uvm_aobj.c revision 1.139 1 /* $NetBSD: uvm_aobj.c,v 1.139 2020/03/22 18:32:42 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.139 2020/03/22 18:32:42 ad Exp $");
42
43 #ifdef _KERNEL_OPT
44 #include "opt_uvmhist.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/pool.h>
52 #include <sys/atomic.h>
53
54 #include <uvm/uvm.h>
55 #include <uvm/uvm_page_array.h>
56
57 /*
58 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to
59 * keeping the list of resident pages, it may also keep a list of allocated
60 * swap blocks. Depending on the size of the object, this list is either
61 * stored in an array (small objects) or in a hash table (large objects).
62 *
63 * Lock order
64 *
65 * uao_list_lock ->
66 * uvm_object::vmobjlock
67 */
68
69 /*
70 * Note: for hash tables, we break the address space of the aobj into blocks
71 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
72 */
73
74 #define UAO_SWHASH_CLUSTER_SHIFT 4
75 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
76
77 /* Get the "tag" for this page index. */
78 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
80 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
81
82 /* Given an ELT and a page index, find the swap slot. */
83 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
84 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
85
86 /* Given an ELT, return its pageidx base. */
87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89
90 /* The hash function. */
91 #define UAO_SWHASH_HASH(aobj, idx) \
92 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
93 & (aobj)->u_swhashmask)])
94
95 /*
96 * The threshold which determines whether we will use an array or a
97 * hash table to store the list of allocated swap blocks.
98 */
99 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
100 #define UAO_USES_SWHASH(aobj) \
101 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
102
103 /* The number of buckets in a hash, with an upper bound. */
104 #define UAO_SWHASH_MAXBUCKETS 256
105 #define UAO_SWHASH_BUCKETS(aobj) \
106 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
107
108 /*
109 * uao_swhash_elt: when a hash table is being used, this structure defines
110 * the format of an entry in the bucket list.
111 */
112
113 struct uao_swhash_elt {
114 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
115 voff_t tag; /* our 'tag' */
116 int count; /* our number of active slots */
117 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
118 };
119
120 /*
121 * uao_swhash: the swap hash table structure
122 */
123
124 LIST_HEAD(uao_swhash, uao_swhash_elt);
125
126 /*
127 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
128 * Note: pages for this pool must not come from a pageable kernel map.
129 */
130 static struct pool uao_swhash_elt_pool __cacheline_aligned;
131
132 /*
133 * uvm_aobj: the actual anon-backed uvm_object
134 *
135 * => the uvm_object is at the top of the structure, this allows
136 * (struct uvm_aobj *) == (struct uvm_object *)
137 * => only one of u_swslots and u_swhash is used in any given aobj
138 */
139
140 struct uvm_aobj {
141 struct uvm_object u_obj; /* has: lock, pgops, #pages, #refs */
142 pgoff_t u_pages; /* number of pages in entire object */
143 int u_flags; /* the flags (see uvm_aobj.h) */
144 int *u_swslots; /* array of offset->swapslot mappings */
145 /*
146 * hashtable of offset->swapslot mappings
147 * (u_swhash is an array of bucket heads)
148 */
149 struct uao_swhash *u_swhash;
150 u_long u_swhashmask; /* mask for hashtable */
151 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
152 int u_freelist; /* freelist to allocate pages from */
153 };
154
155 static void uao_free(struct uvm_aobj *);
156 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
157 int *, int, vm_prot_t, int, int);
158 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
159
160 #if defined(VMSWAP)
161 static struct uao_swhash_elt *uao_find_swhash_elt
162 (struct uvm_aobj *, int, bool);
163
164 static bool uao_pagein(struct uvm_aobj *, int, int);
165 static bool uao_pagein_page(struct uvm_aobj *, int);
166 #endif /* defined(VMSWAP) */
167
168 static struct vm_page *uao_pagealloc(struct uvm_object *, voff_t, int);
169
170 /*
171 * aobj_pager
172 *
173 * note that some functions (e.g. put) are handled elsewhere
174 */
175
176 const struct uvm_pagerops aobj_pager = {
177 .pgo_reference = uao_reference,
178 .pgo_detach = uao_detach,
179 .pgo_get = uao_get,
180 .pgo_put = uao_put,
181 };
182
183 /*
184 * uao_list: global list of active aobjs, locked by uao_list_lock
185 */
186
187 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned;
188 static kmutex_t uao_list_lock __cacheline_aligned;
189
190 /*
191 * hash table/array related functions
192 */
193
194 #if defined(VMSWAP)
195
196 /*
197 * uao_find_swhash_elt: find (or create) a hash table entry for a page
198 * offset.
199 *
200 * => the object should be locked by the caller
201 */
202
203 static struct uao_swhash_elt *
204 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
205 {
206 struct uao_swhash *swhash;
207 struct uao_swhash_elt *elt;
208 voff_t page_tag;
209
210 swhash = UAO_SWHASH_HASH(aobj, pageidx);
211 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
212
213 /*
214 * now search the bucket for the requested tag
215 */
216
217 LIST_FOREACH(elt, swhash, list) {
218 if (elt->tag == page_tag) {
219 return elt;
220 }
221 }
222 if (!create) {
223 return NULL;
224 }
225
226 /*
227 * allocate a new entry for the bucket and init/insert it in
228 */
229
230 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
231 if (elt == NULL) {
232 return NULL;
233 }
234 LIST_INSERT_HEAD(swhash, elt, list);
235 elt->tag = page_tag;
236 elt->count = 0;
237 memset(elt->slots, 0, sizeof(elt->slots));
238 return elt;
239 }
240
241 /*
242 * uao_find_swslot: find the swap slot number for an aobj/pageidx
243 *
244 * => object must be locked by caller
245 */
246
247 int
248 uao_find_swslot(struct uvm_object *uobj, int pageidx)
249 {
250 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
251 struct uao_swhash_elt *elt;
252
253 /*
254 * if noswap flag is set, then we never return a slot
255 */
256
257 if (aobj->u_flags & UAO_FLAG_NOSWAP)
258 return 0;
259
260 /*
261 * if hashing, look in hash table.
262 */
263
264 if (UAO_USES_SWHASH(aobj)) {
265 elt = uao_find_swhash_elt(aobj, pageidx, false);
266 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
267 }
268
269 /*
270 * otherwise, look in the array
271 */
272
273 return aobj->u_swslots[pageidx];
274 }
275
276 /*
277 * uao_set_swslot: set the swap slot for a page in an aobj.
278 *
279 * => setting a slot to zero frees the slot
280 * => object must be locked by caller
281 * => we return the old slot number, or -1 if we failed to allocate
282 * memory to record the new slot number
283 */
284
285 int
286 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
287 {
288 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
289 struct uao_swhash_elt *elt;
290 int oldslot;
291 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
292 UVMHIST_LOG(pdhist, "aobj %#jx pageidx %jd slot %jd",
293 (uintptr_t)aobj, pageidx, slot, 0);
294
295 KASSERT(rw_write_held(uobj->vmobjlock) || uobj->uo_refs == 0);
296
297 /*
298 * if noswap flag is set, then we can't set a non-zero slot.
299 */
300
301 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
302 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
303 return 0;
304 }
305
306 /*
307 * are we using a hash table? if so, add it in the hash.
308 */
309
310 if (UAO_USES_SWHASH(aobj)) {
311
312 /*
313 * Avoid allocating an entry just to free it again if
314 * the page had not swap slot in the first place, and
315 * we are freeing.
316 */
317
318 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
319 if (elt == NULL) {
320 return slot ? -1 : 0;
321 }
322
323 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
324 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
325
326 /*
327 * now adjust the elt's reference counter and free it if we've
328 * dropped it to zero.
329 */
330
331 if (slot) {
332 if (oldslot == 0)
333 elt->count++;
334 } else {
335 if (oldslot)
336 elt->count--;
337
338 if (elt->count == 0) {
339 LIST_REMOVE(elt, list);
340 pool_put(&uao_swhash_elt_pool, elt);
341 }
342 }
343 } else {
344 /* we are using an array */
345 oldslot = aobj->u_swslots[pageidx];
346 aobj->u_swslots[pageidx] = slot;
347 }
348 return oldslot;
349 }
350
351 #endif /* defined(VMSWAP) */
352
353 /*
354 * end of hash/array functions
355 */
356
357 /*
358 * uao_free: free all resources held by an aobj, and then free the aobj
359 *
360 * => the aobj should be dead
361 */
362
363 static void
364 uao_free(struct uvm_aobj *aobj)
365 {
366 struct uvm_object *uobj = &aobj->u_obj;
367
368 KASSERT(rw_write_held(uobj->vmobjlock));
369 uao_dropswap_range(uobj, 0, 0);
370 rw_exit(uobj->vmobjlock);
371
372 #if defined(VMSWAP)
373 if (UAO_USES_SWHASH(aobj)) {
374
375 /*
376 * free the hash table itself.
377 */
378
379 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
380 } else {
381
382 /*
383 * free the array itsself.
384 */
385
386 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
387 }
388 #endif /* defined(VMSWAP) */
389
390 /*
391 * finally free the aobj itself
392 */
393
394 uvm_obj_destroy(uobj, true);
395 kmem_free(aobj, sizeof(struct uvm_aobj));
396 }
397
398 /*
399 * pager functions
400 */
401
402 /*
403 * uao_create: create an aobj of the given size and return its uvm_object.
404 *
405 * => for normal use, flags are always zero
406 * => for the kernel object, the flags are:
407 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
408 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
409 */
410
411 struct uvm_object *
412 uao_create(voff_t size, int flags)
413 {
414 static struct uvm_aobj kernel_object_store;
415 static krwlock_t kernel_object_lock __cacheline_aligned;
416 static int kobj_alloced __diagused = 0;
417 pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT;
418 struct uvm_aobj *aobj;
419 int refs;
420
421 /*
422 * Allocate a new aobj, unless kernel object is requested.
423 */
424
425 if (flags & UAO_FLAG_KERNOBJ) {
426 KASSERT(!kobj_alloced);
427 aobj = &kernel_object_store;
428 aobj->u_pages = pages;
429 aobj->u_flags = UAO_FLAG_NOSWAP;
430 refs = UVM_OBJ_KERN;
431 kobj_alloced = UAO_FLAG_KERNOBJ;
432 } else if (flags & UAO_FLAG_KERNSWAP) {
433 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
434 aobj = &kernel_object_store;
435 kobj_alloced = UAO_FLAG_KERNSWAP;
436 refs = 0xdeadbeaf; /* XXX: gcc */
437 } else {
438 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
439 aobj->u_pages = pages;
440 aobj->u_flags = 0;
441 refs = 1;
442 }
443
444 /*
445 * no freelist by default
446 */
447
448 aobj->u_freelist = VM_NFREELIST;
449
450 /*
451 * allocate hash/array if necessary
452 *
453 * note: in the KERNSWAP case no need to worry about locking since
454 * we are still booting we should be the only thread around.
455 */
456
457 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
458 #if defined(VMSWAP)
459 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
460
461 /* allocate hash table or array depending on object size */
462 if (UAO_USES_SWHASH(aobj)) {
463 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
464 HASH_LIST, kernswap ? false : true,
465 &aobj->u_swhashmask);
466 if (aobj->u_swhash == NULL)
467 panic("uao_create: hashinit swhash failed");
468 } else {
469 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
470 kernswap ? KM_NOSLEEP : KM_SLEEP);
471 if (aobj->u_swslots == NULL)
472 panic("uao_create: swslots allocation failed");
473 }
474 #endif /* defined(VMSWAP) */
475
476 if (flags) {
477 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
478 return &aobj->u_obj;
479 }
480 }
481
482 /*
483 * Initialise UVM object.
484 */
485
486 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
487 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
488 if (__predict_false(kernobj)) {
489 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
490 rw_init(&kernel_object_lock);
491 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
492 }
493
494 /*
495 * now that aobj is ready, add it to the global list
496 */
497
498 mutex_enter(&uao_list_lock);
499 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
500 mutex_exit(&uao_list_lock);
501 return(&aobj->u_obj);
502 }
503
504 /*
505 * uao_set_pgfl: allocate pages only from the specified freelist.
506 *
507 * => must be called before any pages are allocated for the object.
508 * => reset by setting it to VM_NFREELIST, meaning any freelist.
509 */
510
511 void
512 uao_set_pgfl(struct uvm_object *uobj, int freelist)
513 {
514 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
515
516 KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
517 KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
518 freelist);
519
520 aobj->u_freelist = freelist;
521 }
522
523 /*
524 * uao_pagealloc: allocate a page for aobj.
525 */
526
527 static inline struct vm_page *
528 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
529 {
530 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
531
532 if (__predict_true(aobj->u_freelist == VM_NFREELIST))
533 return uvm_pagealloc(uobj, offset, NULL, flags);
534 else
535 return uvm_pagealloc_strat(uobj, offset, NULL, flags,
536 UVM_PGA_STRAT_ONLY, aobj->u_freelist);
537 }
538
539 /*
540 * uao_init: set up aobj pager subsystem
541 *
542 * => called at boot time from uvm_pager_init()
543 */
544
545 void
546 uao_init(void)
547 {
548 static int uao_initialized;
549
550 if (uao_initialized)
551 return;
552 uao_initialized = true;
553 LIST_INIT(&uao_list);
554 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
555 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
556 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
557 }
558
559 /*
560 * uao_reference: hold a reference to an anonymous UVM object.
561 */
562 void
563 uao_reference(struct uvm_object *uobj)
564 {
565 /* Kernel object is persistent. */
566 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
567 return;
568 }
569 atomic_inc_uint(&uobj->uo_refs);
570 }
571
572 /*
573 * uao_detach: drop a reference to an anonymous UVM object.
574 */
575 void
576 uao_detach(struct uvm_object *uobj)
577 {
578 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
579 struct uvm_page_array a;
580 struct vm_page *pg;
581
582 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
583
584 /*
585 * Detaching from kernel object is a NOP.
586 */
587
588 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
589 return;
590
591 /*
592 * Drop the reference. If it was the last one, destroy the object.
593 */
594
595 KASSERT(uobj->uo_refs > 0);
596 UVMHIST_LOG(maphist," (uobj=%#jx) ref=%jd",
597 (uintptr_t)uobj, uobj->uo_refs, 0, 0);
598 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
599 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
600 return;
601 }
602
603 /*
604 * Remove the aobj from the global list.
605 */
606
607 mutex_enter(&uao_list_lock);
608 LIST_REMOVE(aobj, u_list);
609 mutex_exit(&uao_list_lock);
610
611 /*
612 * Free all the pages left in the aobj. For each page, when the
613 * page is no longer busy (and thus after any disk I/O that it is
614 * involved in is complete), release any swap resources and free
615 * the page itself.
616 */
617 uvm_page_array_init(&a);
618 rw_enter(uobj->vmobjlock, RW_WRITER);
619 while ((pg = uvm_page_array_fill_and_peek(&a, uobj, 0, 0, 0))
620 != NULL) {
621 uvm_page_array_advance(&a);
622 pmap_page_protect(pg, VM_PROT_NONE);
623 if (pg->flags & PG_BUSY) {
624 uvm_pagewait(pg, uobj->vmobjlock, "uao_det");
625 uvm_page_array_clear(&a);
626 rw_enter(uobj->vmobjlock, RW_WRITER);
627 continue;
628 }
629 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
630 uvm_pagefree(pg);
631 }
632 uvm_page_array_fini(&a);
633
634 /*
635 * Finally, free the anonymous UVM object itself.
636 */
637
638 uao_free(aobj);
639 }
640
641 /*
642 * uao_put: flush pages out of a uvm object
643 *
644 * => object should be locked by caller. we may _unlock_ the object
645 * if (and only if) we need to clean a page (PGO_CLEANIT).
646 * XXXJRT Currently, however, we don't. In the case of cleaning
647 * XXXJRT a page, we simply just deactivate it. Should probably
648 * XXXJRT handle this better, in the future (although "flushing"
649 * XXXJRT anonymous memory isn't terribly important).
650 * => if PGO_CLEANIT is not set, then we will neither unlock the object
651 * or block.
652 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
653 * for flushing.
654 * => we return 0 unless we encountered some sort of I/O error
655 * XXXJRT currently never happens, as we never directly initiate
656 * XXXJRT I/O
657 */
658
659 static int
660 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
661 {
662 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
663 struct uvm_page_array a;
664 struct vm_page *pg;
665 voff_t curoff;
666 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
667
668 KASSERT(rw_write_held(uobj->vmobjlock));
669
670 if (flags & PGO_ALLPAGES) {
671 start = 0;
672 stop = aobj->u_pages << PAGE_SHIFT;
673 } else {
674 start = trunc_page(start);
675 if (stop == 0) {
676 stop = aobj->u_pages << PAGE_SHIFT;
677 } else {
678 stop = round_page(stop);
679 }
680 if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) {
681 printf("uao_put: strange, got an out of range "
682 "flush %#jx > %#jx (fixed)\n",
683 (uintmax_t)stop,
684 (uintmax_t)(aobj->u_pages << PAGE_SHIFT));
685 stop = aobj->u_pages << PAGE_SHIFT;
686 }
687 }
688 UVMHIST_LOG(maphist,
689 " flush start=%#jx, stop=%#jx, flags=%#jx",
690 start, stop, flags, 0);
691
692 /*
693 * Don't need to do any work here if we're not freeing
694 * or deactivating pages.
695 */
696
697 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
698 rw_exit(uobj->vmobjlock);
699 return 0;
700 }
701
702 /* locked: uobj */
703 uvm_page_array_init(&a);
704 curoff = start;
705 while ((pg = uvm_page_array_fill_and_peek(&a, uobj, curoff, 0, 0)) !=
706 NULL) {
707 if (pg->offset >= stop) {
708 break;
709 }
710
711 /*
712 * wait and try again if the page is busy.
713 */
714
715 if (pg->flags & PG_BUSY) {
716 uvm_pagewait(pg, uobj->vmobjlock, "uao_put");
717 uvm_page_array_clear(&a);
718 rw_enter(uobj->vmobjlock, RW_WRITER);
719 continue;
720 }
721 uvm_page_array_advance(&a);
722 curoff = pg->offset + PAGE_SIZE;
723
724 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
725
726 /*
727 * XXX In these first 3 cases, we always just
728 * XXX deactivate the page. We may want to
729 * XXX handle the different cases more specifically
730 * XXX in the future.
731 */
732
733 case PGO_CLEANIT|PGO_FREE:
734 case PGO_CLEANIT|PGO_DEACTIVATE:
735 case PGO_DEACTIVATE:
736 deactivate_it:
737 uvm_pagelock(pg);
738 uvm_pagedeactivate(pg);
739 uvm_pageunlock(pg);
740 break;
741
742 case PGO_FREE:
743 /*
744 * If there are multiple references to
745 * the object, just deactivate the page.
746 */
747
748 if (uobj->uo_refs > 1)
749 goto deactivate_it;
750
751 /*
752 * free the swap slot and the page.
753 */
754
755 pmap_page_protect(pg, VM_PROT_NONE);
756
757 /*
758 * freeing swapslot here is not strictly necessary.
759 * however, leaving it here doesn't save much
760 * because we need to update swap accounting anyway.
761 */
762
763 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
764 uvm_pagefree(pg);
765 break;
766
767 default:
768 panic("%s: impossible", __func__);
769 }
770 }
771 rw_exit(uobj->vmobjlock);
772 uvm_page_array_fini(&a);
773 return 0;
774 }
775
776 /*
777 * uao_get: fetch me a page
778 *
779 * we have three cases:
780 * 1: page is resident -> just return the page.
781 * 2: page is zero-fill -> allocate a new page and zero it.
782 * 3: page is swapped out -> fetch the page from swap.
783 *
784 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
785 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
786 * then we will need to return EBUSY.
787 *
788 * => prefer map unlocked (not required)
789 * => object must be locked! we will _unlock_ it before starting any I/O.
790 * => flags: PGO_ALLPAGES: get all of the pages
791 * PGO_LOCKED: fault data structures are locked
792 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
793 * => NOTE: caller must check for released pages!!
794 */
795
796 static int
797 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
798 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
799 {
800 voff_t current_offset;
801 struct vm_page *ptmp = NULL; /* Quell compiler warning */
802 int lcv, gotpages, maxpages, swslot, pageidx;
803 bool done;
804 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
805
806 UVMHIST_LOG(pdhist, "aobj=%#jx offset=%jd, flags=%jd",
807 (uintptr_t)uobj, offset, flags,0);
808
809 /*
810 * the object must be locked. it can only be a read lock when
811 * processing a read fault with PGO_LOCKED | PGO_NOBUSY.
812 */
813
814 KASSERT(rw_lock_held(uobj->vmobjlock));
815 KASSERT(rw_write_held(uobj->vmobjlock) ||
816 ((~flags & (PGO_LOCKED | PGO_NOBUSY)) == 0 &&
817 (access_type & VM_PROT_WRITE) == 0));
818
819 /*
820 * get number of pages
821 */
822
823 maxpages = *npagesp;
824
825 /*
826 * step 1: handled the case where fault data structures are locked.
827 */
828
829 if (flags & PGO_LOCKED) {
830
831 /*
832 * step 1a: get pages that are already resident. only do
833 * this if the data structures are locked (i.e. the first
834 * time through).
835 */
836
837 done = true; /* be optimistic */
838 gotpages = 0; /* # of pages we got so far */
839 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
840 lcv++, current_offset += PAGE_SIZE) {
841 /* do we care about this page? if not, skip it */
842 if (pps[lcv] == PGO_DONTCARE)
843 continue;
844 ptmp = uvm_pagelookup(uobj, current_offset);
845
846 /*
847 * if page is new, attempt to allocate the page,
848 * zero-fill'd. we can only do this if busying
849 * pages, as otherwise the object is read locked.
850 */
851
852 if ((flags & PGO_NOBUSY) == 0 && ptmp == NULL &&
853 uao_find_swslot(uobj,
854 current_offset >> PAGE_SHIFT) == 0) {
855 ptmp = uao_pagealloc(uobj, current_offset,
856 UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
857 if (ptmp) {
858 /* new page */
859 ptmp->flags &= ~(PG_FAKE);
860 uvm_pagemarkdirty(ptmp,
861 UVM_PAGE_STATUS_UNKNOWN);
862 goto gotpage;
863 }
864 }
865
866 /*
867 * to be useful must get a non-busy page
868 */
869
870 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
871 if (lcv == centeridx ||
872 (flags & PGO_ALLPAGES) != 0)
873 /* need to do a wait or I/O! */
874 done = false;
875 continue;
876 }
877
878 /*
879 * useful page: busy/lock it and plug it in our
880 * result array
881 */
882 KASSERT(uvm_pagegetdirty(ptmp) !=
883 UVM_PAGE_STATUS_CLEAN);
884
885 if ((flags & PGO_NOBUSY) == 0) {
886 /* caller must un-busy this page */
887 ptmp->flags |= PG_BUSY;
888 UVM_PAGE_OWN(ptmp, "uao_get1");
889 }
890 gotpage:
891 pps[lcv] = ptmp;
892 gotpages++;
893 }
894
895 /*
896 * step 1b: now we've either done everything needed or we
897 * to unlock and do some waiting or I/O.
898 */
899
900 UVMHIST_LOG(pdhist, "<- done (done=%jd)", done, 0,0,0);
901 *npagesp = gotpages;
902 if (done)
903 return 0;
904 else
905 return EBUSY;
906 }
907
908 /*
909 * step 2: get non-resident or busy pages.
910 * object is locked. data structures are unlocked.
911 */
912
913 if ((flags & PGO_SYNCIO) == 0) {
914 goto done;
915 }
916
917 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
918 lcv++, current_offset += PAGE_SIZE) {
919
920 /*
921 * - skip over pages we've already gotten or don't want
922 * - skip over pages we don't _have_ to get
923 */
924
925 if (pps[lcv] != NULL ||
926 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
927 continue;
928
929 pageidx = current_offset >> PAGE_SHIFT;
930
931 /*
932 * we have yet to locate the current page (pps[lcv]). we
933 * first look for a page that is already at the current offset.
934 * if we find a page, we check to see if it is busy or
935 * released. if that is the case, then we sleep on the page
936 * until it is no longer busy or released and repeat the lookup.
937 * if the page we found is neither busy nor released, then we
938 * busy it (so we own it) and plug it into pps[lcv]. this
939 * 'break's the following while loop and indicates we are
940 * ready to move on to the next page in the "lcv" loop above.
941 *
942 * if we exit the while loop with pps[lcv] still set to NULL,
943 * then it means that we allocated a new busy/fake/clean page
944 * ptmp in the object and we need to do I/O to fill in the data.
945 */
946
947 /* top of "pps" while loop */
948 while (pps[lcv] == NULL) {
949 /* look for a resident page */
950 ptmp = uvm_pagelookup(uobj, current_offset);
951
952 /* not resident? allocate one now (if we can) */
953 if (ptmp == NULL) {
954
955 ptmp = uao_pagealloc(uobj, current_offset, 0);
956
957 /* out of RAM? */
958 if (ptmp == NULL) {
959 rw_exit(uobj->vmobjlock);
960 UVMHIST_LOG(pdhist,
961 "sleeping, ptmp == NULL\n",0,0,0,0);
962 uvm_wait("uao_getpage");
963 rw_enter(uobj->vmobjlock, RW_WRITER);
964 continue;
965 }
966
967 /*
968 * got new page ready for I/O. break pps while
969 * loop. pps[lcv] is still NULL.
970 */
971
972 break;
973 }
974
975 /* page is there, see if we need to wait on it */
976 if ((ptmp->flags & PG_BUSY) != 0) {
977 UVMHIST_LOG(pdhist,
978 "sleeping, ptmp->flags %#jx\n",
979 ptmp->flags,0,0,0);
980 uvm_pagewait(ptmp, uobj->vmobjlock, "uao_get");
981 rw_enter(uobj->vmobjlock, RW_WRITER);
982 continue;
983 }
984
985 /*
986 * if we get here then the page has become resident and
987 * unbusy between steps 1 and 2. we busy it now (so we
988 * own it) and set pps[lcv] (so that we exit the while
989 * loop).
990 */
991
992 KASSERT(uvm_pagegetdirty(ptmp) !=
993 UVM_PAGE_STATUS_CLEAN);
994 /* we own it, caller must un-busy */
995 ptmp->flags |= PG_BUSY;
996 UVM_PAGE_OWN(ptmp, "uao_get2");
997 pps[lcv] = ptmp;
998 }
999
1000 /*
1001 * if we own the valid page at the correct offset, pps[lcv] will
1002 * point to it. nothing more to do except go to the next page.
1003 */
1004
1005 if (pps[lcv])
1006 continue; /* next lcv */
1007
1008 /*
1009 * we have a "fake/busy/clean" page that we just allocated.
1010 * do the needed "i/o", either reading from swap or zeroing.
1011 */
1012
1013 swslot = uao_find_swslot(uobj, pageidx);
1014
1015 /*
1016 * just zero the page if there's nothing in swap.
1017 */
1018
1019 if (swslot == 0) {
1020
1021 /*
1022 * page hasn't existed before, just zero it.
1023 */
1024
1025 uvm_pagezero(ptmp);
1026 } else {
1027 #if defined(VMSWAP)
1028 int error;
1029
1030 UVMHIST_LOG(pdhist, "pagein from swslot %jd",
1031 swslot, 0,0,0);
1032
1033 /*
1034 * page in the swapped-out page.
1035 * unlock object for i/o, relock when done.
1036 */
1037
1038 rw_exit(uobj->vmobjlock);
1039 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1040 rw_enter(uobj->vmobjlock, RW_WRITER);
1041
1042 /*
1043 * I/O done. check for errors.
1044 */
1045
1046 if (error != 0) {
1047 UVMHIST_LOG(pdhist, "<- done (error=%jd)",
1048 error,0,0,0);
1049
1050 /*
1051 * remove the swap slot from the aobj
1052 * and mark the aobj as having no real slot.
1053 * don't free the swap slot, thus preventing
1054 * it from being used again.
1055 */
1056
1057 swslot = uao_set_swslot(uobj, pageidx,
1058 SWSLOT_BAD);
1059 if (swslot > 0) {
1060 uvm_swap_markbad(swslot, 1);
1061 }
1062
1063 uvm_pagefree(ptmp);
1064 rw_exit(uobj->vmobjlock);
1065 return error;
1066 }
1067 #else /* defined(VMSWAP) */
1068 panic("%s: pagein", __func__);
1069 #endif /* defined(VMSWAP) */
1070 }
1071
1072 /*
1073 * note that we will allow the page being writably-mapped
1074 * (!PG_RDONLY) regardless of access_type.
1075 */
1076 uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_UNKNOWN);
1077
1078 /*
1079 * we got the page! clear the fake flag (indicates valid
1080 * data now in page) and plug into our result array. note
1081 * that page is still busy.
1082 *
1083 * it is the callers job to:
1084 * => check if the page is released
1085 * => unbusy the page
1086 * => activate the page
1087 */
1088 KASSERT(uvm_pagegetdirty(ptmp) != UVM_PAGE_STATUS_CLEAN);
1089 KASSERT((ptmp->flags & PG_FAKE) != 0);
1090 ptmp->flags &= ~PG_FAKE;
1091 pps[lcv] = ptmp;
1092 }
1093
1094 /*
1095 * finally, unlock object and return.
1096 */
1097
1098 done:
1099 rw_exit(uobj->vmobjlock);
1100 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1101 return 0;
1102 }
1103
1104 #if defined(VMSWAP)
1105
1106 /*
1107 * uao_dropswap: release any swap resources from this aobj page.
1108 *
1109 * => aobj must be locked or have a reference count of 0.
1110 */
1111
1112 void
1113 uao_dropswap(struct uvm_object *uobj, int pageidx)
1114 {
1115 int slot;
1116
1117 slot = uao_set_swslot(uobj, pageidx, 0);
1118 if (slot) {
1119 uvm_swap_free(slot, 1);
1120 }
1121 }
1122
1123 /*
1124 * page in every page in every aobj that is paged-out to a range of swslots.
1125 *
1126 * => nothing should be locked.
1127 * => returns true if pagein was aborted due to lack of memory.
1128 */
1129
1130 bool
1131 uao_swap_off(int startslot, int endslot)
1132 {
1133 struct uvm_aobj *aobj;
1134
1135 /*
1136 * Walk the list of all anonymous UVM objects. Grab the first.
1137 */
1138 mutex_enter(&uao_list_lock);
1139 if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1140 mutex_exit(&uao_list_lock);
1141 return false;
1142 }
1143 uao_reference(&aobj->u_obj);
1144
1145 do {
1146 struct uvm_aobj *nextaobj;
1147 bool rv;
1148
1149 /*
1150 * Prefetch the next object and immediately hold a reference
1151 * on it, so neither the current nor the next entry could
1152 * disappear while we are iterating.
1153 */
1154 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1155 uao_reference(&nextaobj->u_obj);
1156 }
1157 mutex_exit(&uao_list_lock);
1158
1159 /*
1160 * Page in all pages in the swap slot range.
1161 */
1162 rw_enter(aobj->u_obj.vmobjlock, RW_WRITER);
1163 rv = uao_pagein(aobj, startslot, endslot);
1164 rw_exit(aobj->u_obj.vmobjlock);
1165
1166 /* Drop the reference of the current object. */
1167 uao_detach(&aobj->u_obj);
1168 if (rv) {
1169 if (nextaobj) {
1170 uao_detach(&nextaobj->u_obj);
1171 }
1172 return rv;
1173 }
1174
1175 aobj = nextaobj;
1176 mutex_enter(&uao_list_lock);
1177 } while (aobj);
1178
1179 mutex_exit(&uao_list_lock);
1180 return false;
1181 }
1182
1183 /*
1184 * page in any pages from aobj in the given range.
1185 *
1186 * => aobj must be locked and is returned locked.
1187 * => returns true if pagein was aborted due to lack of memory.
1188 */
1189 static bool
1190 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1191 {
1192 bool rv;
1193
1194 if (UAO_USES_SWHASH(aobj)) {
1195 struct uao_swhash_elt *elt;
1196 int buck;
1197
1198 restart:
1199 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1200 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1201 elt != NULL;
1202 elt = LIST_NEXT(elt, list)) {
1203 int i;
1204
1205 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1206 int slot = elt->slots[i];
1207
1208 /*
1209 * if the slot isn't in range, skip it.
1210 */
1211
1212 if (slot < startslot ||
1213 slot >= endslot) {
1214 continue;
1215 }
1216
1217 /*
1218 * process the page,
1219 * the start over on this object
1220 * since the swhash elt
1221 * may have been freed.
1222 */
1223
1224 rv = uao_pagein_page(aobj,
1225 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1226 if (rv) {
1227 return rv;
1228 }
1229 goto restart;
1230 }
1231 }
1232 }
1233 } else {
1234 int i;
1235
1236 for (i = 0; i < aobj->u_pages; i++) {
1237 int slot = aobj->u_swslots[i];
1238
1239 /*
1240 * if the slot isn't in range, skip it
1241 */
1242
1243 if (slot < startslot || slot >= endslot) {
1244 continue;
1245 }
1246
1247 /*
1248 * process the page.
1249 */
1250
1251 rv = uao_pagein_page(aobj, i);
1252 if (rv) {
1253 return rv;
1254 }
1255 }
1256 }
1257
1258 return false;
1259 }
1260
1261 /*
1262 * uao_pagein_page: page in a single page from an anonymous UVM object.
1263 *
1264 * => Returns true if pagein was aborted due to lack of memory.
1265 * => Object must be locked and is returned locked.
1266 */
1267
1268 static bool
1269 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1270 {
1271 struct uvm_object *uobj = &aobj->u_obj;
1272 struct vm_page *pg;
1273 int rv, npages;
1274
1275 pg = NULL;
1276 npages = 1;
1277
1278 KASSERT(rw_write_held(uobj->vmobjlock));
1279 rv = uao_get(uobj, (voff_t)pageidx << PAGE_SHIFT, &pg, &npages,
1280 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
1281
1282 /*
1283 * relock and finish up.
1284 */
1285
1286 rw_enter(uobj->vmobjlock, RW_WRITER);
1287 switch (rv) {
1288 case 0:
1289 break;
1290
1291 case EIO:
1292 case ERESTART:
1293
1294 /*
1295 * nothing more to do on errors.
1296 * ERESTART can only mean that the anon was freed,
1297 * so again there's nothing to do.
1298 */
1299
1300 return false;
1301
1302 default:
1303 return true;
1304 }
1305
1306 /*
1307 * ok, we've got the page now.
1308 * mark it as dirty, clear its swslot and un-busy it.
1309 */
1310 uao_dropswap(&aobj->u_obj, pageidx);
1311
1312 /*
1313 * make sure it's on a page queue.
1314 */
1315 uvm_pagelock(pg);
1316 uvm_pageenqueue(pg);
1317 uvm_pagewakeup(pg);
1318 uvm_pageunlock(pg);
1319
1320 pg->flags &= ~(PG_BUSY|PG_FAKE);
1321 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1322 UVM_PAGE_OWN(pg, NULL);
1323
1324 return false;
1325 }
1326
1327 /*
1328 * uao_dropswap_range: drop swapslots in the range.
1329 *
1330 * => aobj must be locked and is returned locked.
1331 * => start is inclusive. end is exclusive.
1332 */
1333
1334 void
1335 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1336 {
1337 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1338 int swpgonlydelta = 0;
1339
1340 KASSERT(rw_write_held(uobj->vmobjlock));
1341
1342 if (end == 0) {
1343 end = INT64_MAX;
1344 }
1345
1346 if (UAO_USES_SWHASH(aobj)) {
1347 int i, hashbuckets = aobj->u_swhashmask + 1;
1348 voff_t taghi;
1349 voff_t taglo;
1350
1351 taglo = UAO_SWHASH_ELT_TAG(start);
1352 taghi = UAO_SWHASH_ELT_TAG(end);
1353
1354 for (i = 0; i < hashbuckets; i++) {
1355 struct uao_swhash_elt *elt, *next;
1356
1357 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1358 elt != NULL;
1359 elt = next) {
1360 int startidx, endidx;
1361 int j;
1362
1363 next = LIST_NEXT(elt, list);
1364
1365 if (elt->tag < taglo || taghi < elt->tag) {
1366 continue;
1367 }
1368
1369 if (elt->tag == taglo) {
1370 startidx =
1371 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1372 } else {
1373 startidx = 0;
1374 }
1375
1376 if (elt->tag == taghi) {
1377 endidx =
1378 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1379 } else {
1380 endidx = UAO_SWHASH_CLUSTER_SIZE;
1381 }
1382
1383 for (j = startidx; j < endidx; j++) {
1384 int slot = elt->slots[j];
1385
1386 KASSERT(uvm_pagelookup(&aobj->u_obj,
1387 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1388 + j) << PAGE_SHIFT) == NULL);
1389 if (slot > 0) {
1390 uvm_swap_free(slot, 1);
1391 swpgonlydelta++;
1392 KASSERT(elt->count > 0);
1393 elt->slots[j] = 0;
1394 elt->count--;
1395 }
1396 }
1397
1398 if (elt->count == 0) {
1399 LIST_REMOVE(elt, list);
1400 pool_put(&uao_swhash_elt_pool, elt);
1401 }
1402 }
1403 }
1404 } else {
1405 int i;
1406
1407 if (aobj->u_pages < end) {
1408 end = aobj->u_pages;
1409 }
1410 for (i = start; i < end; i++) {
1411 int slot = aobj->u_swslots[i];
1412
1413 if (slot > 0) {
1414 uvm_swap_free(slot, 1);
1415 swpgonlydelta++;
1416 }
1417 }
1418 }
1419
1420 /*
1421 * adjust the counter of pages only in swap for all
1422 * the swap slots we've freed.
1423 */
1424
1425 if (swpgonlydelta > 0) {
1426 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1427 atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
1428 }
1429 }
1430
1431 #endif /* defined(VMSWAP) */
1432