Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.150
      1 /*	$NetBSD: uvm_aobj.c,v 1.150 2020/08/19 07:29:00 simonb Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.150 2020/08/19 07:29:00 simonb Exp $");
     42 
     43 #ifdef _KERNEL_OPT
     44 #include "opt_uvmhist.h"
     45 #endif
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/pool.h>
     52 #include <sys/atomic.h>
     53 
     54 #include <uvm/uvm.h>
     55 #include <uvm/uvm_page_array.h>
     56 
     57 /*
     58  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
     59  * keeping the list of resident pages, it may also keep a list of allocated
     60  * swap blocks.  Depending on the size of the object, this list is either
     61  * stored in an array (small objects) or in a hash table (large objects).
     62  *
     63  * Lock order
     64  *
     65  *	uao_list_lock ->
     66  *		uvm_object::vmobjlock
     67  */
     68 
     69 /*
     70  * Note: for hash tables, we break the address space of the aobj into blocks
     71  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
     72  */
     73 
     74 #define	UAO_SWHASH_CLUSTER_SHIFT	4
     75 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
     76 
     77 /* Get the "tag" for this page index. */
     78 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
     79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
     80     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     81 
     82 /* Given an ELT and a page index, find the swap slot. */
     83 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
     84     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
     85 
     86 /* Given an ELT, return its pageidx base. */
     87 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     88     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     89 
     90 /* The hash function. */
     91 #define	UAO_SWHASH_HASH(aobj, idx) \
     92     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
     93     & (aobj)->u_swhashmask)])
     94 
     95 /*
     96  * The threshold which determines whether we will use an array or a
     97  * hash table to store the list of allocated swap blocks.
     98  */
     99 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
    100 #define	UAO_USES_SWHASH(aobj) \
    101     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
    102 
    103 /* The number of buckets in a hash, with an upper bound. */
    104 #define	UAO_SWHASH_MAXBUCKETS		256
    105 #define	UAO_SWHASH_BUCKETS(aobj) \
    106     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
    107 
    108 /*
    109  * uao_swhash_elt: when a hash table is being used, this structure defines
    110  * the format of an entry in the bucket list.
    111  */
    112 
    113 struct uao_swhash_elt {
    114 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    115 	voff_t tag;				/* our 'tag' */
    116 	int count;				/* our number of active slots */
    117 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    118 };
    119 
    120 /*
    121  * uao_swhash: the swap hash table structure
    122  */
    123 
    124 LIST_HEAD(uao_swhash, uao_swhash_elt);
    125 
    126 /*
    127  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    128  * Note: pages for this pool must not come from a pageable kernel map.
    129  */
    130 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
    131 
    132 /*
    133  * uvm_aobj: the actual anon-backed uvm_object
    134  *
    135  * => the uvm_object is at the top of the structure, this allows
    136  *   (struct uvm_aobj *) == (struct uvm_object *)
    137  * => only one of u_swslots and u_swhash is used in any given aobj
    138  */
    139 
    140 struct uvm_aobj {
    141 	struct uvm_object u_obj; /* has: lock, pgops, #pages, #refs */
    142 	pgoff_t u_pages;	 /* number of pages in entire object */
    143 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    144 	int *u_swslots;		 /* array of offset->swapslot mappings */
    145 				 /*
    146 				  * hashtable of offset->swapslot mappings
    147 				  * (u_swhash is an array of bucket heads)
    148 				  */
    149 	struct uao_swhash *u_swhash;
    150 	u_long u_swhashmask;		/* mask for hashtable */
    151 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    152 	int u_freelist;		  /* freelist to allocate pages from */
    153 };
    154 
    155 static void	uao_free(struct uvm_aobj *);
    156 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    157 		    int *, int, vm_prot_t, int, int);
    158 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    159 
    160 #if defined(VMSWAP)
    161 static struct uao_swhash_elt *uao_find_swhash_elt
    162     (struct uvm_aobj *, int, bool);
    163 
    164 static bool uao_pagein(struct uvm_aobj *, int, int);
    165 static bool uao_pagein_page(struct uvm_aobj *, int);
    166 #endif /* defined(VMSWAP) */
    167 
    168 static struct vm_page	*uao_pagealloc(struct uvm_object *, voff_t, int);
    169 
    170 /*
    171  * aobj_pager
    172  *
    173  * note that some functions (e.g. put) are handled elsewhere
    174  */
    175 
    176 const struct uvm_pagerops aobj_pager = {
    177 	.pgo_reference = uao_reference,
    178 	.pgo_detach = uao_detach,
    179 	.pgo_get = uao_get,
    180 	.pgo_put = uao_put,
    181 };
    182 
    183 /*
    184  * uao_list: global list of active aobjs, locked by uao_list_lock
    185  */
    186 
    187 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
    188 static kmutex_t		uao_list_lock		__cacheline_aligned;
    189 
    190 /*
    191  * hash table/array related functions
    192  */
    193 
    194 #if defined(VMSWAP)
    195 
    196 /*
    197  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    198  * offset.
    199  *
    200  * => the object should be locked by the caller
    201  */
    202 
    203 static struct uao_swhash_elt *
    204 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    205 {
    206 	struct uao_swhash *swhash;
    207 	struct uao_swhash_elt *elt;
    208 	voff_t page_tag;
    209 
    210 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    211 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    212 
    213 	/*
    214 	 * now search the bucket for the requested tag
    215 	 */
    216 
    217 	LIST_FOREACH(elt, swhash, list) {
    218 		if (elt->tag == page_tag) {
    219 			return elt;
    220 		}
    221 	}
    222 	if (!create) {
    223 		return NULL;
    224 	}
    225 
    226 	/*
    227 	 * allocate a new entry for the bucket and init/insert it in
    228 	 */
    229 
    230 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    231 	if (elt == NULL) {
    232 		return NULL;
    233 	}
    234 	LIST_INSERT_HEAD(swhash, elt, list);
    235 	elt->tag = page_tag;
    236 	elt->count = 0;
    237 	memset(elt->slots, 0, sizeof(elt->slots));
    238 	return elt;
    239 }
    240 
    241 /*
    242  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    243  *
    244  * => object must be locked by caller
    245  */
    246 
    247 int
    248 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    249 {
    250 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    251 	struct uao_swhash_elt *elt;
    252 
    253 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    254 
    255 	/*
    256 	 * if noswap flag is set, then we never return a slot
    257 	 */
    258 
    259 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    260 		return 0;
    261 
    262 	/*
    263 	 * if hashing, look in hash table.
    264 	 */
    265 
    266 	if (UAO_USES_SWHASH(aobj)) {
    267 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    268 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
    269 	}
    270 
    271 	/*
    272 	 * otherwise, look in the array
    273 	 */
    274 
    275 	return aobj->u_swslots[pageidx];
    276 }
    277 
    278 /*
    279  * uao_set_swslot: set the swap slot for a page in an aobj.
    280  *
    281  * => setting a slot to zero frees the slot
    282  * => object must be locked by caller
    283  * => we return the old slot number, or -1 if we failed to allocate
    284  *    memory to record the new slot number
    285  */
    286 
    287 int
    288 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    289 {
    290 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    291 	struct uao_swhash_elt *elt;
    292 	int oldslot;
    293 	UVMHIST_FUNC(__func__);
    294 	UVMHIST_CALLARGS(pdhist, "aobj %#jx pageidx %jd slot %jd",
    295 	    (uintptr_t)aobj, pageidx, slot, 0);
    296 
    297 	KASSERT(rw_write_held(uobj->vmobjlock) || uobj->uo_refs == 0);
    298 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    299 
    300 	/*
    301 	 * if noswap flag is set, then we can't set a non-zero slot.
    302 	 */
    303 
    304 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    305 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
    306 		return 0;
    307 	}
    308 
    309 	/*
    310 	 * are we using a hash table?  if so, add it in the hash.
    311 	 */
    312 
    313 	if (UAO_USES_SWHASH(aobj)) {
    314 
    315 		/*
    316 		 * Avoid allocating an entry just to free it again if
    317 		 * the page had not swap slot in the first place, and
    318 		 * we are freeing.
    319 		 */
    320 
    321 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    322 		if (elt == NULL) {
    323 			return slot ? -1 : 0;
    324 		}
    325 
    326 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    327 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    328 
    329 		/*
    330 		 * now adjust the elt's reference counter and free it if we've
    331 		 * dropped it to zero.
    332 		 */
    333 
    334 		if (slot) {
    335 			if (oldslot == 0)
    336 				elt->count++;
    337 		} else {
    338 			if (oldslot)
    339 				elt->count--;
    340 
    341 			if (elt->count == 0) {
    342 				LIST_REMOVE(elt, list);
    343 				pool_put(&uao_swhash_elt_pool, elt);
    344 			}
    345 		}
    346 	} else {
    347 		/* we are using an array */
    348 		oldslot = aobj->u_swslots[pageidx];
    349 		aobj->u_swslots[pageidx] = slot;
    350 	}
    351 	return oldslot;
    352 }
    353 
    354 #endif /* defined(VMSWAP) */
    355 
    356 /*
    357  * end of hash/array functions
    358  */
    359 
    360 /*
    361  * uao_free: free all resources held by an aobj, and then free the aobj
    362  *
    363  * => the aobj should be dead
    364  */
    365 
    366 static void
    367 uao_free(struct uvm_aobj *aobj)
    368 {
    369 	struct uvm_object *uobj = &aobj->u_obj;
    370 
    371 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    372 	KASSERT(rw_write_held(uobj->vmobjlock));
    373 	uao_dropswap_range(uobj, 0, 0);
    374 	rw_exit(uobj->vmobjlock);
    375 
    376 #if defined(VMSWAP)
    377 	if (UAO_USES_SWHASH(aobj)) {
    378 
    379 		/*
    380 		 * free the hash table itself.
    381 		 */
    382 
    383 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    384 	} else {
    385 
    386 		/*
    387 		 * free the array itsself.
    388 		 */
    389 
    390 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    391 	}
    392 #endif /* defined(VMSWAP) */
    393 
    394 	/*
    395 	 * finally free the aobj itself
    396 	 */
    397 
    398 	uvm_obj_destroy(uobj, true);
    399 	kmem_free(aobj, sizeof(struct uvm_aobj));
    400 }
    401 
    402 /*
    403  * pager functions
    404  */
    405 
    406 /*
    407  * uao_create: create an aobj of the given size and return its uvm_object.
    408  *
    409  * => for normal use, flags are always zero
    410  * => for the kernel object, the flags are:
    411  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    412  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    413  */
    414 
    415 struct uvm_object *
    416 uao_create(voff_t size, int flags)
    417 {
    418 	static struct uvm_aobj kernel_object_store;
    419 	static krwlock_t kernel_object_lock __cacheline_aligned;
    420 	static int kobj_alloced __diagused = 0;
    421 	pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT;
    422 	struct uvm_aobj *aobj;
    423 	int refs;
    424 
    425 	/*
    426 	 * Allocate a new aobj, unless kernel object is requested.
    427 	 */
    428 
    429 	if (flags & UAO_FLAG_KERNOBJ) {
    430 		KASSERT(!kobj_alloced);
    431 		aobj = &kernel_object_store;
    432 		aobj->u_pages = pages;
    433 		aobj->u_flags = UAO_FLAG_NOSWAP;
    434 		refs = UVM_OBJ_KERN;
    435 		kobj_alloced = UAO_FLAG_KERNOBJ;
    436 	} else if (flags & UAO_FLAG_KERNSWAP) {
    437 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    438 		aobj = &kernel_object_store;
    439 		kobj_alloced = UAO_FLAG_KERNSWAP;
    440 		refs = 0xdeadbeaf; /* XXX: gcc */
    441 	} else {
    442 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    443 		aobj->u_pages = pages;
    444 		aobj->u_flags = 0;
    445 		refs = 1;
    446 	}
    447 
    448 	/*
    449 	 * no freelist by default
    450 	 */
    451 
    452 	aobj->u_freelist = VM_NFREELIST;
    453 
    454 	/*
    455  	 * allocate hash/array if necessary
    456  	 *
    457  	 * note: in the KERNSWAP case no need to worry about locking since
    458  	 * we are still booting we should be the only thread around.
    459  	 */
    460 
    461 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    462 #if defined(VMSWAP)
    463 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    464 
    465 		/* allocate hash table or array depending on object size */
    466 		if (UAO_USES_SWHASH(aobj)) {
    467 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    468 			    HASH_LIST, kernswap ? false : true,
    469 			    &aobj->u_swhashmask);
    470 			if (aobj->u_swhash == NULL)
    471 				panic("uao_create: hashinit swhash failed");
    472 		} else {
    473 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    474 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    475 			if (aobj->u_swslots == NULL)
    476 				panic("uao_create: swslots allocation failed");
    477 		}
    478 #endif /* defined(VMSWAP) */
    479 
    480 		if (flags) {
    481 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    482 			return &aobj->u_obj;
    483 		}
    484 	}
    485 
    486 	/*
    487 	 * Initialise UVM object.
    488 	 */
    489 
    490 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
    491 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
    492 	if (__predict_false(kernobj)) {
    493 		/* Initialisation only once, for UAO_FLAG_KERNOBJ. */
    494 		rw_init(&kernel_object_lock);
    495 		uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
    496 	}
    497 
    498 	/*
    499  	 * now that aobj is ready, add it to the global list
    500  	 */
    501 
    502 	mutex_enter(&uao_list_lock);
    503 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    504 	mutex_exit(&uao_list_lock);
    505 	return(&aobj->u_obj);
    506 }
    507 
    508 /*
    509  * uao_set_pgfl: allocate pages only from the specified freelist.
    510  *
    511  * => must be called before any pages are allocated for the object.
    512  * => reset by setting it to VM_NFREELIST, meaning any freelist.
    513  */
    514 
    515 void
    516 uao_set_pgfl(struct uvm_object *uobj, int freelist)
    517 {
    518 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    519 
    520 	KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
    521 	KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
    522 	    freelist);
    523 
    524 	aobj->u_freelist = freelist;
    525 }
    526 
    527 /*
    528  * uao_pagealloc: allocate a page for aobj.
    529  */
    530 
    531 static inline struct vm_page *
    532 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
    533 {
    534 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    535 
    536 	if (__predict_true(aobj->u_freelist == VM_NFREELIST))
    537 		return uvm_pagealloc(uobj, offset, NULL, flags);
    538 	else
    539 		return uvm_pagealloc_strat(uobj, offset, NULL, flags,
    540 		    UVM_PGA_STRAT_ONLY, aobj->u_freelist);
    541 }
    542 
    543 /*
    544  * uao_init: set up aobj pager subsystem
    545  *
    546  * => called at boot time from uvm_pager_init()
    547  */
    548 
    549 void
    550 uao_init(void)
    551 {
    552 	static int uao_initialized;
    553 
    554 	if (uao_initialized)
    555 		return;
    556 	uao_initialized = true;
    557 	LIST_INIT(&uao_list);
    558 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    559 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    560 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    561 }
    562 
    563 /*
    564  * uao_reference: hold a reference to an anonymous UVM object.
    565  */
    566 void
    567 uao_reference(struct uvm_object *uobj)
    568 {
    569 	/* Kernel object is persistent. */
    570 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    571 		return;
    572 	}
    573 	atomic_inc_uint(&uobj->uo_refs);
    574 }
    575 
    576 /*
    577  * uao_detach: drop a reference to an anonymous UVM object.
    578  */
    579 void
    580 uao_detach(struct uvm_object *uobj)
    581 {
    582 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    583 	struct uvm_page_array a;
    584 	struct vm_page *pg;
    585 
    586 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    587 
    588 	/*
    589 	 * Detaching from kernel object is a NOP.
    590 	 */
    591 
    592 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    593 		return;
    594 
    595 	/*
    596 	 * Drop the reference.  If it was the last one, destroy the object.
    597 	 */
    598 
    599 	KASSERT(uobj->uo_refs > 0);
    600 	UVMHIST_LOG(maphist,"  (uobj=%#jx)  ref=%jd",
    601 	    (uintptr_t)uobj, uobj->uo_refs, 0, 0);
    602 	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
    603 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    604 		return;
    605 	}
    606 
    607 	/*
    608 	 * Remove the aobj from the global list.
    609 	 */
    610 
    611 	mutex_enter(&uao_list_lock);
    612 	LIST_REMOVE(aobj, u_list);
    613 	mutex_exit(&uao_list_lock);
    614 
    615 	/*
    616 	 * Free all the pages left in the aobj.  For each page, when the
    617 	 * page is no longer busy (and thus after any disk I/O that it is
    618 	 * involved in is complete), release any swap resources and free
    619 	 * the page itself.
    620 	 */
    621 	uvm_page_array_init(&a, uobj, 0);
    622 	rw_enter(uobj->vmobjlock, RW_WRITER);
    623 	while ((pg = uvm_page_array_fill_and_peek(&a, 0, 0)) != NULL) {
    624 		uvm_page_array_advance(&a);
    625 		pmap_page_protect(pg, VM_PROT_NONE);
    626 		if (pg->flags & PG_BUSY) {
    627 			uvm_pagewait(pg, uobj->vmobjlock, "uao_det");
    628 			uvm_page_array_clear(&a);
    629 			rw_enter(uobj->vmobjlock, RW_WRITER);
    630 			continue;
    631 		}
    632 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    633 		uvm_pagefree(pg);
    634 	}
    635 	uvm_page_array_fini(&a);
    636 
    637 	/*
    638 	 * Finally, free the anonymous UVM object itself.
    639 	 */
    640 
    641 	uao_free(aobj);
    642 }
    643 
    644 /*
    645  * uao_put: flush pages out of a uvm object
    646  *
    647  * => object should be locked by caller.  we may _unlock_ the object
    648  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    649  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    650  *	XXXJRT a page, we simply just deactivate it.  Should probably
    651  *	XXXJRT handle this better, in the future (although "flushing"
    652  *	XXXJRT anonymous memory isn't terribly important).
    653  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    654  *	or block.
    655  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    656  *	for flushing.
    657  * => we return 0 unless we encountered some sort of I/O error
    658  *	XXXJRT currently never happens, as we never directly initiate
    659  *	XXXJRT I/O
    660  */
    661 
    662 static int
    663 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    664 {
    665 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    666 	struct uvm_page_array a;
    667 	struct vm_page *pg;
    668 	voff_t curoff;
    669 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    670 
    671 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    672 	KASSERT(rw_write_held(uobj->vmobjlock));
    673 
    674 	if (flags & PGO_ALLPAGES) {
    675 		start = 0;
    676 		stop = aobj->u_pages << PAGE_SHIFT;
    677 	} else {
    678 		start = trunc_page(start);
    679 		if (stop == 0) {
    680 			stop = aobj->u_pages << PAGE_SHIFT;
    681 		} else {
    682 			stop = round_page(stop);
    683 		}
    684 		if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) {
    685 			printf("uao_put: strange, got an out of range "
    686 			    "flush %#jx > %#jx (fixed)\n",
    687 			    (uintmax_t)stop,
    688 			    (uintmax_t)(aobj->u_pages << PAGE_SHIFT));
    689 			stop = aobj->u_pages << PAGE_SHIFT;
    690 		}
    691 	}
    692 	UVMHIST_LOG(maphist,
    693 	    " flush start=%#jx, stop=%#jx, flags=%#jx",
    694 	    start, stop, flags, 0);
    695 
    696 	/*
    697 	 * Don't need to do any work here if we're not freeing
    698 	 * or deactivating pages.
    699 	 */
    700 
    701 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    702 		rw_exit(uobj->vmobjlock);
    703 		return 0;
    704 	}
    705 
    706 	/* locked: uobj */
    707 	uvm_page_array_init(&a, uobj, 0);
    708 	curoff = start;
    709 	while ((pg = uvm_page_array_fill_and_peek(&a, curoff, 0)) != NULL) {
    710 		if (pg->offset >= stop) {
    711 			break;
    712 		}
    713 
    714 		/*
    715 		 * wait and try again if the page is busy.
    716 		 */
    717 
    718 		if (pg->flags & PG_BUSY) {
    719 			uvm_pagewait(pg, uobj->vmobjlock, "uao_put");
    720 			uvm_page_array_clear(&a);
    721 			rw_enter(uobj->vmobjlock, RW_WRITER);
    722 			continue;
    723 		}
    724 		uvm_page_array_advance(&a);
    725 		curoff = pg->offset + PAGE_SIZE;
    726 
    727 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    728 
    729 		/*
    730 		 * XXX In these first 3 cases, we always just
    731 		 * XXX deactivate the page.  We may want to
    732 		 * XXX handle the different cases more specifically
    733 		 * XXX in the future.
    734 		 */
    735 
    736 		case PGO_CLEANIT|PGO_FREE:
    737 		case PGO_CLEANIT|PGO_DEACTIVATE:
    738 		case PGO_DEACTIVATE:
    739  deactivate_it:
    740  			uvm_pagelock(pg);
    741 			uvm_pagedeactivate(pg);
    742  			uvm_pageunlock(pg);
    743 			break;
    744 
    745 		case PGO_FREE:
    746 			/*
    747 			 * If there are multiple references to
    748 			 * the object, just deactivate the page.
    749 			 */
    750 
    751 			if (uobj->uo_refs > 1)
    752 				goto deactivate_it;
    753 
    754 			/*
    755 			 * free the swap slot and the page.
    756 			 */
    757 
    758 			pmap_page_protect(pg, VM_PROT_NONE);
    759 
    760 			/*
    761 			 * freeing swapslot here is not strictly necessary.
    762 			 * however, leaving it here doesn't save much
    763 			 * because we need to update swap accounting anyway.
    764 			 */
    765 
    766 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    767 			uvm_pagefree(pg);
    768 			break;
    769 
    770 		default:
    771 			panic("%s: impossible", __func__);
    772 		}
    773 	}
    774 	rw_exit(uobj->vmobjlock);
    775 	uvm_page_array_fini(&a);
    776 	return 0;
    777 }
    778 
    779 /*
    780  * uao_get: fetch me a page
    781  *
    782  * we have three cases:
    783  * 1: page is resident     -> just return the page.
    784  * 2: page is zero-fill    -> allocate a new page and zero it.
    785  * 3: page is swapped out  -> fetch the page from swap.
    786  *
    787  * case 1 can be handled with PGO_LOCKED, cases 2 and 3 cannot.
    788  * so, if the "center" page hits case 2/3 then we will need to return EBUSY.
    789  *
    790  * => prefer map unlocked (not required)
    791  * => object must be locked!  we will _unlock_ it before starting any I/O.
    792  * => flags: PGO_LOCKED: fault data structures are locked
    793  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    794  * => NOTE: caller must check for released pages!!
    795  */
    796 
    797 static int
    798 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    799     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    800 {
    801 	voff_t current_offset;
    802 	struct vm_page *ptmp;
    803 	int lcv, gotpages, maxpages, swslot, pageidx;
    804 	bool overwrite = ((flags & PGO_OVERWRITE) != 0);
    805 	struct uvm_page_array a;
    806 
    807 	UVMHIST_FUNC(__func__);
    808 	UVMHIST_CALLARGS(pdhist, "aobj=%#jx offset=%jd, flags=%jd",
    809 		    (uintptr_t)uobj, offset, flags,0);
    810 
    811 	/*
    812 	 * the object must be locked.  it can only be a read lock when
    813 	 * processing a read fault with PGO_LOCKED.
    814 	 */
    815 
    816 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    817 	KASSERT(rw_lock_held(uobj->vmobjlock));
    818 	KASSERT(rw_write_held(uobj->vmobjlock) ||
    819 	   ((flags & PGO_LOCKED) != 0 && (access_type & VM_PROT_WRITE) == 0));
    820 
    821 	/*
    822  	 * get number of pages
    823  	 */
    824 
    825 	maxpages = *npagesp;
    826 
    827 	/*
    828  	 * step 1: handled the case where fault data structures are locked.
    829  	 */
    830 
    831 	if (flags & PGO_LOCKED) {
    832 
    833 		/*
    834  		 * step 1a: get pages that are already resident.   only do
    835 		 * this if the data structures are locked (i.e. the first
    836 		 * time through).
    837  		 */
    838 
    839 		uvm_page_array_init(&a, uobj, 0);
    840 		gotpages = 0;	/* # of pages we got so far */
    841 		for (lcv = 0; lcv < maxpages; lcv++) {
    842 			ptmp = uvm_page_array_fill_and_peek(&a,
    843 			    offset + (lcv << PAGE_SHIFT), maxpages);
    844 			if (ptmp == NULL) {
    845 				break;
    846 			}
    847 			KASSERT(ptmp->offset >= offset);
    848 			lcv = (ptmp->offset - offset) >> PAGE_SHIFT;
    849 			if (lcv >= maxpages) {
    850 				break;
    851 			}
    852 			uvm_page_array_advance(&a);
    853 
    854 			/*
    855 			 * to be useful must get a non-busy page
    856 			 */
    857 
    858 			if ((ptmp->flags & PG_BUSY) != 0) {
    859 				continue;
    860 			}
    861 
    862 			/*
    863 			 * useful page: plug it in our result array
    864 			 */
    865 
    866 			KASSERT(uvm_pagegetdirty(ptmp) !=
    867 			    UVM_PAGE_STATUS_CLEAN);
    868 			pps[lcv] = ptmp;
    869 			gotpages++;
    870 		}
    871 		uvm_page_array_fini(&a);
    872 
    873 		/*
    874  		 * step 1b: now we've either done everything needed or we
    875 		 * to unlock and do some waiting or I/O.
    876  		 */
    877 
    878 		UVMHIST_LOG(pdhist, "<- done (done=%jd)",
    879 		    (pps[centeridx] != NULL), 0,0,0);
    880 		*npagesp = gotpages;
    881 		return pps[centeridx] != NULL ? 0 : EBUSY;
    882 	}
    883 
    884 	/*
    885  	 * step 2: get non-resident or busy pages.
    886  	 * object is locked.   data structures are unlocked.
    887  	 */
    888 
    889 	if ((flags & PGO_SYNCIO) == 0) {
    890 		goto done;
    891 	}
    892 
    893 	uvm_page_array_init(&a, uobj, 0);
    894 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;) {
    895 
    896 		/*
    897  		 * we have yet to locate the current page (pps[lcv]).   we
    898 		 * first look for a page that is already at the current offset.
    899 		 * if we find a page, we check to see if it is busy or
    900 		 * released.  if that is the case, then we sleep on the page
    901 		 * until it is no longer busy or released and repeat the lookup.
    902 		 * if the page we found is neither busy nor released, then we
    903 		 * busy it (so we own it) and plug it into pps[lcv].   we are
    904 		 * ready to move on to the next page.
    905  		 */
    906 
    907 		ptmp = uvm_page_array_fill_and_peek(&a, current_offset,
    908 		    maxpages - lcv);
    909 
    910 		if (ptmp != NULL && ptmp->offset == current_offset) {
    911 			/* page is there, see if we need to wait on it */
    912 			if ((ptmp->flags & PG_BUSY) != 0) {
    913 				UVMHIST_LOG(pdhist,
    914 				    "sleeping, ptmp->flags %#jx\n",
    915 				    ptmp->flags,0,0,0);
    916 				uvm_pagewait(ptmp, uobj->vmobjlock, "uao_get");
    917 				rw_enter(uobj->vmobjlock, RW_WRITER);
    918 				uvm_page_array_clear(&a);
    919 				continue;
    920 			}
    921 
    922 			/*
    923  			 * if we get here then the page is resident and
    924 			 * unbusy.  we busy it now (so we own it).  if
    925 			 * overwriting, mark the page dirty up front as
    926 			 * it will be zapped via an unmanaged mapping.
    927  			 */
    928 
    929 			KASSERT(uvm_pagegetdirty(ptmp) !=
    930 			    UVM_PAGE_STATUS_CLEAN);
    931 			if (overwrite) {
    932 				uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_DIRTY);
    933 			}
    934 			/* we own it, caller must un-busy */
    935 			ptmp->flags |= PG_BUSY;
    936 			UVM_PAGE_OWN(ptmp, "uao_get2");
    937 			pps[lcv++] = ptmp;
    938 			current_offset += PAGE_SIZE;
    939 			uvm_page_array_advance(&a);
    940 			continue;
    941 		} else {
    942 			KASSERT(ptmp == NULL || ptmp->offset > current_offset);
    943 		}
    944 
    945 		/*
    946 		 * not resident.  allocate a new busy/fake/clean page in the
    947 		 * object.  if it's in swap we need to do I/O to fill in the
    948 		 * data, otherwise the page needs to be cleared: if it's not
    949 		 * destined to be overwritten, then zero it here and now.
    950 		 */
    951 
    952 		pageidx = current_offset >> PAGE_SHIFT;
    953 		swslot = uao_find_swslot(uobj, pageidx);
    954 		ptmp = uao_pagealloc(uobj, current_offset,
    955 		    swslot != 0 || overwrite ? 0 : UVM_PGA_ZERO);
    956 
    957 		/* out of RAM? */
    958 		if (ptmp == NULL) {
    959 			rw_exit(uobj->vmobjlock);
    960 			UVMHIST_LOG(pdhist, "sleeping, ptmp == NULL",0,0,0,0);
    961 			uvm_wait("uao_getpage");
    962 			rw_enter(uobj->vmobjlock, RW_WRITER);
    963 			uvm_page_array_clear(&a);
    964 			continue;
    965 		}
    966 
    967 		/*
    968  		 * if swslot == 0, page hasn't existed before and is zeroed.
    969  		 * otherwise we have a "fake/busy/clean" page that we just
    970  		 * allocated.  do the needed "i/o", reading from swap.
    971  		 */
    972 
    973 		if (swslot != 0) {
    974 #if defined(VMSWAP)
    975 			int error;
    976 
    977 			UVMHIST_LOG(pdhist, "pagein from swslot %jd",
    978 			     swslot, 0,0,0);
    979 
    980 			/*
    981 			 * page in the swapped-out page.
    982 			 * unlock object for i/o, relock when done.
    983 			 */
    984 
    985 			rw_exit(uobj->vmobjlock);
    986 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
    987 			rw_enter(uobj->vmobjlock, RW_WRITER);
    988 
    989 			/*
    990 			 * I/O done.  check for errors.
    991 			 */
    992 
    993 			if (error != 0) {
    994 				UVMHIST_LOG(pdhist, "<- done (error=%jd)",
    995 				    error,0,0,0);
    996 
    997 				/*
    998 				 * remove the swap slot from the aobj
    999 				 * and mark the aobj as having no real slot.
   1000 				 * don't free the swap slot, thus preventing
   1001 				 * it from being used again.
   1002 				 */
   1003 
   1004 				swslot = uao_set_swslot(uobj, pageidx,
   1005 				    SWSLOT_BAD);
   1006 				if (swslot > 0) {
   1007 					uvm_swap_markbad(swslot, 1);
   1008 				}
   1009 
   1010 				uvm_pagefree(ptmp);
   1011 				rw_exit(uobj->vmobjlock);
   1012 				UVMHIST_LOG(pdhist, "<- done (error)",
   1013 				    error,lcv,0,0);
   1014 				if (lcv != 0) {
   1015 					uvm_page_unbusy(pps, lcv);
   1016 				}
   1017 				memset(pps, 0, maxpages * sizeof(pps[0]));
   1018 				return error;
   1019 			}
   1020 #else /* defined(VMSWAP) */
   1021 			panic("%s: pagein", __func__);
   1022 #endif /* defined(VMSWAP) */
   1023 		}
   1024 
   1025 		/*
   1026 		 * note that we will allow the page being writably-mapped
   1027 		 * (!PG_RDONLY) regardless of access_type.  if overwrite,
   1028 		 * the page can be modified through an unmanaged mapping
   1029 		 * so mark it dirty up front.
   1030 		 */
   1031 		if (overwrite) {
   1032 			uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_DIRTY);
   1033 		} else {
   1034 			uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_UNKNOWN);
   1035 		}
   1036 
   1037 		/*
   1038  		 * we got the page!   clear the fake flag (indicates valid
   1039 		 * data now in page) and plug into our result array.   note
   1040 		 * that page is still busy.
   1041  		 *
   1042  		 * it is the callers job to:
   1043  		 * => check if the page is released
   1044  		 * => unbusy the page
   1045  		 * => activate the page
   1046  		 */
   1047 		KASSERT(uvm_pagegetdirty(ptmp) != UVM_PAGE_STATUS_CLEAN);
   1048 		KASSERT((ptmp->flags & PG_FAKE) != 0);
   1049 		KASSERT(ptmp->offset == current_offset);
   1050 		ptmp->flags &= ~PG_FAKE;
   1051 		pps[lcv++] = ptmp;
   1052 		current_offset += PAGE_SIZE;
   1053 	}
   1054 	uvm_page_array_fini(&a);
   1055 
   1056 	/*
   1057  	 * finally, unlock object and return.
   1058  	 */
   1059 
   1060 done:
   1061 	rw_exit(uobj->vmobjlock);
   1062 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1063 	return 0;
   1064 }
   1065 
   1066 #if defined(VMSWAP)
   1067 
   1068 /*
   1069  * uao_dropswap:  release any swap resources from this aobj page.
   1070  *
   1071  * => aobj must be locked or have a reference count of 0.
   1072  */
   1073 
   1074 void
   1075 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1076 {
   1077 	int slot;
   1078 
   1079 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
   1080 
   1081 	slot = uao_set_swslot(uobj, pageidx, 0);
   1082 	if (slot) {
   1083 		uvm_swap_free(slot, 1);
   1084 	}
   1085 }
   1086 
   1087 /*
   1088  * page in every page in every aobj that is paged-out to a range of swslots.
   1089  *
   1090  * => nothing should be locked.
   1091  * => returns true if pagein was aborted due to lack of memory.
   1092  */
   1093 
   1094 bool
   1095 uao_swap_off(int startslot, int endslot)
   1096 {
   1097 	struct uvm_aobj *aobj;
   1098 
   1099 	/*
   1100 	 * Walk the list of all anonymous UVM objects.  Grab the first.
   1101 	 */
   1102 	mutex_enter(&uao_list_lock);
   1103 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
   1104 		mutex_exit(&uao_list_lock);
   1105 		return false;
   1106 	}
   1107 	uao_reference(&aobj->u_obj);
   1108 
   1109 	do {
   1110 		struct uvm_aobj *nextaobj;
   1111 		bool rv;
   1112 
   1113 		/*
   1114 		 * Prefetch the next object and immediately hold a reference
   1115 		 * on it, so neither the current nor the next entry could
   1116 		 * disappear while we are iterating.
   1117 		 */
   1118 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
   1119 			uao_reference(&nextaobj->u_obj);
   1120 		}
   1121 		mutex_exit(&uao_list_lock);
   1122 
   1123 		/*
   1124 		 * Page in all pages in the swap slot range.
   1125 		 */
   1126 		rw_enter(aobj->u_obj.vmobjlock, RW_WRITER);
   1127 		rv = uao_pagein(aobj, startslot, endslot);
   1128 		rw_exit(aobj->u_obj.vmobjlock);
   1129 
   1130 		/* Drop the reference of the current object. */
   1131 		uao_detach(&aobj->u_obj);
   1132 		if (rv) {
   1133 			if (nextaobj) {
   1134 				uao_detach(&nextaobj->u_obj);
   1135 			}
   1136 			return rv;
   1137 		}
   1138 
   1139 		aobj = nextaobj;
   1140 		mutex_enter(&uao_list_lock);
   1141 	} while (aobj);
   1142 
   1143 	mutex_exit(&uao_list_lock);
   1144 	return false;
   1145 }
   1146 
   1147 /*
   1148  * page in any pages from aobj in the given range.
   1149  *
   1150  * => aobj must be locked and is returned locked.
   1151  * => returns true if pagein was aborted due to lack of memory.
   1152  */
   1153 static bool
   1154 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1155 {
   1156 	bool rv;
   1157 
   1158 	if (UAO_USES_SWHASH(aobj)) {
   1159 		struct uao_swhash_elt *elt;
   1160 		int buck;
   1161 
   1162 restart:
   1163 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1164 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1165 			     elt != NULL;
   1166 			     elt = LIST_NEXT(elt, list)) {
   1167 				int i;
   1168 
   1169 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1170 					int slot = elt->slots[i];
   1171 
   1172 					/*
   1173 					 * if the slot isn't in range, skip it.
   1174 					 */
   1175 
   1176 					if (slot < startslot ||
   1177 					    slot >= endslot) {
   1178 						continue;
   1179 					}
   1180 
   1181 					/*
   1182 					 * process the page,
   1183 					 * the start over on this object
   1184 					 * since the swhash elt
   1185 					 * may have been freed.
   1186 					 */
   1187 
   1188 					rv = uao_pagein_page(aobj,
   1189 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1190 					if (rv) {
   1191 						return rv;
   1192 					}
   1193 					goto restart;
   1194 				}
   1195 			}
   1196 		}
   1197 	} else {
   1198 		int i;
   1199 
   1200 		for (i = 0; i < aobj->u_pages; i++) {
   1201 			int slot = aobj->u_swslots[i];
   1202 
   1203 			/*
   1204 			 * if the slot isn't in range, skip it
   1205 			 */
   1206 
   1207 			if (slot < startslot || slot >= endslot) {
   1208 				continue;
   1209 			}
   1210 
   1211 			/*
   1212 			 * process the page.
   1213 			 */
   1214 
   1215 			rv = uao_pagein_page(aobj, i);
   1216 			if (rv) {
   1217 				return rv;
   1218 			}
   1219 		}
   1220 	}
   1221 
   1222 	return false;
   1223 }
   1224 
   1225 /*
   1226  * uao_pagein_page: page in a single page from an anonymous UVM object.
   1227  *
   1228  * => Returns true if pagein was aborted due to lack of memory.
   1229  * => Object must be locked and is returned locked.
   1230  */
   1231 
   1232 static bool
   1233 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1234 {
   1235 	struct uvm_object *uobj = &aobj->u_obj;
   1236 	struct vm_page *pg;
   1237 	int rv, npages;
   1238 
   1239 	pg = NULL;
   1240 	npages = 1;
   1241 
   1242 	KASSERT(rw_write_held(uobj->vmobjlock));
   1243 	rv = uao_get(uobj, (voff_t)pageidx << PAGE_SHIFT, &pg, &npages,
   1244 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
   1245 
   1246 	/*
   1247 	 * relock and finish up.
   1248 	 */
   1249 
   1250 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1251 	switch (rv) {
   1252 	case 0:
   1253 		break;
   1254 
   1255 	case EIO:
   1256 	case ERESTART:
   1257 
   1258 		/*
   1259 		 * nothing more to do on errors.
   1260 		 * ERESTART can only mean that the anon was freed,
   1261 		 * so again there's nothing to do.
   1262 		 */
   1263 
   1264 		return false;
   1265 
   1266 	default:
   1267 		return true;
   1268 	}
   1269 
   1270 	/*
   1271 	 * ok, we've got the page now.
   1272 	 * mark it as dirty, clear its swslot and un-busy it.
   1273 	 */
   1274 	uao_dropswap(&aobj->u_obj, pageidx);
   1275 
   1276 	/*
   1277 	 * make sure it's on a page queue.
   1278 	 */
   1279 	uvm_pagelock(pg);
   1280 	uvm_pageenqueue(pg);
   1281 	uvm_pagewakeup(pg);
   1282 	uvm_pageunlock(pg);
   1283 
   1284 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1285 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1286 	UVM_PAGE_OWN(pg, NULL);
   1287 
   1288 	return false;
   1289 }
   1290 
   1291 /*
   1292  * uao_dropswap_range: drop swapslots in the range.
   1293  *
   1294  * => aobj must be locked and is returned locked.
   1295  * => start is inclusive.  end is exclusive.
   1296  */
   1297 
   1298 void
   1299 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1300 {
   1301 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1302 	int swpgonlydelta = 0;
   1303 
   1304 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
   1305 	KASSERT(rw_write_held(uobj->vmobjlock));
   1306 
   1307 	if (end == 0) {
   1308 		end = INT64_MAX;
   1309 	}
   1310 
   1311 	if (UAO_USES_SWHASH(aobj)) {
   1312 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1313 		voff_t taghi;
   1314 		voff_t taglo;
   1315 
   1316 		taglo = UAO_SWHASH_ELT_TAG(start);
   1317 		taghi = UAO_SWHASH_ELT_TAG(end);
   1318 
   1319 		for (i = 0; i < hashbuckets; i++) {
   1320 			struct uao_swhash_elt *elt, *next;
   1321 
   1322 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1323 			     elt != NULL;
   1324 			     elt = next) {
   1325 				int startidx, endidx;
   1326 				int j;
   1327 
   1328 				next = LIST_NEXT(elt, list);
   1329 
   1330 				if (elt->tag < taglo || taghi < elt->tag) {
   1331 					continue;
   1332 				}
   1333 
   1334 				if (elt->tag == taglo) {
   1335 					startidx =
   1336 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1337 				} else {
   1338 					startidx = 0;
   1339 				}
   1340 
   1341 				if (elt->tag == taghi) {
   1342 					endidx =
   1343 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1344 				} else {
   1345 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1346 				}
   1347 
   1348 				for (j = startidx; j < endidx; j++) {
   1349 					int slot = elt->slots[j];
   1350 
   1351 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1352 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1353 					    + j) << PAGE_SHIFT) == NULL);
   1354 					if (slot > 0) {
   1355 						uvm_swap_free(slot, 1);
   1356 						swpgonlydelta++;
   1357 						KASSERT(elt->count > 0);
   1358 						elt->slots[j] = 0;
   1359 						elt->count--;
   1360 					}
   1361 				}
   1362 
   1363 				if (elt->count == 0) {
   1364 					LIST_REMOVE(elt, list);
   1365 					pool_put(&uao_swhash_elt_pool, elt);
   1366 				}
   1367 			}
   1368 		}
   1369 	} else {
   1370 		int i;
   1371 
   1372 		if (aobj->u_pages < end) {
   1373 			end = aobj->u_pages;
   1374 		}
   1375 		for (i = start; i < end; i++) {
   1376 			int slot = aobj->u_swslots[i];
   1377 
   1378 			if (slot > 0) {
   1379 				uvm_swap_free(slot, 1);
   1380 				swpgonlydelta++;
   1381 			}
   1382 		}
   1383 	}
   1384 
   1385 	/*
   1386 	 * adjust the counter of pages only in swap for all
   1387 	 * the swap slots we've freed.
   1388 	 */
   1389 
   1390 	if (swpgonlydelta > 0) {
   1391 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1392 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
   1393 	}
   1394 }
   1395 
   1396 #endif /* defined(VMSWAP) */
   1397