   1351 
   1352 	mutex_enter(uobj->vmobjlock);
   1353 	switch (rv) {
   1354 	case 0:
   1355 		break;
   1356 
   1357 	case EIO:
   1358 	case ERESTART:
   1359 
   1360 		/*
   1361 		 * nothing more to do on errors.
   1362 		 * ERESTART can only mean that the anon was freed,
   1363 		 * so again there's nothing to do.
   1364 		 */
   1365 
   1366 		return false;
   1367 
   1368 	default:
   1369 		return true;
   1370 	}
   1371 
   1372 	/*
   1373 	 * ok, we've got the page now.
   1374 	 * mark it as dirty, clear its swslot and un-busy it.
   1375 	 */
   1376 	uao_dropswap(&aobj->u_obj, pageidx);
   1377 
   1378 	/*
   1379 	 * make sure it's on a page queue.
   1380 	 */
   1381 	mutex_enter(&uvm_pageqlock);
   1382 	if (pg->wire_count == 0)
   1383 		uvm_pageenqueue(pg);
   1384 	mutex_exit(&uvm_pageqlock);
   1385 
   1386 	if (pg->flags & PG_WANTED) {
   1387 		wakeup(pg);
   1388 	}
   1389 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1390 	UVM_PAGE_OWN(pg, NULL);
   1391 
   1392 	return false;
   1393 }
   1394 
   1395 /*
   1396  * uao_dropswap_range: drop swapslots in the range.
   1397  *
   1398  * => aobj must be locked and is returned locked.
   1399  * => start is inclusive.  end is exclusive.
   1400  */
   1401 
   1402 void
   1403 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1404 {
   1405 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1406 	int swpgonlydelta = 0;
   1407 
   1408 	KASSERT(mutex_owned(uobj->vmobjlock));
   1409 
   1410 	if (end == 0) {
   1411 		end = INT64_MAX;
   1412 	}
   1413 
   1414 	if (UAO_USES_SWHASH(aobj)) {
   1415 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1416 		voff_t taghi;
   1417 		voff_t taglo;
   1418 
   1419 		taglo = UAO_SWHASH_ELT_TAG(start);
   1420 		taghi = UAO_SWHASH_ELT_TAG(end);
   1421 
   1422 		for (i = 0; i < hashbuckets; i++) {
   1423 			struct uao_swhash_elt *elt, *next;
   1424 
   1425 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1426 			     elt != NULL;
   1427 			     elt = next) {
   1428 				int startidx, endidx;
   1429 				int j;
   1430 
   1431 				next = LIST_NEXT(elt, list);
   1432 
   1433 				if (elt->tag < taglo || taghi < elt->tag) {
   1434 					continue;
   1435 				}
   1436 
   1437 				if (elt->tag == taglo) {
   1438 					startidx =
   1439 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1440 				} else {
   1441 					startidx = 0;
   1442 				}
   1443 
   1444 				if (elt->tag == taghi) {
   1445 					endidx =
   1446 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1447 				} else {
   1448 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1449 				}
   1450 
   1451 				for (j = startidx; j < endidx; j++) {
   1452 					int slot = elt->slots[j];
   1453 
   1454 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1455 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1456 					    + j) << PAGE_SHIFT) == NULL);
   1457 					if (slot > 0) {
   1458 						uvm_swap_free(slot, 1);
   1459 						swpgonlydelta++;
   1460 						KASSERT(elt->count > 0);
   1461 						elt->slots[j] = 0;
   1462 						elt->count--;
   1463 					}
   1464 				}
   1465 
   1466 				if (elt->count == 0) {
   1467 					LIST_REMOVE(elt, list);
   1468 					pool_put(&uao_swhash_elt_pool, elt);
   1469 				}
   1470 			}
   1471 		}
   1472 	} else {
   1473 		int i;
   1474 
   1475 		if (aobj->u_pages < end) {
   1476 			end = aobj->u_pages;
   1477 		}
   1478 		for (i = start; i < end; i++) {
   1479 			int slot = aobj->u_swslots[i];
   1480 
   1481 			if (slot > 0) {
   1482 				uvm_swap_free(slot, 1);
   1483 				swpgonlydelta++;
   1484 			}
   1485 		}
   1486 	}
   1487 
   1488 	/*
   1489 	 * adjust the counter of pages only in swap for all
   1490 	 * the swap slots we've freed.
   1491 	 */
   1492 
   1493 	if (swpgonlydelta > 0) {
   1494 		mutex_enter(&uvm_swap_data_lock);
   1495 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1496 		uvmexp.swpgonly -= swpgonlydelta;
   1497 		mutex_exit(&uvm_swap_data_lock);
   1498 	}
   1499 }
   1500 
   1501 #endif /* defined(VMSWAP) */
   1502