uvm_aobj.c revision 1.126.2.1 1 /* $NetBSD: uvm_aobj.c,v 1.126.2.1 2018/06/25 07:26:08 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.126.2.1 2018/06/25 07:26:08 pgoyette Exp $");
42
43 #ifdef _KERNEL_OPT
44 #include "opt_uvmhist.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/pool.h>
52 #include <sys/atomic.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to
58 * keeping the list of resident pages, it may also keep a list of allocated
59 * swap blocks. Depending on the size of the object, this list is either
60 * stored in an array (small objects) or in a hash table (large objects).
61 *
62 * Lock order
63 *
64 * uao_list_lock ->
65 * uvm_object::vmobjlock
66 */
67
68 /*
69 * Note: for hash tables, we break the address space of the aobj into blocks
70 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
71 */
72
73 #define UAO_SWHASH_CLUSTER_SHIFT 4
74 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
75
76 /* Get the "tag" for this page index. */
77 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
78 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
79 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
80
81 /* Given an ELT and a page index, find the swap slot. */
82 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
83 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
84
85 /* Given an ELT, return its pageidx base. */
86 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
87 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
88
89 /* The hash function. */
90 #define UAO_SWHASH_HASH(aobj, idx) \
91 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
92 & (aobj)->u_swhashmask)])
93
94 /*
95 * The threshold which determines whether we will use an array or a
96 * hash table to store the list of allocated swap blocks.
97 */
98 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
99 #define UAO_USES_SWHASH(aobj) \
100 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
101
102 /* The number of buckets in a hash, with an upper bound. */
103 #define UAO_SWHASH_MAXBUCKETS 256
104 #define UAO_SWHASH_BUCKETS(aobj) \
105 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
106
107 /*
108 * uao_swhash_elt: when a hash table is being used, this structure defines
109 * the format of an entry in the bucket list.
110 */
111
112 struct uao_swhash_elt {
113 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
114 voff_t tag; /* our 'tag' */
115 int count; /* our number of active slots */
116 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
117 };
118
119 /*
120 * uao_swhash: the swap hash table structure
121 */
122
123 LIST_HEAD(uao_swhash, uao_swhash_elt);
124
125 /*
126 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
127 * Note: pages for this pool must not come from a pageable kernel map.
128 */
129 static struct pool uao_swhash_elt_pool __cacheline_aligned;
130
131 /*
132 * uvm_aobj: the actual anon-backed uvm_object
133 *
134 * => the uvm_object is at the top of the structure, this allows
135 * (struct uvm_aobj *) == (struct uvm_object *)
136 * => only one of u_swslots and u_swhash is used in any given aobj
137 */
138
139 struct uvm_aobj {
140 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
141 pgoff_t u_pages; /* number of pages in entire object */
142 int u_flags; /* the flags (see uvm_aobj.h) */
143 int *u_swslots; /* array of offset->swapslot mappings */
144 /*
145 * hashtable of offset->swapslot mappings
146 * (u_swhash is an array of bucket heads)
147 */
148 struct uao_swhash *u_swhash;
149 u_long u_swhashmask; /* mask for hashtable */
150 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
151 int u_freelist; /* freelist to allocate pages from */
152 };
153
154 static void uao_free(struct uvm_aobj *);
155 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
156 int *, int, vm_prot_t, int, int);
157 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
158
159 #if defined(VMSWAP)
160 static struct uao_swhash_elt *uao_find_swhash_elt
161 (struct uvm_aobj *, int, bool);
162
163 static bool uao_pagein(struct uvm_aobj *, int, int);
164 static bool uao_pagein_page(struct uvm_aobj *, int);
165 #endif /* defined(VMSWAP) */
166
167 static struct vm_page *uao_pagealloc(struct uvm_object *, voff_t, int);
168
169 /*
170 * aobj_pager
171 *
172 * note that some functions (e.g. put) are handled elsewhere
173 */
174
175 const struct uvm_pagerops aobj_pager = {
176 .pgo_reference = uao_reference,
177 .pgo_detach = uao_detach,
178 .pgo_get = uao_get,
179 .pgo_put = uao_put,
180 };
181
182 /*
183 * uao_list: global list of active aobjs, locked by uao_list_lock
184 */
185
186 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned;
187 static kmutex_t uao_list_lock __cacheline_aligned;
188
189 /*
190 * hash table/array related functions
191 */
192
193 #if defined(VMSWAP)
194
195 /*
196 * uao_find_swhash_elt: find (or create) a hash table entry for a page
197 * offset.
198 *
199 * => the object should be locked by the caller
200 */
201
202 static struct uao_swhash_elt *
203 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
204 {
205 struct uao_swhash *swhash;
206 struct uao_swhash_elt *elt;
207 voff_t page_tag;
208
209 swhash = UAO_SWHASH_HASH(aobj, pageidx);
210 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
211
212 /*
213 * now search the bucket for the requested tag
214 */
215
216 LIST_FOREACH(elt, swhash, list) {
217 if (elt->tag == page_tag) {
218 return elt;
219 }
220 }
221 if (!create) {
222 return NULL;
223 }
224
225 /*
226 * allocate a new entry for the bucket and init/insert it in
227 */
228
229 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
230 if (elt == NULL) {
231 return NULL;
232 }
233 LIST_INSERT_HEAD(swhash, elt, list);
234 elt->tag = page_tag;
235 elt->count = 0;
236 memset(elt->slots, 0, sizeof(elt->slots));
237 return elt;
238 }
239
240 /*
241 * uao_find_swslot: find the swap slot number for an aobj/pageidx
242 *
243 * => object must be locked by caller
244 */
245
246 int
247 uao_find_swslot(struct uvm_object *uobj, int pageidx)
248 {
249 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
250 struct uao_swhash_elt *elt;
251
252 /*
253 * if noswap flag is set, then we never return a slot
254 */
255
256 if (aobj->u_flags & UAO_FLAG_NOSWAP)
257 return 0;
258
259 /*
260 * if hashing, look in hash table.
261 */
262
263 if (UAO_USES_SWHASH(aobj)) {
264 elt = uao_find_swhash_elt(aobj, pageidx, false);
265 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
266 }
267
268 /*
269 * otherwise, look in the array
270 */
271
272 return aobj->u_swslots[pageidx];
273 }
274
275 /*
276 * uao_set_swslot: set the swap slot for a page in an aobj.
277 *
278 * => setting a slot to zero frees the slot
279 * => object must be locked by caller
280 * => we return the old slot number, or -1 if we failed to allocate
281 * memory to record the new slot number
282 */
283
284 int
285 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
286 {
287 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
288 struct uao_swhash_elt *elt;
289 int oldslot;
290 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
291 UVMHIST_LOG(pdhist, "aobj %#jx pageidx %jd slot %jd",
292 (uintptr_t)aobj, pageidx, slot, 0);
293
294 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
295
296 /*
297 * if noswap flag is set, then we can't set a non-zero slot.
298 */
299
300 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
301 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
302 return 0;
303 }
304
305 /*
306 * are we using a hash table? if so, add it in the hash.
307 */
308
309 if (UAO_USES_SWHASH(aobj)) {
310
311 /*
312 * Avoid allocating an entry just to free it again if
313 * the page had not swap slot in the first place, and
314 * we are freeing.
315 */
316
317 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
318 if (elt == NULL) {
319 return slot ? -1 : 0;
320 }
321
322 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
323 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
324
325 /*
326 * now adjust the elt's reference counter and free it if we've
327 * dropped it to zero.
328 */
329
330 if (slot) {
331 if (oldslot == 0)
332 elt->count++;
333 } else {
334 if (oldslot)
335 elt->count--;
336
337 if (elt->count == 0) {
338 LIST_REMOVE(elt, list);
339 pool_put(&uao_swhash_elt_pool, elt);
340 }
341 }
342 } else {
343 /* we are using an array */
344 oldslot = aobj->u_swslots[pageidx];
345 aobj->u_swslots[pageidx] = slot;
346 }
347 return oldslot;
348 }
349
350 #endif /* defined(VMSWAP) */
351
352 /*
353 * end of hash/array functions
354 */
355
356 /*
357 * uao_free: free all resources held by an aobj, and then free the aobj
358 *
359 * => the aobj should be dead
360 */
361
362 static void
363 uao_free(struct uvm_aobj *aobj)
364 {
365 struct uvm_object *uobj = &aobj->u_obj;
366
367 KASSERT(mutex_owned(uobj->vmobjlock));
368 uao_dropswap_range(uobj, 0, 0);
369 mutex_exit(uobj->vmobjlock);
370
371 #if defined(VMSWAP)
372 if (UAO_USES_SWHASH(aobj)) {
373
374 /*
375 * free the hash table itself.
376 */
377
378 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
379 } else {
380
381 /*
382 * free the array itsself.
383 */
384
385 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
386 }
387 #endif /* defined(VMSWAP) */
388
389 /*
390 * finally free the aobj itself
391 */
392
393 uvm_obj_destroy(uobj, true);
394 kmem_free(aobj, sizeof(struct uvm_aobj));
395 }
396
397 /*
398 * pager functions
399 */
400
401 /*
402 * uao_create: create an aobj of the given size and return its uvm_object.
403 *
404 * => for normal use, flags are always zero
405 * => for the kernel object, the flags are:
406 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
407 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
408 */
409
410 struct uvm_object *
411 uao_create(voff_t size, int flags)
412 {
413 static struct uvm_aobj kernel_object_store;
414 static kmutex_t kernel_object_lock;
415 static int kobj_alloced __diagused = 0;
416 pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT;
417 struct uvm_aobj *aobj;
418 int refs;
419
420 /*
421 * Allocate a new aobj, unless kernel object is requested.
422 */
423
424 if (flags & UAO_FLAG_KERNOBJ) {
425 KASSERT(!kobj_alloced);
426 aobj = &kernel_object_store;
427 aobj->u_pages = pages;
428 aobj->u_flags = UAO_FLAG_NOSWAP;
429 refs = UVM_OBJ_KERN;
430 kobj_alloced = UAO_FLAG_KERNOBJ;
431 } else if (flags & UAO_FLAG_KERNSWAP) {
432 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
433 aobj = &kernel_object_store;
434 kobj_alloced = UAO_FLAG_KERNSWAP;
435 refs = 0xdeadbeaf; /* XXX: gcc */
436 } else {
437 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
438 aobj->u_pages = pages;
439 aobj->u_flags = 0;
440 refs = 1;
441 }
442
443 /*
444 * no freelist by default
445 */
446
447 aobj->u_freelist = VM_NFREELIST;
448
449 /*
450 * allocate hash/array if necessary
451 *
452 * note: in the KERNSWAP case no need to worry about locking since
453 * we are still booting we should be the only thread around.
454 */
455
456 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
457 #if defined(VMSWAP)
458 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
459
460 /* allocate hash table or array depending on object size */
461 if (UAO_USES_SWHASH(aobj)) {
462 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
463 HASH_LIST, kernswap ? false : true,
464 &aobj->u_swhashmask);
465 if (aobj->u_swhash == NULL)
466 panic("uao_create: hashinit swhash failed");
467 } else {
468 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
469 kernswap ? KM_NOSLEEP : KM_SLEEP);
470 if (aobj->u_swslots == NULL)
471 panic("uao_create: swslots allocation failed");
472 }
473 #endif /* defined(VMSWAP) */
474
475 if (flags) {
476 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
477 return &aobj->u_obj;
478 }
479 }
480
481 /*
482 * Initialise UVM object.
483 */
484
485 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
486 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
487 if (__predict_false(kernobj)) {
488 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
489 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
490 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
491 }
492
493 /*
494 * now that aobj is ready, add it to the global list
495 */
496
497 mutex_enter(&uao_list_lock);
498 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
499 mutex_exit(&uao_list_lock);
500 return(&aobj->u_obj);
501 }
502
503 /*
504 * uao_set_pgfl: allocate pages only from the specified freelist.
505 *
506 * => must be called before any pages are allocated for the object.
507 * => reset by setting it to VM_NFREELIST, meaning any freelist.
508 */
509
510 void
511 uao_set_pgfl(struct uvm_object *uobj, int freelist)
512 {
513 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
514
515 KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
516 KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
517 freelist);
518
519 aobj->u_freelist = freelist;
520 }
521
522 /*
523 * uao_pagealloc: allocate a page for aobj.
524 */
525
526 static inline struct vm_page *
527 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
528 {
529 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
530
531 if (__predict_true(aobj->u_freelist == VM_NFREELIST))
532 return uvm_pagealloc(uobj, offset, NULL, flags);
533 else
534 return uvm_pagealloc_strat(uobj, offset, NULL, flags,
535 UVM_PGA_STRAT_ONLY, aobj->u_freelist);
536 }
537
538 /*
539 * uao_init: set up aobj pager subsystem
540 *
541 * => called at boot time from uvm_pager_init()
542 */
543
544 void
545 uao_init(void)
546 {
547 static int uao_initialized;
548
549 if (uao_initialized)
550 return;
551 uao_initialized = true;
552 LIST_INIT(&uao_list);
553 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
554 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
555 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
556 }
557
558 /*
559 * uao_reference: hold a reference to an anonymous UVM object.
560 */
561 void
562 uao_reference(struct uvm_object *uobj)
563 {
564 /* Kernel object is persistent. */
565 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
566 return;
567 }
568 atomic_inc_uint(&uobj->uo_refs);
569 }
570
571 /*
572 * uao_detach: drop a reference to an anonymous UVM object.
573 */
574 void
575 uao_detach(struct uvm_object *uobj)
576 {
577 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
578 struct vm_page *pg;
579
580 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
581
582 /*
583 * Detaching from kernel object is a NOP.
584 */
585
586 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
587 return;
588
589 /*
590 * Drop the reference. If it was the last one, destroy the object.
591 */
592
593 KASSERT(uobj->uo_refs > 0);
594 UVMHIST_LOG(maphist," (uobj=0x%#jx) ref=%jd",
595 (uintptr_t)uobj, uobj->uo_refs, 0, 0);
596 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
597 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
598 return;
599 }
600
601 /*
602 * Remove the aobj from the global list.
603 */
604
605 mutex_enter(&uao_list_lock);
606 LIST_REMOVE(aobj, u_list);
607 mutex_exit(&uao_list_lock);
608
609 /*
610 * Free all the pages left in the aobj. For each page, when the
611 * page is no longer busy (and thus after any disk I/O that it is
612 * involved in is complete), release any swap resources and free
613 * the page itself.
614 */
615
616 mutex_enter(uobj->vmobjlock);
617 mutex_enter(&uvm_pageqlock);
618 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
619 pmap_page_protect(pg, VM_PROT_NONE);
620 if (pg->flags & PG_BUSY) {
621 pg->flags |= PG_WANTED;
622 mutex_exit(&uvm_pageqlock);
623 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
624 "uao_det", 0);
625 mutex_enter(uobj->vmobjlock);
626 mutex_enter(&uvm_pageqlock);
627 continue;
628 }
629 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
630 uvm_pagefree(pg);
631 }
632 mutex_exit(&uvm_pageqlock);
633
634 /*
635 * Finally, free the anonymous UVM object itself.
636 */
637
638 uao_free(aobj);
639 }
640
641 /*
642 * uao_put: flush pages out of a uvm object
643 *
644 * => object should be locked by caller. we may _unlock_ the object
645 * if (and only if) we need to clean a page (PGO_CLEANIT).
646 * XXXJRT Currently, however, we don't. In the case of cleaning
647 * XXXJRT a page, we simply just deactivate it. Should probably
648 * XXXJRT handle this better, in the future (although "flushing"
649 * XXXJRT anonymous memory isn't terribly important).
650 * => if PGO_CLEANIT is not set, then we will neither unlock the object
651 * or block.
652 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
653 * for flushing.
654 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
655 * that new pages are inserted on the tail end of the list. thus,
656 * we can make a complete pass through the object in one go by starting
657 * at the head and working towards the tail (new pages are put in
658 * front of us).
659 * => NOTE: we are allowed to lock the page queues, so the caller
660 * must not be holding the lock on them [e.g. pagedaemon had
661 * better not call us with the queues locked]
662 * => we return 0 unless we encountered some sort of I/O error
663 * XXXJRT currently never happens, as we never directly initiate
664 * XXXJRT I/O
665 *
666 * note on page traversal:
667 * we can traverse the pages in an object either by going down the
668 * linked list in "uobj->memq", or we can go over the address range
669 * by page doing hash table lookups for each address. depending
670 * on how many pages are in the object it may be cheaper to do one
671 * or the other. we set "by_list" to true if we are using memq.
672 * if the cost of a hash lookup was equal to the cost of the list
673 * traversal we could compare the number of pages in the start->stop
674 * range to the total number of pages in the object. however, it
675 * seems that a hash table lookup is more expensive than the linked
676 * list traversal, so we multiply the number of pages in the
677 * start->stop range by a penalty which we define below.
678 */
679
680 static int
681 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
682 {
683 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
684 struct vm_page *pg, *nextpg, curmp, endmp;
685 bool by_list;
686 voff_t curoff;
687 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
688
689 KASSERT(mutex_owned(uobj->vmobjlock));
690
691 curoff = 0;
692 if (flags & PGO_ALLPAGES) {
693 start = 0;
694 stop = aobj->u_pages << PAGE_SHIFT;
695 by_list = true; /* always go by the list */
696 } else {
697 start = trunc_page(start);
698 if (stop == 0) {
699 stop = aobj->u_pages << PAGE_SHIFT;
700 } else {
701 stop = round_page(stop);
702 }
703 if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) {
704 printf("uao_put: strange, got an out of range "
705 "flush 0x%jx > 0x%jx (fixed)\n",
706 (uintmax_t)stop,
707 (uintmax_t)(aobj->u_pages << PAGE_SHIFT));
708 stop = aobj->u_pages << PAGE_SHIFT;
709 }
710 by_list = (uobj->uo_npages <=
711 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
712 }
713 UVMHIST_LOG(maphist,
714 " flush start=0x%jx, stop=0x%jx, by_list=%jd, flags=0x%jx",
715 start, stop, by_list, flags);
716
717 /*
718 * Don't need to do any work here if we're not freeing
719 * or deactivating pages.
720 */
721
722 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
723 mutex_exit(uobj->vmobjlock);
724 return 0;
725 }
726
727 /*
728 * Initialize the marker pages. See the comment in
729 * genfs_putpages() also.
730 */
731
732 curmp.flags = PG_MARKER;
733 endmp.flags = PG_MARKER;
734
735 /*
736 * now do it. note: we must update nextpg in the body of loop or we
737 * will get stuck. we need to use nextpg if we'll traverse the list
738 * because we may free "pg" before doing the next loop.
739 */
740
741 if (by_list) {
742 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
743 nextpg = TAILQ_FIRST(&uobj->memq);
744 } else {
745 curoff = start;
746 nextpg = NULL; /* Quell compiler warning */
747 }
748
749 /* locked: uobj */
750 for (;;) {
751 if (by_list) {
752 pg = nextpg;
753 if (pg == &endmp)
754 break;
755 nextpg = TAILQ_NEXT(pg, listq.queue);
756 if (pg->flags & PG_MARKER)
757 continue;
758 if (pg->offset < start || pg->offset >= stop)
759 continue;
760 } else {
761 if (curoff < stop) {
762 pg = uvm_pagelookup(uobj, curoff);
763 curoff += PAGE_SIZE;
764 } else
765 break;
766 if (pg == NULL)
767 continue;
768 }
769
770 /*
771 * wait and try again if the page is busy.
772 */
773
774 if (pg->flags & PG_BUSY) {
775 if (by_list) {
776 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
777 }
778 pg->flags |= PG_WANTED;
779 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
780 "uao_put", 0);
781 mutex_enter(uobj->vmobjlock);
782 if (by_list) {
783 nextpg = TAILQ_NEXT(&curmp, listq.queue);
784 TAILQ_REMOVE(&uobj->memq, &curmp,
785 listq.queue);
786 } else
787 curoff -= PAGE_SIZE;
788 continue;
789 }
790
791 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
792
793 /*
794 * XXX In these first 3 cases, we always just
795 * XXX deactivate the page. We may want to
796 * XXX handle the different cases more specifically
797 * XXX in the future.
798 */
799
800 case PGO_CLEANIT|PGO_FREE:
801 case PGO_CLEANIT|PGO_DEACTIVATE:
802 case PGO_DEACTIVATE:
803 deactivate_it:
804 mutex_enter(&uvm_pageqlock);
805 /* skip the page if it's wired */
806 if (pg->wire_count == 0) {
807 uvm_pagedeactivate(pg);
808 }
809 mutex_exit(&uvm_pageqlock);
810 break;
811
812 case PGO_FREE:
813 /*
814 * If there are multiple references to
815 * the object, just deactivate the page.
816 */
817
818 if (uobj->uo_refs > 1)
819 goto deactivate_it;
820
821 /*
822 * free the swap slot and the page.
823 */
824
825 pmap_page_protect(pg, VM_PROT_NONE);
826
827 /*
828 * freeing swapslot here is not strictly necessary.
829 * however, leaving it here doesn't save much
830 * because we need to update swap accounting anyway.
831 */
832
833 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
834 mutex_enter(&uvm_pageqlock);
835 uvm_pagefree(pg);
836 mutex_exit(&uvm_pageqlock);
837 break;
838
839 default:
840 panic("%s: impossible", __func__);
841 }
842 }
843 if (by_list) {
844 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
845 }
846 mutex_exit(uobj->vmobjlock);
847 return 0;
848 }
849
850 /*
851 * uao_get: fetch me a page
852 *
853 * we have three cases:
854 * 1: page is resident -> just return the page.
855 * 2: page is zero-fill -> allocate a new page and zero it.
856 * 3: page is swapped out -> fetch the page from swap.
857 *
858 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
859 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
860 * then we will need to return EBUSY.
861 *
862 * => prefer map unlocked (not required)
863 * => object must be locked! we will _unlock_ it before starting any I/O.
864 * => flags: PGO_ALLPAGES: get all of the pages
865 * PGO_LOCKED: fault data structures are locked
866 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
867 * => NOTE: caller must check for released pages!!
868 */
869
870 static int
871 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
872 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
873 {
874 voff_t current_offset;
875 struct vm_page *ptmp = NULL; /* Quell compiler warning */
876 int lcv, gotpages, maxpages, swslot, pageidx;
877 bool done;
878 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
879
880 UVMHIST_LOG(pdhist, "aobj=%#jx offset=%jd, flags=%jd",
881 (uintptr_t)uobj, offset, flags,0);
882
883 /*
884 * get number of pages
885 */
886
887 maxpages = *npagesp;
888
889 /*
890 * step 1: handled the case where fault data structures are locked.
891 */
892
893 if (flags & PGO_LOCKED) {
894
895 /*
896 * step 1a: get pages that are already resident. only do
897 * this if the data structures are locked (i.e. the first
898 * time through).
899 */
900
901 done = true; /* be optimistic */
902 gotpages = 0; /* # of pages we got so far */
903 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
904 lcv++, current_offset += PAGE_SIZE) {
905 /* do we care about this page? if not, skip it */
906 if (pps[lcv] == PGO_DONTCARE)
907 continue;
908 ptmp = uvm_pagelookup(uobj, current_offset);
909
910 /*
911 * if page is new, attempt to allocate the page,
912 * zero-fill'd.
913 */
914
915 if (ptmp == NULL && uao_find_swslot(uobj,
916 current_offset >> PAGE_SHIFT) == 0) {
917 ptmp = uao_pagealloc(uobj, current_offset,
918 UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
919 if (ptmp) {
920 /* new page */
921 ptmp->flags &= ~(PG_FAKE);
922 ptmp->pqflags |= PQ_AOBJ;
923 goto gotpage;
924 }
925 }
926
927 /*
928 * to be useful must get a non-busy page
929 */
930
931 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
932 if (lcv == centeridx ||
933 (flags & PGO_ALLPAGES) != 0)
934 /* need to do a wait or I/O! */
935 done = false;
936 continue;
937 }
938
939 /*
940 * useful page: busy/lock it and plug it in our
941 * result array
942 */
943
944 /* caller must un-busy this page */
945 ptmp->flags |= PG_BUSY;
946 UVM_PAGE_OWN(ptmp, "uao_get1");
947 gotpage:
948 pps[lcv] = ptmp;
949 gotpages++;
950 }
951
952 /*
953 * step 1b: now we've either done everything needed or we
954 * to unlock and do some waiting or I/O.
955 */
956
957 UVMHIST_LOG(pdhist, "<- done (done=%jd)", done, 0,0,0);
958 *npagesp = gotpages;
959 if (done)
960 return 0;
961 else
962 return EBUSY;
963 }
964
965 /*
966 * step 2: get non-resident or busy pages.
967 * object is locked. data structures are unlocked.
968 */
969
970 if ((flags & PGO_SYNCIO) == 0) {
971 goto done;
972 }
973
974 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
975 lcv++, current_offset += PAGE_SIZE) {
976
977 /*
978 * - skip over pages we've already gotten or don't want
979 * - skip over pages we don't _have_ to get
980 */
981
982 if (pps[lcv] != NULL ||
983 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
984 continue;
985
986 pageidx = current_offset >> PAGE_SHIFT;
987
988 /*
989 * we have yet to locate the current page (pps[lcv]). we
990 * first look for a page that is already at the current offset.
991 * if we find a page, we check to see if it is busy or
992 * released. if that is the case, then we sleep on the page
993 * until it is no longer busy or released and repeat the lookup.
994 * if the page we found is neither busy nor released, then we
995 * busy it (so we own it) and plug it into pps[lcv]. this
996 * 'break's the following while loop and indicates we are
997 * ready to move on to the next page in the "lcv" loop above.
998 *
999 * if we exit the while loop with pps[lcv] still set to NULL,
1000 * then it means that we allocated a new busy/fake/clean page
1001 * ptmp in the object and we need to do I/O to fill in the data.
1002 */
1003
1004 /* top of "pps" while loop */
1005 while (pps[lcv] == NULL) {
1006 /* look for a resident page */
1007 ptmp = uvm_pagelookup(uobj, current_offset);
1008
1009 /* not resident? allocate one now (if we can) */
1010 if (ptmp == NULL) {
1011
1012 ptmp = uao_pagealloc(uobj, current_offset, 0);
1013
1014 /* out of RAM? */
1015 if (ptmp == NULL) {
1016 mutex_exit(uobj->vmobjlock);
1017 UVMHIST_LOG(pdhist,
1018 "sleeping, ptmp == NULL\n",0,0,0,0);
1019 uvm_wait("uao_getpage");
1020 mutex_enter(uobj->vmobjlock);
1021 continue;
1022 }
1023
1024 /*
1025 * safe with PQ's unlocked: because we just
1026 * alloc'd the page
1027 */
1028
1029 ptmp->pqflags |= PQ_AOBJ;
1030
1031 /*
1032 * got new page ready for I/O. break pps while
1033 * loop. pps[lcv] is still NULL.
1034 */
1035
1036 break;
1037 }
1038
1039 /* page is there, see if we need to wait on it */
1040 if ((ptmp->flags & PG_BUSY) != 0) {
1041 ptmp->flags |= PG_WANTED;
1042 UVMHIST_LOG(pdhist,
1043 "sleeping, ptmp->flags 0x%jx\n",
1044 ptmp->flags,0,0,0);
1045 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
1046 false, "uao_get", 0);
1047 mutex_enter(uobj->vmobjlock);
1048 continue;
1049 }
1050
1051 /*
1052 * if we get here then the page has become resident and
1053 * unbusy between steps 1 and 2. we busy it now (so we
1054 * own it) and set pps[lcv] (so that we exit the while
1055 * loop).
1056 */
1057
1058 /* we own it, caller must un-busy */
1059 ptmp->flags |= PG_BUSY;
1060 UVM_PAGE_OWN(ptmp, "uao_get2");
1061 pps[lcv] = ptmp;
1062 }
1063
1064 /*
1065 * if we own the valid page at the correct offset, pps[lcv] will
1066 * point to it. nothing more to do except go to the next page.
1067 */
1068
1069 if (pps[lcv])
1070 continue; /* next lcv */
1071
1072 /*
1073 * we have a "fake/busy/clean" page that we just allocated.
1074 * do the needed "i/o", either reading from swap or zeroing.
1075 */
1076
1077 swslot = uao_find_swslot(uobj, pageidx);
1078
1079 /*
1080 * just zero the page if there's nothing in swap.
1081 */
1082
1083 if (swslot == 0) {
1084
1085 /*
1086 * page hasn't existed before, just zero it.
1087 */
1088
1089 uvm_pagezero(ptmp);
1090 } else {
1091 #if defined(VMSWAP)
1092 int error;
1093
1094 UVMHIST_LOG(pdhist, "pagein from swslot %jd",
1095 swslot, 0,0,0);
1096
1097 /*
1098 * page in the swapped-out page.
1099 * unlock object for i/o, relock when done.
1100 */
1101
1102 mutex_exit(uobj->vmobjlock);
1103 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1104 mutex_enter(uobj->vmobjlock);
1105
1106 /*
1107 * I/O done. check for errors.
1108 */
1109
1110 if (error != 0) {
1111 UVMHIST_LOG(pdhist, "<- done (error=%jd)",
1112 error,0,0,0);
1113 if (ptmp->flags & PG_WANTED)
1114 wakeup(ptmp);
1115
1116 /*
1117 * remove the swap slot from the aobj
1118 * and mark the aobj as having no real slot.
1119 * don't free the swap slot, thus preventing
1120 * it from being used again.
1121 */
1122
1123 swslot = uao_set_swslot(uobj, pageidx,
1124 SWSLOT_BAD);
1125 if (swslot > 0) {
1126 uvm_swap_markbad(swslot, 1);
1127 }
1128
1129 mutex_enter(&uvm_pageqlock);
1130 uvm_pagefree(ptmp);
1131 mutex_exit(&uvm_pageqlock);
1132 mutex_exit(uobj->vmobjlock);
1133 return error;
1134 }
1135 #else /* defined(VMSWAP) */
1136 panic("%s: pagein", __func__);
1137 #endif /* defined(VMSWAP) */
1138 }
1139
1140 if ((access_type & VM_PROT_WRITE) == 0) {
1141 ptmp->flags |= PG_CLEAN;
1142 pmap_clear_modify(ptmp);
1143 }
1144
1145 /*
1146 * we got the page! clear the fake flag (indicates valid
1147 * data now in page) and plug into our result array. note
1148 * that page is still busy.
1149 *
1150 * it is the callers job to:
1151 * => check if the page is released
1152 * => unbusy the page
1153 * => activate the page
1154 */
1155
1156 ptmp->flags &= ~PG_FAKE;
1157 pps[lcv] = ptmp;
1158 }
1159
1160 /*
1161 * finally, unlock object and return.
1162 */
1163
1164 done:
1165 mutex_exit(uobj->vmobjlock);
1166 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1167 return 0;
1168 }
1169
1170 #if defined(VMSWAP)
1171
1172 /*
1173 * uao_dropswap: release any swap resources from this aobj page.
1174 *
1175 * => aobj must be locked or have a reference count of 0.
1176 */
1177
1178 void
1179 uao_dropswap(struct uvm_object *uobj, int pageidx)
1180 {
1181 int slot;
1182
1183 slot = uao_set_swslot(uobj, pageidx, 0);
1184 if (slot) {
1185 uvm_swap_free(slot, 1);
1186 }
1187 }
1188
1189 /*
1190 * page in every page in every aobj that is paged-out to a range of swslots.
1191 *
1192 * => nothing should be locked.
1193 * => returns true if pagein was aborted due to lack of memory.
1194 */
1195
1196 bool
1197 uao_swap_off(int startslot, int endslot)
1198 {
1199 struct uvm_aobj *aobj;
1200
1201 /*
1202 * Walk the list of all anonymous UVM objects. Grab the first.
1203 */
1204 mutex_enter(&uao_list_lock);
1205 if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1206 mutex_exit(&uao_list_lock);
1207 return false;
1208 }
1209 uao_reference(&aobj->u_obj);
1210
1211 do {
1212 struct uvm_aobj *nextaobj;
1213 bool rv;
1214
1215 /*
1216 * Prefetch the next object and immediately hold a reference
1217 * on it, so neither the current nor the next entry could
1218 * disappear while we are iterating.
1219 */
1220 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1221 uao_reference(&nextaobj->u_obj);
1222 }
1223 mutex_exit(&uao_list_lock);
1224
1225 /*
1226 * Page in all pages in the swap slot range.
1227 */
1228 mutex_enter(aobj->u_obj.vmobjlock);
1229 rv = uao_pagein(aobj, startslot, endslot);
1230 mutex_exit(aobj->u_obj.vmobjlock);
1231
1232 /* Drop the reference of the current object. */
1233 uao_detach(&aobj->u_obj);
1234 if (rv) {
1235 if (nextaobj) {
1236 uao_detach(&nextaobj->u_obj);
1237 }
1238 return rv;
1239 }
1240
1241 aobj = nextaobj;
1242 mutex_enter(&uao_list_lock);
1243 } while (aobj);
1244
1245 mutex_exit(&uao_list_lock);
1246 return false;
1247 }
1248
1249 /*
1250 * page in any pages from aobj in the given range.
1251 *
1252 * => aobj must be locked and is returned locked.
1253 * => returns true if pagein was aborted due to lack of memory.
1254 */
1255 static bool
1256 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1257 {
1258 bool rv;
1259
1260 if (UAO_USES_SWHASH(aobj)) {
1261 struct uao_swhash_elt *elt;
1262 int buck;
1263
1264 restart:
1265 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1266 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1267 elt != NULL;
1268 elt = LIST_NEXT(elt, list)) {
1269 int i;
1270
1271 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1272 int slot = elt->slots[i];
1273
1274 /*
1275 * if the slot isn't in range, skip it.
1276 */
1277
1278 if (slot < startslot ||
1279 slot >= endslot) {
1280 continue;
1281 }
1282
1283 /*
1284 * process the page,
1285 * the start over on this object
1286 * since the swhash elt
1287 * may have been freed.
1288 */
1289
1290 rv = uao_pagein_page(aobj,
1291 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1292 if (rv) {
1293 return rv;
1294 }
1295 goto restart;
1296 }
1297 }
1298 }
1299 } else {
1300 int i;
1301
1302 for (i = 0; i < aobj->u_pages; i++) {
1303 int slot = aobj->u_swslots[i];
1304
1305 /*
1306 * if the slot isn't in range, skip it
1307 */
1308
1309 if (slot < startslot || slot >= endslot) {
1310 continue;
1311 }
1312
1313 /*
1314 * process the page.
1315 */
1316
1317 rv = uao_pagein_page(aobj, i);
1318 if (rv) {
1319 return rv;
1320 }
1321 }
1322 }
1323
1324 return false;
1325 }
1326
1327 /*
1328 * uao_pagein_page: page in a single page from an anonymous UVM object.
1329 *
1330 * => Returns true if pagein was aborted due to lack of memory.
1331 * => Object must be locked and is returned locked.
1332 */
1333
1334 static bool
1335 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1336 {
1337 struct uvm_object *uobj = &aobj->u_obj;
1338 struct vm_page *pg;
1339 int rv, npages;
1340
1341 pg = NULL;
1342 npages = 1;
1343
1344 KASSERT(mutex_owned(uobj->vmobjlock));
1345 rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages,
1346 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1347
1348 /*
1349 * relock and finish up.
1350 */
1351
1352 mutex_enter(uobj->vmobjlock);
1353 switch (rv) {
1354 case 0:
1355 break;
1356
1357 case EIO:
1358 case ERESTART:
1359
1360 /*
1361 * nothing more to do on errors.
1362 * ERESTART can only mean that the anon was freed,
1363 * so again there's nothing to do.
1364 */
1365
1366 return false;
1367
1368 default:
1369 return true;
1370 }
1371
1372 /*
1373 * ok, we've got the page now.
1374 * mark it as dirty, clear its swslot and un-busy it.
1375 */
1376 uao_dropswap(&aobj->u_obj, pageidx);
1377
1378 /*
1379 * make sure it's on a page queue.
1380 */
1381 mutex_enter(&uvm_pageqlock);
1382 if (pg->wire_count == 0)
1383 uvm_pageenqueue(pg);
1384 mutex_exit(&uvm_pageqlock);
1385
1386 if (pg->flags & PG_WANTED) {
1387 wakeup(pg);
1388 }
1389 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1390 UVM_PAGE_OWN(pg, NULL);
1391
1392 return false;
1393 }
1394
1395 /*
1396 * uao_dropswap_range: drop swapslots in the range.
1397 *
1398 * => aobj must be locked and is returned locked.
1399 * => start is inclusive. end is exclusive.
1400 */
1401
1402 void
1403 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1404 {
1405 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1406 int swpgonlydelta = 0;
1407
1408 KASSERT(mutex_owned(uobj->vmobjlock));
1409
1410 if (end == 0) {
1411 end = INT64_MAX;
1412 }
1413
1414 if (UAO_USES_SWHASH(aobj)) {
1415 int i, hashbuckets = aobj->u_swhashmask + 1;
1416 voff_t taghi;
1417 voff_t taglo;
1418
1419 taglo = UAO_SWHASH_ELT_TAG(start);
1420 taghi = UAO_SWHASH_ELT_TAG(end);
1421
1422 for (i = 0; i < hashbuckets; i++) {
1423 struct uao_swhash_elt *elt, *next;
1424
1425 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1426 elt != NULL;
1427 elt = next) {
1428 int startidx, endidx;
1429 int j;
1430
1431 next = LIST_NEXT(elt, list);
1432
1433 if (elt->tag < taglo || taghi < elt->tag) {
1434 continue;
1435 }
1436
1437 if (elt->tag == taglo) {
1438 startidx =
1439 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1440 } else {
1441 startidx = 0;
1442 }
1443
1444 if (elt->tag == taghi) {
1445 endidx =
1446 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1447 } else {
1448 endidx = UAO_SWHASH_CLUSTER_SIZE;
1449 }
1450
1451 for (j = startidx; j < endidx; j++) {
1452 int slot = elt->slots[j];
1453
1454 KASSERT(uvm_pagelookup(&aobj->u_obj,
1455 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1456 + j) << PAGE_SHIFT) == NULL);
1457 if (slot > 0) {
1458 uvm_swap_free(slot, 1);
1459 swpgonlydelta++;
1460 KASSERT(elt->count > 0);
1461 elt->slots[j] = 0;
1462 elt->count--;
1463 }
1464 }
1465
1466 if (elt->count == 0) {
1467 LIST_REMOVE(elt, list);
1468 pool_put(&uao_swhash_elt_pool, elt);
1469 }
1470 }
1471 }
1472 } else {
1473 int i;
1474
1475 if (aobj->u_pages < end) {
1476 end = aobj->u_pages;
1477 }
1478 for (i = start; i < end; i++) {
1479 int slot = aobj->u_swslots[i];
1480
1481 if (slot > 0) {
1482 uvm_swap_free(slot, 1);
1483 swpgonlydelta++;
1484 }
1485 }
1486 }
1487
1488 /*
1489 * adjust the counter of pages only in swap for all
1490 * the swap slots we've freed.
1491 */
1492
1493 if (swpgonlydelta > 0) {
1494 mutex_enter(&uvm_swap_data_lock);
1495 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1496 uvmexp.swpgonly -= swpgonlydelta;
1497 mutex_exit(&uvm_swap_data_lock);
1498 }
1499 }
1500
1501 #endif /* defined(VMSWAP) */
1502