uvm_aobj.c revision 1.31 1 /* $NetBSD: uvm_aobj.c,v 1.31 2000/05/19 04:34:45 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45
46
47 #include "opt_uvmhist.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/pool.h>
54 #include <sys/kernel.h>
55
56 #include <vm/vm.h>
57 #include <vm/vm_page.h>
58 #include <vm/vm_kern.h>
59
60 #include <uvm/uvm.h>
61
62 /*
63 * an aobj manages anonymous-memory backed uvm_objects. in addition
64 * to keeping the list of resident pages, it also keeps a list of
65 * allocated swap blocks. depending on the size of the aobj this list
66 * of allocated swap blocks is either stored in an array (small objects)
67 * or in a hash table (large objects).
68 */
69
70 /*
71 * local structures
72 */
73
74 /*
75 * for hash tables, we break the address space of the aobj into blocks
76 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
77 * be a power of two.
78 */
79
80 #define UAO_SWHASH_CLUSTER_SHIFT 4
81 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
82
83 /* get the "tag" for this page index */
84 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
85 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
99 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
100 & (AOBJ)->u_swhashmask)])
101
102 /*
103 * the swhash threshhold determines if we will use an array or a
104 * hash table to store the list of allocated swap blocks.
105 */
106
107 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
108 #define UAO_USES_SWHASH(AOBJ) \
109 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
110
111 /*
112 * the number of buckets in a swhash, with an upper bound
113 */
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 UAO_SWHASH_MAXBUCKETS))
118
119
120 /*
121 * uao_swhash_elt: when a hash table is being used, this structure defines
122 * the format of an entry in the bucket list.
123 */
124
125 struct uao_swhash_elt {
126 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
127 voff_t tag; /* our 'tag' */
128 int count; /* our number of active slots */
129 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
130 };
131
132 /*
133 * uao_swhash: the swap hash table structure
134 */
135
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137
138 /*
139 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140 */
141
142 struct pool uao_swhash_elt_pool;
143
144 /*
145 * uvm_aobj: the actual anon-backed uvm_object
146 *
147 * => the uvm_object is at the top of the structure, this allows
148 * (struct uvm_device *) == (struct uvm_object *)
149 * => only one of u_swslots and u_swhash is used in any given aobj
150 */
151
152 struct uvm_aobj {
153 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 int u_pages; /* number of pages in entire object */
155 int u_flags; /* the flags (see uvm_aobj.h) */
156 int *u_swslots; /* array of offset->swapslot mappings */
157 /*
158 * hashtable of offset->swapslot mappings
159 * (u_swhash is an array of bucket heads)
160 */
161 struct uao_swhash *u_swhash;
162 u_long u_swhashmask; /* mask for hashtable */
163 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
164 };
165
166 /*
167 * uvm_aobj_pool: pool of uvm_aobj structures
168 */
169
170 struct pool uvm_aobj_pool;
171
172 /*
173 * local functions
174 */
175
176 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
177 int, boolean_t));
178 static int uao_find_swslot __P((struct uvm_aobj *, int));
179 static boolean_t uao_flush __P((struct uvm_object *,
180 voff_t, voff_t, int));
181 static void uao_free __P((struct uvm_aobj *));
182 static int uao_get __P((struct uvm_object *, voff_t,
183 vm_page_t *, int *, int,
184 vm_prot_t, int, int));
185 static boolean_t uao_releasepg __P((struct vm_page *,
186 struct vm_page **));
187 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
188 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
189
190
191
192 /*
193 * aobj_pager
194 *
195 * note that some functions (e.g. put) are handled elsewhere
196 */
197
198 struct uvm_pagerops aobj_pager = {
199 NULL, /* init */
200 uao_reference, /* reference */
201 uao_detach, /* detach */
202 NULL, /* fault */
203 uao_flush, /* flush */
204 uao_get, /* get */
205 NULL, /* asyncget */
206 NULL, /* put (done by pagedaemon) */
207 NULL, /* cluster */
208 NULL, /* mk_pcluster */
209 NULL, /* aiodone */
210 uao_releasepg /* releasepg */
211 };
212
213 /*
214 * uao_list: global list of active aobjs, locked by uao_list_lock
215 */
216
217 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
218 static simple_lock_data_t uao_list_lock;
219
220
221 /*
222 * functions
223 */
224
225 /*
226 * hash table/array related functions
227 */
228
229 /*
230 * uao_find_swhash_elt: find (or create) a hash table entry for a page
231 * offset.
232 *
233 * => the object should be locked by the caller
234 */
235
236 static struct uao_swhash_elt *
237 uao_find_swhash_elt(aobj, pageidx, create)
238 struct uvm_aobj *aobj;
239 int pageidx;
240 boolean_t create;
241 {
242 struct uao_swhash *swhash;
243 struct uao_swhash_elt *elt;
244 voff_t page_tag;
245
246 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
247 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
248
249 /*
250 * now search the bucket for the requested tag
251 */
252 for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
253 if (elt->tag == page_tag)
254 return(elt);
255 }
256
257 /* fail now if we are not allowed to create a new entry in the bucket */
258 if (!create)
259 return NULL;
260
261
262 /*
263 * allocate a new entry for the bucket and init/insert it in
264 */
265 elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
266 LIST_INSERT_HEAD(swhash, elt, list);
267 elt->tag = page_tag;
268 elt->count = 0;
269 memset(elt->slots, 0, sizeof(elt->slots));
270
271 return(elt);
272 }
273
274 /*
275 * uao_find_swslot: find the swap slot number for an aobj/pageidx
276 *
277 * => object must be locked by caller
278 */
279 __inline static int
280 uao_find_swslot(aobj, pageidx)
281 struct uvm_aobj *aobj;
282 int pageidx;
283 {
284
285 /*
286 * if noswap flag is set, then we never return a slot
287 */
288
289 if (aobj->u_flags & UAO_FLAG_NOSWAP)
290 return(0);
291
292 /*
293 * if hashing, look in hash table.
294 */
295
296 if (UAO_USES_SWHASH(aobj)) {
297 struct uao_swhash_elt *elt =
298 uao_find_swhash_elt(aobj, pageidx, FALSE);
299
300 if (elt)
301 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
302 else
303 return(0);
304 }
305
306 /*
307 * otherwise, look in the array
308 */
309 return(aobj->u_swslots[pageidx]);
310 }
311
312 /*
313 * uao_set_swslot: set the swap slot for a page in an aobj.
314 *
315 * => setting a slot to zero frees the slot
316 * => object must be locked by caller
317 */
318 int
319 uao_set_swslot(uobj, pageidx, slot)
320 struct uvm_object *uobj;
321 int pageidx, slot;
322 {
323 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
324 int oldslot;
325 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
326 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
327 aobj, pageidx, slot, 0);
328
329 /*
330 * if noswap flag is set, then we can't set a slot
331 */
332
333 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
334
335 if (slot == 0)
336 return(0); /* a clear is ok */
337
338 /* but a set is not */
339 printf("uao_set_swslot: uobj = %p\n", uobj);
340 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
341 }
342
343 /*
344 * are we using a hash table? if so, add it in the hash.
345 */
346
347 if (UAO_USES_SWHASH(aobj)) {
348 /*
349 * Avoid allocating an entry just to free it again if
350 * the page had not swap slot in the first place, and
351 * we are freeing.
352 */
353 struct uao_swhash_elt *elt =
354 uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
355 if (elt == NULL) {
356 #ifdef DIAGNOSTIC
357 if (slot)
358 panic("uao_set_swslot: didn't create elt");
359 #endif
360 return (0);
361 }
362
363 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
364 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
365
366 /*
367 * now adjust the elt's reference counter and free it if we've
368 * dropped it to zero.
369 */
370
371 /* an allocation? */
372 if (slot) {
373 if (oldslot == 0)
374 elt->count++;
375 } else { /* freeing slot ... */
376 if (oldslot) /* to be safe */
377 elt->count--;
378
379 if (elt->count == 0) {
380 LIST_REMOVE(elt, list);
381 pool_put(&uao_swhash_elt_pool, elt);
382 }
383 }
384
385 } else {
386 /* we are using an array */
387 oldslot = aobj->u_swslots[pageidx];
388 aobj->u_swslots[pageidx] = slot;
389 }
390 return (oldslot);
391 }
392
393 /*
394 * end of hash/array functions
395 */
396
397 /*
398 * uao_free: free all resources held by an aobj, and then free the aobj
399 *
400 * => the aobj should be dead
401 */
402 static void
403 uao_free(aobj)
404 struct uvm_aobj *aobj;
405 {
406
407 simple_unlock(&aobj->u_obj.vmobjlock);
408
409 if (UAO_USES_SWHASH(aobj)) {
410 int i, hashbuckets = aobj->u_swhashmask + 1;
411
412 /*
413 * free the swslots from each hash bucket,
414 * then the hash bucket, and finally the hash table itself.
415 */
416 for (i = 0; i < hashbuckets; i++) {
417 struct uao_swhash_elt *elt, *next;
418
419 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
420 elt != NULL;
421 elt = next) {
422 int j;
423
424 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
425 int slot = elt->slots[j];
426
427 if (slot) {
428 uvm_swap_free(slot, 1);
429
430 /*
431 * this page is no longer
432 * only in swap.
433 */
434 simple_lock(&uvm.swap_data_lock);
435 uvmexp.swpgonly--;
436 simple_unlock(&uvm.swap_data_lock);
437 }
438 }
439
440 next = LIST_NEXT(elt, list);
441 pool_put(&uao_swhash_elt_pool, elt);
442 }
443 }
444 FREE(aobj->u_swhash, M_UVMAOBJ);
445 } else {
446 int i;
447
448 /*
449 * free the array
450 */
451
452 for (i = 0; i < aobj->u_pages; i++) {
453 int slot = aobj->u_swslots[i];
454
455 if (slot) {
456 uvm_swap_free(slot, 1);
457
458 /* this page is no longer only in swap. */
459 simple_lock(&uvm.swap_data_lock);
460 uvmexp.swpgonly--;
461 simple_unlock(&uvm.swap_data_lock);
462 }
463 }
464 FREE(aobj->u_swslots, M_UVMAOBJ);
465 }
466
467 /*
468 * finally free the aobj itself
469 */
470 pool_put(&uvm_aobj_pool, aobj);
471 }
472
473 /*
474 * pager functions
475 */
476
477 /*
478 * uao_create: create an aobj of the given size and return its uvm_object.
479 *
480 * => for normal use, flags are always zero
481 * => for the kernel object, the flags are:
482 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
483 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
484 */
485 struct uvm_object *
486 uao_create(size, flags)
487 vsize_t size;
488 int flags;
489 {
490 static struct uvm_aobj kernel_object_store; /* home of kernel_object */
491 static int kobj_alloced = 0; /* not allocated yet */
492 int pages = round_page(size) >> PAGE_SHIFT;
493 struct uvm_aobj *aobj;
494
495 /*
496 * malloc a new aobj unless we are asked for the kernel object
497 */
498 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
499 if (kobj_alloced)
500 panic("uao_create: kernel object already allocated");
501
502 aobj = &kernel_object_store;
503 aobj->u_pages = pages;
504 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
505 /* we are special, we never die */
506 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
507 kobj_alloced = UAO_FLAG_KERNOBJ;
508 } else if (flags & UAO_FLAG_KERNSWAP) {
509 aobj = &kernel_object_store;
510 if (kobj_alloced != UAO_FLAG_KERNOBJ)
511 panic("uao_create: asked to enable swap on kernel object");
512 kobj_alloced = UAO_FLAG_KERNSWAP;
513 } else { /* normal object */
514 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
515 aobj->u_pages = pages;
516 aobj->u_flags = 0; /* normal object */
517 aobj->u_obj.uo_refs = 1; /* start with 1 reference */
518 }
519
520 /*
521 * allocate hash/array if necessary
522 *
523 * note: in the KERNSWAP case no need to worry about locking since
524 * we are still booting we should be the only thread around.
525 */
526 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
527 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
528 M_NOWAIT : M_WAITOK;
529
530 /* allocate hash table or array depending on object size */
531 if (UAO_USES_SWHASH(aobj)) {
532 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
533 M_UVMAOBJ, mflags, &aobj->u_swhashmask);
534 if (aobj->u_swhash == NULL)
535 panic("uao_create: hashinit swhash failed");
536 } else {
537 MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
538 M_UVMAOBJ, mflags);
539 if (aobj->u_swslots == NULL)
540 panic("uao_create: malloc swslots failed");
541 memset(aobj->u_swslots, 0, pages * sizeof(int));
542 }
543
544 if (flags) {
545 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
546 return(&aobj->u_obj);
547 /* done! */
548 }
549 }
550
551 /*
552 * init aobj fields
553 */
554 simple_lock_init(&aobj->u_obj.vmobjlock);
555 aobj->u_obj.pgops = &aobj_pager;
556 TAILQ_INIT(&aobj->u_obj.memq);
557 aobj->u_obj.uo_npages = 0;
558
559 /*
560 * now that aobj is ready, add it to the global list
561 */
562 simple_lock(&uao_list_lock);
563 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
564 simple_unlock(&uao_list_lock);
565
566 /*
567 * done!
568 */
569 return(&aobj->u_obj);
570 }
571
572
573
574 /*
575 * uao_init: set up aobj pager subsystem
576 *
577 * => called at boot time from uvm_pager_init()
578 */
579 void
580 uao_init()
581 {
582 static int uao_initialized;
583
584 if (uao_initialized)
585 return;
586 uao_initialized = TRUE;
587
588 LIST_INIT(&uao_list);
589 simple_lock_init(&uao_list_lock);
590
591 /*
592 * NOTE: Pages fror this pool must not come from a pageable
593 * kernel map!
594 */
595 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
596 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
597
598 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
599 "aobjpl", 0,
600 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
601 }
602
603 /*
604 * uao_reference: add a ref to an aobj
605 *
606 * => aobj must be unlocked
607 * => just lock it and call the locked version
608 */
609 void
610 uao_reference(uobj)
611 struct uvm_object *uobj;
612 {
613 simple_lock(&uobj->vmobjlock);
614 uao_reference_locked(uobj);
615 simple_unlock(&uobj->vmobjlock);
616 }
617
618 /*
619 * uao_reference_locked: add a ref to an aobj that is already locked
620 *
621 * => aobj must be locked
622 * this needs to be separate from the normal routine
623 * since sometimes we need to add a reference to an aobj when
624 * it's already locked.
625 */
626 void
627 uao_reference_locked(uobj)
628 struct uvm_object *uobj;
629 {
630 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
631
632 /*
633 * kernel_object already has plenty of references, leave it alone.
634 */
635
636 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
637 return;
638
639 uobj->uo_refs++; /* bump! */
640 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
641 uobj, uobj->uo_refs,0,0);
642 }
643
644
645 /*
646 * uao_detach: drop a reference to an aobj
647 *
648 * => aobj must be unlocked
649 * => just lock it and call the locked version
650 */
651 void
652 uao_detach(uobj)
653 struct uvm_object *uobj;
654 {
655 simple_lock(&uobj->vmobjlock);
656 uao_detach_locked(uobj);
657 }
658
659
660 /*
661 * uao_detach_locked: drop a reference to an aobj
662 *
663 * => aobj must be locked, and is unlocked (or freed) upon return.
664 * this needs to be separate from the normal routine
665 * since sometimes we need to detach from an aobj when
666 * it's already locked.
667 */
668 void
669 uao_detach_locked(uobj)
670 struct uvm_object *uobj;
671 {
672 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
673 struct vm_page *pg;
674 boolean_t busybody;
675 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
676
677 /*
678 * detaching from kernel_object is a noop.
679 */
680 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
681 simple_unlock(&uobj->vmobjlock);
682 return;
683 }
684
685 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
686 uobj->uo_refs--; /* drop ref! */
687 if (uobj->uo_refs) { /* still more refs? */
688 simple_unlock(&uobj->vmobjlock);
689 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
690 return;
691 }
692
693 /*
694 * remove the aobj from the global list.
695 */
696 simple_lock(&uao_list_lock);
697 LIST_REMOVE(aobj, u_list);
698 simple_unlock(&uao_list_lock);
699
700 /*
701 * free all the pages that aren't PG_BUSY,
702 * mark for release any that are.
703 */
704 busybody = FALSE;
705 for (pg = TAILQ_FIRST(&uobj->memq);
706 pg != NULL;
707 pg = TAILQ_NEXT(pg, listq)) {
708 if (pg->flags & PG_BUSY) {
709 pg->flags |= PG_RELEASED;
710 busybody = TRUE;
711 continue;
712 }
713
714 /* zap the mappings, free the swap slot, free the page */
715 pmap_page_protect(pg, VM_PROT_NONE);
716 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
717 uvm_lock_pageq();
718 uvm_pagefree(pg);
719 uvm_unlock_pageq();
720 }
721
722 /*
723 * if we found any busy pages, we're done for now.
724 * mark the aobj for death, releasepg will finish up for us.
725 */
726 if (busybody) {
727 aobj->u_flags |= UAO_FLAG_KILLME;
728 simple_unlock(&aobj->u_obj.vmobjlock);
729 return;
730 }
731
732 /*
733 * finally, free the rest.
734 */
735 uao_free(aobj);
736 }
737
738 /*
739 * uao_flush: "flush" pages out of a uvm object
740 *
741 * => object should be locked by caller. we may _unlock_ the object
742 * if (and only if) we need to clean a page (PGO_CLEANIT).
743 * XXXJRT Currently, however, we don't. In the case of cleaning
744 * XXXJRT a page, we simply just deactivate it. Should probably
745 * XXXJRT handle this better, in the future (although "flushing"
746 * XXXJRT anonymous memory isn't terribly important).
747 * => if PGO_CLEANIT is not set, then we will neither unlock the object
748 * or block.
749 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
750 * for flushing.
751 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
752 * that new pages are inserted on the tail end of the list. thus,
753 * we can make a complete pass through the object in one go by starting
754 * at the head and working towards the tail (new pages are put in
755 * front of us).
756 * => NOTE: we are allowed to lock the page queues, so the caller
757 * must not be holding the lock on them [e.g. pagedaemon had
758 * better not call us with the queues locked]
759 * => we return TRUE unless we encountered some sort of I/O error
760 * XXXJRT currently never happens, as we never directly initiate
761 * XXXJRT I/O
762 *
763 * comment on "cleaning" object and PG_BUSY pages:
764 * this routine is holding the lock on the object. the only time
765 * that is can run into a PG_BUSY page that it does not own is if
766 * some other process has started I/O on the page (e.g. either
767 * a pagein or a pageout). if the PG_BUSY page is being paged
768 * in, then it can not be dirty (!PG_CLEAN) because no one has
769 * had a change to modify it yet. if the PG_BUSY page is being
770 * paged out then it means that someone else has already started
771 * cleaning the page for us (how nice!). in this case, if we
772 * have syncio specified, then after we make our pass through the
773 * object we need to wait for the other PG_BUSY pages to clear
774 * off (i.e. we need to do an iosync). also note that once a
775 * page is PG_BUSY is must stary in its object until it is un-busyed.
776 * XXXJRT We never actually do this, as we are "flushing" anonymous
777 * XXXJRT memory, which doesn't have persistent backing store.
778 *
779 * note on page traversal:
780 * we can traverse the pages in an object either by going down the
781 * linked list in "uobj->memq", or we can go over the address range
782 * by page doing hash table lookups for each address. depending
783 * on how many pages are in the object it may be cheaper to do one
784 * or the other. we set "by_list" to true if we are using memq.
785 * if the cost of a hash lookup was equal to the cost of the list
786 * traversal we could compare the number of pages in the start->stop
787 * range to the total number of pages in the object. however, it
788 * seems that a hash table lookup is more expensive than the linked
789 * list traversal, so we multiply the number of pages in the
790 * start->stop range by a penalty which we define below.
791 */
792
793 #define UAO_HASH_PENALTY 4 /* XXX: a guess */
794
795 boolean_t
796 uao_flush(uobj, start, stop, flags)
797 struct uvm_object *uobj;
798 voff_t start, stop;
799 int flags;
800 {
801 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
802 struct vm_page *pp, *ppnext;
803 boolean_t retval, by_list;
804 voff_t curoff;
805 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
806
807 curoff = 0; /* XXX: shut up gcc */
808
809 retval = TRUE; /* default to success */
810
811 if (flags & PGO_ALLPAGES) {
812 start = 0;
813 stop = aobj->u_pages << PAGE_SHIFT;
814 by_list = TRUE; /* always go by the list */
815 } else {
816 start = trunc_page(start);
817 stop = round_page(stop);
818 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
819 printf("uao_flush: strange, got an out of range "
820 "flush (fixed)\n");
821 stop = aobj->u_pages << PAGE_SHIFT;
822 }
823 by_list = (uobj->uo_npages <=
824 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
825 }
826
827 UVMHIST_LOG(maphist,
828 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
829 start, stop, by_list, flags);
830
831 /*
832 * Don't need to do any work here if we're not freeing
833 * or deactivating pages.
834 */
835 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
836 UVMHIST_LOG(maphist,
837 "<- done (no work to do)",0,0,0,0);
838 return (retval);
839 }
840
841 /*
842 * now do it. note: we must update ppnext in the body of loop or we
843 * will get stuck. we need to use ppnext because we may free "pp"
844 * before doing the next loop.
845 */
846
847 if (by_list) {
848 pp = uobj->memq.tqh_first;
849 } else {
850 curoff = start;
851 pp = uvm_pagelookup(uobj, curoff);
852 }
853
854 ppnext = NULL; /* XXX: shut up gcc */
855 uvm_lock_pageq(); /* page queues locked */
856
857 /* locked: both page queues and uobj */
858 for ( ; (by_list && pp != NULL) ||
859 (!by_list && curoff < stop) ; pp = ppnext) {
860 if (by_list) {
861 ppnext = pp->listq.tqe_next;
862
863 /* range check */
864 if (pp->offset < start || pp->offset >= stop)
865 continue;
866 } else {
867 curoff += PAGE_SIZE;
868 if (curoff < stop)
869 ppnext = uvm_pagelookup(uobj, curoff);
870
871 /* null check */
872 if (pp == NULL)
873 continue;
874 }
875
876 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
877 /*
878 * XXX In these first 3 cases, we always just
879 * XXX deactivate the page. We may want to
880 * XXX handle the different cases more specifically
881 * XXX in the future.
882 */
883 case PGO_CLEANIT|PGO_FREE:
884 case PGO_CLEANIT|PGO_DEACTIVATE:
885 case PGO_DEACTIVATE:
886 deactivate_it:
887 /* skip the page if it's loaned or wired */
888 if (pp->loan_count != 0 ||
889 pp->wire_count != 0)
890 continue;
891
892 /* zap all mappings for the page. */
893 pmap_page_protect(pp, VM_PROT_NONE);
894
895 /* ...and deactivate the page. */
896 uvm_pagedeactivate(pp);
897
898 continue;
899
900 case PGO_FREE:
901 /*
902 * If there are multiple references to
903 * the object, just deactivate the page.
904 */
905 if (uobj->uo_refs > 1)
906 goto deactivate_it;
907
908 /* XXX skip the page if it's loaned or wired */
909 if (pp->loan_count != 0 ||
910 pp->wire_count != 0)
911 continue;
912
913 /*
914 * mark the page as released if its busy.
915 */
916 if (pp->flags & PG_BUSY) {
917 pp->flags |= PG_RELEASED;
918 continue;
919 }
920
921 /* zap all mappings for the page. */
922 pmap_page_protect(pp, VM_PROT_NONE);
923
924 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
925 uvm_pagefree(pp);
926
927 continue;
928
929 default:
930 panic("uao_flush: weird flags");
931 }
932 #ifdef DIAGNOSTIC
933 panic("uao_flush: unreachable code");
934 #endif
935 }
936
937 uvm_unlock_pageq();
938
939 UVMHIST_LOG(maphist,
940 "<- done, rv=%d",retval,0,0,0);
941 return (retval);
942 }
943
944 /*
945 * uao_get: fetch me a page
946 *
947 * we have three cases:
948 * 1: page is resident -> just return the page.
949 * 2: page is zero-fill -> allocate a new page and zero it.
950 * 3: page is swapped out -> fetch the page from swap.
951 *
952 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
953 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
954 * then we will need to return VM_PAGER_UNLOCK.
955 *
956 * => prefer map unlocked (not required)
957 * => object must be locked! we will _unlock_ it before starting any I/O.
958 * => flags: PGO_ALLPAGES: get all of the pages
959 * PGO_LOCKED: fault data structures are locked
960 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
961 * => NOTE: caller must check for released pages!!
962 */
963 static int
964 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
965 struct uvm_object *uobj;
966 voff_t offset;
967 struct vm_page **pps;
968 int *npagesp;
969 int centeridx, advice, flags;
970 vm_prot_t access_type;
971 {
972 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
973 voff_t current_offset;
974 vm_page_t ptmp;
975 int lcv, gotpages, maxpages, swslot, rv, pageidx;
976 boolean_t done;
977 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
978
979 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
980 aobj, offset, flags,0);
981
982 /*
983 * get number of pages
984 */
985 maxpages = *npagesp;
986
987 /*
988 * step 1: handled the case where fault data structures are locked.
989 */
990
991 if (flags & PGO_LOCKED) {
992 /*
993 * step 1a: get pages that are already resident. only do
994 * this if the data structures are locked (i.e. the first
995 * time through).
996 */
997
998 done = TRUE; /* be optimistic */
999 gotpages = 0; /* # of pages we got so far */
1000
1001 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1002 lcv++, current_offset += PAGE_SIZE) {
1003 /* do we care about this page? if not, skip it */
1004 if (pps[lcv] == PGO_DONTCARE)
1005 continue;
1006
1007 ptmp = uvm_pagelookup(uobj, current_offset);
1008
1009 /*
1010 * if page is new, attempt to allocate the page,
1011 * zero-fill'd.
1012 */
1013 if (ptmp == NULL && uao_find_swslot(aobj,
1014 current_offset >> PAGE_SHIFT) == 0) {
1015 ptmp = uvm_pagealloc(uobj, current_offset,
1016 NULL, UVM_PGA_ZERO);
1017 if (ptmp) {
1018 /* new page */
1019 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1020 ptmp->pqflags |= PQ_AOBJ;
1021 UVM_PAGE_OWN(ptmp, NULL);
1022 }
1023 }
1024
1025 /*
1026 * to be useful must get a non-busy, non-released page
1027 */
1028 if (ptmp == NULL ||
1029 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1030 if (lcv == centeridx ||
1031 (flags & PGO_ALLPAGES) != 0)
1032 /* need to do a wait or I/O! */
1033 done = FALSE;
1034 continue;
1035 }
1036
1037 /*
1038 * useful page: busy/lock it and plug it in our
1039 * result array
1040 */
1041 /* caller must un-busy this page */
1042 ptmp->flags |= PG_BUSY;
1043 UVM_PAGE_OWN(ptmp, "uao_get1");
1044 pps[lcv] = ptmp;
1045 gotpages++;
1046
1047 } /* "for" lcv loop */
1048
1049 /*
1050 * step 1b: now we've either done everything needed or we
1051 * to unlock and do some waiting or I/O.
1052 */
1053
1054 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1055
1056 *npagesp = gotpages;
1057 if (done)
1058 /* bingo! */
1059 return(VM_PAGER_OK);
1060 else
1061 /* EEK! Need to unlock and I/O */
1062 return(VM_PAGER_UNLOCK);
1063 }
1064
1065 /*
1066 * step 2: get non-resident or busy pages.
1067 * object is locked. data structures are unlocked.
1068 */
1069
1070 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1071 lcv++, current_offset += PAGE_SIZE) {
1072
1073 /*
1074 * - skip over pages we've already gotten or don't want
1075 * - skip over pages we don't _have_ to get
1076 */
1077
1078 if (pps[lcv] != NULL ||
1079 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1080 continue;
1081
1082 pageidx = current_offset >> PAGE_SHIFT;
1083
1084 /*
1085 * we have yet to locate the current page (pps[lcv]). we
1086 * first look for a page that is already at the current offset.
1087 * if we find a page, we check to see if it is busy or
1088 * released. if that is the case, then we sleep on the page
1089 * until it is no longer busy or released and repeat the lookup.
1090 * if the page we found is neither busy nor released, then we
1091 * busy it (so we own it) and plug it into pps[lcv]. this
1092 * 'break's the following while loop and indicates we are
1093 * ready to move on to the next page in the "lcv" loop above.
1094 *
1095 * if we exit the while loop with pps[lcv] still set to NULL,
1096 * then it means that we allocated a new busy/fake/clean page
1097 * ptmp in the object and we need to do I/O to fill in the data.
1098 */
1099
1100 /* top of "pps" while loop */
1101 while (pps[lcv] == NULL) {
1102 /* look for a resident page */
1103 ptmp = uvm_pagelookup(uobj, current_offset);
1104
1105 /* not resident? allocate one now (if we can) */
1106 if (ptmp == NULL) {
1107
1108 ptmp = uvm_pagealloc(uobj, current_offset,
1109 NULL, 0);
1110
1111 /* out of RAM? */
1112 if (ptmp == NULL) {
1113 simple_unlock(&uobj->vmobjlock);
1114 UVMHIST_LOG(pdhist,
1115 "sleeping, ptmp == NULL\n",0,0,0,0);
1116 uvm_wait("uao_getpage");
1117 simple_lock(&uobj->vmobjlock);
1118 /* goto top of pps while loop */
1119 continue;
1120 }
1121
1122 /*
1123 * safe with PQ's unlocked: because we just
1124 * alloc'd the page
1125 */
1126 ptmp->pqflags |= PQ_AOBJ;
1127
1128 /*
1129 * got new page ready for I/O. break pps while
1130 * loop. pps[lcv] is still NULL.
1131 */
1132 break;
1133 }
1134
1135 /* page is there, see if we need to wait on it */
1136 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1137 ptmp->flags |= PG_WANTED;
1138 UVMHIST_LOG(pdhist,
1139 "sleeping, ptmp->flags 0x%x\n",
1140 ptmp->flags,0,0,0);
1141 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1142 FALSE, "uao_get", 0);
1143 simple_lock(&uobj->vmobjlock);
1144 continue; /* goto top of pps while loop */
1145 }
1146
1147 /*
1148 * if we get here then the page has become resident and
1149 * unbusy between steps 1 and 2. we busy it now (so we
1150 * own it) and set pps[lcv] (so that we exit the while
1151 * loop).
1152 */
1153 /* we own it, caller must un-busy */
1154 ptmp->flags |= PG_BUSY;
1155 UVM_PAGE_OWN(ptmp, "uao_get2");
1156 pps[lcv] = ptmp;
1157 }
1158
1159 /*
1160 * if we own the valid page at the correct offset, pps[lcv] will
1161 * point to it. nothing more to do except go to the next page.
1162 */
1163 if (pps[lcv])
1164 continue; /* next lcv */
1165
1166 /*
1167 * we have a "fake/busy/clean" page that we just allocated.
1168 * do the needed "i/o", either reading from swap or zeroing.
1169 */
1170 swslot = uao_find_swslot(aobj, pageidx);
1171
1172 /*
1173 * just zero the page if there's nothing in swap.
1174 */
1175 if (swslot == 0)
1176 {
1177 /*
1178 * page hasn't existed before, just zero it.
1179 */
1180 uvm_pagezero(ptmp);
1181 } else {
1182 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1183 swslot, 0,0,0);
1184
1185 /*
1186 * page in the swapped-out page.
1187 * unlock object for i/o, relock when done.
1188 */
1189 simple_unlock(&uobj->vmobjlock);
1190 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1191 simple_lock(&uobj->vmobjlock);
1192
1193 /*
1194 * I/O done. check for errors.
1195 */
1196 if (rv != VM_PAGER_OK)
1197 {
1198 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1199 rv,0,0,0);
1200 if (ptmp->flags & PG_WANTED)
1201 wakeup(ptmp);
1202
1203 /*
1204 * remove the swap slot from the aobj
1205 * and mark the aobj as having no real slot.
1206 * don't free the swap slot, thus preventing
1207 * it from being used again.
1208 */
1209 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1210 SWSLOT_BAD);
1211 uvm_swap_markbad(swslot, 1);
1212
1213 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1214 UVM_PAGE_OWN(ptmp, NULL);
1215 uvm_lock_pageq();
1216 uvm_pagefree(ptmp);
1217 uvm_unlock_pageq();
1218
1219 simple_unlock(&uobj->vmobjlock);
1220 return (rv);
1221 }
1222 }
1223
1224 /*
1225 * we got the page! clear the fake flag (indicates valid
1226 * data now in page) and plug into our result array. note
1227 * that page is still busy.
1228 *
1229 * it is the callers job to:
1230 * => check if the page is released
1231 * => unbusy the page
1232 * => activate the page
1233 */
1234
1235 ptmp->flags &= ~PG_FAKE; /* data is valid ... */
1236 pmap_clear_modify(ptmp); /* ... and clean */
1237 pps[lcv] = ptmp;
1238
1239 } /* lcv loop */
1240
1241 /*
1242 * finally, unlock object and return.
1243 */
1244
1245 simple_unlock(&uobj->vmobjlock);
1246 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1247 return(VM_PAGER_OK);
1248 }
1249
1250 /*
1251 * uao_releasepg: handle released page in an aobj
1252 *
1253 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1254 * to dispose of.
1255 * => caller must handle PG_WANTED case
1256 * => called with page's object locked, pageq's unlocked
1257 * => returns TRUE if page's object is still alive, FALSE if we
1258 * killed the page's object. if we return TRUE, then we
1259 * return with the object locked.
1260 * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1261 * with the page queues locked [for pagedaemon]
1262 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1263 * => we kill the aobj if it is not referenced and we are suppose to
1264 * kill it ("KILLME").
1265 */
1266 static boolean_t
1267 uao_releasepg(pg, nextpgp)
1268 struct vm_page *pg;
1269 struct vm_page **nextpgp; /* OUT */
1270 {
1271 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1272
1273 #ifdef DIAGNOSTIC
1274 if ((pg->flags & PG_RELEASED) == 0)
1275 panic("uao_releasepg: page not released!");
1276 #endif
1277
1278 /*
1279 * dispose of the page [caller handles PG_WANTED] and swap slot.
1280 */
1281 pmap_page_protect(pg, VM_PROT_NONE);
1282 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1283 uvm_lock_pageq();
1284 if (nextpgp)
1285 *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
1286 uvm_pagefree(pg);
1287 if (!nextpgp)
1288 uvm_unlock_pageq(); /* keep locked for daemon */
1289
1290 /*
1291 * if we're not killing the object, we're done.
1292 */
1293 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1294 return TRUE;
1295
1296 #ifdef DIAGNOSTIC
1297 if (aobj->u_obj.uo_refs)
1298 panic("uvm_km_releasepg: kill flag set on referenced object!");
1299 #endif
1300
1301 /*
1302 * if there are still pages in the object, we're done for now.
1303 */
1304 if (aobj->u_obj.uo_npages != 0)
1305 return TRUE;
1306
1307 #ifdef DIAGNOSTIC
1308 if (TAILQ_FIRST(&aobj->u_obj.memq))
1309 panic("uvn_releasepg: pages in object with npages == 0");
1310 #endif
1311
1312 /*
1313 * finally, free the rest.
1314 */
1315 uao_free(aobj);
1316
1317 return FALSE;
1318 }
1319
1320
1321 /*
1322 * uao_dropswap: release any swap resources from this aobj page.
1323 *
1324 * => aobj must be locked or have a reference count of 0.
1325 */
1326
1327 void
1328 uao_dropswap(uobj, pageidx)
1329 struct uvm_object *uobj;
1330 int pageidx;
1331 {
1332 int slot;
1333
1334 slot = uao_set_swslot(uobj, pageidx, 0);
1335 if (slot) {
1336 uvm_swap_free(slot, 1);
1337 }
1338 }
1339
1340
1341 /*
1342 * page in every page in every aobj that is paged-out to a range of swslots.
1343 *
1344 * => nothing should be locked.
1345 * => returns TRUE if pagein was aborted due to lack of memory.
1346 */
1347 boolean_t
1348 uao_swap_off(startslot, endslot)
1349 int startslot, endslot;
1350 {
1351 struct uvm_aobj *aobj, *nextaobj;
1352
1353 /*
1354 * walk the list of all aobjs.
1355 */
1356
1357 restart:
1358 simple_lock(&uao_list_lock);
1359
1360 for (aobj = LIST_FIRST(&uao_list);
1361 aobj != NULL;
1362 aobj = nextaobj) {
1363 boolean_t rv;
1364
1365 /*
1366 * try to get the object lock,
1367 * start all over if we fail.
1368 * most of the time we'll get the aobj lock,
1369 * so this should be a rare case.
1370 */
1371 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1372 simple_unlock(&uao_list_lock);
1373 goto restart;
1374 }
1375
1376 /*
1377 * add a ref to the aobj so it doesn't disappear
1378 * while we're working.
1379 */
1380 uao_reference_locked(&aobj->u_obj);
1381
1382 /*
1383 * now it's safe to unlock the uao list.
1384 */
1385 simple_unlock(&uao_list_lock);
1386
1387 /*
1388 * page in any pages in the swslot range.
1389 * if there's an error, abort and return the error.
1390 */
1391 rv = uao_pagein(aobj, startslot, endslot);
1392 if (rv) {
1393 uao_detach_locked(&aobj->u_obj);
1394 return rv;
1395 }
1396
1397 /*
1398 * we're done with this aobj.
1399 * relock the list and drop our ref on the aobj.
1400 */
1401 simple_lock(&uao_list_lock);
1402 nextaobj = LIST_NEXT(aobj, u_list);
1403 uao_detach_locked(&aobj->u_obj);
1404 }
1405
1406 /*
1407 * done with traversal, unlock the list
1408 */
1409 simple_unlock(&uao_list_lock);
1410 return FALSE;
1411 }
1412
1413
1414 /*
1415 * page in any pages from aobj in the given range.
1416 *
1417 * => aobj must be locked and is returned locked.
1418 * => returns TRUE if pagein was aborted due to lack of memory.
1419 */
1420 static boolean_t
1421 uao_pagein(aobj, startslot, endslot)
1422 struct uvm_aobj *aobj;
1423 int startslot, endslot;
1424 {
1425 boolean_t rv;
1426
1427 if (UAO_USES_SWHASH(aobj)) {
1428 struct uao_swhash_elt *elt;
1429 int bucket;
1430
1431 restart:
1432 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1433 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1434 elt != NULL;
1435 elt = LIST_NEXT(elt, list)) {
1436 int i;
1437
1438 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1439 int slot = elt->slots[i];
1440
1441 /*
1442 * if the slot isn't in range, skip it.
1443 */
1444 if (slot < startslot ||
1445 slot >= endslot) {
1446 continue;
1447 }
1448
1449 /*
1450 * process the page,
1451 * the start over on this object
1452 * since the swhash elt
1453 * may have been freed.
1454 */
1455 rv = uao_pagein_page(aobj,
1456 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1457 if (rv) {
1458 return rv;
1459 }
1460 goto restart;
1461 }
1462 }
1463 }
1464 } else {
1465 int i;
1466
1467 for (i = 0; i < aobj->u_pages; i++) {
1468 int slot = aobj->u_swslots[i];
1469
1470 /*
1471 * if the slot isn't in range, skip it
1472 */
1473 if (slot < startslot || slot >= endslot) {
1474 continue;
1475 }
1476
1477 /*
1478 * process the page.
1479 */
1480 rv = uao_pagein_page(aobj, i);
1481 if (rv) {
1482 return rv;
1483 }
1484 }
1485 }
1486
1487 return FALSE;
1488 }
1489
1490 /*
1491 * page in a page from an aobj. used for swap_off.
1492 * returns TRUE if pagein was aborted due to lack of memory.
1493 *
1494 * => aobj must be locked and is returned locked.
1495 */
1496 static boolean_t
1497 uao_pagein_page(aobj, pageidx)
1498 struct uvm_aobj *aobj;
1499 int pageidx;
1500 {
1501 struct vm_page *pg;
1502 int rv, slot, npages;
1503 UVMHIST_FUNC("uao_pagein_page"); UVMHIST_CALLED(pdhist);
1504
1505 pg = NULL;
1506 npages = 1;
1507 /* locked: aobj */
1508 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1509 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1510 /* unlocked: aobj */
1511
1512 /*
1513 * relock and finish up.
1514 */
1515 simple_lock(&aobj->u_obj.vmobjlock);
1516
1517 switch (rv) {
1518 case VM_PAGER_OK:
1519 break;
1520
1521 case VM_PAGER_ERROR:
1522 case VM_PAGER_REFAULT:
1523 /*
1524 * nothing more to do on errors.
1525 * VM_PAGER_REFAULT can only mean that the anon was freed,
1526 * so again there's nothing to do.
1527 */
1528 return FALSE;
1529
1530 #ifdef DIAGNOSTIC
1531 default:
1532 panic("uao_pagein_page: uao_get -> %d\n", rv);
1533 #endif
1534 }
1535
1536 #ifdef DIAGNOSTIC
1537 /*
1538 * this should never happen, since we have a reference on the aobj.
1539 */
1540 if (pg->flags & PG_RELEASED) {
1541 panic("uao_pagein_page: found PG_RELEASED page?\n");
1542 }
1543 #endif
1544
1545 /*
1546 * ok, we've got the page now.
1547 * mark it as dirty, clear its swslot and un-busy it.
1548 */
1549 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1550 uvm_swap_free(slot, 1);
1551 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1552 UVM_PAGE_OWN(pg, NULL);
1553
1554 /*
1555 * deactivate the page (to put it on a page queue).
1556 */
1557 pmap_clear_reference(pg);
1558 pmap_page_protect(pg, VM_PROT_NONE);
1559 uvm_lock_pageq();
1560 uvm_pagedeactivate(pg);
1561 uvm_unlock_pageq();
1562
1563 return FALSE;
1564 }
1565