uvm_aobj.c revision 1.3 1 /* $NetBSD: uvm_aobj.c,v 1.3 1998/02/07 02:32:37 chs Exp $ */
2
3 /* copyright here */
4
5 #include <sys/param.h>
6 #include <sys/systm.h>
7 #include <sys/proc.h>
8 #include <sys/malloc.h>
9
10 #include <vm/vm.h>
11 #include <vm/vm_page.h>
12 #include <vm/vm_kern.h>
13
14 #include <uvm/uvm.h>
15
16 /*
17 * uvm_aobj.c: anonymous-memory backed uvm_object
18 */
19
20 /*
21 * an aobj manages anonymous-memory backed uvm_objects. in addition
22 * to keeping the list of resident pages, it also keeps a list of
23 * allocated swap blocks. depending on the size of the aobj this list
24 * of allocated swap blocks is either stored in an array (small objects)
25 * or in a hash table (large objects).
26 */
27
28 /*
29 * local structures
30 */
31
32 /*
33 * for hash tables, we break the address space of the aobj into blocks
34 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
35 * be a power of two.
36 */
37
38 #define UAO_SWHASH_CLUSTER_SHIFT 4
39 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
40
41 /* get the "tag" for this page index */
42 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
43 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
44
45 /* given an ELT and a page index, find the swap slot */
46 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
47 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
48
49 /* given an ELT, return its pageidx base */
50 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
51 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
52
53 /*
54 * the swhash hash function
55 */
56 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
57 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
58 & (AOBJ)->u_swhashmask)])
59
60 /*
61 * the swhash threshhold determines if we will use an array or a
62 * hash table to store the list of allocated swap blocks.
63 */
64
65 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
66 #define UAO_USES_SWHASH(AOBJ) \
67 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
68
69 /*
70 * the number of buckets in a swhash, with an upper bound
71 */
72 #define UAO_SWHASH_MAXBUCKETS 256
73 #define UAO_SWHASH_BUCKETS(AOBJ) \
74 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
75 UAO_SWHASH_MAXBUCKETS))
76
77
78 /*
79 * uao_swhash_elt: when a hash table is being used, this structure defines
80 * the format of an entry in the bucket list.
81 */
82
83 struct uao_swhash_elt {
84 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
85 vm_offset_t tag; /* our 'tag' */
86 int count; /* our number of active slots */
87 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
88 };
89
90 /*
91 * uao_swhash: the swap hash table structure
92 */
93
94 LIST_HEAD(uao_swhash, uao_swhash_elt);
95
96
97 /*
98 * uvm_aobj: the actual anon-backed uvm_object
99 *
100 * => the uvm_object is at the top of the structure, this allows
101 * (struct uvm_device *) == (struct uvm_object *)
102 * => only one of u_swslots and u_swhash is used in any given aobj
103 */
104
105 struct uvm_aobj {
106 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
107 vm_size_t u_pages; /* number of pages in entire object */
108 int u_flags; /* the flags (see uvm_aobj.h) */
109 int *u_swslots; /* array of offset->swapslot mappings */
110 struct uao_swhash *u_swhash; /* hashtable of offset->swapslot mappings */
111 /* (u_swhash is an array of bucket heads) */
112 u_long u_swhashmask; /* mask for hashtable */
113 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
114 };
115
116 /*
117 * local functions
118 */
119
120 static void uao_init __P((void));
121 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
122 int, boolean_t));
123 static int uao_find_swslot __P((struct uvm_aobj *,
124 vm_offset_t));
125 static boolean_t uao_flush __P((struct uvm_object *,
126 vm_offset_t, vm_offset_t,
127 int));
128 static void uao_free __P((struct uvm_aobj *));
129 static int uao_get __P((struct uvm_object *, vm_offset_t,
130 vm_page_t *, int *, int,
131 vm_prot_t, int, int));
132 static boolean_t uao_releasepg __P((struct vm_page *,
133 struct vm_page **));
134
135
136
137 /*
138 * aobj_pager
139 *
140 * note that some functions (e.g. put) are handled elsewhere
141 */
142
143 struct uvm_pagerops aobj_pager = {
144 uao_init, /* init */
145 NULL, /* attach */
146 uao_reference, /* reference */
147 uao_detach, /* detach */
148 NULL, /* fault */
149 uao_flush, /* flush */
150 uao_get, /* get */
151 NULL, /* asyncget */
152 NULL, /* put (done by pagedaemon) */
153 NULL, /* cluster */
154 NULL, /* mk_pcluster */
155 uvm_shareprot, /* shareprot */
156 NULL, /* aiodone */
157 uao_releasepg /* releasepg */
158 };
159
160 /*
161 * uao_list: global list of active aobjs, locked by uao_list_lock
162 */
163
164 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
165 #if NCPU > 1
166 static simple_lock_data_t uao_list_lock;
167 #endif
168
169
170 /*
171 * functions
172 */
173
174 /*
175 * hash table/array related functions
176 */
177
178 /*
179 * uao_find_swhash_elt: find (or create) a hash table entry for a page
180 * offset.
181 *
182 * => the object should be locked by the caller
183 */
184
185 static struct uao_swhash_elt *uao_find_swhash_elt(aobj, pageidx, create)
186
187 struct uvm_aobj *aobj;
188 int pageidx;
189 boolean_t create;
190
191 {
192 struct uao_swhash *swhash;
193 struct uao_swhash_elt *elt;
194 int page_tag;
195
196 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
197 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
198
199 /*
200 * now search the bucket for the requested tag
201 */
202 for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
203 if (elt->tag == page_tag)
204 return(elt);
205 }
206
207 /* fail now if we are not allowed to create a new entry in the bucket */
208 if (!create)
209 return NULL;
210
211
212 /*
213 * malloc a new entry for the bucket and init/insert it in
214 */
215 MALLOC(elt, struct uao_swhash_elt *, sizeof(*elt), M_UVMAOBJ, M_WAITOK);
216 LIST_INSERT_HEAD(swhash, elt, list);
217 elt->tag = page_tag;
218 elt->count = 0;
219 bzero(elt->slots, sizeof(elt->slots));
220
221 return(elt);
222 }
223
224 /*
225 * uao_find_swslot: find the swap slot number for an aobj/pageidx
226 *
227 * => object must be locked by caller
228 */
229
230 __inline static int uao_find_swslot(aobj, pageidx)
231
232 struct uvm_aobj *aobj;
233 vm_offset_t pageidx;
234
235 {
236 /*
237 * if noswap flag is set, then we never return a slot
238 */
239
240 if (aobj->u_flags & UAO_FLAG_NOSWAP)
241 return(0);
242
243 /*
244 * if hashing, look in hash table.
245 */
246
247 if (UAO_USES_SWHASH(aobj)) {
248 struct uao_swhash_elt *elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
249
250 if (elt)
251 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
252 else
253 return(NULL);
254 }
255
256 /*
257 * otherwise, look in the array
258 */
259 return(aobj->u_swslots[pageidx]);
260 }
261
262 /*
263 * uao_set_swslot: set the swap slot for a page in an aobj.
264 *
265 * => setting a slot to zero frees the slot
266 * => object must be locked by caller
267 */
268
269 int uao_set_swslot(uobj, pageidx, slot)
270
271 struct uvm_object *uobj;
272 int pageidx, slot;
273
274 {
275 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
276 int oldslot;
277 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
278 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d", aobj, pageidx, slot, 0);
279
280 /*
281 * if noswap flag is set, then we can't set a slot
282 */
283
284 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
285
286 if (slot == 0)
287 return(0); /* a clear is ok */
288
289 /* but a set is not */
290 printf("uao_set_swslot: uobj = %p\n", uobj);
291 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
292 }
293
294 /*
295 * are we using a hash table? if so, add it in the hash.
296 */
297
298 if (UAO_USES_SWHASH(aobj)) {
299 struct uao_swhash_elt *elt = uao_find_swhash_elt(aobj, pageidx, TRUE);
300
301 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
302 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
303
304 /*
305 * now adjust the elt's reference counter and free it if we've dropped
306 * it to zero.
307 */
308
309 if (slot) { /* an allocation? */
310
311 if (oldslot == 0)
312 elt->count++;
313
314 } else { /* freeing slot ... */
315
316 if (oldslot) /* to be safe (who would replace zero with zero?) */
317 elt->count--;
318
319 if (elt->count == 0) {
320 LIST_REMOVE(elt, list);
321 FREE(elt, M_UVMAOBJ);
322 }
323 }
324
325 } else {
326
327 /* we are using an array */
328 oldslot = aobj->u_swslots[pageidx];
329 aobj->u_swslots[pageidx] = slot;
330
331 }
332
333 return(oldslot);
334 }
335
336 /*
337 * end of hash/array functions
338 */
339
340 /*
341 * uao_free: free all resources held by an aobj, and then free the aobj
342 *
343 * => the aobj should be dead
344 */
345
346 static void
347 uao_free(aobj)
348 struct uvm_aobj *aobj;
349 {
350
351
352 if (UAO_USES_SWHASH(aobj)) {
353 int i, hashbuckets = aobj->u_swhashmask + 1;
354
355 /*
356 * free the swslots from each hash bucket,
357 * then the hash bucket, and finally the hash table itself.
358 */
359 for (i = 0; i < hashbuckets; i++) {
360 struct uao_swhash_elt *elt, *next;
361
362 for (elt = aobj->u_swhash[i].lh_first; elt != NULL; elt = next) {
363 int j;
364
365 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++)
366 {
367 int slot = elt->slots[j];
368
369 if (slot)
370 {
371 uvm_swap_free(slot, 1);
372 }
373 }
374
375 next = elt->list.le_next;
376 FREE(elt, M_UVMAOBJ);
377 }
378 }
379 FREE(aobj->u_swhash, M_UVMAOBJ);
380 } else {
381 int i;
382
383 /*
384 * free the array
385 */
386
387 for (i = 0; i < aobj->u_pages; i++)
388 {
389 int slot = aobj->u_swslots[i];
390
391 if (slot)
392 {
393 uvm_swap_free(slot, 1);
394 }
395 }
396
397 FREE(aobj->u_swslots, M_UVMAOBJ);
398 }
399
400 /*
401 * finally free the aobj itself
402 */
403 FREE(aobj, M_UVMAOBJ);
404 }
405
406
407 /*
408 * pager functions
409 */
410
411 /*
412 * uao_create: create an aobj of the given size and return its uvm_object.
413 *
414 * => for normal use, flags are always zero
415 * => for the kernel object, the flags are:
416 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
417 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
418 */
419
420 struct uvm_object *uao_create(size, flags)
421
422 vm_size_t size;
423 int flags;
424
425 {
426 static struct uvm_aobj kernel_object_store; /* home of kernel_object */
427 static int kobj_alloced = 0; /* not allocated yet */
428 int pages = round_page(size) / PAGE_SIZE;
429 struct uvm_aobj *aobj;
430
431 /*
432 * malloc a new aobj unless we are asked for the kernel object
433 */
434 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
435 if (kobj_alloced)
436 panic("uao_create: kernel object already allocated");
437
438 aobj = &kernel_object_store;
439 aobj->u_pages = pages;
440 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
441 aobj->u_obj.uo_refs = UVM_OBJ_KERN; /* we are special, we never die */
442 kobj_alloced = UAO_FLAG_KERNOBJ;
443
444 } else if (flags & UAO_FLAG_KERNSWAP) {
445
446 aobj = &kernel_object_store;
447 if (kobj_alloced != UAO_FLAG_KERNOBJ)
448 panic("uao_create: asked to enable swap on kernel object");
449 kobj_alloced = UAO_FLAG_KERNSWAP;
450
451 } else { /* normal object */
452
453 MALLOC(aobj, struct uvm_aobj *, sizeof(*aobj), M_UVMAOBJ, M_WAITOK);
454 aobj->u_pages = pages;
455 aobj->u_flags = 0; /* normal object */
456 aobj->u_obj.uo_refs = 1; /* start with 1 reference */
457
458 }
459
460 /*
461 * allocate hash/array if necessary
462 *
463 * note: in the KERNSWAP case no need to worry about locking since
464 * we are still booting we should be the only thread around.
465 */
466
467 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
468
469 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ? M_NOWAIT : M_WAITOK;
470
471 /* allocate hash table or array depending on object size */
472 if (UAO_USES_SWHASH(aobj)) {
473 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj), M_UVMAOBJ, mflags,
474 &aobj->u_swhashmask);
475 if (aobj->u_swhash == NULL)
476 panic("uao_create: hashinit swhash failed");
477 } else {
478 MALLOC(aobj->u_swslots, int *, pages * sizeof(int), M_UVMAOBJ, mflags);
479 if (aobj->u_swslots == NULL)
480 panic("uao_create: malloc swslots failed");
481 bzero(aobj->u_swslots, pages * sizeof(int));
482 }
483
484 if (flags) {
485 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
486 return(&aobj->u_obj);
487 /* done! */
488 }
489 }
490
491 /*
492 * init aobj fields
493 */
494 simple_lock_init(&aobj->u_obj.vmobjlock);
495 aobj->u_obj.pgops = &aobj_pager;
496 TAILQ_INIT(&aobj->u_obj.memq);
497 aobj->u_obj.uo_npages = 0;
498
499 /*
500 * now that aobj is ready, add it to the global list
501 * XXXCHS: uao_init hasn't been called'd in the KERNOBJ case, do we really
502 * need the kernel object on this list anyway?
503 */
504 simple_lock(&uao_list_lock);
505 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
506 simple_unlock(&uao_list_lock);
507
508 /*
509 * done!
510 */
511 return(&aobj->u_obj);
512 }
513
514
515
516 /*
517 * uao_init: set up aobj pager subsystem
518 *
519 * => called at boot time from uvm_pager_init()
520 */
521
522 static void uao_init()
523
524 {
525 LIST_INIT(&uao_list);
526 simple_lock_init(&uao_list_lock);
527 }
528
529 /*
530 * uao_reference: add a ref to an aobj
531 *
532 * => aobj must be unlocked (we will lock it)
533 */
534
535 void uao_reference(uobj)
536
537 struct uvm_object *uobj;
538
539 {
540 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
541
542 /*
543 * kernel_object already has plenty of references, leave it alone.
544 */
545
546 if (uobj->uo_refs == UVM_OBJ_KERN) {
547 return;
548 }
549
550 simple_lock(&uobj->vmobjlock);
551 uobj->uo_refs++; /* bump! */
552 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
553 uobj, uobj->uo_refs,0,0);
554 simple_unlock(&uobj->vmobjlock);
555 }
556
557 /*
558 * uao_detach: drop a reference to an aobj
559 *
560 * => aobj must be unlocked, we will lock it
561 */
562
563 void uao_detach(uobj)
564
565 struct uvm_object *uobj;
566
567 {
568 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
569 struct vm_page *pg;
570 boolean_t busybody;
571 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
572
573 /*
574 * detaching from kernel_object is a noop.
575 */
576
577 if (uobj->uo_refs == UVM_OBJ_KERN) {
578 return;
579 }
580
581 simple_lock(&uobj->vmobjlock);
582
583 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
584 uobj->uo_refs--; /* drop ref! */
585 if (uobj->uo_refs) { /* still more refs? */
586 simple_unlock(&uobj->vmobjlock);
587 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
588 return;
589 }
590
591 /*
592 * remove the aobj from the global list.
593 */
594 simple_lock(&uao_list_lock);
595 LIST_REMOVE(aobj, u_list);
596 simple_unlock(&uao_list_lock);
597
598 /*
599 * free all the pages that aren't PG_BUSY, mark for release any that are.
600 */
601
602 busybody = FALSE;
603 for (pg = uobj->memq.tqh_first ; pg != NULL ; pg = pg->listq.tqe_next) {
604 int swslot;
605
606 if (pg->flags & PG_BUSY) {
607 pg->flags |= PG_RELEASED;
608 busybody = TRUE;
609 continue;
610 }
611
612
613 /* zap the mappings, free the swap slot, free the page */
614 pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
615
616 swslot = uao_set_swslot(&aobj->u_obj, pg->offset / PAGE_SIZE, 0);
617 if (swslot) {
618 uvm_swap_free(swslot, 1);
619 }
620
621 uvm_lock_pageq();
622 uvm_pagefree(pg);
623 uvm_unlock_pageq();
624 }
625
626 /*
627 * if we found any busy pages, we're done for now.
628 * mark the aobj for death, releasepg will finish up for us.
629 */
630 if (busybody) {
631 aobj->u_flags |= UAO_FLAG_KILLME;
632 simple_unlock(&aobj->u_obj.vmobjlock);
633 return;
634 }
635
636 /*
637 * finally, free the rest.
638 */
639 uao_free(aobj);
640 }
641
642
643
644 /*
645 * uao_flush: uh, yea, sure it's flushed. really!
646 */
647 boolean_t uao_flush(uobj, start, end, flags)
648
649 struct uvm_object *uobj;
650 vm_offset_t start, end;
651 int flags;
652
653 {
654 /*
655 * anonymous memory doesn't "flush"
656 */
657 /*
658 * XXX
659 * deal with PGO_DEACTIVATE (for madvise(MADV_SEQUENTIAL))
660 * and PGO_FREE (for msync(MSINVALIDATE))
661 */
662 return TRUE;
663 }
664
665 /*
666 * uao_get: fetch me a page
667 *
668 * we have three cases:
669 * 1: page is resident -> just return the page.
670 * 2: page is zero-fill -> allocate a new page and zero it.
671 * 3: page is swapped out -> fetch the page from swap.
672 *
673 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
674 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
675 * then we will need to return VM_PAGER_UNLOCK.
676 *
677 * => prefer map unlocked (not required)
678 * => object must be locked! we will _unlock_ it before starting any I/O.
679 * => flags: PGO_ALLPAGES: get all of the pages
680 * PGO_LOCKED: fault data structures are locked
681 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
682 * => NOTE: caller must check for released pages!!
683 */
684
685 static int uao_get(uobj, offset, pps, npagesp, centeridx, access_type,
686 advice, flags)
687
688 struct uvm_object *uobj;
689 vm_offset_t offset;
690 struct vm_page **pps;
691 int *npagesp;
692 int centeridx, advice, flags;
693 vm_prot_t access_type;
694
695 {
696 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
697 vm_offset_t current_offset;
698 vm_page_t ptmp;
699 int lcv, gotpages, maxpages, swslot, rv;
700 boolean_t done;
701 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
702
703 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d", aobj, offset, flags,0);
704
705 /*
706 * get number of pages
707 */
708
709 maxpages = *npagesp;
710
711 /*
712 * step 1: handled the case where fault data structures are locked.
713 */
714
715 if (flags & PGO_LOCKED) {
716
717 /*
718 * step 1a: get pages that are already resident. only do this
719 * if the data structures are locked (i.e. the first time through).
720 */
721
722 done = TRUE; /* be optimistic */
723 gotpages = 0; /* # of pages we got so far */
724
725 for (lcv = 0, current_offset = offset ;
726 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
727
728 /* do we care about this page? if not, skip it */
729 if (pps[lcv] == PGO_DONTCARE)
730 continue;
731
732 ptmp = uvm_pagelookup(uobj, current_offset);
733
734 /*
735 * if page is new, attempt to allocate the page, then zero-fill it.
736 */
737 if (ptmp == NULL &&
738 uao_find_swslot(aobj, current_offset / PAGE_SIZE) == 0) {
739
740 ptmp = uvm_pagealloc(uobj, current_offset, NULL);
741 if (ptmp) {
742 ptmp->flags &= ~(PG_BUSY|PG_FAKE); /* new page */
743 ptmp->pqflags |= PQ_AOBJ;
744 UVM_PAGE_OWN(ptmp, NULL);
745 uvm_pagezero(ptmp);
746 }
747 }
748
749 /* to be useful must get a non-busy, non-released page */
750 if (ptmp == NULL || (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
751 if (lcv == centeridx || (flags & PGO_ALLPAGES) != 0)
752 done = FALSE; /* need to do a wait or I/O! */
753 continue;
754 }
755
756 /* useful page: busy/lock it and plug it in our result array */
757 ptmp->flags |= PG_BUSY; /* caller must un-busy this page */
758 UVM_PAGE_OWN(ptmp, "uao_get1");
759 pps[lcv] = ptmp;
760 gotpages++;
761
762 } /* "for" lcv loop */
763
764 /*
765 * step 1b: now we've either done everything needed or we to unlock
766 * and do some waiting or I/O.
767 */
768
769 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
770
771 *npagesp = gotpages;
772 if (done)
773 return(VM_PAGER_OK); /* bingo! */
774 else
775 return(VM_PAGER_UNLOCK); /* EEK! Need to unlock and I/O */
776 }
777
778 /*
779 * step 2: get non-resident or busy pages.
780 * object is locked. data structures are unlocked.
781 */
782
783 for (lcv = 0, current_offset = offset ;
784 lcv < maxpages ;
785 lcv++, current_offset += PAGE_SIZE) {
786
787 /* skip over pages we've already gotten or don't want */
788 /* skip over pages we don't _have_ to get */
789 if (pps[lcv] != NULL ||
790 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
791 continue;
792
793 /*
794 * we have yet to locate the current page (pps[lcv]). we first
795 * look for a page that is already at the current offset. if we
796 * find a page, we check to see if it is busy or released. if that
797 * is the case, then we sleep on the page until it is no longer busy
798 * or released and repeat the lookup. if the page we found is
799 * neither busy nor released, then we busy it (so we own it) and
800 * plug it into pps[lcv]. this 'break's the following while loop
801 * and indicates we are ready to move on to the next page in the
802 * "lcv" loop above.
803 *
804 * if we exit the while loop with pps[lcv] still set to NULL, then
805 * it means that we allocated a new busy/fake/clean page ptmp in the
806 * object and we need to do I/O to fill in the data.
807 */
808
809 while (pps[lcv] == NULL) { /* top of "pps" while loop */
810
811 /* look for a resident page */
812 ptmp = uvm_pagelookup(uobj, current_offset);
813
814 /* not resident? allocate one now (if we can) */
815 if (ptmp == NULL) {
816
817 ptmp = uvm_pagealloc(uobj, current_offset, NULL); /* alloc */
818
819 /* out of RAM? */
820 if (ptmp == NULL) {
821 simple_unlock(&uobj->vmobjlock);
822 UVMHIST_LOG(pdhist, "sleeping, ptmp == NULL\n",0,0,0,0);
823 uvm_wait("uao_getpage");
824 simple_lock(&uobj->vmobjlock);
825 continue; /* goto top of pps while loop */
826 }
827
828 /* safe with PQ's unlocked: because we just alloc'd the page */
829 ptmp->pqflags |= PQ_AOBJ;
830
831 /*
832 * got new page ready for I/O. break pps while loop. pps[lcv] is
833 * still NULL.
834 */
835 break;
836 }
837
838 /* page is there, see if we need to wait on it */
839 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
840 ptmp->flags |= PG_WANTED;
841 UVMHIST_LOG(pdhist, "sleeping, ptmp->flags 0x%x\n",ptmp->flags,0,0,0);
842 UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock,0,"uao_get",0);
843 simple_lock(&uobj->vmobjlock);
844 continue; /* goto top of pps while loop */
845 }
846
847 /*
848 * if we get here then the page has become resident and unbusy
849 * between steps 1 and 2. we busy it now (so we own it) and set
850 * pps[lcv] (so that we exit the while loop).
851 */
852 ptmp->flags |= PG_BUSY; /* we own it, caller must un-busy */
853 UVM_PAGE_OWN(ptmp, "uao_get2");
854 pps[lcv] = ptmp;
855 }
856
857 /*
858 * if we own the valid page at the correct offset, pps[lcv] will
859 * point to it. nothing more to do except go to the next page.
860 */
861
862 if (pps[lcv])
863 continue; /* next lcv */
864
865 /*
866 * we have a "fake/busy/clean" page that we just allocated.
867 * do the needed "i/o", either reading from swap or zeroing.
868 */
869
870 swslot = uao_find_swslot(aobj, current_offset / PAGE_SIZE);
871
872 /*
873 * just zero the page if there's nothing in swap.
874 */
875 if (swslot == 0)
876 {
877 /*
878 * page hasn't existed before, just zero it.
879 */
880 uvm_pagezero(ptmp);
881 }
882 else
883 {
884 UVMHIST_LOG(pdhist, "pagein from swslot %d", swslot, 0,0,0);
885
886 /*
887 * page in the swapped-out page.
888 * unlock object for i/o, relock when done.
889 */
890 simple_unlock(&uobj->vmobjlock);
891 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
892 simple_lock(&uobj->vmobjlock);
893
894 /*
895 * I/O done. check for errors.
896 */
897 if (rv != VM_PAGER_OK)
898 {
899 UVMHIST_LOG(pdhist, "<- done (error=%d)",rv,0,0,0);
900 if (ptmp->flags & PG_WANTED)
901 thread_wakeup(ptmp); /* object lock still held */
902 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
903 UVM_PAGE_OWN(ptmp, NULL);
904 uvm_lock_pageq();
905 uvm_pagefree(ptmp);
906 uvm_unlock_pageq();
907 simple_unlock(&uobj->vmobjlock);
908 return rv;
909 }
910 }
911
912 /*
913 * we got the page! clear the fake flag (indicates valid data now
914 * in page) and plug into our result array. note that page is still
915 * busy.
916 *
917 * it is the callers job to:
918 * => check if the page is released
919 * => unbusy the page
920 * => activate the page
921 */
922
923 ptmp->flags &= ~PG_FAKE; /* data is valid ... */
924 pmap_clear_modify(PMAP_PGARG(ptmp)); /* ... and clean */
925 pps[lcv] = ptmp;
926
927 } /* lcv loop */
928
929 /*
930 * finally, unlock object and return.
931 */
932
933 simple_unlock(&uobj->vmobjlock);
934 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
935 return(VM_PAGER_OK);
936 }
937
938 /*
939 * uao_releasepg: handle released page in an aobj
940 *
941 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
942 * to dispose of.
943 * => caller must handle PG_WANTED case
944 * => called with page's object locked, pageq's unlocked
945 * => returns TRUE if page's object is still alive, FALSE if we
946 * killed the page's object. if we return TRUE, then we
947 * return with the object locked.
948 * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
949 * with the page queues locked [for pagedaemon]
950 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
951 * => we kill the aobj if it is not referenced and we are suppose to
952 * kill it ("KILLME").
953 */
954
955 static boolean_t uao_releasepg(pg, nextpgp)
956
957 struct vm_page *pg;
958 struct vm_page **nextpgp; /* OUT */
959
960 {
961 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
962 int slot;
963
964 #ifdef DIAGNOSTIC
965 if ((pg->flags & PG_RELEASED) == 0)
966 panic("uao_releasepg: page not released!");
967 #endif
968
969 /*
970 * dispose of the page [caller handles PG_WANTED] and swap slot.
971 */
972 pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
973 slot = uao_set_swslot(&aobj->u_obj, pg->offset / PAGE_SIZE, 0);
974 if (slot)
975 uvm_swap_free(slot, 1);
976 uvm_lock_pageq();
977 if (nextpgp)
978 *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
979 uvm_pagefree(pg);
980 if (!nextpgp)
981 uvm_unlock_pageq(); /* keep locked for daemon */
982
983 /*
984 * if we're not killing the object, we're done.
985 */
986 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
987 return TRUE;
988
989 #ifdef DIAGNOSTIC
990 if (aobj->u_obj.uo_refs)
991 panic("uvm_km_releasepg: kill flag set on referenced object!");
992 #endif
993
994 /*
995 * if there are still pages in the object, we're done for now.
996 */
997 if (aobj->u_obj.uo_npages != 0)
998 return TRUE;
999
1000 #ifdef DIAGNOSTIC
1001 if (aobj->u_obj.memq.tqh_first)
1002 panic("uvn_releasepg: pages in object with npages == 0");
1003 #endif
1004
1005 /*
1006 * finally, free the rest.
1007 */
1008 uao_free(aobj);
1009
1010 return FALSE;
1011 }
1012