uvm_aobj.c revision 1.26 1 /* $NetBSD: uvm_aobj.c,v 1.26 1999/09/12 01:17:34 chs Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45
46
47 #include "opt_uvmhist.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/pool.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_kern.h>
58
59 #include <uvm/uvm.h>
60
61 /*
62 * an aobj manages anonymous-memory backed uvm_objects. in addition
63 * to keeping the list of resident pages, it also keeps a list of
64 * allocated swap blocks. depending on the size of the aobj this list
65 * of allocated swap blocks is either stored in an array (small objects)
66 * or in a hash table (large objects).
67 */
68
69 /*
70 * local structures
71 */
72
73 /*
74 * for hash tables, we break the address space of the aobj into blocks
75 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
76 * be a power of two.
77 */
78
79 #define UAO_SWHASH_CLUSTER_SHIFT 4
80 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
81
82 /* get the "tag" for this page index */
83 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
84 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
85
86 /* given an ELT and a page index, find the swap slot */
87 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
88 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
89
90 /* given an ELT, return its pageidx base */
91 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
92 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
93
94 /*
95 * the swhash hash function
96 */
97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
98 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
99 & (AOBJ)->u_swhashmask)])
100
101 /*
102 * the swhash threshhold determines if we will use an array or a
103 * hash table to store the list of allocated swap blocks.
104 */
105
106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
107 #define UAO_USES_SWHASH(AOBJ) \
108 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
109
110 /*
111 * the number of buckets in a swhash, with an upper bound
112 */
113 #define UAO_SWHASH_MAXBUCKETS 256
114 #define UAO_SWHASH_BUCKETS(AOBJ) \
115 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
116 UAO_SWHASH_MAXBUCKETS))
117
118
119 /*
120 * uao_swhash_elt: when a hash table is being used, this structure defines
121 * the format of an entry in the bucket list.
122 */
123
124 struct uao_swhash_elt {
125 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
126 vaddr_t tag; /* our 'tag' */
127 int count; /* our number of active slots */
128 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
129 };
130
131 /*
132 * uao_swhash: the swap hash table structure
133 */
134
135 LIST_HEAD(uao_swhash, uao_swhash_elt);
136
137 /*
138 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
139 */
140
141 struct pool uao_swhash_elt_pool;
142
143 /*
144 * uvm_aobj: the actual anon-backed uvm_object
145 *
146 * => the uvm_object is at the top of the structure, this allows
147 * (struct uvm_device *) == (struct uvm_object *)
148 * => only one of u_swslots and u_swhash is used in any given aobj
149 */
150
151 struct uvm_aobj {
152 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
153 int u_pages; /* number of pages in entire object */
154 int u_flags; /* the flags (see uvm_aobj.h) */
155 int *u_swslots; /* array of offset->swapslot mappings */
156 /*
157 * hashtable of offset->swapslot mappings
158 * (u_swhash is an array of bucket heads)
159 */
160 struct uao_swhash *u_swhash;
161 u_long u_swhashmask; /* mask for hashtable */
162 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
163 };
164
165 /*
166 * uvm_aobj_pool: pool of uvm_aobj structures
167 */
168
169 struct pool uvm_aobj_pool;
170
171 /*
172 * local functions
173 */
174
175 static void uao_init __P((void));
176 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
177 int, boolean_t));
178 static int uao_find_swslot __P((struct uvm_aobj *,
179 int));
180 static boolean_t uao_flush __P((struct uvm_object *,
181 vaddr_t, vaddr_t,
182 int));
183 static void uao_free __P((struct uvm_aobj *));
184 static int uao_get __P((struct uvm_object *, vaddr_t,
185 vm_page_t *, int *, int,
186 vm_prot_t, int, int));
187 static boolean_t uao_releasepg __P((struct vm_page *,
188 struct vm_page **));
189
190
191
192 /*
193 * aobj_pager
194 *
195 * note that some functions (e.g. put) are handled elsewhere
196 */
197
198 struct uvm_pagerops aobj_pager = {
199 uao_init, /* init */
200 uao_reference, /* reference */
201 uao_detach, /* detach */
202 NULL, /* fault */
203 uao_flush, /* flush */
204 uao_get, /* get */
205 NULL, /* asyncget */
206 NULL, /* put (done by pagedaemon) */
207 NULL, /* cluster */
208 NULL, /* mk_pcluster */
209 uvm_shareprot, /* shareprot */
210 NULL, /* aiodone */
211 uao_releasepg /* releasepg */
212 };
213
214 /*
215 * uao_list: global list of active aobjs, locked by uao_list_lock
216 */
217
218 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
219 static simple_lock_data_t uao_list_lock;
220
221
222 /*
223 * functions
224 */
225
226 /*
227 * hash table/array related functions
228 */
229
230 /*
231 * uao_find_swhash_elt: find (or create) a hash table entry for a page
232 * offset.
233 *
234 * => the object should be locked by the caller
235 */
236
237 static struct uao_swhash_elt *
238 uao_find_swhash_elt(aobj, pageidx, create)
239 struct uvm_aobj *aobj;
240 int pageidx;
241 boolean_t create;
242 {
243 struct uao_swhash *swhash;
244 struct uao_swhash_elt *elt;
245 int page_tag;
246
247 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
248 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
249
250 /*
251 * now search the bucket for the requested tag
252 */
253 for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
254 if (elt->tag == page_tag)
255 return(elt);
256 }
257
258 /* fail now if we are not allowed to create a new entry in the bucket */
259 if (!create)
260 return NULL;
261
262
263 /*
264 * allocate a new entry for the bucket and init/insert it in
265 */
266 elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
267 LIST_INSERT_HEAD(swhash, elt, list);
268 elt->tag = page_tag;
269 elt->count = 0;
270 memset(elt->slots, 0, sizeof(elt->slots));
271
272 return(elt);
273 }
274
275 /*
276 * uao_find_swslot: find the swap slot number for an aobj/pageidx
277 *
278 * => object must be locked by caller
279 */
280 __inline static int
281 uao_find_swslot(aobj, pageidx)
282 struct uvm_aobj *aobj;
283 int pageidx;
284 {
285
286 /*
287 * if noswap flag is set, then we never return a slot
288 */
289
290 if (aobj->u_flags & UAO_FLAG_NOSWAP)
291 return(0);
292
293 /*
294 * if hashing, look in hash table.
295 */
296
297 if (UAO_USES_SWHASH(aobj)) {
298 struct uao_swhash_elt *elt =
299 uao_find_swhash_elt(aobj, pageidx, FALSE);
300
301 if (elt)
302 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
303 else
304 return(NULL);
305 }
306
307 /*
308 * otherwise, look in the array
309 */
310 return(aobj->u_swslots[pageidx]);
311 }
312
313 /*
314 * uao_set_swslot: set the swap slot for a page in an aobj.
315 *
316 * => setting a slot to zero frees the slot
317 * => object must be locked by caller
318 */
319 int
320 uao_set_swslot(uobj, pageidx, slot)
321 struct uvm_object *uobj;
322 int pageidx, slot;
323 {
324 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
325 int oldslot;
326 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
327 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
328 aobj, pageidx, slot, 0);
329
330 /*
331 * if noswap flag is set, then we can't set a slot
332 */
333
334 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
335
336 if (slot == 0)
337 return(0); /* a clear is ok */
338
339 /* but a set is not */
340 printf("uao_set_swslot: uobj = %p\n", uobj);
341 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
342 }
343
344 /*
345 * are we using a hash table? if so, add it in the hash.
346 */
347
348 if (UAO_USES_SWHASH(aobj)) {
349 /*
350 * Avoid allocating an entry just to free it again if
351 * the page had not swap slot in the first place, and
352 * we are freeing.
353 */
354 struct uao_swhash_elt *elt =
355 uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
356 if (elt == NULL) {
357 #ifdef DIAGNOSTIC
358 if (slot)
359 panic("uao_set_swslot: didn't create elt");
360 #endif
361 return (0);
362 }
363
364 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
365 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
366
367 /*
368 * now adjust the elt's reference counter and free it if we've
369 * dropped it to zero.
370 */
371
372 /* an allocation? */
373 if (slot) {
374 if (oldslot == 0)
375 elt->count++;
376 } else { /* freeing slot ... */
377 if (oldslot) /* to be safe */
378 elt->count--;
379
380 if (elt->count == 0) {
381 LIST_REMOVE(elt, list);
382 pool_put(&uao_swhash_elt_pool, elt);
383 }
384 }
385
386 } else {
387 /* we are using an array */
388 oldslot = aobj->u_swslots[pageidx];
389 aobj->u_swslots[pageidx] = slot;
390 }
391 return (oldslot);
392 }
393
394 /*
395 * end of hash/array functions
396 */
397
398 /*
399 * uao_free: free all resources held by an aobj, and then free the aobj
400 *
401 * => the aobj should be dead
402 */
403 static void
404 uao_free(aobj)
405 struct uvm_aobj *aobj;
406 {
407
408 if (UAO_USES_SWHASH(aobj)) {
409 int i, hashbuckets = aobj->u_swhashmask + 1;
410
411 /*
412 * free the swslots from each hash bucket,
413 * then the hash bucket, and finally the hash table itself.
414 */
415 for (i = 0; i < hashbuckets; i++) {
416 struct uao_swhash_elt *elt, *next;
417
418 for (elt = aobj->u_swhash[i].lh_first; elt != NULL;
419 elt = next) {
420 int j;
421
422 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++)
423 {
424 int slot = elt->slots[j];
425
426 if (slot) {
427 uvm_swap_free(slot, 1);
428
429 /*
430 * this page is no longer
431 * only in swap.
432 */
433 simple_lock(&uvm.swap_data_lock);
434 uvmexp.swpgonly--;
435 simple_unlock(&uvm.swap_data_lock);
436 }
437 }
438
439 next = elt->list.le_next;
440 pool_put(&uao_swhash_elt_pool, elt);
441 }
442 }
443 FREE(aobj->u_swhash, M_UVMAOBJ);
444 } else {
445 int i;
446
447 /*
448 * free the array
449 */
450
451 for (i = 0; i < aobj->u_pages; i++)
452 {
453 int slot = aobj->u_swslots[i];
454
455 if (slot) {
456 uvm_swap_free(slot, 1);
457
458 /* this page is no longer only in swap. */
459 simple_lock(&uvm.swap_data_lock);
460 uvmexp.swpgonly--;
461 simple_unlock(&uvm.swap_data_lock);
462 }
463 }
464 FREE(aobj->u_swslots, M_UVMAOBJ);
465 }
466
467 /*
468 * finally free the aobj itself
469 */
470 pool_put(&uvm_aobj_pool, aobj);
471 }
472
473 /*
474 * pager functions
475 */
476
477 /*
478 * uao_create: create an aobj of the given size and return its uvm_object.
479 *
480 * => for normal use, flags are always zero
481 * => for the kernel object, the flags are:
482 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
483 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
484 */
485 struct uvm_object *
486 uao_create(size, flags)
487 vsize_t size;
488 int flags;
489 {
490 static struct uvm_aobj kernel_object_store; /* home of kernel_object */
491 static int kobj_alloced = 0; /* not allocated yet */
492 int pages = round_page(size) >> PAGE_SHIFT;
493 struct uvm_aobj *aobj;
494
495 /*
496 * malloc a new aobj unless we are asked for the kernel object
497 */
498 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
499 if (kobj_alloced)
500 panic("uao_create: kernel object already allocated");
501
502 /*
503 * XXXTHORPEJ: Need to call this now, so the pool gets
504 * initialized!
505 */
506 uao_init();
507
508 aobj = &kernel_object_store;
509 aobj->u_pages = pages;
510 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
511 /* we are special, we never die */
512 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
513 kobj_alloced = UAO_FLAG_KERNOBJ;
514 } else if (flags & UAO_FLAG_KERNSWAP) {
515 aobj = &kernel_object_store;
516 if (kobj_alloced != UAO_FLAG_KERNOBJ)
517 panic("uao_create: asked to enable swap on kernel object");
518 kobj_alloced = UAO_FLAG_KERNSWAP;
519 } else { /* normal object */
520 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
521 aobj->u_pages = pages;
522 aobj->u_flags = 0; /* normal object */
523 aobj->u_obj.uo_refs = 1; /* start with 1 reference */
524 }
525
526 /*
527 * allocate hash/array if necessary
528 *
529 * note: in the KERNSWAP case no need to worry about locking since
530 * we are still booting we should be the only thread around.
531 */
532 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
533 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
534 M_NOWAIT : M_WAITOK;
535
536 /* allocate hash table or array depending on object size */
537 if (UAO_USES_SWHASH(aobj)) {
538 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
539 M_UVMAOBJ, mflags, &aobj->u_swhashmask);
540 if (aobj->u_swhash == NULL)
541 panic("uao_create: hashinit swhash failed");
542 } else {
543 MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
544 M_UVMAOBJ, mflags);
545 if (aobj->u_swslots == NULL)
546 panic("uao_create: malloc swslots failed");
547 memset(aobj->u_swslots, 0, pages * sizeof(int));
548 }
549
550 if (flags) {
551 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
552 return(&aobj->u_obj);
553 /* done! */
554 }
555 }
556
557 /*
558 * init aobj fields
559 */
560 simple_lock_init(&aobj->u_obj.vmobjlock);
561 aobj->u_obj.pgops = &aobj_pager;
562 TAILQ_INIT(&aobj->u_obj.memq);
563 aobj->u_obj.uo_npages = 0;
564
565 /*
566 * now that aobj is ready, add it to the global list
567 * XXXCHS: uao_init hasn't been called'd in the KERNOBJ case,
568 * do we really need the kernel object on this list anyway?
569 */
570 simple_lock(&uao_list_lock);
571 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
572 simple_unlock(&uao_list_lock);
573
574 /*
575 * done!
576 */
577 return(&aobj->u_obj);
578 }
579
580
581
582 /*
583 * uao_init: set up aobj pager subsystem
584 *
585 * => called at boot time from uvm_pager_init()
586 */
587 static void
588 uao_init()
589 {
590 static int uao_initialized;
591
592 if (uao_initialized)
593 return;
594 uao_initialized = TRUE;
595
596 LIST_INIT(&uao_list);
597 simple_lock_init(&uao_list_lock);
598
599 /*
600 * NOTE: Pages fror this pool must not come from a pageable
601 * kernel map!
602 */
603 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
604 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
605
606 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
607 "aobjpl", 0,
608 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
609 }
610
611 /*
612 * uao_reference: add a ref to an aobj
613 *
614 * => aobj must be unlocked (we will lock it)
615 */
616 void
617 uao_reference(uobj)
618 struct uvm_object *uobj;
619 {
620 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
621
622 /*
623 * kernel_object already has plenty of references, leave it alone.
624 */
625
626 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
627 return;
628
629 simple_lock(&uobj->vmobjlock);
630 uobj->uo_refs++; /* bump! */
631 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
632 uobj, uobj->uo_refs,0,0);
633 simple_unlock(&uobj->vmobjlock);
634 }
635
636 /*
637 * uao_detach: drop a reference to an aobj
638 *
639 * => aobj must be unlocked, we will lock it
640 */
641 void
642 uao_detach(uobj)
643 struct uvm_object *uobj;
644 {
645 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
646 struct vm_page *pg;
647 boolean_t busybody;
648 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
649
650 /*
651 * detaching from kernel_object is a noop.
652 */
653 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
654 return;
655
656 simple_lock(&uobj->vmobjlock);
657
658 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
659 uobj->uo_refs--; /* drop ref! */
660 if (uobj->uo_refs) { /* still more refs? */
661 simple_unlock(&uobj->vmobjlock);
662 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
663 return;
664 }
665
666 /*
667 * remove the aobj from the global list.
668 */
669 simple_lock(&uao_list_lock);
670 LIST_REMOVE(aobj, u_list);
671 simple_unlock(&uao_list_lock);
672
673 /*
674 * free all the pages that aren't PG_BUSY, mark for release any that are.
675 */
676
677 busybody = FALSE;
678 for (pg = uobj->memq.tqh_first ; pg != NULL ; pg = pg->listq.tqe_next) {
679
680 if (pg->flags & PG_BUSY) {
681 pg->flags |= PG_RELEASED;
682 busybody = TRUE;
683 continue;
684 }
685
686 /* zap the mappings, free the swap slot, free the page */
687 pmap_page_protect(pg, VM_PROT_NONE);
688 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
689 uvm_lock_pageq();
690 uvm_pagefree(pg);
691 uvm_unlock_pageq();
692 }
693
694 /*
695 * if we found any busy pages, we're done for now.
696 * mark the aobj for death, releasepg will finish up for us.
697 */
698 if (busybody) {
699 aobj->u_flags |= UAO_FLAG_KILLME;
700 simple_unlock(&aobj->u_obj.vmobjlock);
701 return;
702 }
703
704 /*
705 * finally, free the rest.
706 */
707 uao_free(aobj);
708 }
709
710 /*
711 * uao_flush: "flush" pages out of a uvm object
712 *
713 * => object should be locked by caller. we may _unlock_ the object
714 * if (and only if) we need to clean a page (PGO_CLEANIT).
715 * XXXJRT Currently, however, we don't. In the case of cleaning
716 * XXXJRT a page, we simply just deactivate it. Should probably
717 * XXXJRT handle this better, in the future (although "flushing"
718 * XXXJRT anonymous memory isn't terribly important).
719 * => if PGO_CLEANIT is not set, then we will neither unlock the object
720 * or block.
721 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
722 * for flushing.
723 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
724 * that new pages are inserted on the tail end of the list. thus,
725 * we can make a complete pass through the object in one go by starting
726 * at the head and working towards the tail (new pages are put in
727 * front of us).
728 * => NOTE: we are allowed to lock the page queues, so the caller
729 * must not be holding the lock on them [e.g. pagedaemon had
730 * better not call us with the queues locked]
731 * => we return TRUE unless we encountered some sort of I/O error
732 * XXXJRT currently never happens, as we never directly initiate
733 * XXXJRT I/O
734 *
735 * comment on "cleaning" object and PG_BUSY pages:
736 * this routine is holding the lock on the object. the only time
737 * that is can run into a PG_BUSY page that it does not own is if
738 * some other process has started I/O on the page (e.g. either
739 * a pagein or a pageout). if the PG_BUSY page is being paged
740 * in, then it can not be dirty (!PG_CLEAN) because no one has
741 * had a change to modify it yet. if the PG_BUSY page is being
742 * paged out then it means that someone else has already started
743 * cleaning the page for us (how nice!). in this case, if we
744 * have syncio specified, then after we make our pass through the
745 * object we need to wait for the other PG_BUSY pages to clear
746 * off (i.e. we need to do an iosync). also note that once a
747 * page is PG_BUSY is must stary in its object until it is un-busyed.
748 * XXXJRT We never actually do this, as we are "flushing" anonymous
749 * XXXJRT memory, which doesn't have persistent backing store.
750 *
751 * note on page traversal:
752 * we can traverse the pages in an object either by going down the
753 * linked list in "uobj->memq", or we can go over the address range
754 * by page doing hash table lookups for each address. depending
755 * on how many pages are in the object it may be cheaper to do one
756 * or the other. we set "by_list" to true if we are using memq.
757 * if the cost of a hash lookup was equal to the cost of the list
758 * traversal we could compare the number of pages in the start->stop
759 * range to the total number of pages in the object. however, it
760 * seems that a hash table lookup is more expensive than the linked
761 * list traversal, so we multiply the number of pages in the
762 * start->stop range by a penalty which we define below.
763 */
764
765 #define UAO_HASH_PENALTY 4 /* XXX: a guess */
766
767 boolean_t
768 uao_flush(uobj, start, stop, flags)
769 struct uvm_object *uobj;
770 vaddr_t start, stop;
771 int flags;
772 {
773 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
774 struct vm_page *pp, *ppnext;
775 boolean_t retval, by_list;
776 vaddr_t curoff;
777 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
778
779 curoff = 0; /* XXX: shut up gcc */
780
781 retval = TRUE; /* default to success */
782
783 if (flags & PGO_ALLPAGES) {
784 start = 0;
785 stop = aobj->u_pages << PAGE_SHIFT;
786 by_list = TRUE; /* always go by the list */
787 } else {
788 start = trunc_page(start);
789 stop = round_page(stop);
790 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
791 printf("uao_flush: strange, got an out of range "
792 "flush (fixed)\n");
793 stop = aobj->u_pages << PAGE_SHIFT;
794 }
795 by_list = (uobj->uo_npages <=
796 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
797 }
798
799 UVMHIST_LOG(maphist,
800 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
801 start, stop, by_list, flags);
802
803 /*
804 * Don't need to do any work here if we're not freeing
805 * or deactivating pages.
806 */
807 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
808 UVMHIST_LOG(maphist,
809 "<- done (no work to do)",0,0,0,0);
810 return (retval);
811 }
812
813 /*
814 * now do it. note: we must update ppnext in the body of loop or we
815 * will get stuck. we need to use ppnext because we may free "pp"
816 * before doing the next loop.
817 */
818
819 if (by_list) {
820 pp = uobj->memq.tqh_first;
821 } else {
822 curoff = start;
823 pp = uvm_pagelookup(uobj, curoff);
824 }
825
826 ppnext = NULL; /* XXX: shut up gcc */
827 uvm_lock_pageq(); /* page queues locked */
828
829 /* locked: both page queues and uobj */
830 for ( ; (by_list && pp != NULL) ||
831 (!by_list && curoff < stop) ; pp = ppnext) {
832 if (by_list) {
833 ppnext = pp->listq.tqe_next;
834
835 /* range check */
836 if (pp->offset < start || pp->offset >= stop)
837 continue;
838 } else {
839 curoff += PAGE_SIZE;
840 if (curoff < stop)
841 ppnext = uvm_pagelookup(uobj, curoff);
842
843 /* null check */
844 if (pp == NULL)
845 continue;
846 }
847
848 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
849 /*
850 * XXX In these first 3 cases, we always just
851 * XXX deactivate the page. We may want to
852 * XXX handle the different cases more specifically
853 * XXX in the future.
854 */
855 case PGO_CLEANIT|PGO_FREE:
856 case PGO_CLEANIT|PGO_DEACTIVATE:
857 case PGO_DEACTIVATE:
858 deactivate_it:
859 /* skip the page if it's loaned or wired */
860 if (pp->loan_count != 0 ||
861 pp->wire_count != 0)
862 continue;
863
864 /* zap all mappings for the page. */
865 pmap_page_protect(pp, VM_PROT_NONE);
866
867 /* ...and deactivate the page. */
868 uvm_pagedeactivate(pp);
869
870 continue;
871
872 case PGO_FREE:
873 /*
874 * If there are multiple references to
875 * the object, just deactivate the page.
876 */
877 if (uobj->uo_refs > 1)
878 goto deactivate_it;
879
880 /* XXX skip the page if it's loaned or wired */
881 if (pp->loan_count != 0 ||
882 pp->wire_count != 0)
883 continue;
884
885 /*
886 * mark the page as released if its busy.
887 */
888 if (pp->flags & PG_BUSY) {
889 pp->flags |= PG_RELEASED;
890 continue;
891 }
892
893 /* zap all mappings for the page. */
894 pmap_page_protect(pp, VM_PROT_NONE);
895
896 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
897 uvm_pagefree(pp);
898
899 continue;
900
901 default:
902 panic("uao_flush: weird flags");
903 }
904 #ifdef DIAGNOSTIC
905 panic("uao_flush: unreachable code");
906 #endif
907 }
908
909 uvm_unlock_pageq();
910
911 UVMHIST_LOG(maphist,
912 "<- done, rv=%d",retval,0,0,0);
913 return (retval);
914 }
915
916 /*
917 * uao_get: fetch me a page
918 *
919 * we have three cases:
920 * 1: page is resident -> just return the page.
921 * 2: page is zero-fill -> allocate a new page and zero it.
922 * 3: page is swapped out -> fetch the page from swap.
923 *
924 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
925 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
926 * then we will need to return VM_PAGER_UNLOCK.
927 *
928 * => prefer map unlocked (not required)
929 * => object must be locked! we will _unlock_ it before starting any I/O.
930 * => flags: PGO_ALLPAGES: get all of the pages
931 * PGO_LOCKED: fault data structures are locked
932 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
933 * => NOTE: caller must check for released pages!!
934 */
935 static int
936 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
937 struct uvm_object *uobj;
938 vaddr_t offset;
939 struct vm_page **pps;
940 int *npagesp;
941 int centeridx, advice, flags;
942 vm_prot_t access_type;
943 {
944 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
945 vaddr_t current_offset;
946 vm_page_t ptmp;
947 int lcv, gotpages, maxpages, swslot, rv;
948 boolean_t done;
949 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
950
951 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d", aobj, offset, flags,0);
952
953 /*
954 * get number of pages
955 */
956
957 maxpages = *npagesp;
958
959 /*
960 * step 1: handled the case where fault data structures are locked.
961 */
962
963 if (flags & PGO_LOCKED) {
964
965 /*
966 * step 1a: get pages that are already resident. only do
967 * this if the data structures are locked (i.e. the first
968 * time through).
969 */
970
971 done = TRUE; /* be optimistic */
972 gotpages = 0; /* # of pages we got so far */
973
974 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
975 lcv++, current_offset += PAGE_SIZE) {
976 /* do we care about this page? if not, skip it */
977 if (pps[lcv] == PGO_DONTCARE)
978 continue;
979
980 ptmp = uvm_pagelookup(uobj, current_offset);
981
982 /*
983 * if page is new, attempt to allocate the page, then
984 * zero-fill it.
985 */
986 if (ptmp == NULL && uao_find_swslot(aobj,
987 current_offset >> PAGE_SHIFT) == 0) {
988 ptmp = uvm_pagealloc(uobj, current_offset,
989 NULL, 0);
990 if (ptmp) {
991 /* new page */
992 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
993 ptmp->pqflags |= PQ_AOBJ;
994 UVM_PAGE_OWN(ptmp, NULL);
995 uvm_pagezero(ptmp);
996 }
997 }
998
999 /*
1000 * to be useful must get a non-busy, non-released page
1001 */
1002 if (ptmp == NULL ||
1003 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1004 if (lcv == centeridx ||
1005 (flags & PGO_ALLPAGES) != 0)
1006 /* need to do a wait or I/O! */
1007 done = FALSE;
1008 continue;
1009 }
1010
1011 /*
1012 * useful page: busy/lock it and plug it in our
1013 * result array
1014 */
1015 /* caller must un-busy this page */
1016 ptmp->flags |= PG_BUSY;
1017 UVM_PAGE_OWN(ptmp, "uao_get1");
1018 pps[lcv] = ptmp;
1019 gotpages++;
1020
1021 } /* "for" lcv loop */
1022
1023 /*
1024 * step 1b: now we've either done everything needed or we
1025 * to unlock and do some waiting or I/O.
1026 */
1027
1028 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1029
1030 *npagesp = gotpages;
1031 if (done)
1032 /* bingo! */
1033 return(VM_PAGER_OK);
1034 else
1035 /* EEK! Need to unlock and I/O */
1036 return(VM_PAGER_UNLOCK);
1037 }
1038
1039 /*
1040 * step 2: get non-resident or busy pages.
1041 * object is locked. data structures are unlocked.
1042 */
1043
1044 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1045 lcv++, current_offset += PAGE_SIZE) {
1046 /*
1047 * - skip over pages we've already gotten or don't want
1048 * - skip over pages we don't _have_ to get
1049 */
1050 if (pps[lcv] != NULL ||
1051 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1052 continue;
1053
1054 /*
1055 * we have yet to locate the current page (pps[lcv]). we
1056 * first look for a page that is already at the current offset.
1057 * if we find a page, we check to see if it is busy or
1058 * released. if that is the case, then we sleep on the page
1059 * until it is no longer busy or released and repeat the lookup.
1060 * if the page we found is neither busy nor released, then we
1061 * busy it (so we own it) and plug it into pps[lcv]. this
1062 * 'break's the following while loop and indicates we are
1063 * ready to move on to the next page in the "lcv" loop above.
1064 *
1065 * if we exit the while loop with pps[lcv] still set to NULL,
1066 * then it means that we allocated a new busy/fake/clean page
1067 * ptmp in the object and we need to do I/O to fill in the data.
1068 */
1069
1070 /* top of "pps" while loop */
1071 while (pps[lcv] == NULL) {
1072 /* look for a resident page */
1073 ptmp = uvm_pagelookup(uobj, current_offset);
1074
1075 /* not resident? allocate one now (if we can) */
1076 if (ptmp == NULL) {
1077
1078 ptmp = uvm_pagealloc(uobj, current_offset,
1079 NULL, 0);
1080
1081 /* out of RAM? */
1082 if (ptmp == NULL) {
1083 simple_unlock(&uobj->vmobjlock);
1084 UVMHIST_LOG(pdhist,
1085 "sleeping, ptmp == NULL\n",0,0,0,0);
1086 uvm_wait("uao_getpage");
1087 simple_lock(&uobj->vmobjlock);
1088 /* goto top of pps while loop */
1089 continue;
1090 }
1091
1092 /*
1093 * safe with PQ's unlocked: because we just
1094 * alloc'd the page
1095 */
1096 ptmp->pqflags |= PQ_AOBJ;
1097
1098 /*
1099 * got new page ready for I/O. break pps while
1100 * loop. pps[lcv] is still NULL.
1101 */
1102 break;
1103 }
1104
1105 /* page is there, see if we need to wait on it */
1106 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1107 ptmp->flags |= PG_WANTED;
1108 UVMHIST_LOG(pdhist,
1109 "sleeping, ptmp->flags 0x%x\n",
1110 ptmp->flags,0,0,0);
1111 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1112 FALSE, "uao_get", 0);
1113 simple_lock(&uobj->vmobjlock);
1114 continue; /* goto top of pps while loop */
1115 }
1116
1117 /*
1118 * if we get here then the page has become resident and
1119 * unbusy between steps 1 and 2. we busy it now (so we
1120 * own it) and set pps[lcv] (so that we exit the while
1121 * loop).
1122 */
1123 /* we own it, caller must un-busy */
1124 ptmp->flags |= PG_BUSY;
1125 UVM_PAGE_OWN(ptmp, "uao_get2");
1126 pps[lcv] = ptmp;
1127 }
1128
1129 /*
1130 * if we own the valid page at the correct offset, pps[lcv] will
1131 * point to it. nothing more to do except go to the next page.
1132 */
1133 if (pps[lcv])
1134 continue; /* next lcv */
1135
1136 /*
1137 * we have a "fake/busy/clean" page that we just allocated.
1138 * do the needed "i/o", either reading from swap or zeroing.
1139 */
1140 swslot = uao_find_swslot(aobj, current_offset >> PAGE_SHIFT);
1141
1142 /*
1143 * just zero the page if there's nothing in swap.
1144 */
1145 if (swslot == 0)
1146 {
1147 /*
1148 * page hasn't existed before, just zero it.
1149 */
1150 uvm_pagezero(ptmp);
1151 }
1152 else
1153 {
1154 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1155 swslot, 0,0,0);
1156
1157 /*
1158 * page in the swapped-out page.
1159 * unlock object for i/o, relock when done.
1160 */
1161 simple_unlock(&uobj->vmobjlock);
1162 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1163 simple_lock(&uobj->vmobjlock);
1164
1165 /*
1166 * I/O done. check for errors.
1167 */
1168 if (rv != VM_PAGER_OK)
1169 {
1170 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1171 rv,0,0,0);
1172 if (ptmp->flags & PG_WANTED)
1173 /* object lock still held */
1174 wakeup(ptmp);
1175 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1176 UVM_PAGE_OWN(ptmp, NULL);
1177 uvm_lock_pageq();
1178 uvm_pagefree(ptmp);
1179 uvm_unlock_pageq();
1180 simple_unlock(&uobj->vmobjlock);
1181 return (rv);
1182 }
1183 }
1184
1185 /*
1186 * we got the page! clear the fake flag (indicates valid
1187 * data now in page) and plug into our result array. note
1188 * that page is still busy.
1189 *
1190 * it is the callers job to:
1191 * => check if the page is released
1192 * => unbusy the page
1193 * => activate the page
1194 */
1195
1196 ptmp->flags &= ~PG_FAKE; /* data is valid ... */
1197 pmap_clear_modify(ptmp); /* ... and clean */
1198 pps[lcv] = ptmp;
1199
1200 } /* lcv loop */
1201
1202 /*
1203 * finally, unlock object and return.
1204 */
1205
1206 simple_unlock(&uobj->vmobjlock);
1207 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1208 return(VM_PAGER_OK);
1209 }
1210
1211 /*
1212 * uao_releasepg: handle released page in an aobj
1213 *
1214 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1215 * to dispose of.
1216 * => caller must handle PG_WANTED case
1217 * => called with page's object locked, pageq's unlocked
1218 * => returns TRUE if page's object is still alive, FALSE if we
1219 * killed the page's object. if we return TRUE, then we
1220 * return with the object locked.
1221 * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1222 * with the page queues locked [for pagedaemon]
1223 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1224 * => we kill the aobj if it is not referenced and we are suppose to
1225 * kill it ("KILLME").
1226 */
1227 static boolean_t uao_releasepg(pg, nextpgp)
1228 struct vm_page *pg;
1229 struct vm_page **nextpgp; /* OUT */
1230 {
1231 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1232
1233 #ifdef DIAGNOSTIC
1234 if ((pg->flags & PG_RELEASED) == 0)
1235 panic("uao_releasepg: page not released!");
1236 #endif
1237
1238 /*
1239 * dispose of the page [caller handles PG_WANTED] and swap slot.
1240 */
1241 pmap_page_protect(pg, VM_PROT_NONE);
1242 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1243 uvm_lock_pageq();
1244 if (nextpgp)
1245 *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
1246 uvm_pagefree(pg);
1247 if (!nextpgp)
1248 uvm_unlock_pageq(); /* keep locked for daemon */
1249
1250 /*
1251 * if we're not killing the object, we're done.
1252 */
1253 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1254 return TRUE;
1255
1256 #ifdef DIAGNOSTIC
1257 if (aobj->u_obj.uo_refs)
1258 panic("uvm_km_releasepg: kill flag set on referenced object!");
1259 #endif
1260
1261 /*
1262 * if there are still pages in the object, we're done for now.
1263 */
1264 if (aobj->u_obj.uo_npages != 0)
1265 return TRUE;
1266
1267 #ifdef DIAGNOSTIC
1268 if (aobj->u_obj.memq.tqh_first)
1269 panic("uvn_releasepg: pages in object with npages == 0");
1270 #endif
1271
1272 /*
1273 * finally, free the rest.
1274 */
1275 uao_free(aobj);
1276
1277 return FALSE;
1278 }
1279
1280 /*
1281 * uao_dropswap: release any swap resources from this aobj page.
1282 *
1283 * => aobj must be locked or have a reference count of 0.
1284 */
1285
1286 void
1287 uao_dropswap(uobj, pageidx)
1288 struct uvm_object *uobj;
1289 int pageidx;
1290 {
1291 int slot;
1292
1293 slot = uao_set_swslot(uobj, pageidx, 0);
1294 if (slot) {
1295 uvm_swap_free(slot, 1);
1296 }
1297 }
1298