uvm_aobj.c revision 1.130 1 /* $NetBSD: uvm_aobj.c,v 1.130 2019/12/01 20:31:40 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.130 2019/12/01 20:31:40 ad Exp $");
42
43 #ifdef _KERNEL_OPT
44 #include "opt_uvmhist.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/pool.h>
52 #include <sys/atomic.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to
58 * keeping the list of resident pages, it may also keep a list of allocated
59 * swap blocks. Depending on the size of the object, this list is either
60 * stored in an array (small objects) or in a hash table (large objects).
61 *
62 * Lock order
63 *
64 * uao_list_lock ->
65 * uvm_object::vmobjlock
66 */
67
68 /*
69 * Note: for hash tables, we break the address space of the aobj into blocks
70 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
71 */
72
73 #define UAO_SWHASH_CLUSTER_SHIFT 4
74 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
75
76 /* Get the "tag" for this page index. */
77 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
78 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
79 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
80
81 /* Given an ELT and a page index, find the swap slot. */
82 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
83 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
84
85 /* Given an ELT, return its pageidx base. */
86 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
87 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
88
89 /* The hash function. */
90 #define UAO_SWHASH_HASH(aobj, idx) \
91 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
92 & (aobj)->u_swhashmask)])
93
94 /*
95 * The threshold which determines whether we will use an array or a
96 * hash table to store the list of allocated swap blocks.
97 */
98 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
99 #define UAO_USES_SWHASH(aobj) \
100 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
101
102 /* The number of buckets in a hash, with an upper bound. */
103 #define UAO_SWHASH_MAXBUCKETS 256
104 #define UAO_SWHASH_BUCKETS(aobj) \
105 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
106
107 /*
108 * uao_swhash_elt: when a hash table is being used, this structure defines
109 * the format of an entry in the bucket list.
110 */
111
112 struct uao_swhash_elt {
113 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
114 voff_t tag; /* our 'tag' */
115 int count; /* our number of active slots */
116 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
117 };
118
119 /*
120 * uao_swhash: the swap hash table structure
121 */
122
123 LIST_HEAD(uao_swhash, uao_swhash_elt);
124
125 /*
126 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
127 * Note: pages for this pool must not come from a pageable kernel map.
128 */
129 static struct pool uao_swhash_elt_pool __cacheline_aligned;
130
131 /*
132 * uvm_aobj: the actual anon-backed uvm_object
133 *
134 * => the uvm_object is at the top of the structure, this allows
135 * (struct uvm_aobj *) == (struct uvm_object *)
136 * => only one of u_swslots and u_swhash is used in any given aobj
137 */
138
139 struct uvm_aobj {
140 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
141 pgoff_t u_pages; /* number of pages in entire object */
142 int u_flags; /* the flags (see uvm_aobj.h) */
143 int *u_swslots; /* array of offset->swapslot mappings */
144 /*
145 * hashtable of offset->swapslot mappings
146 * (u_swhash is an array of bucket heads)
147 */
148 struct uao_swhash *u_swhash;
149 u_long u_swhashmask; /* mask for hashtable */
150 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
151 int u_freelist; /* freelist to allocate pages from */
152 };
153
154 static void uao_free(struct uvm_aobj *);
155 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
156 int *, int, vm_prot_t, int, int);
157 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
158
159 #if defined(VMSWAP)
160 static struct uao_swhash_elt *uao_find_swhash_elt
161 (struct uvm_aobj *, int, bool);
162
163 static bool uao_pagein(struct uvm_aobj *, int, int);
164 static bool uao_pagein_page(struct uvm_aobj *, int);
165 #endif /* defined(VMSWAP) */
166
167 static struct vm_page *uao_pagealloc(struct uvm_object *, voff_t, int);
168
169 /*
170 * aobj_pager
171 *
172 * note that some functions (e.g. put) are handled elsewhere
173 */
174
175 const struct uvm_pagerops aobj_pager = {
176 .pgo_reference = uao_reference,
177 .pgo_detach = uao_detach,
178 .pgo_get = uao_get,
179 .pgo_put = uao_put,
180 };
181
182 /*
183 * uao_list: global list of active aobjs, locked by uao_list_lock
184 */
185
186 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned;
187 static kmutex_t uao_list_lock __cacheline_aligned;
188
189 /*
190 * hash table/array related functions
191 */
192
193 #if defined(VMSWAP)
194
195 /*
196 * uao_find_swhash_elt: find (or create) a hash table entry for a page
197 * offset.
198 *
199 * => the object should be locked by the caller
200 */
201
202 static struct uao_swhash_elt *
203 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
204 {
205 struct uao_swhash *swhash;
206 struct uao_swhash_elt *elt;
207 voff_t page_tag;
208
209 swhash = UAO_SWHASH_HASH(aobj, pageidx);
210 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
211
212 /*
213 * now search the bucket for the requested tag
214 */
215
216 LIST_FOREACH(elt, swhash, list) {
217 if (elt->tag == page_tag) {
218 return elt;
219 }
220 }
221 if (!create) {
222 return NULL;
223 }
224
225 /*
226 * allocate a new entry for the bucket and init/insert it in
227 */
228
229 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
230 if (elt == NULL) {
231 return NULL;
232 }
233 LIST_INSERT_HEAD(swhash, elt, list);
234 elt->tag = page_tag;
235 elt->count = 0;
236 memset(elt->slots, 0, sizeof(elt->slots));
237 return elt;
238 }
239
240 /*
241 * uao_find_swslot: find the swap slot number for an aobj/pageidx
242 *
243 * => object must be locked by caller
244 */
245
246 int
247 uao_find_swslot(struct uvm_object *uobj, int pageidx)
248 {
249 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
250 struct uao_swhash_elt *elt;
251
252 /*
253 * if noswap flag is set, then we never return a slot
254 */
255
256 if (aobj->u_flags & UAO_FLAG_NOSWAP)
257 return 0;
258
259 /*
260 * if hashing, look in hash table.
261 */
262
263 if (UAO_USES_SWHASH(aobj)) {
264 elt = uao_find_swhash_elt(aobj, pageidx, false);
265 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
266 }
267
268 /*
269 * otherwise, look in the array
270 */
271
272 return aobj->u_swslots[pageidx];
273 }
274
275 /*
276 * uao_set_swslot: set the swap slot for a page in an aobj.
277 *
278 * => setting a slot to zero frees the slot
279 * => object must be locked by caller
280 * => we return the old slot number, or -1 if we failed to allocate
281 * memory to record the new slot number
282 */
283
284 int
285 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
286 {
287 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
288 struct uao_swhash_elt *elt;
289 int oldslot;
290 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
291 UVMHIST_LOG(pdhist, "aobj %#jx pageidx %jd slot %jd",
292 (uintptr_t)aobj, pageidx, slot, 0);
293
294 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
295
296 /*
297 * if noswap flag is set, then we can't set a non-zero slot.
298 */
299
300 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
301 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
302 return 0;
303 }
304
305 /*
306 * are we using a hash table? if so, add it in the hash.
307 */
308
309 if (UAO_USES_SWHASH(aobj)) {
310
311 /*
312 * Avoid allocating an entry just to free it again if
313 * the page had not swap slot in the first place, and
314 * we are freeing.
315 */
316
317 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
318 if (elt == NULL) {
319 return slot ? -1 : 0;
320 }
321
322 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
323 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
324
325 /*
326 * now adjust the elt's reference counter and free it if we've
327 * dropped it to zero.
328 */
329
330 if (slot) {
331 if (oldslot == 0)
332 elt->count++;
333 } else {
334 if (oldslot)
335 elt->count--;
336
337 if (elt->count == 0) {
338 LIST_REMOVE(elt, list);
339 pool_put(&uao_swhash_elt_pool, elt);
340 }
341 }
342 } else {
343 /* we are using an array */
344 oldslot = aobj->u_swslots[pageidx];
345 aobj->u_swslots[pageidx] = slot;
346 }
347 return oldslot;
348 }
349
350 #endif /* defined(VMSWAP) */
351
352 /*
353 * end of hash/array functions
354 */
355
356 /*
357 * uao_free: free all resources held by an aobj, and then free the aobj
358 *
359 * => the aobj should be dead
360 */
361
362 static void
363 uao_free(struct uvm_aobj *aobj)
364 {
365 struct uvm_object *uobj = &aobj->u_obj;
366
367 KASSERT(mutex_owned(uobj->vmobjlock));
368 uao_dropswap_range(uobj, 0, 0);
369 mutex_exit(uobj->vmobjlock);
370
371 #if defined(VMSWAP)
372 if (UAO_USES_SWHASH(aobj)) {
373
374 /*
375 * free the hash table itself.
376 */
377
378 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
379 } else {
380
381 /*
382 * free the array itsself.
383 */
384
385 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
386 }
387 #endif /* defined(VMSWAP) */
388
389 /*
390 * finally free the aobj itself
391 */
392
393 uvm_obj_destroy(uobj, true);
394 kmem_free(aobj, sizeof(struct uvm_aobj));
395 }
396
397 /*
398 * pager functions
399 */
400
401 /*
402 * uao_create: create an aobj of the given size and return its uvm_object.
403 *
404 * => for normal use, flags are always zero
405 * => for the kernel object, the flags are:
406 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
407 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
408 */
409
410 struct uvm_object *
411 uao_create(voff_t size, int flags)
412 {
413 static struct uvm_aobj kernel_object_store;
414 static kmutex_t kernel_object_lock __cacheline_aligned;
415 static int kobj_alloced __diagused = 0;
416 pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT;
417 struct uvm_aobj *aobj;
418 int refs;
419
420 /*
421 * Allocate a new aobj, unless kernel object is requested.
422 */
423
424 if (flags & UAO_FLAG_KERNOBJ) {
425 KASSERT(!kobj_alloced);
426 aobj = &kernel_object_store;
427 aobj->u_pages = pages;
428 aobj->u_flags = UAO_FLAG_NOSWAP;
429 refs = UVM_OBJ_KERN;
430 kobj_alloced = UAO_FLAG_KERNOBJ;
431 } else if (flags & UAO_FLAG_KERNSWAP) {
432 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
433 aobj = &kernel_object_store;
434 kobj_alloced = UAO_FLAG_KERNSWAP;
435 refs = 0xdeadbeaf; /* XXX: gcc */
436 } else {
437 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
438 aobj->u_pages = pages;
439 aobj->u_flags = 0;
440 refs = 1;
441 }
442
443 /*
444 * no freelist by default
445 */
446
447 aobj->u_freelist = VM_NFREELIST;
448
449 /*
450 * allocate hash/array if necessary
451 *
452 * note: in the KERNSWAP case no need to worry about locking since
453 * we are still booting we should be the only thread around.
454 */
455
456 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
457 #if defined(VMSWAP)
458 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
459
460 /* allocate hash table or array depending on object size */
461 if (UAO_USES_SWHASH(aobj)) {
462 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
463 HASH_LIST, kernswap ? false : true,
464 &aobj->u_swhashmask);
465 if (aobj->u_swhash == NULL)
466 panic("uao_create: hashinit swhash failed");
467 } else {
468 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
469 kernswap ? KM_NOSLEEP : KM_SLEEP);
470 if (aobj->u_swslots == NULL)
471 panic("uao_create: swslots allocation failed");
472 }
473 #endif /* defined(VMSWAP) */
474
475 if (flags) {
476 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
477 return &aobj->u_obj;
478 }
479 }
480
481 /*
482 * Initialise UVM object.
483 */
484
485 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
486 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
487 if (__predict_false(kernobj)) {
488 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
489 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
490 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
491 }
492
493 /*
494 * now that aobj is ready, add it to the global list
495 */
496
497 mutex_enter(&uao_list_lock);
498 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
499 mutex_exit(&uao_list_lock);
500 return(&aobj->u_obj);
501 }
502
503 /*
504 * uao_set_pgfl: allocate pages only from the specified freelist.
505 *
506 * => must be called before any pages are allocated for the object.
507 * => reset by setting it to VM_NFREELIST, meaning any freelist.
508 */
509
510 void
511 uao_set_pgfl(struct uvm_object *uobj, int freelist)
512 {
513 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
514
515 KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
516 KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
517 freelist);
518
519 aobj->u_freelist = freelist;
520 }
521
522 /*
523 * uao_pagealloc: allocate a page for aobj.
524 */
525
526 static inline struct vm_page *
527 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
528 {
529 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
530
531 if (__predict_true(aobj->u_freelist == VM_NFREELIST))
532 return uvm_pagealloc(uobj, offset, NULL, flags);
533 else
534 return uvm_pagealloc_strat(uobj, offset, NULL, flags,
535 UVM_PGA_STRAT_ONLY, aobj->u_freelist);
536 }
537
538 /*
539 * uao_init: set up aobj pager subsystem
540 *
541 * => called at boot time from uvm_pager_init()
542 */
543
544 void
545 uao_init(void)
546 {
547 static int uao_initialized;
548
549 if (uao_initialized)
550 return;
551 uao_initialized = true;
552 LIST_INIT(&uao_list);
553 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
554 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
555 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
556 }
557
558 /*
559 * uao_reference: hold a reference to an anonymous UVM object.
560 */
561 void
562 uao_reference(struct uvm_object *uobj)
563 {
564 /* Kernel object is persistent. */
565 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
566 return;
567 }
568 atomic_inc_uint(&uobj->uo_refs);
569 }
570
571 /*
572 * uao_detach: drop a reference to an anonymous UVM object.
573 */
574 void
575 uao_detach(struct uvm_object *uobj)
576 {
577 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
578 struct vm_page *pg;
579
580 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
581
582 /*
583 * Detaching from kernel object is a NOP.
584 */
585
586 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
587 return;
588
589 /*
590 * Drop the reference. If it was the last one, destroy the object.
591 */
592
593 KASSERT(uobj->uo_refs > 0);
594 UVMHIST_LOG(maphist," (uobj=0x%#jx) ref=%jd",
595 (uintptr_t)uobj, uobj->uo_refs, 0, 0);
596 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
597 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
598 return;
599 }
600
601 /*
602 * Remove the aobj from the global list.
603 */
604
605 mutex_enter(&uao_list_lock);
606 LIST_REMOVE(aobj, u_list);
607 mutex_exit(&uao_list_lock);
608
609 /*
610 * Free all the pages left in the aobj. For each page, when the
611 * page is no longer busy (and thus after any disk I/O that it is
612 * involved in is complete), release any swap resources and free
613 * the page itself.
614 */
615
616 mutex_enter(uobj->vmobjlock);
617 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
618 pmap_page_protect(pg, VM_PROT_NONE);
619 }
620 mutex_enter(&uvm_pageqlock);
621 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
622 if (pg->flags & PG_BUSY) {
623 pg->flags |= PG_WANTED;
624 mutex_exit(&uvm_pageqlock);
625 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
626 "uao_det", 0);
627 mutex_enter(uobj->vmobjlock);
628 mutex_enter(&uvm_pageqlock);
629 continue;
630 }
631 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
632 uvm_pagefree(pg);
633 }
634 mutex_exit(&uvm_pageqlock);
635
636 /*
637 * Finally, free the anonymous UVM object itself.
638 */
639
640 uao_free(aobj);
641 }
642
643 /*
644 * uao_put: flush pages out of a uvm object
645 *
646 * => object should be locked by caller. we may _unlock_ the object
647 * if (and only if) we need to clean a page (PGO_CLEANIT).
648 * XXXJRT Currently, however, we don't. In the case of cleaning
649 * XXXJRT a page, we simply just deactivate it. Should probably
650 * XXXJRT handle this better, in the future (although "flushing"
651 * XXXJRT anonymous memory isn't terribly important).
652 * => if PGO_CLEANIT is not set, then we will neither unlock the object
653 * or block.
654 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
655 * for flushing.
656 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
657 * that new pages are inserted on the tail end of the list. thus,
658 * we can make a complete pass through the object in one go by starting
659 * at the head and working towards the tail (new pages are put in
660 * front of us).
661 * => NOTE: we are allowed to lock the page queues, so the caller
662 * must not be holding the lock on them [e.g. pagedaemon had
663 * better not call us with the queues locked]
664 * => we return 0 unless we encountered some sort of I/O error
665 * XXXJRT currently never happens, as we never directly initiate
666 * XXXJRT I/O
667 *
668 * note on page traversal:
669 * we can traverse the pages in an object either by going down the
670 * linked list in "uobj->memq", or we can go over the address range
671 * by page doing hash table lookups for each address. depending
672 * on how many pages are in the object it may be cheaper to do one
673 * or the other. we set "by_list" to true if we are using memq.
674 * if the cost of a hash lookup was equal to the cost of the list
675 * traversal we could compare the number of pages in the start->stop
676 * range to the total number of pages in the object. however, it
677 * seems that a hash table lookup is more expensive than the linked
678 * list traversal, so we multiply the number of pages in the
679 * start->stop range by a penalty which we define below.
680 */
681
682 static int
683 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
684 {
685 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
686 struct vm_page *pg, *nextpg, curmp, endmp;
687 bool by_list;
688 voff_t curoff;
689 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
690
691 KASSERT(mutex_owned(uobj->vmobjlock));
692
693 curoff = 0;
694 if (flags & PGO_ALLPAGES) {
695 start = 0;
696 stop = aobj->u_pages << PAGE_SHIFT;
697 by_list = true; /* always go by the list */
698 } else {
699 start = trunc_page(start);
700 if (stop == 0) {
701 stop = aobj->u_pages << PAGE_SHIFT;
702 } else {
703 stop = round_page(stop);
704 }
705 if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) {
706 printf("uao_put: strange, got an out of range "
707 "flush 0x%jx > 0x%jx (fixed)\n",
708 (uintmax_t)stop,
709 (uintmax_t)(aobj->u_pages << PAGE_SHIFT));
710 stop = aobj->u_pages << PAGE_SHIFT;
711 }
712 by_list = (uobj->uo_npages <=
713 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
714 }
715 UVMHIST_LOG(maphist,
716 " flush start=0x%jx, stop=0x%jx, by_list=%jd, flags=0x%jx",
717 start, stop, by_list, flags);
718
719 /*
720 * Don't need to do any work here if we're not freeing
721 * or deactivating pages.
722 */
723
724 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
725 mutex_exit(uobj->vmobjlock);
726 return 0;
727 }
728
729 /*
730 * Initialize the marker pages. See the comment in
731 * genfs_putpages() also.
732 */
733
734 curmp.flags = PG_MARKER;
735 endmp.flags = PG_MARKER;
736
737 /*
738 * now do it. note: we must update nextpg in the body of loop or we
739 * will get stuck. we need to use nextpg if we'll traverse the list
740 * because we may free "pg" before doing the next loop.
741 */
742
743 if (by_list) {
744 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
745 nextpg = TAILQ_FIRST(&uobj->memq);
746 } else {
747 curoff = start;
748 nextpg = NULL; /* Quell compiler warning */
749 }
750
751 /* locked: uobj */
752 for (;;) {
753 if (by_list) {
754 pg = nextpg;
755 if (pg == &endmp)
756 break;
757 nextpg = TAILQ_NEXT(pg, listq.queue);
758 if (pg->flags & PG_MARKER)
759 continue;
760 if (pg->offset < start || pg->offset >= stop)
761 continue;
762 } else {
763 if (curoff < stop) {
764 pg = uvm_pagelookup(uobj, curoff);
765 curoff += PAGE_SIZE;
766 } else
767 break;
768 if (pg == NULL)
769 continue;
770 }
771
772 /*
773 * wait and try again if the page is busy.
774 */
775
776 if (pg->flags & PG_BUSY) {
777 if (by_list) {
778 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
779 }
780 pg->flags |= PG_WANTED;
781 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
782 "uao_put", 0);
783 mutex_enter(uobj->vmobjlock);
784 if (by_list) {
785 nextpg = TAILQ_NEXT(&curmp, listq.queue);
786 TAILQ_REMOVE(&uobj->memq, &curmp,
787 listq.queue);
788 } else
789 curoff -= PAGE_SIZE;
790 continue;
791 }
792
793 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
794
795 /*
796 * XXX In these first 3 cases, we always just
797 * XXX deactivate the page. We may want to
798 * XXX handle the different cases more specifically
799 * XXX in the future.
800 */
801
802 case PGO_CLEANIT|PGO_FREE:
803 case PGO_CLEANIT|PGO_DEACTIVATE:
804 case PGO_DEACTIVATE:
805 deactivate_it:
806 mutex_enter(&uvm_pageqlock);
807 /* skip the page if it's wired */
808 if (pg->wire_count == 0) {
809 uvm_pagedeactivate(pg);
810 }
811 mutex_exit(&uvm_pageqlock);
812 break;
813
814 case PGO_FREE:
815 /*
816 * If there are multiple references to
817 * the object, just deactivate the page.
818 */
819
820 if (uobj->uo_refs > 1)
821 goto deactivate_it;
822
823 /*
824 * free the swap slot and the page.
825 */
826
827 pmap_page_protect(pg, VM_PROT_NONE);
828
829 /*
830 * freeing swapslot here is not strictly necessary.
831 * however, leaving it here doesn't save much
832 * because we need to update swap accounting anyway.
833 */
834
835 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
836 mutex_enter(&uvm_pageqlock);
837 uvm_pagefree(pg);
838 mutex_exit(&uvm_pageqlock);
839 break;
840
841 default:
842 panic("%s: impossible", __func__);
843 }
844 }
845 if (by_list) {
846 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
847 }
848 mutex_exit(uobj->vmobjlock);
849 return 0;
850 }
851
852 /*
853 * uao_get: fetch me a page
854 *
855 * we have three cases:
856 * 1: page is resident -> just return the page.
857 * 2: page is zero-fill -> allocate a new page and zero it.
858 * 3: page is swapped out -> fetch the page from swap.
859 *
860 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
861 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
862 * then we will need to return EBUSY.
863 *
864 * => prefer map unlocked (not required)
865 * => object must be locked! we will _unlock_ it before starting any I/O.
866 * => flags: PGO_ALLPAGES: get all of the pages
867 * PGO_LOCKED: fault data structures are locked
868 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
869 * => NOTE: caller must check for released pages!!
870 */
871
872 static int
873 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
874 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
875 {
876 voff_t current_offset;
877 struct vm_page *ptmp = NULL; /* Quell compiler warning */
878 int lcv, gotpages, maxpages, swslot, pageidx;
879 bool done;
880 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
881
882 UVMHIST_LOG(pdhist, "aobj=%#jx offset=%jd, flags=%jd",
883 (uintptr_t)uobj, offset, flags,0);
884
885 /*
886 * get number of pages
887 */
888
889 maxpages = *npagesp;
890
891 /*
892 * step 1: handled the case where fault data structures are locked.
893 */
894
895 if (flags & PGO_LOCKED) {
896
897 /*
898 * step 1a: get pages that are already resident. only do
899 * this if the data structures are locked (i.e. the first
900 * time through).
901 */
902
903 done = true; /* be optimistic */
904 gotpages = 0; /* # of pages we got so far */
905 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
906 lcv++, current_offset += PAGE_SIZE) {
907 /* do we care about this page? if not, skip it */
908 if (pps[lcv] == PGO_DONTCARE)
909 continue;
910 ptmp = uvm_pagelookup(uobj, current_offset);
911
912 /*
913 * if page is new, attempt to allocate the page,
914 * zero-fill'd.
915 */
916
917 if (ptmp == NULL && uao_find_swslot(uobj,
918 current_offset >> PAGE_SHIFT) == 0) {
919 ptmp = uao_pagealloc(uobj, current_offset,
920 UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
921 if (ptmp) {
922 /* new page */
923 ptmp->flags &= ~(PG_FAKE);
924 ptmp->pqflags |= PQ_AOBJ;
925 goto gotpage;
926 }
927 }
928
929 /*
930 * to be useful must get a non-busy page
931 */
932
933 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
934 if (lcv == centeridx ||
935 (flags & PGO_ALLPAGES) != 0)
936 /* need to do a wait or I/O! */
937 done = false;
938 continue;
939 }
940
941 /*
942 * useful page: busy/lock it and plug it in our
943 * result array
944 */
945
946 /* caller must un-busy this page */
947 ptmp->flags |= PG_BUSY;
948 UVM_PAGE_OWN(ptmp, "uao_get1");
949 gotpage:
950 pps[lcv] = ptmp;
951 gotpages++;
952 }
953
954 /*
955 * step 1b: now we've either done everything needed or we
956 * to unlock and do some waiting or I/O.
957 */
958
959 UVMHIST_LOG(pdhist, "<- done (done=%jd)", done, 0,0,0);
960 *npagesp = gotpages;
961 if (done)
962 return 0;
963 else
964 return EBUSY;
965 }
966
967 /*
968 * step 2: get non-resident or busy pages.
969 * object is locked. data structures are unlocked.
970 */
971
972 if ((flags & PGO_SYNCIO) == 0) {
973 goto done;
974 }
975
976 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
977 lcv++, current_offset += PAGE_SIZE) {
978
979 /*
980 * - skip over pages we've already gotten or don't want
981 * - skip over pages we don't _have_ to get
982 */
983
984 if (pps[lcv] != NULL ||
985 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
986 continue;
987
988 pageidx = current_offset >> PAGE_SHIFT;
989
990 /*
991 * we have yet to locate the current page (pps[lcv]). we
992 * first look for a page that is already at the current offset.
993 * if we find a page, we check to see if it is busy or
994 * released. if that is the case, then we sleep on the page
995 * until it is no longer busy or released and repeat the lookup.
996 * if the page we found is neither busy nor released, then we
997 * busy it (so we own it) and plug it into pps[lcv]. this
998 * 'break's the following while loop and indicates we are
999 * ready to move on to the next page in the "lcv" loop above.
1000 *
1001 * if we exit the while loop with pps[lcv] still set to NULL,
1002 * then it means that we allocated a new busy/fake/clean page
1003 * ptmp in the object and we need to do I/O to fill in the data.
1004 */
1005
1006 /* top of "pps" while loop */
1007 while (pps[lcv] == NULL) {
1008 /* look for a resident page */
1009 ptmp = uvm_pagelookup(uobj, current_offset);
1010
1011 /* not resident? allocate one now (if we can) */
1012 if (ptmp == NULL) {
1013
1014 ptmp = uao_pagealloc(uobj, current_offset, 0);
1015
1016 /* out of RAM? */
1017 if (ptmp == NULL) {
1018 mutex_exit(uobj->vmobjlock);
1019 UVMHIST_LOG(pdhist,
1020 "sleeping, ptmp == NULL\n",0,0,0,0);
1021 uvm_wait("uao_getpage");
1022 mutex_enter(uobj->vmobjlock);
1023 continue;
1024 }
1025
1026 /*
1027 * safe with PQ's unlocked: because we just
1028 * alloc'd the page
1029 */
1030
1031 ptmp->pqflags |= PQ_AOBJ;
1032
1033 /*
1034 * got new page ready for I/O. break pps while
1035 * loop. pps[lcv] is still NULL.
1036 */
1037
1038 break;
1039 }
1040
1041 /* page is there, see if we need to wait on it */
1042 if ((ptmp->flags & PG_BUSY) != 0) {
1043 ptmp->flags |= PG_WANTED;
1044 UVMHIST_LOG(pdhist,
1045 "sleeping, ptmp->flags 0x%jx\n",
1046 ptmp->flags,0,0,0);
1047 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
1048 false, "uao_get", 0);
1049 mutex_enter(uobj->vmobjlock);
1050 continue;
1051 }
1052
1053 /*
1054 * if we get here then the page has become resident and
1055 * unbusy between steps 1 and 2. we busy it now (so we
1056 * own it) and set pps[lcv] (so that we exit the while
1057 * loop).
1058 */
1059
1060 /* we own it, caller must un-busy */
1061 ptmp->flags |= PG_BUSY;
1062 UVM_PAGE_OWN(ptmp, "uao_get2");
1063 pps[lcv] = ptmp;
1064 }
1065
1066 /*
1067 * if we own the valid page at the correct offset, pps[lcv] will
1068 * point to it. nothing more to do except go to the next page.
1069 */
1070
1071 if (pps[lcv])
1072 continue; /* next lcv */
1073
1074 /*
1075 * we have a "fake/busy/clean" page that we just allocated.
1076 * do the needed "i/o", either reading from swap or zeroing.
1077 */
1078
1079 swslot = uao_find_swslot(uobj, pageidx);
1080
1081 /*
1082 * just zero the page if there's nothing in swap.
1083 */
1084
1085 if (swslot == 0) {
1086
1087 /*
1088 * page hasn't existed before, just zero it.
1089 */
1090
1091 uvm_pagezero(ptmp);
1092 } else {
1093 #if defined(VMSWAP)
1094 int error;
1095
1096 UVMHIST_LOG(pdhist, "pagein from swslot %jd",
1097 swslot, 0,0,0);
1098
1099 /*
1100 * page in the swapped-out page.
1101 * unlock object for i/o, relock when done.
1102 */
1103
1104 mutex_exit(uobj->vmobjlock);
1105 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1106 mutex_enter(uobj->vmobjlock);
1107
1108 /*
1109 * I/O done. check for errors.
1110 */
1111
1112 if (error != 0) {
1113 UVMHIST_LOG(pdhist, "<- done (error=%jd)",
1114 error,0,0,0);
1115 if (ptmp->flags & PG_WANTED)
1116 wakeup(ptmp);
1117
1118 /*
1119 * remove the swap slot from the aobj
1120 * and mark the aobj as having no real slot.
1121 * don't free the swap slot, thus preventing
1122 * it from being used again.
1123 */
1124
1125 swslot = uao_set_swslot(uobj, pageidx,
1126 SWSLOT_BAD);
1127 if (swslot > 0) {
1128 uvm_swap_markbad(swslot, 1);
1129 }
1130
1131 mutex_enter(&uvm_pageqlock);
1132 uvm_pagefree(ptmp);
1133 mutex_exit(&uvm_pageqlock);
1134 mutex_exit(uobj->vmobjlock);
1135 return error;
1136 }
1137 #else /* defined(VMSWAP) */
1138 panic("%s: pagein", __func__);
1139 #endif /* defined(VMSWAP) */
1140 }
1141
1142 if ((access_type & VM_PROT_WRITE) == 0) {
1143 ptmp->flags |= PG_CLEAN;
1144 pmap_clear_modify(ptmp);
1145 }
1146
1147 /*
1148 * we got the page! clear the fake flag (indicates valid
1149 * data now in page) and plug into our result array. note
1150 * that page is still busy.
1151 *
1152 * it is the callers job to:
1153 * => check if the page is released
1154 * => unbusy the page
1155 * => activate the page
1156 */
1157
1158 ptmp->flags &= ~PG_FAKE;
1159 pps[lcv] = ptmp;
1160 }
1161
1162 /*
1163 * finally, unlock object and return.
1164 */
1165
1166 done:
1167 mutex_exit(uobj->vmobjlock);
1168 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1169 return 0;
1170 }
1171
1172 #if defined(VMSWAP)
1173
1174 /*
1175 * uao_dropswap: release any swap resources from this aobj page.
1176 *
1177 * => aobj must be locked or have a reference count of 0.
1178 */
1179
1180 void
1181 uao_dropswap(struct uvm_object *uobj, int pageidx)
1182 {
1183 int slot;
1184
1185 slot = uao_set_swslot(uobj, pageidx, 0);
1186 if (slot) {
1187 uvm_swap_free(slot, 1);
1188 }
1189 }
1190
1191 /*
1192 * page in every page in every aobj that is paged-out to a range of swslots.
1193 *
1194 * => nothing should be locked.
1195 * => returns true if pagein was aborted due to lack of memory.
1196 */
1197
1198 bool
1199 uao_swap_off(int startslot, int endslot)
1200 {
1201 struct uvm_aobj *aobj;
1202
1203 /*
1204 * Walk the list of all anonymous UVM objects. Grab the first.
1205 */
1206 mutex_enter(&uao_list_lock);
1207 if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1208 mutex_exit(&uao_list_lock);
1209 return false;
1210 }
1211 uao_reference(&aobj->u_obj);
1212
1213 do {
1214 struct uvm_aobj *nextaobj;
1215 bool rv;
1216
1217 /*
1218 * Prefetch the next object and immediately hold a reference
1219 * on it, so neither the current nor the next entry could
1220 * disappear while we are iterating.
1221 */
1222 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1223 uao_reference(&nextaobj->u_obj);
1224 }
1225 mutex_exit(&uao_list_lock);
1226
1227 /*
1228 * Page in all pages in the swap slot range.
1229 */
1230 mutex_enter(aobj->u_obj.vmobjlock);
1231 rv = uao_pagein(aobj, startslot, endslot);
1232 mutex_exit(aobj->u_obj.vmobjlock);
1233
1234 /* Drop the reference of the current object. */
1235 uao_detach(&aobj->u_obj);
1236 if (rv) {
1237 if (nextaobj) {
1238 uao_detach(&nextaobj->u_obj);
1239 }
1240 return rv;
1241 }
1242
1243 aobj = nextaobj;
1244 mutex_enter(&uao_list_lock);
1245 } while (aobj);
1246
1247 mutex_exit(&uao_list_lock);
1248 return false;
1249 }
1250
1251 /*
1252 * page in any pages from aobj in the given range.
1253 *
1254 * => aobj must be locked and is returned locked.
1255 * => returns true if pagein was aborted due to lack of memory.
1256 */
1257 static bool
1258 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1259 {
1260 bool rv;
1261
1262 if (UAO_USES_SWHASH(aobj)) {
1263 struct uao_swhash_elt *elt;
1264 int buck;
1265
1266 restart:
1267 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1268 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1269 elt != NULL;
1270 elt = LIST_NEXT(elt, list)) {
1271 int i;
1272
1273 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1274 int slot = elt->slots[i];
1275
1276 /*
1277 * if the slot isn't in range, skip it.
1278 */
1279
1280 if (slot < startslot ||
1281 slot >= endslot) {
1282 continue;
1283 }
1284
1285 /*
1286 * process the page,
1287 * the start over on this object
1288 * since the swhash elt
1289 * may have been freed.
1290 */
1291
1292 rv = uao_pagein_page(aobj,
1293 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1294 if (rv) {
1295 return rv;
1296 }
1297 goto restart;
1298 }
1299 }
1300 }
1301 } else {
1302 int i;
1303
1304 for (i = 0; i < aobj->u_pages; i++) {
1305 int slot = aobj->u_swslots[i];
1306
1307 /*
1308 * if the slot isn't in range, skip it
1309 */
1310
1311 if (slot < startslot || slot >= endslot) {
1312 continue;
1313 }
1314
1315 /*
1316 * process the page.
1317 */
1318
1319 rv = uao_pagein_page(aobj, i);
1320 if (rv) {
1321 return rv;
1322 }
1323 }
1324 }
1325
1326 return false;
1327 }
1328
1329 /*
1330 * uao_pagein_page: page in a single page from an anonymous UVM object.
1331 *
1332 * => Returns true if pagein was aborted due to lack of memory.
1333 * => Object must be locked and is returned locked.
1334 */
1335
1336 static bool
1337 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1338 {
1339 struct uvm_object *uobj = &aobj->u_obj;
1340 struct vm_page *pg;
1341 int rv, npages;
1342
1343 pg = NULL;
1344 npages = 1;
1345
1346 KASSERT(mutex_owned(uobj->vmobjlock));
1347 rv = uao_get(uobj, (voff_t)pageidx << PAGE_SHIFT, &pg, &npages,
1348 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1349
1350 /*
1351 * relock and finish up.
1352 */
1353
1354 mutex_enter(uobj->vmobjlock);
1355 switch (rv) {
1356 case 0:
1357 break;
1358
1359 case EIO:
1360 case ERESTART:
1361
1362 /*
1363 * nothing more to do on errors.
1364 * ERESTART can only mean that the anon was freed,
1365 * so again there's nothing to do.
1366 */
1367
1368 return false;
1369
1370 default:
1371 return true;
1372 }
1373
1374 /*
1375 * ok, we've got the page now.
1376 * mark it as dirty, clear its swslot and un-busy it.
1377 */
1378 uao_dropswap(&aobj->u_obj, pageidx);
1379
1380 /*
1381 * make sure it's on a page queue.
1382 */
1383 mutex_enter(&uvm_pageqlock);
1384 if (pg->wire_count == 0)
1385 uvm_pageenqueue(pg);
1386 mutex_exit(&uvm_pageqlock);
1387
1388 if (pg->flags & PG_WANTED) {
1389 wakeup(pg);
1390 }
1391 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1392 UVM_PAGE_OWN(pg, NULL);
1393
1394 return false;
1395 }
1396
1397 /*
1398 * uao_dropswap_range: drop swapslots in the range.
1399 *
1400 * => aobj must be locked and is returned locked.
1401 * => start is inclusive. end is exclusive.
1402 */
1403
1404 void
1405 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1406 {
1407 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1408 int swpgonlydelta = 0;
1409
1410 KASSERT(mutex_owned(uobj->vmobjlock));
1411
1412 if (end == 0) {
1413 end = INT64_MAX;
1414 }
1415
1416 if (UAO_USES_SWHASH(aobj)) {
1417 int i, hashbuckets = aobj->u_swhashmask + 1;
1418 voff_t taghi;
1419 voff_t taglo;
1420
1421 taglo = UAO_SWHASH_ELT_TAG(start);
1422 taghi = UAO_SWHASH_ELT_TAG(end);
1423
1424 for (i = 0; i < hashbuckets; i++) {
1425 struct uao_swhash_elt *elt, *next;
1426
1427 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1428 elt != NULL;
1429 elt = next) {
1430 int startidx, endidx;
1431 int j;
1432
1433 next = LIST_NEXT(elt, list);
1434
1435 if (elt->tag < taglo || taghi < elt->tag) {
1436 continue;
1437 }
1438
1439 if (elt->tag == taglo) {
1440 startidx =
1441 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1442 } else {
1443 startidx = 0;
1444 }
1445
1446 if (elt->tag == taghi) {
1447 endidx =
1448 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1449 } else {
1450 endidx = UAO_SWHASH_CLUSTER_SIZE;
1451 }
1452
1453 for (j = startidx; j < endidx; j++) {
1454 int slot = elt->slots[j];
1455
1456 KASSERT(uvm_pagelookup(&aobj->u_obj,
1457 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1458 + j) << PAGE_SHIFT) == NULL);
1459 if (slot > 0) {
1460 uvm_swap_free(slot, 1);
1461 swpgonlydelta++;
1462 KASSERT(elt->count > 0);
1463 elt->slots[j] = 0;
1464 elt->count--;
1465 }
1466 }
1467
1468 if (elt->count == 0) {
1469 LIST_REMOVE(elt, list);
1470 pool_put(&uao_swhash_elt_pool, elt);
1471 }
1472 }
1473 }
1474 } else {
1475 int i;
1476
1477 if (aobj->u_pages < end) {
1478 end = aobj->u_pages;
1479 }
1480 for (i = start; i < end; i++) {
1481 int slot = aobj->u_swslots[i];
1482
1483 if (slot > 0) {
1484 uvm_swap_free(slot, 1);
1485 swpgonlydelta++;
1486 }
1487 }
1488 }
1489
1490 /*
1491 * adjust the counter of pages only in swap for all
1492 * the swap slots we've freed.
1493 */
1494
1495 if (swpgonlydelta > 0) {
1496 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1497 atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
1498 }
1499 }
1500
1501 #endif /* defined(VMSWAP) */
1502