uvm_aobj.c revision 1.27 1 /* $NetBSD: uvm_aobj.c,v 1.27 2000/01/11 06:57:49 chs Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45
46
47 #include "opt_uvmhist.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/pool.h>
54 #include <sys/kernel.h>
55
56 #include <vm/vm.h>
57 #include <vm/vm_page.h>
58 #include <vm/vm_kern.h>
59
60 #include <uvm/uvm.h>
61
62 /*
63 * an aobj manages anonymous-memory backed uvm_objects. in addition
64 * to keeping the list of resident pages, it also keeps a list of
65 * allocated swap blocks. depending on the size of the aobj this list
66 * of allocated swap blocks is either stored in an array (small objects)
67 * or in a hash table (large objects).
68 */
69
70 /*
71 * local structures
72 */
73
74 /*
75 * for hash tables, we break the address space of the aobj into blocks
76 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
77 * be a power of two.
78 */
79
80 #define UAO_SWHASH_CLUSTER_SHIFT 4
81 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
82
83 /* get the "tag" for this page index */
84 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
85 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
99 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
100 & (AOBJ)->u_swhashmask)])
101
102 /*
103 * the swhash threshhold determines if we will use an array or a
104 * hash table to store the list of allocated swap blocks.
105 */
106
107 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
108 #define UAO_USES_SWHASH(AOBJ) \
109 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
110
111 /*
112 * the number of buckets in a swhash, with an upper bound
113 */
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 UAO_SWHASH_MAXBUCKETS))
118
119
120 /*
121 * uao_swhash_elt: when a hash table is being used, this structure defines
122 * the format of an entry in the bucket list.
123 */
124
125 struct uao_swhash_elt {
126 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
127 vaddr_t tag; /* our 'tag' */
128 int count; /* our number of active slots */
129 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
130 };
131
132 /*
133 * uao_swhash: the swap hash table structure
134 */
135
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137
138 /*
139 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140 */
141
142 struct pool uao_swhash_elt_pool;
143
144 /*
145 * uvm_aobj: the actual anon-backed uvm_object
146 *
147 * => the uvm_object is at the top of the structure, this allows
148 * (struct uvm_device *) == (struct uvm_object *)
149 * => only one of u_swslots and u_swhash is used in any given aobj
150 */
151
152 struct uvm_aobj {
153 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 int u_pages; /* number of pages in entire object */
155 int u_flags; /* the flags (see uvm_aobj.h) */
156 int *u_swslots; /* array of offset->swapslot mappings */
157 /*
158 * hashtable of offset->swapslot mappings
159 * (u_swhash is an array of bucket heads)
160 */
161 struct uao_swhash *u_swhash;
162 u_long u_swhashmask; /* mask for hashtable */
163 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
164 };
165
166 /*
167 * uvm_aobj_pool: pool of uvm_aobj structures
168 */
169
170 struct pool uvm_aobj_pool;
171
172 /*
173 * local functions
174 */
175
176 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
177 int, boolean_t));
178 static int uao_find_swslot __P((struct uvm_aobj *,
179 int));
180 static boolean_t uao_flush __P((struct uvm_object *,
181 vaddr_t, vaddr_t,
182 int));
183 static void uao_free __P((struct uvm_aobj *));
184 static int uao_get __P((struct uvm_object *, vaddr_t,
185 vm_page_t *, int *, int,
186 vm_prot_t, int, int));
187 static boolean_t uao_releasepg __P((struct vm_page *,
188 struct vm_page **));
189 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
190 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
191
192
193
194 /*
195 * aobj_pager
196 *
197 * note that some functions (e.g. put) are handled elsewhere
198 */
199
200 struct uvm_pagerops aobj_pager = {
201 NULL, /* init */
202 uao_reference, /* reference */
203 uao_detach, /* detach */
204 NULL, /* fault */
205 uao_flush, /* flush */
206 uao_get, /* get */
207 NULL, /* asyncget */
208 NULL, /* put (done by pagedaemon) */
209 NULL, /* cluster */
210 NULL, /* mk_pcluster */
211 uvm_shareprot, /* shareprot */
212 NULL, /* aiodone */
213 uao_releasepg /* releasepg */
214 };
215
216 /*
217 * uao_list: global list of active aobjs, locked by uao_list_lock
218 */
219
220 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
221 static simple_lock_data_t uao_list_lock;
222
223
224 /*
225 * functions
226 */
227
228 /*
229 * hash table/array related functions
230 */
231
232 /*
233 * uao_find_swhash_elt: find (or create) a hash table entry for a page
234 * offset.
235 *
236 * => the object should be locked by the caller
237 */
238
239 static struct uao_swhash_elt *
240 uao_find_swhash_elt(aobj, pageidx, create)
241 struct uvm_aobj *aobj;
242 int pageidx;
243 boolean_t create;
244 {
245 struct uao_swhash *swhash;
246 struct uao_swhash_elt *elt;
247 int page_tag;
248
249 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
250 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
251
252 /*
253 * now search the bucket for the requested tag
254 */
255 for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
256 if (elt->tag == page_tag)
257 return(elt);
258 }
259
260 /* fail now if we are not allowed to create a new entry in the bucket */
261 if (!create)
262 return NULL;
263
264
265 /*
266 * allocate a new entry for the bucket and init/insert it in
267 */
268 elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
269 LIST_INSERT_HEAD(swhash, elt, list);
270 elt->tag = page_tag;
271 elt->count = 0;
272 memset(elt->slots, 0, sizeof(elt->slots));
273
274 return(elt);
275 }
276
277 /*
278 * uao_find_swslot: find the swap slot number for an aobj/pageidx
279 *
280 * => object must be locked by caller
281 */
282 __inline static int
283 uao_find_swslot(aobj, pageidx)
284 struct uvm_aobj *aobj;
285 int pageidx;
286 {
287
288 /*
289 * if noswap flag is set, then we never return a slot
290 */
291
292 if (aobj->u_flags & UAO_FLAG_NOSWAP)
293 return(0);
294
295 /*
296 * if hashing, look in hash table.
297 */
298
299 if (UAO_USES_SWHASH(aobj)) {
300 struct uao_swhash_elt *elt =
301 uao_find_swhash_elt(aobj, pageidx, FALSE);
302
303 if (elt)
304 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
305 else
306 return(NULL);
307 }
308
309 /*
310 * otherwise, look in the array
311 */
312 return(aobj->u_swslots[pageidx]);
313 }
314
315 /*
316 * uao_set_swslot: set the swap slot for a page in an aobj.
317 *
318 * => setting a slot to zero frees the slot
319 * => object must be locked by caller
320 */
321 int
322 uao_set_swslot(uobj, pageidx, slot)
323 struct uvm_object *uobj;
324 int pageidx, slot;
325 {
326 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
327 int oldslot;
328 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
329 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
330 aobj, pageidx, slot, 0);
331
332 /*
333 * if noswap flag is set, then we can't set a slot
334 */
335
336 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
337
338 if (slot == 0)
339 return(0); /* a clear is ok */
340
341 /* but a set is not */
342 printf("uao_set_swslot: uobj = %p\n", uobj);
343 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
344 }
345
346 /*
347 * are we using a hash table? if so, add it in the hash.
348 */
349
350 if (UAO_USES_SWHASH(aobj)) {
351 /*
352 * Avoid allocating an entry just to free it again if
353 * the page had not swap slot in the first place, and
354 * we are freeing.
355 */
356 struct uao_swhash_elt *elt =
357 uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
358 if (elt == NULL) {
359 #ifdef DIAGNOSTIC
360 if (slot)
361 panic("uao_set_swslot: didn't create elt");
362 #endif
363 return (0);
364 }
365
366 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
367 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
368
369 /*
370 * now adjust the elt's reference counter and free it if we've
371 * dropped it to zero.
372 */
373
374 /* an allocation? */
375 if (slot) {
376 if (oldslot == 0)
377 elt->count++;
378 } else { /* freeing slot ... */
379 if (oldslot) /* to be safe */
380 elt->count--;
381
382 if (elt->count == 0) {
383 LIST_REMOVE(elt, list);
384 pool_put(&uao_swhash_elt_pool, elt);
385 }
386 }
387
388 } else {
389 /* we are using an array */
390 oldslot = aobj->u_swslots[pageidx];
391 aobj->u_swslots[pageidx] = slot;
392 }
393 return (oldslot);
394 }
395
396 /*
397 * end of hash/array functions
398 */
399
400 /*
401 * uao_free: free all resources held by an aobj, and then free the aobj
402 *
403 * => the aobj should be dead
404 */
405 static void
406 uao_free(aobj)
407 struct uvm_aobj *aobj;
408 {
409
410 simple_unlock(&aobj->u_obj.vmobjlock);
411
412 if (UAO_USES_SWHASH(aobj)) {
413 int i, hashbuckets = aobj->u_swhashmask + 1;
414
415 /*
416 * free the swslots from each hash bucket,
417 * then the hash bucket, and finally the hash table itself.
418 */
419 for (i = 0; i < hashbuckets; i++) {
420 struct uao_swhash_elt *elt, *next;
421
422 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
423 elt != NULL;
424 elt = next) {
425 int j;
426
427 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
428 int slot = elt->slots[j];
429
430 if (slot) {
431 uvm_swap_free(slot, 1);
432
433 /*
434 * this page is no longer
435 * only in swap.
436 */
437 simple_lock(&uvm.swap_data_lock);
438 uvmexp.swpgonly--;
439 simple_unlock(&uvm.swap_data_lock);
440 }
441 }
442
443 next = LIST_NEXT(elt, list);
444 pool_put(&uao_swhash_elt_pool, elt);
445 }
446 }
447 FREE(aobj->u_swhash, M_UVMAOBJ);
448 } else {
449 int i;
450
451 /*
452 * free the array
453 */
454
455 for (i = 0; i < aobj->u_pages; i++) {
456 int slot = aobj->u_swslots[i];
457
458 if (slot) {
459 uvm_swap_free(slot, 1);
460
461 /* this page is no longer only in swap. */
462 simple_lock(&uvm.swap_data_lock);
463 uvmexp.swpgonly--;
464 simple_unlock(&uvm.swap_data_lock);
465 }
466 }
467 FREE(aobj->u_swslots, M_UVMAOBJ);
468 }
469
470 /*
471 * finally free the aobj itself
472 */
473 pool_put(&uvm_aobj_pool, aobj);
474 }
475
476 /*
477 * pager functions
478 */
479
480 /*
481 * uao_create: create an aobj of the given size and return its uvm_object.
482 *
483 * => for normal use, flags are always zero
484 * => for the kernel object, the flags are:
485 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
486 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
487 */
488 struct uvm_object *
489 uao_create(size, flags)
490 vsize_t size;
491 int flags;
492 {
493 static struct uvm_aobj kernel_object_store; /* home of kernel_object */
494 static int kobj_alloced = 0; /* not allocated yet */
495 int pages = round_page(size) >> PAGE_SHIFT;
496 struct uvm_aobj *aobj;
497
498 /*
499 * malloc a new aobj unless we are asked for the kernel object
500 */
501 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
502 if (kobj_alloced)
503 panic("uao_create: kernel object already allocated");
504
505 aobj = &kernel_object_store;
506 aobj->u_pages = pages;
507 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
508 /* we are special, we never die */
509 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
510 kobj_alloced = UAO_FLAG_KERNOBJ;
511 } else if (flags & UAO_FLAG_KERNSWAP) {
512 aobj = &kernel_object_store;
513 if (kobj_alloced != UAO_FLAG_KERNOBJ)
514 panic("uao_create: asked to enable swap on kernel object");
515 kobj_alloced = UAO_FLAG_KERNSWAP;
516 } else { /* normal object */
517 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
518 aobj->u_pages = pages;
519 aobj->u_flags = 0; /* normal object */
520 aobj->u_obj.uo_refs = 1; /* start with 1 reference */
521 }
522
523 /*
524 * allocate hash/array if necessary
525 *
526 * note: in the KERNSWAP case no need to worry about locking since
527 * we are still booting we should be the only thread around.
528 */
529 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
530 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
531 M_NOWAIT : M_WAITOK;
532
533 /* allocate hash table or array depending on object size */
534 if (UAO_USES_SWHASH(aobj)) {
535 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
536 M_UVMAOBJ, mflags, &aobj->u_swhashmask);
537 if (aobj->u_swhash == NULL)
538 panic("uao_create: hashinit swhash failed");
539 } else {
540 MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
541 M_UVMAOBJ, mflags);
542 if (aobj->u_swslots == NULL)
543 panic("uao_create: malloc swslots failed");
544 memset(aobj->u_swslots, 0, pages * sizeof(int));
545 }
546
547 if (flags) {
548 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
549 return(&aobj->u_obj);
550 /* done! */
551 }
552 }
553
554 /*
555 * init aobj fields
556 */
557 simple_lock_init(&aobj->u_obj.vmobjlock);
558 aobj->u_obj.pgops = &aobj_pager;
559 TAILQ_INIT(&aobj->u_obj.memq);
560 aobj->u_obj.uo_npages = 0;
561
562 /*
563 * now that aobj is ready, add it to the global list
564 */
565 simple_lock(&uao_list_lock);
566 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
567 simple_unlock(&uao_list_lock);
568
569 /*
570 * done!
571 */
572 return(&aobj->u_obj);
573 }
574
575
576
577 /*
578 * uao_init: set up aobj pager subsystem
579 *
580 * => called at boot time from uvm_pager_init()
581 */
582 void
583 uao_init()
584 {
585 static int uao_initialized;
586
587 if (uao_initialized)
588 return;
589 uao_initialized = TRUE;
590
591 LIST_INIT(&uao_list);
592 simple_lock_init(&uao_list_lock);
593
594 /*
595 * NOTE: Pages fror this pool must not come from a pageable
596 * kernel map!
597 */
598 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
599 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
600
601 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
602 "aobjpl", 0,
603 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
604 }
605
606 /*
607 * uao_reference: add a ref to an aobj
608 *
609 * => aobj must be unlocked
610 * => just lock it and call the locked version
611 */
612 void
613 uao_reference(uobj)
614 struct uvm_object *uobj;
615 {
616 simple_lock(&uobj->vmobjlock);
617 uao_reference_locked(uobj);
618 simple_unlock(&uobj->vmobjlock);
619 }
620
621 /*
622 * uao_reference_locked: add a ref to an aobj that is already locked
623 *
624 * => aobj must be locked
625 * this needs to be separate from the normal routine
626 * since sometimes we need to add a reference to an aobj when
627 * it's already locked.
628 */
629 void
630 uao_reference_locked(uobj)
631 struct uvm_object *uobj;
632 {
633 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
634
635 /*
636 * kernel_object already has plenty of references, leave it alone.
637 */
638
639 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
640 return;
641
642 uobj->uo_refs++; /* bump! */
643 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
644 uobj, uobj->uo_refs,0,0);
645 }
646
647
648 /*
649 * uao_detach: drop a reference to an aobj
650 *
651 * => aobj must be unlocked
652 * => just lock it and call the locked version
653 */
654 void
655 uao_detach(uobj)
656 struct uvm_object *uobj;
657 {
658 simple_lock(&uobj->vmobjlock);
659 uao_detach_locked(uobj);
660 }
661
662
663 /*
664 * uao_detach_locked: drop a reference to an aobj
665 *
666 * => aobj must be locked, and is unlocked (or freed) upon return.
667 * this needs to be separate from the normal routine
668 * since sometimes we need to detach from an aobj when
669 * it's already locked.
670 */
671 void
672 uao_detach_locked(uobj)
673 struct uvm_object *uobj;
674 {
675 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
676 struct vm_page *pg;
677 boolean_t busybody;
678 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
679
680 /*
681 * detaching from kernel_object is a noop.
682 */
683 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
684 simple_unlock(&uobj->vmobjlock);
685 return;
686 }
687
688 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
689 uobj->uo_refs--; /* drop ref! */
690 if (uobj->uo_refs) { /* still more refs? */
691 simple_unlock(&uobj->vmobjlock);
692 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
693 return;
694 }
695
696 /*
697 * remove the aobj from the global list.
698 */
699 simple_lock(&uao_list_lock);
700 LIST_REMOVE(aobj, u_list);
701 simple_unlock(&uao_list_lock);
702
703 /*
704 * free all the pages that aren't PG_BUSY,
705 * mark for release any that are.
706 */
707 busybody = FALSE;
708 for (pg = TAILQ_FIRST(&uobj->memq);
709 pg != NULL;
710 pg = TAILQ_NEXT(pg, listq)) {
711 if (pg->flags & PG_BUSY) {
712 pg->flags |= PG_RELEASED;
713 busybody = TRUE;
714 continue;
715 }
716
717 /* zap the mappings, free the swap slot, free the page */
718 pmap_page_protect(pg, VM_PROT_NONE);
719 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
720 uvm_lock_pageq();
721 uvm_pagefree(pg);
722 uvm_unlock_pageq();
723 }
724
725 /*
726 * if we found any busy pages, we're done for now.
727 * mark the aobj for death, releasepg will finish up for us.
728 */
729 if (busybody) {
730 aobj->u_flags |= UAO_FLAG_KILLME;
731 simple_unlock(&aobj->u_obj.vmobjlock);
732 return;
733 }
734
735 /*
736 * finally, free the rest.
737 */
738 uao_free(aobj);
739 }
740
741 /*
742 * uao_flush: "flush" pages out of a uvm object
743 *
744 * => object should be locked by caller. we may _unlock_ the object
745 * if (and only if) we need to clean a page (PGO_CLEANIT).
746 * XXXJRT Currently, however, we don't. In the case of cleaning
747 * XXXJRT a page, we simply just deactivate it. Should probably
748 * XXXJRT handle this better, in the future (although "flushing"
749 * XXXJRT anonymous memory isn't terribly important).
750 * => if PGO_CLEANIT is not set, then we will neither unlock the object
751 * or block.
752 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
753 * for flushing.
754 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
755 * that new pages are inserted on the tail end of the list. thus,
756 * we can make a complete pass through the object in one go by starting
757 * at the head and working towards the tail (new pages are put in
758 * front of us).
759 * => NOTE: we are allowed to lock the page queues, so the caller
760 * must not be holding the lock on them [e.g. pagedaemon had
761 * better not call us with the queues locked]
762 * => we return TRUE unless we encountered some sort of I/O error
763 * XXXJRT currently never happens, as we never directly initiate
764 * XXXJRT I/O
765 *
766 * comment on "cleaning" object and PG_BUSY pages:
767 * this routine is holding the lock on the object. the only time
768 * that is can run into a PG_BUSY page that it does not own is if
769 * some other process has started I/O on the page (e.g. either
770 * a pagein or a pageout). if the PG_BUSY page is being paged
771 * in, then it can not be dirty (!PG_CLEAN) because no one has
772 * had a change to modify it yet. if the PG_BUSY page is being
773 * paged out then it means that someone else has already started
774 * cleaning the page for us (how nice!). in this case, if we
775 * have syncio specified, then after we make our pass through the
776 * object we need to wait for the other PG_BUSY pages to clear
777 * off (i.e. we need to do an iosync). also note that once a
778 * page is PG_BUSY is must stary in its object until it is un-busyed.
779 * XXXJRT We never actually do this, as we are "flushing" anonymous
780 * XXXJRT memory, which doesn't have persistent backing store.
781 *
782 * note on page traversal:
783 * we can traverse the pages in an object either by going down the
784 * linked list in "uobj->memq", or we can go over the address range
785 * by page doing hash table lookups for each address. depending
786 * on how many pages are in the object it may be cheaper to do one
787 * or the other. we set "by_list" to true if we are using memq.
788 * if the cost of a hash lookup was equal to the cost of the list
789 * traversal we could compare the number of pages in the start->stop
790 * range to the total number of pages in the object. however, it
791 * seems that a hash table lookup is more expensive than the linked
792 * list traversal, so we multiply the number of pages in the
793 * start->stop range by a penalty which we define below.
794 */
795
796 #define UAO_HASH_PENALTY 4 /* XXX: a guess */
797
798 boolean_t
799 uao_flush(uobj, start, stop, flags)
800 struct uvm_object *uobj;
801 vaddr_t start, stop;
802 int flags;
803 {
804 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
805 struct vm_page *pp, *ppnext;
806 boolean_t retval, by_list;
807 vaddr_t curoff;
808 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
809
810 curoff = 0; /* XXX: shut up gcc */
811
812 retval = TRUE; /* default to success */
813
814 if (flags & PGO_ALLPAGES) {
815 start = 0;
816 stop = aobj->u_pages << PAGE_SHIFT;
817 by_list = TRUE; /* always go by the list */
818 } else {
819 start = trunc_page(start);
820 stop = round_page(stop);
821 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
822 printf("uao_flush: strange, got an out of range "
823 "flush (fixed)\n");
824 stop = aobj->u_pages << PAGE_SHIFT;
825 }
826 by_list = (uobj->uo_npages <=
827 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
828 }
829
830 UVMHIST_LOG(maphist,
831 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
832 start, stop, by_list, flags);
833
834 /*
835 * Don't need to do any work here if we're not freeing
836 * or deactivating pages.
837 */
838 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
839 UVMHIST_LOG(maphist,
840 "<- done (no work to do)",0,0,0,0);
841 return (retval);
842 }
843
844 /*
845 * now do it. note: we must update ppnext in the body of loop or we
846 * will get stuck. we need to use ppnext because we may free "pp"
847 * before doing the next loop.
848 */
849
850 if (by_list) {
851 pp = uobj->memq.tqh_first;
852 } else {
853 curoff = start;
854 pp = uvm_pagelookup(uobj, curoff);
855 }
856
857 ppnext = NULL; /* XXX: shut up gcc */
858 uvm_lock_pageq(); /* page queues locked */
859
860 /* locked: both page queues and uobj */
861 for ( ; (by_list && pp != NULL) ||
862 (!by_list && curoff < stop) ; pp = ppnext) {
863 if (by_list) {
864 ppnext = pp->listq.tqe_next;
865
866 /* range check */
867 if (pp->offset < start || pp->offset >= stop)
868 continue;
869 } else {
870 curoff += PAGE_SIZE;
871 if (curoff < stop)
872 ppnext = uvm_pagelookup(uobj, curoff);
873
874 /* null check */
875 if (pp == NULL)
876 continue;
877 }
878
879 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
880 /*
881 * XXX In these first 3 cases, we always just
882 * XXX deactivate the page. We may want to
883 * XXX handle the different cases more specifically
884 * XXX in the future.
885 */
886 case PGO_CLEANIT|PGO_FREE:
887 case PGO_CLEANIT|PGO_DEACTIVATE:
888 case PGO_DEACTIVATE:
889 deactivate_it:
890 /* skip the page if it's loaned or wired */
891 if (pp->loan_count != 0 ||
892 pp->wire_count != 0)
893 continue;
894
895 /* zap all mappings for the page. */
896 pmap_page_protect(pp, VM_PROT_NONE);
897
898 /* ...and deactivate the page. */
899 uvm_pagedeactivate(pp);
900
901 continue;
902
903 case PGO_FREE:
904 /*
905 * If there are multiple references to
906 * the object, just deactivate the page.
907 */
908 if (uobj->uo_refs > 1)
909 goto deactivate_it;
910
911 /* XXX skip the page if it's loaned or wired */
912 if (pp->loan_count != 0 ||
913 pp->wire_count != 0)
914 continue;
915
916 /*
917 * mark the page as released if its busy.
918 */
919 if (pp->flags & PG_BUSY) {
920 pp->flags |= PG_RELEASED;
921 continue;
922 }
923
924 /* zap all mappings for the page. */
925 pmap_page_protect(pp, VM_PROT_NONE);
926
927 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
928 uvm_pagefree(pp);
929
930 continue;
931
932 default:
933 panic("uao_flush: weird flags");
934 }
935 #ifdef DIAGNOSTIC
936 panic("uao_flush: unreachable code");
937 #endif
938 }
939
940 uvm_unlock_pageq();
941
942 UVMHIST_LOG(maphist,
943 "<- done, rv=%d",retval,0,0,0);
944 return (retval);
945 }
946
947 /*
948 * uao_get: fetch me a page
949 *
950 * we have three cases:
951 * 1: page is resident -> just return the page.
952 * 2: page is zero-fill -> allocate a new page and zero it.
953 * 3: page is swapped out -> fetch the page from swap.
954 *
955 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
956 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
957 * then we will need to return VM_PAGER_UNLOCK.
958 *
959 * => prefer map unlocked (not required)
960 * => object must be locked! we will _unlock_ it before starting any I/O.
961 * => flags: PGO_ALLPAGES: get all of the pages
962 * PGO_LOCKED: fault data structures are locked
963 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
964 * => NOTE: caller must check for released pages!!
965 */
966 static int
967 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
968 struct uvm_object *uobj;
969 vaddr_t offset;
970 struct vm_page **pps;
971 int *npagesp;
972 int centeridx, advice, flags;
973 vm_prot_t access_type;
974 {
975 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
976 vaddr_t current_offset;
977 vm_page_t ptmp;
978 int lcv, gotpages, maxpages, swslot, rv, pageidx;
979 boolean_t done;
980 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
981
982 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
983 aobj, offset, flags,0);
984
985 /*
986 * get number of pages
987 */
988 maxpages = *npagesp;
989
990 /*
991 * step 1: handled the case where fault data structures are locked.
992 */
993
994 if (flags & PGO_LOCKED) {
995 /*
996 * step 1a: get pages that are already resident. only do
997 * this if the data structures are locked (i.e. the first
998 * time through).
999 */
1000
1001 done = TRUE; /* be optimistic */
1002 gotpages = 0; /* # of pages we got so far */
1003
1004 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1005 lcv++, current_offset += PAGE_SIZE) {
1006 /* do we care about this page? if not, skip it */
1007 if (pps[lcv] == PGO_DONTCARE)
1008 continue;
1009
1010 ptmp = uvm_pagelookup(uobj, current_offset);
1011
1012 /*
1013 * if page is new, attempt to allocate the page, then
1014 * zero-fill it.
1015 */
1016 if (ptmp == NULL && uao_find_swslot(aobj,
1017 current_offset >> PAGE_SHIFT) == 0) {
1018 ptmp = uvm_pagealloc(uobj, current_offset,
1019 NULL, 0);
1020 if (ptmp) {
1021 /* new page */
1022 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1023 ptmp->pqflags |= PQ_AOBJ;
1024 UVM_PAGE_OWN(ptmp, NULL);
1025 uvm_pagezero(ptmp);
1026 }
1027 }
1028
1029 /*
1030 * to be useful must get a non-busy, non-released page
1031 */
1032 if (ptmp == NULL ||
1033 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1034 if (lcv == centeridx ||
1035 (flags & PGO_ALLPAGES) != 0)
1036 /* need to do a wait or I/O! */
1037 done = FALSE;
1038 continue;
1039 }
1040
1041 /*
1042 * useful page: busy/lock it and plug it in our
1043 * result array
1044 */
1045 /* caller must un-busy this page */
1046 ptmp->flags |= PG_BUSY;
1047 UVM_PAGE_OWN(ptmp, "uao_get1");
1048 pps[lcv] = ptmp;
1049 gotpages++;
1050
1051 } /* "for" lcv loop */
1052
1053 /*
1054 * step 1b: now we've either done everything needed or we
1055 * to unlock and do some waiting or I/O.
1056 */
1057
1058 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1059
1060 *npagesp = gotpages;
1061 if (done)
1062 /* bingo! */
1063 return(VM_PAGER_OK);
1064 else
1065 /* EEK! Need to unlock and I/O */
1066 return(VM_PAGER_UNLOCK);
1067 }
1068
1069 /*
1070 * step 2: get non-resident or busy pages.
1071 * object is locked. data structures are unlocked.
1072 */
1073
1074 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1075 lcv++, current_offset += PAGE_SIZE) {
1076
1077 /*
1078 * - skip over pages we've already gotten or don't want
1079 * - skip over pages we don't _have_ to get
1080 */
1081
1082 if (pps[lcv] != NULL ||
1083 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1084 continue;
1085
1086 pageidx = current_offset >> PAGE_SHIFT;
1087
1088 /*
1089 * we have yet to locate the current page (pps[lcv]). we
1090 * first look for a page that is already at the current offset.
1091 * if we find a page, we check to see if it is busy or
1092 * released. if that is the case, then we sleep on the page
1093 * until it is no longer busy or released and repeat the lookup.
1094 * if the page we found is neither busy nor released, then we
1095 * busy it (so we own it) and plug it into pps[lcv]. this
1096 * 'break's the following while loop and indicates we are
1097 * ready to move on to the next page in the "lcv" loop above.
1098 *
1099 * if we exit the while loop with pps[lcv] still set to NULL,
1100 * then it means that we allocated a new busy/fake/clean page
1101 * ptmp in the object and we need to do I/O to fill in the data.
1102 */
1103
1104 /* top of "pps" while loop */
1105 while (pps[lcv] == NULL) {
1106 /* look for a resident page */
1107 ptmp = uvm_pagelookup(uobj, current_offset);
1108
1109 /* not resident? allocate one now (if we can) */
1110 if (ptmp == NULL) {
1111
1112 ptmp = uvm_pagealloc(uobj, current_offset,
1113 NULL, 0);
1114
1115 /* out of RAM? */
1116 if (ptmp == NULL) {
1117 simple_unlock(&uobj->vmobjlock);
1118 UVMHIST_LOG(pdhist,
1119 "sleeping, ptmp == NULL\n",0,0,0,0);
1120 uvm_wait("uao_getpage");
1121 simple_lock(&uobj->vmobjlock);
1122 /* goto top of pps while loop */
1123 continue;
1124 }
1125
1126 /*
1127 * safe with PQ's unlocked: because we just
1128 * alloc'd the page
1129 */
1130 ptmp->pqflags |= PQ_AOBJ;
1131
1132 /*
1133 * got new page ready for I/O. break pps while
1134 * loop. pps[lcv] is still NULL.
1135 */
1136 break;
1137 }
1138
1139 /* page is there, see if we need to wait on it */
1140 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1141 ptmp->flags |= PG_WANTED;
1142 UVMHIST_LOG(pdhist,
1143 "sleeping, ptmp->flags 0x%x\n",
1144 ptmp->flags,0,0,0);
1145 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1146 FALSE, "uao_get", 0);
1147 simple_lock(&uobj->vmobjlock);
1148 continue; /* goto top of pps while loop */
1149 }
1150
1151 /*
1152 * if we get here then the page has become resident and
1153 * unbusy between steps 1 and 2. we busy it now (so we
1154 * own it) and set pps[lcv] (so that we exit the while
1155 * loop).
1156 */
1157 /* we own it, caller must un-busy */
1158 ptmp->flags |= PG_BUSY;
1159 UVM_PAGE_OWN(ptmp, "uao_get2");
1160 pps[lcv] = ptmp;
1161 }
1162
1163 /*
1164 * if we own the valid page at the correct offset, pps[lcv] will
1165 * point to it. nothing more to do except go to the next page.
1166 */
1167 if (pps[lcv])
1168 continue; /* next lcv */
1169
1170 /*
1171 * we have a "fake/busy/clean" page that we just allocated.
1172 * do the needed "i/o", either reading from swap or zeroing.
1173 */
1174 swslot = uao_find_swslot(aobj, pageidx);
1175
1176 /*
1177 * just zero the page if there's nothing in swap.
1178 */
1179 if (swslot == 0)
1180 {
1181 /*
1182 * page hasn't existed before, just zero it.
1183 */
1184 uvm_pagezero(ptmp);
1185 } else {
1186 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1187 swslot, 0,0,0);
1188
1189 /*
1190 * page in the swapped-out page.
1191 * unlock object for i/o, relock when done.
1192 */
1193 simple_unlock(&uobj->vmobjlock);
1194 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1195 simple_lock(&uobj->vmobjlock);
1196
1197 /*
1198 * I/O done. check for errors.
1199 */
1200 if (rv != VM_PAGER_OK)
1201 {
1202 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1203 rv,0,0,0);
1204 if (ptmp->flags & PG_WANTED)
1205 wakeup(ptmp);
1206
1207 /*
1208 * remove the swap slot from the aobj
1209 * and mark the aobj as having no real slot.
1210 * don't free the swap slot, thus preventing
1211 * it from being used again.
1212 */
1213 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1214 SWSLOT_BAD);
1215 uvm_swap_markbad(swslot, 1);
1216
1217 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1218 UVM_PAGE_OWN(ptmp, NULL);
1219 uvm_lock_pageq();
1220 uvm_pagefree(ptmp);
1221 uvm_unlock_pageq();
1222
1223 simple_unlock(&uobj->vmobjlock);
1224 return (rv);
1225 }
1226 }
1227
1228 /*
1229 * we got the page! clear the fake flag (indicates valid
1230 * data now in page) and plug into our result array. note
1231 * that page is still busy.
1232 *
1233 * it is the callers job to:
1234 * => check if the page is released
1235 * => unbusy the page
1236 * => activate the page
1237 */
1238
1239 ptmp->flags &= ~PG_FAKE; /* data is valid ... */
1240 pmap_clear_modify(ptmp); /* ... and clean */
1241 pps[lcv] = ptmp;
1242
1243 } /* lcv loop */
1244
1245 /*
1246 * finally, unlock object and return.
1247 */
1248
1249 simple_unlock(&uobj->vmobjlock);
1250 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1251 return(VM_PAGER_OK);
1252 }
1253
1254 /*
1255 * uao_releasepg: handle released page in an aobj
1256 *
1257 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1258 * to dispose of.
1259 * => caller must handle PG_WANTED case
1260 * => called with page's object locked, pageq's unlocked
1261 * => returns TRUE if page's object is still alive, FALSE if we
1262 * killed the page's object. if we return TRUE, then we
1263 * return with the object locked.
1264 * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1265 * with the page queues locked [for pagedaemon]
1266 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1267 * => we kill the aobj if it is not referenced and we are suppose to
1268 * kill it ("KILLME").
1269 */
1270 static boolean_t
1271 uao_releasepg(pg, nextpgp)
1272 struct vm_page *pg;
1273 struct vm_page **nextpgp; /* OUT */
1274 {
1275 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1276
1277 #ifdef DIAGNOSTIC
1278 if ((pg->flags & PG_RELEASED) == 0)
1279 panic("uao_releasepg: page not released!");
1280 #endif
1281
1282 /*
1283 * dispose of the page [caller handles PG_WANTED] and swap slot.
1284 */
1285 pmap_page_protect(pg, VM_PROT_NONE);
1286 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1287 uvm_lock_pageq();
1288 if (nextpgp)
1289 *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
1290 uvm_pagefree(pg);
1291 if (!nextpgp)
1292 uvm_unlock_pageq(); /* keep locked for daemon */
1293
1294 /*
1295 * if we're not killing the object, we're done.
1296 */
1297 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1298 return TRUE;
1299
1300 #ifdef DIAGNOSTIC
1301 if (aobj->u_obj.uo_refs)
1302 panic("uvm_km_releasepg: kill flag set on referenced object!");
1303 #endif
1304
1305 /*
1306 * if there are still pages in the object, we're done for now.
1307 */
1308 if (aobj->u_obj.uo_npages != 0)
1309 return TRUE;
1310
1311 #ifdef DIAGNOSTIC
1312 if (TAILQ_FIRST(&aobj->u_obj.memq))
1313 panic("uvn_releasepg: pages in object with npages == 0");
1314 #endif
1315
1316 /*
1317 * finally, free the rest.
1318 */
1319 uao_free(aobj);
1320
1321 return FALSE;
1322 }
1323
1324
1325 /*
1326 * uao_dropswap: release any swap resources from this aobj page.
1327 *
1328 * => aobj must be locked or have a reference count of 0.
1329 */
1330
1331 void
1332 uao_dropswap(uobj, pageidx)
1333 struct uvm_object *uobj;
1334 int pageidx;
1335 {
1336 int slot;
1337
1338 slot = uao_set_swslot(uobj, pageidx, 0);
1339 if (slot) {
1340 uvm_swap_free(slot, 1);
1341 }
1342 }
1343
1344
1345 /*
1346 * page in every page in every aobj that is paged-out to a range of swslots.
1347 *
1348 * => nothing should be locked.
1349 * => returns TRUE if pagein was aborted due to lack of memory.
1350 */
1351 boolean_t
1352 uao_swap_off(startslot, endslot)
1353 int startslot, endslot;
1354 {
1355 struct uvm_aobj *aobj, *nextaobj;
1356
1357 /*
1358 * walk the list of all aobjs.
1359 */
1360
1361 restart:
1362 simple_lock(&uao_list_lock);
1363
1364 for (aobj = LIST_FIRST(&uao_list);
1365 aobj != NULL;
1366 aobj = nextaobj) {
1367 boolean_t rv;
1368
1369 /*
1370 * try to get the object lock,
1371 * start all over if we fail.
1372 * most of the time we'll get the aobj lock,
1373 * so this should be a rare case.
1374 */
1375 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1376 simple_unlock(&uao_list_lock);
1377 goto restart;
1378 }
1379
1380 /*
1381 * add a ref to the aobj so it doesn't disappear
1382 * while we're working.
1383 */
1384 uao_reference_locked(&aobj->u_obj);
1385
1386 /*
1387 * now it's safe to unlock the uao list.
1388 */
1389 simple_unlock(&uao_list_lock);
1390
1391 /*
1392 * page in any pages in the swslot range.
1393 * if there's an error, abort and return the error.
1394 */
1395 rv = uao_pagein(aobj, startslot, endslot);
1396 if (rv) {
1397 uao_detach_locked(&aobj->u_obj);
1398 return rv;
1399 }
1400
1401 /*
1402 * we're done with this aobj.
1403 * relock the list and drop our ref on the aobj.
1404 */
1405 simple_lock(&uao_list_lock);
1406 nextaobj = LIST_NEXT(aobj, u_list);
1407 uao_detach_locked(&aobj->u_obj);
1408 }
1409
1410 /*
1411 * done with traversal, unlock the list
1412 */
1413 simple_unlock(&uao_list_lock);
1414 return FALSE;
1415 }
1416
1417
1418 /*
1419 * page in any pages from aobj in the given range.
1420 *
1421 * => aobj must be locked and is returned locked.
1422 * => returns TRUE if pagein was aborted due to lack of memory.
1423 */
1424 static boolean_t
1425 uao_pagein(aobj, startslot, endslot)
1426 struct uvm_aobj *aobj;
1427 int startslot, endslot;
1428 {
1429 boolean_t rv;
1430
1431 if (UAO_USES_SWHASH(aobj)) {
1432 struct uao_swhash_elt *elt;
1433 int bucket;
1434
1435 restart:
1436 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1437 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1438 elt != NULL;
1439 elt = LIST_NEXT(elt, list)) {
1440 int i;
1441
1442 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1443 int slot = elt->slots[i];
1444
1445 /*
1446 * if the slot isn't in range, skip it.
1447 */
1448 if (slot < startslot ||
1449 slot >= endslot) {
1450 continue;
1451 }
1452
1453 /*
1454 * process the page,
1455 * the start over on this object
1456 * since the swhash elt
1457 * may have been freed.
1458 */
1459 rv = uao_pagein_page(aobj,
1460 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1461 if (rv) {
1462 return rv;
1463 }
1464 goto restart;
1465 }
1466 }
1467 }
1468 } else {
1469 int i;
1470
1471 for (i = 0; i < aobj->u_pages; i++) {
1472 int slot = aobj->u_swslots[i];
1473
1474 /*
1475 * if the slot isn't in range, skip it
1476 */
1477 if (slot < startslot || slot >= endslot) {
1478 continue;
1479 }
1480
1481 /*
1482 * process the page.
1483 */
1484 rv = uao_pagein_page(aobj, i);
1485 if (rv) {
1486 return rv;
1487 }
1488 }
1489 }
1490
1491 return FALSE;
1492 }
1493
1494 /*
1495 * page in a page from an aobj. used for swap_off.
1496 * returns TRUE if pagein was aborted due to lack of memory.
1497 *
1498 * => aobj must be locked and is returned locked.
1499 */
1500 static boolean_t
1501 uao_pagein_page(aobj, pageidx)
1502 struct uvm_aobj *aobj;
1503 int pageidx;
1504 {
1505 struct vm_page *pg;
1506 int rv, slot, npages;
1507 UVMHIST_FUNC("uao_pagein_page"); UVMHIST_CALLED(pdhist);
1508
1509 pg = NULL;
1510 npages = 1;
1511 /* locked: aobj */
1512 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1513 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1514 /* unlocked: aobj */
1515
1516 /*
1517 * relock and finish up.
1518 */
1519 simple_lock(&aobj->u_obj.vmobjlock);
1520
1521 switch (rv) {
1522 case VM_PAGER_OK:
1523 break;
1524
1525 case VM_PAGER_ERROR:
1526 case VM_PAGER_REFAULT:
1527 /*
1528 * nothing more to do on errors.
1529 * VM_PAGER_REFAULT can only mean that the anon was freed,
1530 * so again there's nothing to do.
1531 */
1532 return FALSE;
1533
1534 #ifdef DIAGNOSTIC
1535 default:
1536 panic("uao_pagein_page: uao_get -> %d\n", rv);
1537 #endif
1538 }
1539
1540 #ifdef DIAGNOSTIC
1541 /*
1542 * this should never happen, since we have a reference on the aobj.
1543 */
1544 if (pg->flags & PG_RELEASED) {
1545 panic("uao_pagein_page: found PG_RELEASED page?\n");
1546 }
1547 #endif
1548
1549 /*
1550 * ok, we've got the page now.
1551 * mark it as dirty, clear its swslot and un-busy it.
1552 */
1553 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1554 uvm_swap_free(slot, 1);
1555 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1556 UVM_PAGE_OWN(pg, NULL);
1557
1558 /*
1559 * deactivate the page (to put it on a page queue).
1560 */
1561 pmap_clear_reference(pg);
1562 pmap_page_protect(pg, VM_PROT_NONE);
1563 uvm_lock_pageq();
1564 uvm_pagedeactivate(pg);
1565 uvm_unlock_pageq();
1566
1567 return FALSE;
1568 }
1569