Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.18.2.1.2.4
      1 /*	$NetBSD: uvm_aobj.c,v 1.18.2.1.2.4 1999/08/02 23:16:14 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 
     46 
     47 #include "opt_uvmhist.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/proc.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/pool.h>
     55 
     56 #include <vm/vm.h>
     57 #include <vm/vm_page.h>
     58 #include <vm/vm_kern.h>
     59 
     60 #include <uvm/uvm.h>
     61 
     62 /*
     63  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     64  * to keeping the list of resident pages, it also keeps a list of
     65  * allocated swap blocks.  depending on the size of the aobj this list
     66  * of allocated swap blocks is either stored in an array (small objects)
     67  * or in a hash table (large objects).
     68  */
     69 
     70 /*
     71  * local structures
     72  */
     73 
     74 /*
     75  * for hash tables, we break the address space of the aobj into blocks
     76  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     77  * be a power of two.
     78  */
     79 
     80 #define UAO_SWHASH_CLUSTER_SHIFT 4
     81 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     82 
     83 /* get the "tag" for this page index */
     84 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     85 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     86 
     87 /* given an ELT and a page index, find the swap slot */
     88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     89 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
     90 
     91 /* given an ELT, return its pageidx base */
     92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     94 
     95 /*
     96  * the swhash hash function
     97  */
     98 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
     99 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
    100 			    & (AOBJ)->u_swhashmask)])
    101 
    102 /*
    103  * the swhash threshhold determines if we will use an array or a
    104  * hash table to store the list of allocated swap blocks.
    105  */
    106 
    107 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    108 #define UAO_USES_SWHASH(AOBJ) \
    109 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    110 
    111 /*
    112  * the number of buckets in a swhash, with an upper bound
    113  */
    114 #define UAO_SWHASH_MAXBUCKETS 256
    115 #define UAO_SWHASH_BUCKETS(AOBJ) \
    116 	(min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    117 	     UAO_SWHASH_MAXBUCKETS))
    118 
    119 
    120 /*
    121  * uao_swhash_elt: when a hash table is being used, this structure defines
    122  * the format of an entry in the bucket list.
    123  */
    124 
    125 struct uao_swhash_elt {
    126 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    127 	vaddr_t tag;			/* our 'tag' */
    128 	int count;				/* our number of active slots */
    129 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    130 };
    131 
    132 /*
    133  * uao_swhash: the swap hash table structure
    134  */
    135 
    136 LIST_HEAD(uao_swhash, uao_swhash_elt);
    137 
    138 /*
    139  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    140  */
    141 
    142 struct pool uao_swhash_elt_pool;
    143 
    144 /*
    145  * uvm_aobj: the actual anon-backed uvm_object
    146  *
    147  * => the uvm_object is at the top of the structure, this allows
    148  *   (struct uvm_device *) == (struct uvm_object *)
    149  * => only one of u_swslots and u_swhash is used in any given aobj
    150  */
    151 
    152 struct uvm_aobj {
    153 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    154 	int u_pages;		 /* number of pages in entire object */
    155 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    156 	int *u_swslots;		 /* array of offset->swapslot mappings */
    157 				 /*
    158 				  * hashtable of offset->swapslot mappings
    159 				  * (u_swhash is an array of bucket heads)
    160 				  */
    161 	struct uao_swhash *u_swhash;
    162 	u_long u_swhashmask;		/* mask for hashtable */
    163 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    164 };
    165 
    166 /*
    167  * uvm_aobj_pool: pool of uvm_aobj structures
    168  */
    169 
    170 struct pool uvm_aobj_pool;
    171 
    172 /*
    173  * local functions
    174  */
    175 
    176 static struct uao_swhash_elt	*uao_find_swhash_elt __P((struct uvm_aobj *,
    177 							  int, boolean_t));
    178 static int			 uao_find_swslot __P((struct uvm_aobj *,
    179 						      int));
    180 static boolean_t		 uao_flush __P((struct uvm_object *,
    181 						vaddr_t, vaddr_t,
    182 						int));
    183 static void			 uao_free __P((struct uvm_aobj *));
    184 static int			 uao_get __P((struct uvm_object *, vaddr_t,
    185 					      vm_page_t *, int *, int,
    186 					      vm_prot_t, int, int));
    187 static boolean_t		 uao_releasepg __P((struct vm_page *,
    188 						    struct vm_page **));
    189 
    190 /*
    191  * aobj_pager
    192  *
    193  * note that some functions (e.g. put) are handled elsewhere
    194  */
    195 
    196 struct uvm_pagerops aobj_pager = {
    197 	NULL,			/* init */
    198 	uao_reference,		/* reference */
    199 	uao_detach,		/* detach */
    200 	NULL,			/* fault */
    201 	uao_flush,		/* flush */
    202 	uao_get,		/* get */
    203 	NULL,			/* asyncget */
    204 	NULL,			/* put (done by pagedaemon) */
    205 	NULL,			/* cluster */
    206 	NULL,			/* mk_pcluster */
    207 	uvm_shareprot,		/* shareprot */
    208 	NULL,			/* aiodone */
    209 	uao_releasepg		/* releasepg */
    210 };
    211 
    212 /*
    213  * uao_list: global list of active aobjs, locked by uao_list_lock
    214  */
    215 
    216 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    217 static simple_lock_data_t uao_list_lock;
    218 
    219 
    220 /*
    221  * functions
    222  */
    223 
    224 /*
    225  * hash table/array related functions
    226  */
    227 
    228 /*
    229  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    230  * offset.
    231  *
    232  * => the object should be locked by the caller
    233  */
    234 
    235 static struct uao_swhash_elt *
    236 uao_find_swhash_elt(aobj, pageidx, create)
    237 	struct uvm_aobj *aobj;
    238 	int pageidx;
    239 	boolean_t create;
    240 {
    241 	struct uao_swhash *swhash;
    242 	struct uao_swhash_elt *elt;
    243 	int page_tag;
    244 
    245 	swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
    246 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);	/* tag to search for */
    247 
    248 	/*
    249 	 * now search the bucket for the requested tag
    250 	 */
    251 	for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
    252 		if (elt->tag == page_tag)
    253 			return(elt);
    254 	}
    255 
    256 	/* fail now if we are not allowed to create a new entry in the bucket */
    257 	if (!create)
    258 		return NULL;
    259 
    260 
    261 	/*
    262 	 * allocate a new entry for the bucket and init/insert it in
    263 	 */
    264 	elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
    265 	LIST_INSERT_HEAD(swhash, elt, list);
    266 	elt->tag = page_tag;
    267 	elt->count = 0;
    268 	memset(elt->slots, 0, sizeof(elt->slots));
    269 
    270 	return(elt);
    271 }
    272 
    273 /*
    274  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    275  *
    276  * => object must be locked by caller
    277  */
    278 __inline static int
    279 uao_find_swslot(aobj, pageidx)
    280 	struct uvm_aobj *aobj;
    281 	int pageidx;
    282 {
    283 
    284 	/*
    285 	 * if noswap flag is set, then we never return a slot
    286 	 */
    287 
    288 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    289 		return(0);
    290 
    291 	/*
    292 	 * if hashing, look in hash table.
    293 	 */
    294 
    295 	if (UAO_USES_SWHASH(aobj)) {
    296 		struct uao_swhash_elt *elt =
    297 		    uao_find_swhash_elt(aobj, pageidx, FALSE);
    298 
    299 		if (elt)
    300 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    301 		else
    302 			return(NULL);
    303 	}
    304 
    305 	/*
    306 	 * otherwise, look in the array
    307 	 */
    308 	return(aobj->u_swslots[pageidx]);
    309 }
    310 
    311 /*
    312  * uao_set_swslot: set the swap slot for a page in an aobj.
    313  *
    314  * => setting a slot to zero frees the slot
    315  * => object must be locked by caller
    316  */
    317 int
    318 uao_set_swslot(uobj, pageidx, slot)
    319 	struct uvm_object *uobj;
    320 	int pageidx, slot;
    321 {
    322 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    323 	int oldslot;
    324 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    325 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    326 	    aobj, pageidx, slot, 0);
    327 
    328 	/*
    329 	 * if noswap flag is set, then we can't set a slot
    330 	 */
    331 
    332 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    333 
    334 		if (slot == 0)
    335 			return(0);		/* a clear is ok */
    336 
    337 		/* but a set is not */
    338 		printf("uao_set_swslot: uobj = %p\n", uobj);
    339 	    panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
    340 	}
    341 
    342 	/*
    343 	 * are we using a hash table?  if so, add it in the hash.
    344 	 */
    345 
    346 	if (UAO_USES_SWHASH(aobj)) {
    347 		/*
    348 		 * Avoid allocating an entry just to free it again if
    349 		 * the page had not swap slot in the first place, and
    350 		 * we are freeing.
    351 		 */
    352 		struct uao_swhash_elt *elt =
    353 		    uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
    354 		if (elt == NULL) {
    355 #ifdef DIAGNOSTIC
    356 			if (slot)
    357 				panic("uao_set_swslot: didn't create elt");
    358 #endif
    359 			return (0);
    360 		}
    361 
    362 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    363 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    364 
    365 		/*
    366 		 * now adjust the elt's reference counter and free it if we've
    367 		 * dropped it to zero.
    368 		 */
    369 
    370 		/* an allocation? */
    371 		if (slot) {
    372 			if (oldslot == 0)
    373 				elt->count++;
    374 		} else {		/* freeing slot ... */
    375 			if (oldslot)	/* to be safe */
    376 				elt->count--;
    377 
    378 			if (elt->count == 0) {
    379 				LIST_REMOVE(elt, list);
    380 				pool_put(&uao_swhash_elt_pool, elt);
    381 			}
    382 		}
    383 	} else {
    384 		/* we are using an array */
    385 		oldslot = aobj->u_swslots[pageidx];
    386 		aobj->u_swslots[pageidx] = slot;
    387 	}
    388 	return (oldslot);
    389 }
    390 
    391 /*
    392  * end of hash/array functions
    393  */
    394 
    395 /*
    396  * uao_free: free all resources held by an aobj, and then free the aobj
    397  *
    398  * => the aobj should be dead
    399  */
    400 static void
    401 uao_free(aobj)
    402 	struct uvm_aobj *aobj;
    403 {
    404 
    405 	if (UAO_USES_SWHASH(aobj)) {
    406 		int i, hashbuckets = aobj->u_swhashmask + 1;
    407 
    408 		/*
    409 		 * free the swslots from each hash bucket,
    410 		 * then the hash bucket, and finally the hash table itself.
    411 		 */
    412 		for (i = 0; i < hashbuckets; i++) {
    413 			struct uao_swhash_elt *elt, *next;
    414 
    415 			for (elt = aobj->u_swhash[i].lh_first; elt != NULL;
    416 			    elt = next) {
    417 				int j;
    418 
    419 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++)
    420 				{
    421 					int slot = elt->slots[j];
    422 
    423 					if (slot) {
    424 						uvm_swap_free(slot, 1);
    425 
    426 						/*
    427 						 * this page is no longer
    428 						 * only in swap.
    429 						 */
    430 						simple_lock(&uvm.swap_data_lock);
    431 						uvmexp.swpgonly--;
    432 						simple_unlock(&uvm.swap_data_lock);
    433 					}
    434 				}
    435 
    436 				next = elt->list.le_next;
    437 				pool_put(&uao_swhash_elt_pool, elt);
    438 			}
    439 		}
    440 		FREE(aobj->u_swhash, M_UVMAOBJ);
    441 	} else {
    442 		int i;
    443 
    444 		/*
    445 		 * free the array
    446 		 */
    447 
    448 		for (i = 0; i < aobj->u_pages; i++)
    449 		{
    450 			int slot = aobj->u_swslots[i];
    451 
    452 			if (slot) {
    453 				uvm_swap_free(slot, 1);
    454 
    455 				/* this page is no longer only in swap. */
    456 				simple_lock(&uvm.swap_data_lock);
    457 				uvmexp.swpgonly--;
    458 				simple_unlock(&uvm.swap_data_lock);
    459 			}
    460 		}
    461 		FREE(aobj->u_swslots, M_UVMAOBJ);
    462 	}
    463 
    464 	/*
    465 	 * finally free the aobj itself
    466 	 */
    467 	pool_put(&uvm_aobj_pool, aobj);
    468 }
    469 
    470 /*
    471  * pager functions
    472  */
    473 
    474 /*
    475  * uao_create: create an aobj of the given size and return its uvm_object.
    476  *
    477  * => for normal use, flags are always zero
    478  * => for the kernel object, the flags are:
    479  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    480  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    481  */
    482 struct uvm_object *
    483 uao_create(size, flags)
    484 	vsize_t size;
    485 	int flags;
    486 {
    487 	static struct uvm_aobj kernel_object_store; /* home of kernel_object */
    488 	static int kobj_alloced = 0;			/* not allocated yet */
    489 	int pages = round_page(size) >> PAGE_SHIFT;
    490 	struct uvm_aobj *aobj;
    491 
    492 	/*
    493 	 * malloc a new aobj unless we are asked for the kernel object
    494 	 */
    495 	if (flags & UAO_FLAG_KERNOBJ) {		/* want kernel object? */
    496 		if (kobj_alloced)
    497 			panic("uao_create: kernel object already allocated");
    498 
    499 		/*
    500 		 * XXXTHORPEJ: Need to call this now, so the pool gets
    501 		 * initialized!
    502 		 */
    503 		uao_init();
    504 
    505 		aobj = &kernel_object_store;
    506 		aobj->u_pages = pages;
    507 		aobj->u_flags = UAO_FLAG_NOSWAP;	/* no swap to start */
    508 		/* we are special, we never die */
    509 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
    510 		kobj_alloced = UAO_FLAG_KERNOBJ;
    511 	} else if (flags & UAO_FLAG_KERNSWAP) {
    512 		aobj = &kernel_object_store;
    513 		if (kobj_alloced != UAO_FLAG_KERNOBJ)
    514 		    panic("uao_create: asked to enable swap on kernel object");
    515 		kobj_alloced = UAO_FLAG_KERNSWAP;
    516 	} else {	/* normal object */
    517 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
    518 		aobj->u_pages = pages;
    519 		aobj->u_flags = 0;		/* normal object */
    520 		aobj->u_obj.uo_refs = 1;	/* start with 1 reference */
    521 	}
    522 
    523 	/*
    524  	 * allocate hash/array if necessary
    525  	 *
    526  	 * note: in the KERNSWAP case no need to worry about locking since
    527  	 * we are still booting we should be the only thread around.
    528  	 */
    529 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    530 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
    531 		    M_NOWAIT : M_WAITOK;
    532 
    533 		/* allocate hash table or array depending on object size */
    534 		if (UAO_USES_SWHASH(aobj)) {
    535 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    536 			    M_UVMAOBJ, mflags, &aobj->u_swhashmask);
    537 			if (aobj->u_swhash == NULL)
    538 				panic("uao_create: hashinit swhash failed");
    539 		} else {
    540 			MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
    541 			    M_UVMAOBJ, mflags);
    542 			if (aobj->u_swslots == NULL)
    543 				panic("uao_create: malloc swslots failed");
    544 			memset(aobj->u_swslots, 0, pages * sizeof(int));
    545 		}
    546 
    547 		if (flags) {
    548 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    549 			return(&aobj->u_obj);
    550 			/* done! */
    551 		}
    552 	}
    553 
    554 	/*
    555  	 * init aobj fields
    556  	 */
    557 	simple_lock_init(&aobj->u_obj.vmobjlock);
    558 	aobj->u_obj.pgops = &aobj_pager;
    559 	TAILQ_INIT(&aobj->u_obj.memq);
    560 	aobj->u_obj.uo_npages = 0;
    561 
    562 	/*
    563  	 * now that aobj is ready, add it to the global list
    564  	 */
    565 	simple_lock(&uao_list_lock);
    566 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    567 	simple_unlock(&uao_list_lock);
    568 
    569 	/*
    570  	 * done!
    571  	 */
    572 	return(&aobj->u_obj);
    573 }
    574 
    575 
    576 
    577 /*
    578  * uao_init: set up aobj pager subsystem
    579  *
    580  * => called at boot time from uvm_pager_init()
    581  */
    582 void
    583 uao_init()
    584 {
    585 	static int uao_initialized;
    586 
    587 	if (uao_initialized)
    588 		return;
    589 	uao_initialized = TRUE;
    590 
    591 	LIST_INIT(&uao_list);
    592 	simple_lock_init(&uao_list_lock);
    593 
    594 	/*
    595 	 * NOTE: Pages fror this pool must not come from a pageable
    596 	 * kernel map!
    597 	 */
    598 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    599 	    0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
    600 
    601 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
    602 	    "aobjpl", 0,
    603 	    pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
    604 }
    605 
    606 /*
    607  * uao_reference: add a ref to an aobj
    608  *
    609  * => aobj must be unlocked (we will lock it)
    610  * just lock and call the locked version
    611  */
    612 void
    613 uao_reference(uobj)
    614 	struct uvm_object *uobj;
    615 {
    616 	simple_lock(&uobj->vmobjlock);
    617 	uao_reference_locked(uobj);
    618 	simple_unlock(&uobj->vmobjlock);
    619 }
    620 
    621 /*
    622  * uao_reference_locked: add a ref to an aobj that is already locked
    623  *
    624  * => aobj must be locked
    625  */
    626 void
    627 uao_reference_locked(uobj)
    628 	struct uvm_object *uobj;
    629 {
    630 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    631 
    632 	/*
    633  	 * kernel_object already has plenty of references, leave it alone.
    634  	 */
    635 
    636 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    637 		return;
    638 
    639 	uobj->uo_refs++;		/* bump! */
    640 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    641 	uobj, uobj->uo_refs,0,0);
    642 }
    643 
    644 
    645 /*
    646  * uao_detach: drop a reference to an aobj
    647  *
    648  * => aobj must be unlocked
    649  */
    650 void
    651 uao_detach(uobj)
    652 	struct uvm_object *uobj;
    653 {
    654 	simple_lock(&uobj->vmobjlock);
    655 	uao_detach_locked(uobj);
    656 }
    657 
    658 
    659 /*
    660  * uao_detach_locked: drop a reference to an aobj
    661  *
    662  * => aobj must be locked, and is unlocked (or freed) upon return.
    663  */
    664 void
    665 uao_detach_locked(uobj)
    666 	struct uvm_object *uobj;
    667 {
    668 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    669 	struct vm_page *pg;
    670 	boolean_t busybody;
    671 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    672 
    673 	/*
    674  	 * detaching from kernel_object is a noop.
    675  	 */
    676 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    677 		simple_unlock(&uobj->vmobjlock);
    678 		return;
    679 	}
    680 
    681 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    682 	uobj->uo_refs--;				/* drop ref! */
    683 	if (uobj->uo_refs) {				/* still more refs? */
    684 		simple_unlock(&uobj->vmobjlock);
    685 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    686 		return;
    687 	}
    688 
    689 	/*
    690  	 * remove the aobj from the global list.
    691  	 */
    692 	simple_lock(&uao_list_lock);
    693 	LIST_REMOVE(aobj, u_list);
    694 	simple_unlock(&uao_list_lock);
    695 
    696 	/*
    697  	 * free all the pages that aren't PG_BUSY,
    698 	 * mark for release any that are.
    699  	 */
    700 	busybody = FALSE;
    701 	for (pg = uobj->memq.tqh_first ; pg != NULL ; pg = pg->listq.tqe_next) {
    702 
    703 		if (pg->flags & PG_BUSY) {
    704 			pg->flags |= PG_RELEASED;
    705 			busybody = TRUE;
    706 			continue;
    707 		}
    708 
    709 		/* zap the mappings, free the swap slot, free the page */
    710 		pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
    711 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    712 		uvm_lock_pageq();
    713 		uvm_pagefree(pg);
    714 		uvm_unlock_pageq();
    715 	}
    716 
    717 	/*
    718  	 * if we found any busy pages, we're done for now.
    719  	 * mark the aobj for death, releasepg will finish up for us.
    720  	 */
    721 	if (busybody) {
    722 		aobj->u_flags |= UAO_FLAG_KILLME;
    723 		simple_unlock(&aobj->u_obj.vmobjlock);
    724 		return;
    725 	}
    726 
    727 	/*
    728  	 * finally, free the rest.
    729  	 */
    730 	uao_free(aobj);
    731 }
    732 
    733 /*
    734  * uao_flush: "flush" pages out of a uvm object
    735  *
    736  * => object should be locked by caller.  we may _unlock_ the object
    737  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    738  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    739  *	XXXJRT a page, we simply just deactivate it.  Should probably
    740  *	XXXJRT handle this better, in the future (although "flushing"
    741  *	XXXJRT anonymous memory isn't terribly important).
    742  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    743  *	or block.
    744  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    745  *	for flushing.
    746  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    747  *	that new pages are inserted on the tail end of the list.  thus,
    748  *	we can make a complete pass through the object in one go by starting
    749  *	at the head and working towards the tail (new pages are put in
    750  *	front of us).
    751  * => NOTE: we are allowed to lock the page queues, so the caller
    752  *	must not be holding the lock on them [e.g. pagedaemon had
    753  *	better not call us with the queues locked]
    754  * => we return TRUE unless we encountered some sort of I/O error
    755  *	XXXJRT currently never happens, as we never directly initiate
    756  *	XXXJRT I/O
    757  *
    758  * comment on "cleaning" object and PG_BUSY pages:
    759  *	this routine is holding the lock on the object.  the only time
    760  *	that is can run into a PG_BUSY page that it does not own is if
    761  *	some other process has started I/O on the page (e.g. either
    762  *	a pagein or a pageout).  if the PG_BUSY page is being paged
    763  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    764  *	had a change to modify it yet.  if the PG_BUSY page is being
    765  *	paged out then it means that someone else has already started
    766  *	cleaning the page for us (how nice!).  in this case, if we
    767  *	have syncio specified, then after we make our pass through the
    768  *	object we need to wait for the other PG_BUSY pages to clear
    769  *	off (i.e. we need to do an iosync).  also note that once a
    770  *	page is PG_BUSY is must stary in its object until it is un-busyed.
    771  *	XXXJRT We never actually do this, as we are "flushing" anonymous
    772  *	XXXJRT memory, which doesn't have persistent backing store.
    773  *
    774  * note on page traversal:
    775  *	we can traverse the pages in an object either by going down the
    776  *	linked list in "uobj->memq", or we can go over the address range
    777  *	by page doing hash table lookups for each address.  depending
    778  *	on how many pages are in the object it may be cheaper to do one
    779  *	or the other.  we set "by_list" to true if we are using memq.
    780  *	if the cost of a hash lookup was equal to the cost of the list
    781  *	traversal we could compare the number of pages in the start->stop
    782  *	range to the total number of pages in the object.  however, it
    783  *	seems that a hash table lookup is more expensive than the linked
    784  *	list traversal, so we multiply the number of pages in the
    785  *	start->stop range by a penalty which we define below.
    786  */
    787 
    788 #define	UAO_HASH_PENALTY 4	/* XXX: a guess */
    789 
    790 boolean_t
    791 uao_flush(uobj, start, stop, flags)
    792 	struct uvm_object *uobj;
    793 	vaddr_t start, stop;
    794 	int flags;
    795 {
    796 	struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
    797 	struct vm_page *pp, *ppnext;
    798 	boolean_t retval, by_list;
    799 	vaddr_t curoff;
    800 	UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
    801 
    802 	curoff = 0;	/* XXX: shut up gcc */
    803 
    804 	retval = TRUE;	/* default to success */
    805 
    806 	if (flags & PGO_ALLPAGES) {
    807 		start = 0;
    808 		stop = aobj->u_pages << PAGE_SHIFT;
    809 		by_list = TRUE;		/* always go by the list */
    810 	} else {
    811 		start = trunc_page(start);
    812 		stop = round_page(stop);
    813 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    814 			printf("uao_flush: strange, got an out of range "
    815 			    "flush (fixed)\n");
    816 			stop = aobj->u_pages << PAGE_SHIFT;
    817 		}
    818 		by_list = (uobj->uo_npages <=
    819 		    ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
    820 	}
    821 
    822 	UVMHIST_LOG(maphist,
    823 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    824 	    start, stop, by_list, flags);
    825 
    826 	/*
    827 	 * Don't need to do any work here if we're not freeing
    828 	 * or deactivating pages.
    829 	 */
    830 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    831 		UVMHIST_LOG(maphist,
    832 		    "<- done (no work to do)",0,0,0,0);
    833 		return (retval);
    834 	}
    835 
    836 	/*
    837 	 * now do it.  note: we must update ppnext in the body of loop or we
    838 	 * will get stuck.  we need to use ppnext because we may free "pp"
    839 	 * before doing the next loop.
    840 	 */
    841 
    842 	if (by_list) {
    843 		pp = uobj->memq.tqh_first;
    844 	} else {
    845 		curoff = start;
    846 		pp = uvm_pagelookup(uobj, curoff);
    847 	}
    848 
    849 	ppnext = NULL;	/* XXX: shut up gcc */
    850 	uvm_lock_pageq();	/* page queues locked */
    851 
    852 	/* locked: both page queues and uobj */
    853 	for ( ; (by_list && pp != NULL) ||
    854 	    (!by_list && curoff < stop) ; pp = ppnext) {
    855 		if (by_list) {
    856 			ppnext = pp->listq.tqe_next;
    857 
    858 			/* range check */
    859 			if (pp->offset < start || pp->offset >= stop)
    860 				continue;
    861 		} else {
    862 			curoff += PAGE_SIZE;
    863 			if (curoff < stop)
    864 				ppnext = uvm_pagelookup(uobj, curoff);
    865 
    866 			/* null check */
    867 			if (pp == NULL)
    868 				continue;
    869 		}
    870 
    871 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    872 		/*
    873 		 * XXX In these first 3 cases, we always just
    874 		 * XXX deactivate the page.  We may want to
    875 		 * XXX handle the different cases more specifically
    876 		 * XXX in the future.
    877 		 */
    878 		case PGO_CLEANIT|PGO_FREE:
    879 		case PGO_CLEANIT|PGO_DEACTIVATE:
    880 		case PGO_DEACTIVATE:
    881 			/* skip the page if it's loaned or wired */
    882 			if (pp->loan_count != 0 ||
    883 			    pp->wire_count != 0)
    884 				continue;
    885 
    886 			/* zap all mappings for the page. */
    887 			pmap_page_protect(PMAP_PGARG(pp),
    888 			    VM_PROT_NONE);
    889 
    890 			/* ...and deactivate the page. */
    891 			uvm_pagedeactivate(pp);
    892 
    893 			continue;
    894 
    895 		case PGO_FREE:
    896 			/* XXX skip the page if it's loaned or wired */
    897 			if (pp->loan_count != 0 ||
    898 			    pp->wire_count != 0)
    899 				continue;
    900 
    901 			/*
    902 			 * mark the page as released if its busy.
    903 			 */
    904 			if (pp->flags & PG_BUSY) {
    905 				pp->flags |= PG_RELEASED;
    906 				continue;
    907 			}
    908 
    909 			/* zap all mappings for the page. */
    910 			pmap_page_protect(PMAP_PGARG(pp),
    911 			    VM_PROT_NONE);
    912 
    913 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    914 			uvm_pagefree(pp);
    915 
    916 			continue;
    917 
    918 		default:
    919 			panic("uao_flush: weird flags");
    920 		}
    921 #ifdef DIAGNOSTIC
    922 		panic("uao_flush: unreachable code");
    923 #endif
    924 	}
    925 
    926 	uvm_unlock_pageq();
    927 
    928 	UVMHIST_LOG(maphist,
    929 	    "<- done, rv=%d",retval,0,0,0);
    930 	return (retval);
    931 }
    932 
    933 /*
    934  * uao_get: fetch me a page
    935  *
    936  * we have three cases:
    937  * 1: page is resident     -> just return the page.
    938  * 2: page is zero-fill    -> allocate a new page and zero it.
    939  * 3: page is swapped out  -> fetch the page from swap.
    940  *
    941  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    942  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    943  * then we will need to return VM_PAGER_UNLOCK.
    944  *
    945  * => prefer map unlocked (not required)
    946  * => object must be locked!  we will _unlock_ it before starting any I/O.
    947  * => flags: PGO_ALLPAGES: get all of the pages
    948  *           PGO_LOCKED: fault data structures are locked
    949  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    950  * => NOTE: caller must check for released pages!!
    951  */
    952 static int
    953 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    954 	struct uvm_object *uobj;
    955 	vaddr_t offset;
    956 	struct vm_page **pps;
    957 	int *npagesp;
    958 	int centeridx, advice, flags;
    959 	vm_prot_t access_type;
    960 {
    961 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    962 	vaddr_t current_offset;
    963 	vm_page_t ptmp;
    964 	int lcv, gotpages, maxpages, swslot, rv;
    965 	boolean_t done;
    966 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    967 
    968 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    969 		    aobj, offset, flags,0);
    970 
    971 	/*
    972  	 * get number of pages
    973  	 */
    974 	maxpages = *npagesp;
    975 
    976 	/*
    977  	 * step 1: handled the case where fault data structures are locked.
    978  	 */
    979 
    980 	if (flags & PGO_LOCKED) {
    981 		/*
    982  		 * step 1a: get pages that are already resident.   only do
    983 		 * this if the data structures are locked (i.e. the first
    984 		 * time through).
    985  		 */
    986 
    987 		done = TRUE;	/* be optimistic */
    988 		gotpages = 0;	/* # of pages we got so far */
    989 
    990 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    991 		    lcv++, current_offset += PAGE_SIZE) {
    992 			/* do we care about this page?  if not, skip it */
    993 			if (pps[lcv] == PGO_DONTCARE)
    994 				continue;
    995 
    996 			ptmp = uvm_pagelookup(uobj, current_offset);
    997 
    998 			/*
    999  			 * if page is new, attempt to allocate the page, then
   1000 			 * zero-fill it.
   1001  			 */
   1002 			if (ptmp == NULL && uao_find_swslot(aobj,
   1003 			    current_offset >> PAGE_SHIFT) == 0) {
   1004 				ptmp = uvm_pagealloc(uobj, current_offset,
   1005 				    NULL, 0);
   1006 				if (ptmp) {
   1007 					/* new page */
   1008 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
   1009 					ptmp->pqflags |= PQ_AOBJ;
   1010 					UVM_PAGE_OWN(ptmp, NULL);
   1011 					uvm_pagezero(ptmp);
   1012 				}
   1013 			}
   1014 
   1015 			/*
   1016 			 * to be useful must get a non-busy, non-released page
   1017 			 */
   1018 			if (ptmp == NULL ||
   1019 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
   1020 				if (lcv == centeridx ||
   1021 				    (flags & PGO_ALLPAGES) != 0)
   1022 					/* need to do a wait or I/O! */
   1023 					done = FALSE;
   1024 					continue;
   1025 			}
   1026 
   1027 			/*
   1028 			 * useful page: busy/lock it and plug it in our
   1029 			 * result array
   1030 			 */
   1031 			/* caller must un-busy this page */
   1032 			ptmp->flags |= PG_BUSY;
   1033 			UVM_PAGE_OWN(ptmp, "uao_get1");
   1034 			pps[lcv] = ptmp;
   1035 			gotpages++;
   1036 
   1037 		}	/* "for" lcv loop */
   1038 
   1039 		/*
   1040  		 * step 1b: now we've either done everything needed or we
   1041 		 * to unlock and do some waiting or I/O.
   1042  		 */
   1043 
   1044 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1045 
   1046 		*npagesp = gotpages;
   1047 		if (done)
   1048 			/* bingo! */
   1049 			return(VM_PAGER_OK);
   1050 		else
   1051 			/* EEK!   Need to unlock and I/O */
   1052 			return(VM_PAGER_UNLOCK);
   1053 	}
   1054 
   1055 	/*
   1056  	 * step 2: get non-resident or busy pages.
   1057  	 * object is locked.   data structures are unlocked.
   1058  	 */
   1059 
   1060 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1061 	    lcv++, current_offset += PAGE_SIZE) {
   1062 		/*
   1063 		 * - skip over pages we've already gotten or don't want
   1064 		 * - skip over pages we don't _have_ to get
   1065 		 */
   1066 		if (pps[lcv] != NULL ||
   1067 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1068 			continue;
   1069 
   1070 		/*
   1071  		 * we have yet to locate the current page (pps[lcv]).   we
   1072 		 * first look for a page that is already at the current offset.
   1073 		 * if we find a page, we check to see if it is busy or
   1074 		 * released.  if that is the case, then we sleep on the page
   1075 		 * until it is no longer busy or released and repeat the lookup.
   1076 		 * if the page we found is neither busy nor released, then we
   1077 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1078 		 * 'break's the following while loop and indicates we are
   1079 		 * ready to move on to the next page in the "lcv" loop above.
   1080  		 *
   1081  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1082 		 * then it means that we allocated a new busy/fake/clean page
   1083 		 * ptmp in the object and we need to do I/O to fill in the data.
   1084  		 */
   1085 
   1086 		/* top of "pps" while loop */
   1087 		while (pps[lcv] == NULL) {
   1088 			/* look for a resident page */
   1089 			ptmp = uvm_pagelookup(uobj, current_offset);
   1090 
   1091 			/* not resident?   allocate one now (if we can) */
   1092 			if (ptmp == NULL) {
   1093 
   1094 				ptmp = uvm_pagealloc(uobj, current_offset,
   1095 				    NULL, 0);
   1096 
   1097 				/* out of RAM? */
   1098 				if (ptmp == NULL) {
   1099 					simple_unlock(&uobj->vmobjlock);
   1100 					UVMHIST_LOG(pdhist,
   1101 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1102 					uvm_wait("uao_getpage");
   1103 					simple_lock(&uobj->vmobjlock);
   1104 					/* goto top of pps while loop */
   1105 					continue;
   1106 				}
   1107 
   1108 				/*
   1109 				 * safe with PQ's unlocked: because we just
   1110 				 * alloc'd the page
   1111 				 */
   1112 				ptmp->pqflags |= PQ_AOBJ;
   1113 
   1114 				/*
   1115 				 * got new page ready for I/O.  break pps while
   1116 				 * loop.  pps[lcv] is still NULL.
   1117 				 */
   1118 				break;
   1119 			}
   1120 
   1121 			/* page is there, see if we need to wait on it */
   1122 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
   1123 				ptmp->flags |= PG_WANTED;
   1124 				UVMHIST_LOG(pdhist,
   1125 				    "sleeping, ptmp->flags 0x%x\n",
   1126 				    ptmp->flags,0,0,0);
   1127 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1128 				    FALSE, "uao_get", 0);
   1129 				simple_lock(&uobj->vmobjlock);
   1130 				continue;	/* goto top of pps while loop */
   1131 			}
   1132 
   1133 			/*
   1134  			 * if we get here then the page has become resident and
   1135 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1136 			 * own it) and set pps[lcv] (so that we exit the while
   1137 			 * loop).
   1138  			 */
   1139 			/* we own it, caller must un-busy */
   1140 			ptmp->flags |= PG_BUSY;
   1141 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1142 			pps[lcv] = ptmp;
   1143 		}
   1144 
   1145 		/*
   1146  		 * if we own the valid page at the correct offset, pps[lcv] will
   1147  		 * point to it.   nothing more to do except go to the next page.
   1148  		 */
   1149 		if (pps[lcv])
   1150 			continue;			/* next lcv */
   1151 
   1152 		/*
   1153  		 * we have a "fake/busy/clean" page that we just allocated.
   1154  		 * do the needed "i/o", either reading from swap or zeroing.
   1155  		 */
   1156 		swslot = uao_find_swslot(aobj, current_offset >> PAGE_SHIFT);
   1157 
   1158 		/*
   1159  		 * just zero the page if there's nothing in swap.
   1160  		 */
   1161 		if (swslot == 0)
   1162 		{
   1163 			/*
   1164 			 * page hasn't existed before, just zero it.
   1165 			 */
   1166 			uvm_pagezero(ptmp);
   1167 		}
   1168 		else
   1169 		{
   1170 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1171 			     swslot, 0,0,0);
   1172 
   1173 			/*
   1174 			 * page in the swapped-out page.
   1175 			 * unlock object for i/o, relock when done.
   1176 			 */
   1177 			simple_unlock(&uobj->vmobjlock);
   1178 			rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1179 			simple_lock(&uobj->vmobjlock);
   1180 
   1181 			/*
   1182 			 * I/O done.  check for errors.
   1183 			 */
   1184 			if (rv != VM_PAGER_OK)
   1185 			{
   1186 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1187 				    rv,0,0,0);
   1188 				if (ptmp->flags & PG_WANTED)
   1189 					/* object lock still held */
   1190 					wakeup(ptmp);
   1191 				ptmp->flags &= ~(PG_WANTED|PG_BUSY);
   1192 				UVM_PAGE_OWN(ptmp, NULL);
   1193 				uvm_lock_pageq();
   1194 				uvm_pagefree(ptmp);
   1195 				uvm_unlock_pageq();
   1196 
   1197 				simple_unlock(&uobj->vmobjlock);
   1198 				return (rv);
   1199 			}
   1200 		}
   1201 
   1202 		/*
   1203  		 * we got the page!   clear the fake flag (indicates valid
   1204 		 * data now in page) and plug into our result array.   note
   1205 		 * that page is still busy.
   1206  		 *
   1207  		 * it is the callers job to:
   1208  		 * => check if the page is released
   1209  		 * => unbusy the page
   1210  		 * => activate the page
   1211  		 */
   1212 
   1213 		ptmp->flags &= ~PG_FAKE;		/* data is valid ... */
   1214 		pmap_clear_modify(PMAP_PGARG(ptmp));	/* ... and clean */
   1215 		pps[lcv] = ptmp;
   1216 
   1217 	}	/* lcv loop */
   1218 
   1219 	/*
   1220  	 * finally, unlock object and return.
   1221  	 */
   1222 
   1223 	simple_unlock(&uobj->vmobjlock);
   1224 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1225 	return(VM_PAGER_OK);
   1226 }
   1227 
   1228 /*
   1229  * uao_releasepg: handle released page in an aobj
   1230  *
   1231  * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
   1232  *      to dispose of.
   1233  * => caller must handle PG_WANTED case
   1234  * => called with page's object locked, pageq's unlocked
   1235  * => returns TRUE if page's object is still alive, FALSE if we
   1236  *      killed the page's object.    if we return TRUE, then we
   1237  *      return with the object locked.
   1238  * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
   1239  *                              with the page queues locked [for pagedaemon]
   1240  * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
   1241  * => we kill the aobj if it is not referenced and we are suppose to
   1242  *      kill it ("KILLME").
   1243  */
   1244 static boolean_t
   1245 uao_releasepg(pg, nextpgp)
   1246 	struct vm_page *pg;
   1247 	struct vm_page **nextpgp;	/* OUT */
   1248 {
   1249 	struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
   1250 
   1251 #ifdef DIAGNOSTIC
   1252 	if ((pg->flags & PG_RELEASED) == 0)
   1253 		panic("uao_releasepg: page not released!");
   1254 #endif
   1255 
   1256 	/*
   1257  	 * dispose of the page [caller handles PG_WANTED] and swap slot.
   1258  	 */
   1259 	pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
   1260 	uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
   1261 	uvm_lock_pageq();
   1262 	if (nextpgp)
   1263 		*nextpgp = pg->pageq.tqe_next;	/* next page for daemon */
   1264 	uvm_pagefree(pg);
   1265 	if (!nextpgp)
   1266 		uvm_unlock_pageq();		/* keep locked for daemon */
   1267 
   1268 	/*
   1269  	 * if we're not killing the object, we're done.
   1270  	 */
   1271 	if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
   1272 		return TRUE;
   1273 
   1274 #ifdef DIAGNOSTIC
   1275 	if (aobj->u_obj.uo_refs)
   1276 		panic("uvm_km_releasepg: kill flag set on referenced object!");
   1277 #endif
   1278 
   1279 	/*
   1280  	 * if there are still pages in the object, we're done for now.
   1281  	 */
   1282 	if (aobj->u_obj.uo_npages != 0)
   1283 		return TRUE;
   1284 
   1285 #ifdef DIAGNOSTIC
   1286 	if (aobj->u_obj.memq.tqh_first)
   1287 		panic("uvn_releasepg: pages in object with npages == 0");
   1288 #endif
   1289 
   1290 	/*
   1291  	 * finally, free the rest.
   1292  	 */
   1293 	uao_free(aobj);
   1294 
   1295 	return FALSE;
   1296 }
   1297 
   1298 /*
   1299  * uao_dropswap:  release any swap resources from this aobj page.
   1300  *
   1301  * => aobj must be locked or have a reference count of 0.
   1302  */
   1303 
   1304 void
   1305 uao_dropswap(uobj, pageidx)
   1306 	struct uvm_object *uobj;
   1307 	int pageidx;
   1308 {
   1309 	int slot;
   1310 
   1311 	slot = uao_set_swslot(uobj, pageidx, 0);
   1312 	if (slot) {
   1313 		uvm_swap_free(slot, 1);
   1314 	}
   1315 }
   1316