uvm_aobj.c revision 1.32 1 /* $NetBSD: uvm_aobj.c,v 1.32 2000/06/26 14:21:17 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45
46
47 #include "opt_uvmhist.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/pool.h>
54 #include <sys/kernel.h>
55
56 #include <vm/vm.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * an aobj manages anonymous-memory backed uvm_objects. in addition
62 * to keeping the list of resident pages, it also keeps a list of
63 * allocated swap blocks. depending on the size of the aobj this list
64 * of allocated swap blocks is either stored in an array (small objects)
65 * or in a hash table (large objects).
66 */
67
68 /*
69 * local structures
70 */
71
72 /*
73 * for hash tables, we break the address space of the aobj into blocks
74 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
75 * be a power of two.
76 */
77
78 #define UAO_SWHASH_CLUSTER_SHIFT 4
79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80
81 /* get the "tag" for this page index */
82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
83 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84
85 /* given an ELT and a page index, find the swap slot */
86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
87 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
88
89 /* given an ELT, return its pageidx base */
90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
91 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
92
93 /*
94 * the swhash hash function
95 */
96 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
97 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
98 & (AOBJ)->u_swhashmask)])
99
100 /*
101 * the swhash threshhold determines if we will use an array or a
102 * hash table to store the list of allocated swap blocks.
103 */
104
105 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
106 #define UAO_USES_SWHASH(AOBJ) \
107 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
108
109 /*
110 * the number of buckets in a swhash, with an upper bound
111 */
112 #define UAO_SWHASH_MAXBUCKETS 256
113 #define UAO_SWHASH_BUCKETS(AOBJ) \
114 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
115 UAO_SWHASH_MAXBUCKETS))
116
117
118 /*
119 * uao_swhash_elt: when a hash table is being used, this structure defines
120 * the format of an entry in the bucket list.
121 */
122
123 struct uao_swhash_elt {
124 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
125 voff_t tag; /* our 'tag' */
126 int count; /* our number of active slots */
127 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
128 };
129
130 /*
131 * uao_swhash: the swap hash table structure
132 */
133
134 LIST_HEAD(uao_swhash, uao_swhash_elt);
135
136 /*
137 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
138 */
139
140 struct pool uao_swhash_elt_pool;
141
142 /*
143 * uvm_aobj: the actual anon-backed uvm_object
144 *
145 * => the uvm_object is at the top of the structure, this allows
146 * (struct uvm_device *) == (struct uvm_object *)
147 * => only one of u_swslots and u_swhash is used in any given aobj
148 */
149
150 struct uvm_aobj {
151 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
152 int u_pages; /* number of pages in entire object */
153 int u_flags; /* the flags (see uvm_aobj.h) */
154 int *u_swslots; /* array of offset->swapslot mappings */
155 /*
156 * hashtable of offset->swapslot mappings
157 * (u_swhash is an array of bucket heads)
158 */
159 struct uao_swhash *u_swhash;
160 u_long u_swhashmask; /* mask for hashtable */
161 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
162 };
163
164 /*
165 * uvm_aobj_pool: pool of uvm_aobj structures
166 */
167
168 struct pool uvm_aobj_pool;
169
170 /*
171 * local functions
172 */
173
174 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
175 int, boolean_t));
176 static int uao_find_swslot __P((struct uvm_aobj *, int));
177 static boolean_t uao_flush __P((struct uvm_object *,
178 voff_t, voff_t, int));
179 static void uao_free __P((struct uvm_aobj *));
180 static int uao_get __P((struct uvm_object *, voff_t,
181 vm_page_t *, int *, int,
182 vm_prot_t, int, int));
183 static boolean_t uao_releasepg __P((struct vm_page *,
184 struct vm_page **));
185 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
186 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
187
188
189
190 /*
191 * aobj_pager
192 *
193 * note that some functions (e.g. put) are handled elsewhere
194 */
195
196 struct uvm_pagerops aobj_pager = {
197 NULL, /* init */
198 uao_reference, /* reference */
199 uao_detach, /* detach */
200 NULL, /* fault */
201 uao_flush, /* flush */
202 uao_get, /* get */
203 NULL, /* asyncget */
204 NULL, /* put (done by pagedaemon) */
205 NULL, /* cluster */
206 NULL, /* mk_pcluster */
207 NULL, /* aiodone */
208 uao_releasepg /* releasepg */
209 };
210
211 /*
212 * uao_list: global list of active aobjs, locked by uao_list_lock
213 */
214
215 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
216 static simple_lock_data_t uao_list_lock;
217
218
219 /*
220 * functions
221 */
222
223 /*
224 * hash table/array related functions
225 */
226
227 /*
228 * uao_find_swhash_elt: find (or create) a hash table entry for a page
229 * offset.
230 *
231 * => the object should be locked by the caller
232 */
233
234 static struct uao_swhash_elt *
235 uao_find_swhash_elt(aobj, pageidx, create)
236 struct uvm_aobj *aobj;
237 int pageidx;
238 boolean_t create;
239 {
240 struct uao_swhash *swhash;
241 struct uao_swhash_elt *elt;
242 voff_t page_tag;
243
244 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
245 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
246
247 /*
248 * now search the bucket for the requested tag
249 */
250 for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
251 if (elt->tag == page_tag)
252 return(elt);
253 }
254
255 /* fail now if we are not allowed to create a new entry in the bucket */
256 if (!create)
257 return NULL;
258
259
260 /*
261 * allocate a new entry for the bucket and init/insert it in
262 */
263 elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
264 LIST_INSERT_HEAD(swhash, elt, list);
265 elt->tag = page_tag;
266 elt->count = 0;
267 memset(elt->slots, 0, sizeof(elt->slots));
268
269 return(elt);
270 }
271
272 /*
273 * uao_find_swslot: find the swap slot number for an aobj/pageidx
274 *
275 * => object must be locked by caller
276 */
277 __inline static int
278 uao_find_swslot(aobj, pageidx)
279 struct uvm_aobj *aobj;
280 int pageidx;
281 {
282
283 /*
284 * if noswap flag is set, then we never return a slot
285 */
286
287 if (aobj->u_flags & UAO_FLAG_NOSWAP)
288 return(0);
289
290 /*
291 * if hashing, look in hash table.
292 */
293
294 if (UAO_USES_SWHASH(aobj)) {
295 struct uao_swhash_elt *elt =
296 uao_find_swhash_elt(aobj, pageidx, FALSE);
297
298 if (elt)
299 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
300 else
301 return(0);
302 }
303
304 /*
305 * otherwise, look in the array
306 */
307 return(aobj->u_swslots[pageidx]);
308 }
309
310 /*
311 * uao_set_swslot: set the swap slot for a page in an aobj.
312 *
313 * => setting a slot to zero frees the slot
314 * => object must be locked by caller
315 */
316 int
317 uao_set_swslot(uobj, pageidx, slot)
318 struct uvm_object *uobj;
319 int pageidx, slot;
320 {
321 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
322 int oldslot;
323 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
324 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
325 aobj, pageidx, slot, 0);
326
327 /*
328 * if noswap flag is set, then we can't set a slot
329 */
330
331 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
332
333 if (slot == 0)
334 return(0); /* a clear is ok */
335
336 /* but a set is not */
337 printf("uao_set_swslot: uobj = %p\n", uobj);
338 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
339 }
340
341 /*
342 * are we using a hash table? if so, add it in the hash.
343 */
344
345 if (UAO_USES_SWHASH(aobj)) {
346 /*
347 * Avoid allocating an entry just to free it again if
348 * the page had not swap slot in the first place, and
349 * we are freeing.
350 */
351 struct uao_swhash_elt *elt =
352 uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
353 if (elt == NULL) {
354 #ifdef DIAGNOSTIC
355 if (slot)
356 panic("uao_set_swslot: didn't create elt");
357 #endif
358 return (0);
359 }
360
361 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
362 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
363
364 /*
365 * now adjust the elt's reference counter and free it if we've
366 * dropped it to zero.
367 */
368
369 /* an allocation? */
370 if (slot) {
371 if (oldslot == 0)
372 elt->count++;
373 } else { /* freeing slot ... */
374 if (oldslot) /* to be safe */
375 elt->count--;
376
377 if (elt->count == 0) {
378 LIST_REMOVE(elt, list);
379 pool_put(&uao_swhash_elt_pool, elt);
380 }
381 }
382
383 } else {
384 /* we are using an array */
385 oldslot = aobj->u_swslots[pageidx];
386 aobj->u_swslots[pageidx] = slot;
387 }
388 return (oldslot);
389 }
390
391 /*
392 * end of hash/array functions
393 */
394
395 /*
396 * uao_free: free all resources held by an aobj, and then free the aobj
397 *
398 * => the aobj should be dead
399 */
400 static void
401 uao_free(aobj)
402 struct uvm_aobj *aobj;
403 {
404
405 simple_unlock(&aobj->u_obj.vmobjlock);
406
407 if (UAO_USES_SWHASH(aobj)) {
408 int i, hashbuckets = aobj->u_swhashmask + 1;
409
410 /*
411 * free the swslots from each hash bucket,
412 * then the hash bucket, and finally the hash table itself.
413 */
414 for (i = 0; i < hashbuckets; i++) {
415 struct uao_swhash_elt *elt, *next;
416
417 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
418 elt != NULL;
419 elt = next) {
420 int j;
421
422 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
423 int slot = elt->slots[j];
424
425 if (slot) {
426 uvm_swap_free(slot, 1);
427
428 /*
429 * this page is no longer
430 * only in swap.
431 */
432 simple_lock(&uvm.swap_data_lock);
433 uvmexp.swpgonly--;
434 simple_unlock(&uvm.swap_data_lock);
435 }
436 }
437
438 next = LIST_NEXT(elt, list);
439 pool_put(&uao_swhash_elt_pool, elt);
440 }
441 }
442 FREE(aobj->u_swhash, M_UVMAOBJ);
443 } else {
444 int i;
445
446 /*
447 * free the array
448 */
449
450 for (i = 0; i < aobj->u_pages; i++) {
451 int slot = aobj->u_swslots[i];
452
453 if (slot) {
454 uvm_swap_free(slot, 1);
455
456 /* this page is no longer only in swap. */
457 simple_lock(&uvm.swap_data_lock);
458 uvmexp.swpgonly--;
459 simple_unlock(&uvm.swap_data_lock);
460 }
461 }
462 FREE(aobj->u_swslots, M_UVMAOBJ);
463 }
464
465 /*
466 * finally free the aobj itself
467 */
468 pool_put(&uvm_aobj_pool, aobj);
469 }
470
471 /*
472 * pager functions
473 */
474
475 /*
476 * uao_create: create an aobj of the given size and return its uvm_object.
477 *
478 * => for normal use, flags are always zero
479 * => for the kernel object, the flags are:
480 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
481 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
482 */
483 struct uvm_object *
484 uao_create(size, flags)
485 vsize_t size;
486 int flags;
487 {
488 static struct uvm_aobj kernel_object_store; /* home of kernel_object */
489 static int kobj_alloced = 0; /* not allocated yet */
490 int pages = round_page(size) >> PAGE_SHIFT;
491 struct uvm_aobj *aobj;
492
493 /*
494 * malloc a new aobj unless we are asked for the kernel object
495 */
496 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
497 if (kobj_alloced)
498 panic("uao_create: kernel object already allocated");
499
500 aobj = &kernel_object_store;
501 aobj->u_pages = pages;
502 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
503 /* we are special, we never die */
504 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
505 kobj_alloced = UAO_FLAG_KERNOBJ;
506 } else if (flags & UAO_FLAG_KERNSWAP) {
507 aobj = &kernel_object_store;
508 if (kobj_alloced != UAO_FLAG_KERNOBJ)
509 panic("uao_create: asked to enable swap on kernel object");
510 kobj_alloced = UAO_FLAG_KERNSWAP;
511 } else { /* normal object */
512 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
513 aobj->u_pages = pages;
514 aobj->u_flags = 0; /* normal object */
515 aobj->u_obj.uo_refs = 1; /* start with 1 reference */
516 }
517
518 /*
519 * allocate hash/array if necessary
520 *
521 * note: in the KERNSWAP case no need to worry about locking since
522 * we are still booting we should be the only thread around.
523 */
524 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
525 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
526 M_NOWAIT : M_WAITOK;
527
528 /* allocate hash table or array depending on object size */
529 if (UAO_USES_SWHASH(aobj)) {
530 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
531 M_UVMAOBJ, mflags, &aobj->u_swhashmask);
532 if (aobj->u_swhash == NULL)
533 panic("uao_create: hashinit swhash failed");
534 } else {
535 MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
536 M_UVMAOBJ, mflags);
537 if (aobj->u_swslots == NULL)
538 panic("uao_create: malloc swslots failed");
539 memset(aobj->u_swslots, 0, pages * sizeof(int));
540 }
541
542 if (flags) {
543 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
544 return(&aobj->u_obj);
545 /* done! */
546 }
547 }
548
549 /*
550 * init aobj fields
551 */
552 simple_lock_init(&aobj->u_obj.vmobjlock);
553 aobj->u_obj.pgops = &aobj_pager;
554 TAILQ_INIT(&aobj->u_obj.memq);
555 aobj->u_obj.uo_npages = 0;
556
557 /*
558 * now that aobj is ready, add it to the global list
559 */
560 simple_lock(&uao_list_lock);
561 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
562 simple_unlock(&uao_list_lock);
563
564 /*
565 * done!
566 */
567 return(&aobj->u_obj);
568 }
569
570
571
572 /*
573 * uao_init: set up aobj pager subsystem
574 *
575 * => called at boot time from uvm_pager_init()
576 */
577 void
578 uao_init()
579 {
580 static int uao_initialized;
581
582 if (uao_initialized)
583 return;
584 uao_initialized = TRUE;
585
586 LIST_INIT(&uao_list);
587 simple_lock_init(&uao_list_lock);
588
589 /*
590 * NOTE: Pages fror this pool must not come from a pageable
591 * kernel map!
592 */
593 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
594 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
595
596 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
597 "aobjpl", 0,
598 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
599 }
600
601 /*
602 * uao_reference: add a ref to an aobj
603 *
604 * => aobj must be unlocked
605 * => just lock it and call the locked version
606 */
607 void
608 uao_reference(uobj)
609 struct uvm_object *uobj;
610 {
611 simple_lock(&uobj->vmobjlock);
612 uao_reference_locked(uobj);
613 simple_unlock(&uobj->vmobjlock);
614 }
615
616 /*
617 * uao_reference_locked: add a ref to an aobj that is already locked
618 *
619 * => aobj must be locked
620 * this needs to be separate from the normal routine
621 * since sometimes we need to add a reference to an aobj when
622 * it's already locked.
623 */
624 void
625 uao_reference_locked(uobj)
626 struct uvm_object *uobj;
627 {
628 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
629
630 /*
631 * kernel_object already has plenty of references, leave it alone.
632 */
633
634 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
635 return;
636
637 uobj->uo_refs++; /* bump! */
638 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
639 uobj, uobj->uo_refs,0,0);
640 }
641
642
643 /*
644 * uao_detach: drop a reference to an aobj
645 *
646 * => aobj must be unlocked
647 * => just lock it and call the locked version
648 */
649 void
650 uao_detach(uobj)
651 struct uvm_object *uobj;
652 {
653 simple_lock(&uobj->vmobjlock);
654 uao_detach_locked(uobj);
655 }
656
657
658 /*
659 * uao_detach_locked: drop a reference to an aobj
660 *
661 * => aobj must be locked, and is unlocked (or freed) upon return.
662 * this needs to be separate from the normal routine
663 * since sometimes we need to detach from an aobj when
664 * it's already locked.
665 */
666 void
667 uao_detach_locked(uobj)
668 struct uvm_object *uobj;
669 {
670 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
671 struct vm_page *pg;
672 boolean_t busybody;
673 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
674
675 /*
676 * detaching from kernel_object is a noop.
677 */
678 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
679 simple_unlock(&uobj->vmobjlock);
680 return;
681 }
682
683 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
684 uobj->uo_refs--; /* drop ref! */
685 if (uobj->uo_refs) { /* still more refs? */
686 simple_unlock(&uobj->vmobjlock);
687 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
688 return;
689 }
690
691 /*
692 * remove the aobj from the global list.
693 */
694 simple_lock(&uao_list_lock);
695 LIST_REMOVE(aobj, u_list);
696 simple_unlock(&uao_list_lock);
697
698 /*
699 * free all the pages that aren't PG_BUSY,
700 * mark for release any that are.
701 */
702 busybody = FALSE;
703 for (pg = TAILQ_FIRST(&uobj->memq);
704 pg != NULL;
705 pg = TAILQ_NEXT(pg, listq)) {
706 if (pg->flags & PG_BUSY) {
707 pg->flags |= PG_RELEASED;
708 busybody = TRUE;
709 continue;
710 }
711
712 /* zap the mappings, free the swap slot, free the page */
713 pmap_page_protect(pg, VM_PROT_NONE);
714 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
715 uvm_lock_pageq();
716 uvm_pagefree(pg);
717 uvm_unlock_pageq();
718 }
719
720 /*
721 * if we found any busy pages, we're done for now.
722 * mark the aobj for death, releasepg will finish up for us.
723 */
724 if (busybody) {
725 aobj->u_flags |= UAO_FLAG_KILLME;
726 simple_unlock(&aobj->u_obj.vmobjlock);
727 return;
728 }
729
730 /*
731 * finally, free the rest.
732 */
733 uao_free(aobj);
734 }
735
736 /*
737 * uao_flush: "flush" pages out of a uvm object
738 *
739 * => object should be locked by caller. we may _unlock_ the object
740 * if (and only if) we need to clean a page (PGO_CLEANIT).
741 * XXXJRT Currently, however, we don't. In the case of cleaning
742 * XXXJRT a page, we simply just deactivate it. Should probably
743 * XXXJRT handle this better, in the future (although "flushing"
744 * XXXJRT anonymous memory isn't terribly important).
745 * => if PGO_CLEANIT is not set, then we will neither unlock the object
746 * or block.
747 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
748 * for flushing.
749 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
750 * that new pages are inserted on the tail end of the list. thus,
751 * we can make a complete pass through the object in one go by starting
752 * at the head and working towards the tail (new pages are put in
753 * front of us).
754 * => NOTE: we are allowed to lock the page queues, so the caller
755 * must not be holding the lock on them [e.g. pagedaemon had
756 * better not call us with the queues locked]
757 * => we return TRUE unless we encountered some sort of I/O error
758 * XXXJRT currently never happens, as we never directly initiate
759 * XXXJRT I/O
760 *
761 * comment on "cleaning" object and PG_BUSY pages:
762 * this routine is holding the lock on the object. the only time
763 * that is can run into a PG_BUSY page that it does not own is if
764 * some other process has started I/O on the page (e.g. either
765 * a pagein or a pageout). if the PG_BUSY page is being paged
766 * in, then it can not be dirty (!PG_CLEAN) because no one has
767 * had a change to modify it yet. if the PG_BUSY page is being
768 * paged out then it means that someone else has already started
769 * cleaning the page for us (how nice!). in this case, if we
770 * have syncio specified, then after we make our pass through the
771 * object we need to wait for the other PG_BUSY pages to clear
772 * off (i.e. we need to do an iosync). also note that once a
773 * page is PG_BUSY is must stary in its object until it is un-busyed.
774 * XXXJRT We never actually do this, as we are "flushing" anonymous
775 * XXXJRT memory, which doesn't have persistent backing store.
776 *
777 * note on page traversal:
778 * we can traverse the pages in an object either by going down the
779 * linked list in "uobj->memq", or we can go over the address range
780 * by page doing hash table lookups for each address. depending
781 * on how many pages are in the object it may be cheaper to do one
782 * or the other. we set "by_list" to true if we are using memq.
783 * if the cost of a hash lookup was equal to the cost of the list
784 * traversal we could compare the number of pages in the start->stop
785 * range to the total number of pages in the object. however, it
786 * seems that a hash table lookup is more expensive than the linked
787 * list traversal, so we multiply the number of pages in the
788 * start->stop range by a penalty which we define below.
789 */
790
791 #define UAO_HASH_PENALTY 4 /* XXX: a guess */
792
793 boolean_t
794 uao_flush(uobj, start, stop, flags)
795 struct uvm_object *uobj;
796 voff_t start, stop;
797 int flags;
798 {
799 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
800 struct vm_page *pp, *ppnext;
801 boolean_t retval, by_list;
802 voff_t curoff;
803 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
804
805 curoff = 0; /* XXX: shut up gcc */
806
807 retval = TRUE; /* default to success */
808
809 if (flags & PGO_ALLPAGES) {
810 start = 0;
811 stop = aobj->u_pages << PAGE_SHIFT;
812 by_list = TRUE; /* always go by the list */
813 } else {
814 start = trunc_page(start);
815 stop = round_page(stop);
816 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
817 printf("uao_flush: strange, got an out of range "
818 "flush (fixed)\n");
819 stop = aobj->u_pages << PAGE_SHIFT;
820 }
821 by_list = (uobj->uo_npages <=
822 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
823 }
824
825 UVMHIST_LOG(maphist,
826 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
827 start, stop, by_list, flags);
828
829 /*
830 * Don't need to do any work here if we're not freeing
831 * or deactivating pages.
832 */
833 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
834 UVMHIST_LOG(maphist,
835 "<- done (no work to do)",0,0,0,0);
836 return (retval);
837 }
838
839 /*
840 * now do it. note: we must update ppnext in the body of loop or we
841 * will get stuck. we need to use ppnext because we may free "pp"
842 * before doing the next loop.
843 */
844
845 if (by_list) {
846 pp = uobj->memq.tqh_first;
847 } else {
848 curoff = start;
849 pp = uvm_pagelookup(uobj, curoff);
850 }
851
852 ppnext = NULL; /* XXX: shut up gcc */
853 uvm_lock_pageq(); /* page queues locked */
854
855 /* locked: both page queues and uobj */
856 for ( ; (by_list && pp != NULL) ||
857 (!by_list && curoff < stop) ; pp = ppnext) {
858 if (by_list) {
859 ppnext = pp->listq.tqe_next;
860
861 /* range check */
862 if (pp->offset < start || pp->offset >= stop)
863 continue;
864 } else {
865 curoff += PAGE_SIZE;
866 if (curoff < stop)
867 ppnext = uvm_pagelookup(uobj, curoff);
868
869 /* null check */
870 if (pp == NULL)
871 continue;
872 }
873
874 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
875 /*
876 * XXX In these first 3 cases, we always just
877 * XXX deactivate the page. We may want to
878 * XXX handle the different cases more specifically
879 * XXX in the future.
880 */
881 case PGO_CLEANIT|PGO_FREE:
882 case PGO_CLEANIT|PGO_DEACTIVATE:
883 case PGO_DEACTIVATE:
884 deactivate_it:
885 /* skip the page if it's loaned or wired */
886 if (pp->loan_count != 0 ||
887 pp->wire_count != 0)
888 continue;
889
890 /* zap all mappings for the page. */
891 pmap_page_protect(pp, VM_PROT_NONE);
892
893 /* ...and deactivate the page. */
894 uvm_pagedeactivate(pp);
895
896 continue;
897
898 case PGO_FREE:
899 /*
900 * If there are multiple references to
901 * the object, just deactivate the page.
902 */
903 if (uobj->uo_refs > 1)
904 goto deactivate_it;
905
906 /* XXX skip the page if it's loaned or wired */
907 if (pp->loan_count != 0 ||
908 pp->wire_count != 0)
909 continue;
910
911 /*
912 * mark the page as released if its busy.
913 */
914 if (pp->flags & PG_BUSY) {
915 pp->flags |= PG_RELEASED;
916 continue;
917 }
918
919 /* zap all mappings for the page. */
920 pmap_page_protect(pp, VM_PROT_NONE);
921
922 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
923 uvm_pagefree(pp);
924
925 continue;
926
927 default:
928 panic("uao_flush: weird flags");
929 }
930 #ifdef DIAGNOSTIC
931 panic("uao_flush: unreachable code");
932 #endif
933 }
934
935 uvm_unlock_pageq();
936
937 UVMHIST_LOG(maphist,
938 "<- done, rv=%d",retval,0,0,0);
939 return (retval);
940 }
941
942 /*
943 * uao_get: fetch me a page
944 *
945 * we have three cases:
946 * 1: page is resident -> just return the page.
947 * 2: page is zero-fill -> allocate a new page and zero it.
948 * 3: page is swapped out -> fetch the page from swap.
949 *
950 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
951 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
952 * then we will need to return VM_PAGER_UNLOCK.
953 *
954 * => prefer map unlocked (not required)
955 * => object must be locked! we will _unlock_ it before starting any I/O.
956 * => flags: PGO_ALLPAGES: get all of the pages
957 * PGO_LOCKED: fault data structures are locked
958 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
959 * => NOTE: caller must check for released pages!!
960 */
961 static int
962 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
963 struct uvm_object *uobj;
964 voff_t offset;
965 struct vm_page **pps;
966 int *npagesp;
967 int centeridx, advice, flags;
968 vm_prot_t access_type;
969 {
970 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
971 voff_t current_offset;
972 vm_page_t ptmp;
973 int lcv, gotpages, maxpages, swslot, rv, pageidx;
974 boolean_t done;
975 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
976
977 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
978 aobj, offset, flags,0);
979
980 /*
981 * get number of pages
982 */
983 maxpages = *npagesp;
984
985 /*
986 * step 1: handled the case where fault data structures are locked.
987 */
988
989 if (flags & PGO_LOCKED) {
990 /*
991 * step 1a: get pages that are already resident. only do
992 * this if the data structures are locked (i.e. the first
993 * time through).
994 */
995
996 done = TRUE; /* be optimistic */
997 gotpages = 0; /* # of pages we got so far */
998
999 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1000 lcv++, current_offset += PAGE_SIZE) {
1001 /* do we care about this page? if not, skip it */
1002 if (pps[lcv] == PGO_DONTCARE)
1003 continue;
1004
1005 ptmp = uvm_pagelookup(uobj, current_offset);
1006
1007 /*
1008 * if page is new, attempt to allocate the page,
1009 * zero-fill'd.
1010 */
1011 if (ptmp == NULL && uao_find_swslot(aobj,
1012 current_offset >> PAGE_SHIFT) == 0) {
1013 ptmp = uvm_pagealloc(uobj, current_offset,
1014 NULL, UVM_PGA_ZERO);
1015 if (ptmp) {
1016 /* new page */
1017 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1018 ptmp->pqflags |= PQ_AOBJ;
1019 UVM_PAGE_OWN(ptmp, NULL);
1020 }
1021 }
1022
1023 /*
1024 * to be useful must get a non-busy, non-released page
1025 */
1026 if (ptmp == NULL ||
1027 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1028 if (lcv == centeridx ||
1029 (flags & PGO_ALLPAGES) != 0)
1030 /* need to do a wait or I/O! */
1031 done = FALSE;
1032 continue;
1033 }
1034
1035 /*
1036 * useful page: busy/lock it and plug it in our
1037 * result array
1038 */
1039 /* caller must un-busy this page */
1040 ptmp->flags |= PG_BUSY;
1041 UVM_PAGE_OWN(ptmp, "uao_get1");
1042 pps[lcv] = ptmp;
1043 gotpages++;
1044
1045 } /* "for" lcv loop */
1046
1047 /*
1048 * step 1b: now we've either done everything needed or we
1049 * to unlock and do some waiting or I/O.
1050 */
1051
1052 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1053
1054 *npagesp = gotpages;
1055 if (done)
1056 /* bingo! */
1057 return(VM_PAGER_OK);
1058 else
1059 /* EEK! Need to unlock and I/O */
1060 return(VM_PAGER_UNLOCK);
1061 }
1062
1063 /*
1064 * step 2: get non-resident or busy pages.
1065 * object is locked. data structures are unlocked.
1066 */
1067
1068 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1069 lcv++, current_offset += PAGE_SIZE) {
1070
1071 /*
1072 * - skip over pages we've already gotten or don't want
1073 * - skip over pages we don't _have_ to get
1074 */
1075
1076 if (pps[lcv] != NULL ||
1077 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1078 continue;
1079
1080 pageidx = current_offset >> PAGE_SHIFT;
1081
1082 /*
1083 * we have yet to locate the current page (pps[lcv]). we
1084 * first look for a page that is already at the current offset.
1085 * if we find a page, we check to see if it is busy or
1086 * released. if that is the case, then we sleep on the page
1087 * until it is no longer busy or released and repeat the lookup.
1088 * if the page we found is neither busy nor released, then we
1089 * busy it (so we own it) and plug it into pps[lcv]. this
1090 * 'break's the following while loop and indicates we are
1091 * ready to move on to the next page in the "lcv" loop above.
1092 *
1093 * if we exit the while loop with pps[lcv] still set to NULL,
1094 * then it means that we allocated a new busy/fake/clean page
1095 * ptmp in the object and we need to do I/O to fill in the data.
1096 */
1097
1098 /* top of "pps" while loop */
1099 while (pps[lcv] == NULL) {
1100 /* look for a resident page */
1101 ptmp = uvm_pagelookup(uobj, current_offset);
1102
1103 /* not resident? allocate one now (if we can) */
1104 if (ptmp == NULL) {
1105
1106 ptmp = uvm_pagealloc(uobj, current_offset,
1107 NULL, 0);
1108
1109 /* out of RAM? */
1110 if (ptmp == NULL) {
1111 simple_unlock(&uobj->vmobjlock);
1112 UVMHIST_LOG(pdhist,
1113 "sleeping, ptmp == NULL\n",0,0,0,0);
1114 uvm_wait("uao_getpage");
1115 simple_lock(&uobj->vmobjlock);
1116 /* goto top of pps while loop */
1117 continue;
1118 }
1119
1120 /*
1121 * safe with PQ's unlocked: because we just
1122 * alloc'd the page
1123 */
1124 ptmp->pqflags |= PQ_AOBJ;
1125
1126 /*
1127 * got new page ready for I/O. break pps while
1128 * loop. pps[lcv] is still NULL.
1129 */
1130 break;
1131 }
1132
1133 /* page is there, see if we need to wait on it */
1134 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1135 ptmp->flags |= PG_WANTED;
1136 UVMHIST_LOG(pdhist,
1137 "sleeping, ptmp->flags 0x%x\n",
1138 ptmp->flags,0,0,0);
1139 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1140 FALSE, "uao_get", 0);
1141 simple_lock(&uobj->vmobjlock);
1142 continue; /* goto top of pps while loop */
1143 }
1144
1145 /*
1146 * if we get here then the page has become resident and
1147 * unbusy between steps 1 and 2. we busy it now (so we
1148 * own it) and set pps[lcv] (so that we exit the while
1149 * loop).
1150 */
1151 /* we own it, caller must un-busy */
1152 ptmp->flags |= PG_BUSY;
1153 UVM_PAGE_OWN(ptmp, "uao_get2");
1154 pps[lcv] = ptmp;
1155 }
1156
1157 /*
1158 * if we own the valid page at the correct offset, pps[lcv] will
1159 * point to it. nothing more to do except go to the next page.
1160 */
1161 if (pps[lcv])
1162 continue; /* next lcv */
1163
1164 /*
1165 * we have a "fake/busy/clean" page that we just allocated.
1166 * do the needed "i/o", either reading from swap or zeroing.
1167 */
1168 swslot = uao_find_swslot(aobj, pageidx);
1169
1170 /*
1171 * just zero the page if there's nothing in swap.
1172 */
1173 if (swslot == 0)
1174 {
1175 /*
1176 * page hasn't existed before, just zero it.
1177 */
1178 uvm_pagezero(ptmp);
1179 } else {
1180 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1181 swslot, 0,0,0);
1182
1183 /*
1184 * page in the swapped-out page.
1185 * unlock object for i/o, relock when done.
1186 */
1187 simple_unlock(&uobj->vmobjlock);
1188 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1189 simple_lock(&uobj->vmobjlock);
1190
1191 /*
1192 * I/O done. check for errors.
1193 */
1194 if (rv != VM_PAGER_OK)
1195 {
1196 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1197 rv,0,0,0);
1198 if (ptmp->flags & PG_WANTED)
1199 wakeup(ptmp);
1200
1201 /*
1202 * remove the swap slot from the aobj
1203 * and mark the aobj as having no real slot.
1204 * don't free the swap slot, thus preventing
1205 * it from being used again.
1206 */
1207 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1208 SWSLOT_BAD);
1209 uvm_swap_markbad(swslot, 1);
1210
1211 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1212 UVM_PAGE_OWN(ptmp, NULL);
1213 uvm_lock_pageq();
1214 uvm_pagefree(ptmp);
1215 uvm_unlock_pageq();
1216
1217 simple_unlock(&uobj->vmobjlock);
1218 return (rv);
1219 }
1220 }
1221
1222 /*
1223 * we got the page! clear the fake flag (indicates valid
1224 * data now in page) and plug into our result array. note
1225 * that page is still busy.
1226 *
1227 * it is the callers job to:
1228 * => check if the page is released
1229 * => unbusy the page
1230 * => activate the page
1231 */
1232
1233 ptmp->flags &= ~PG_FAKE; /* data is valid ... */
1234 pmap_clear_modify(ptmp); /* ... and clean */
1235 pps[lcv] = ptmp;
1236
1237 } /* lcv loop */
1238
1239 /*
1240 * finally, unlock object and return.
1241 */
1242
1243 simple_unlock(&uobj->vmobjlock);
1244 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1245 return(VM_PAGER_OK);
1246 }
1247
1248 /*
1249 * uao_releasepg: handle released page in an aobj
1250 *
1251 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1252 * to dispose of.
1253 * => caller must handle PG_WANTED case
1254 * => called with page's object locked, pageq's unlocked
1255 * => returns TRUE if page's object is still alive, FALSE if we
1256 * killed the page's object. if we return TRUE, then we
1257 * return with the object locked.
1258 * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1259 * with the page queues locked [for pagedaemon]
1260 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1261 * => we kill the aobj if it is not referenced and we are suppose to
1262 * kill it ("KILLME").
1263 */
1264 static boolean_t
1265 uao_releasepg(pg, nextpgp)
1266 struct vm_page *pg;
1267 struct vm_page **nextpgp; /* OUT */
1268 {
1269 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1270
1271 #ifdef DIAGNOSTIC
1272 if ((pg->flags & PG_RELEASED) == 0)
1273 panic("uao_releasepg: page not released!");
1274 #endif
1275
1276 /*
1277 * dispose of the page [caller handles PG_WANTED] and swap slot.
1278 */
1279 pmap_page_protect(pg, VM_PROT_NONE);
1280 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1281 uvm_lock_pageq();
1282 if (nextpgp)
1283 *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
1284 uvm_pagefree(pg);
1285 if (!nextpgp)
1286 uvm_unlock_pageq(); /* keep locked for daemon */
1287
1288 /*
1289 * if we're not killing the object, we're done.
1290 */
1291 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1292 return TRUE;
1293
1294 #ifdef DIAGNOSTIC
1295 if (aobj->u_obj.uo_refs)
1296 panic("uvm_km_releasepg: kill flag set on referenced object!");
1297 #endif
1298
1299 /*
1300 * if there are still pages in the object, we're done for now.
1301 */
1302 if (aobj->u_obj.uo_npages != 0)
1303 return TRUE;
1304
1305 #ifdef DIAGNOSTIC
1306 if (TAILQ_FIRST(&aobj->u_obj.memq))
1307 panic("uvn_releasepg: pages in object with npages == 0");
1308 #endif
1309
1310 /*
1311 * finally, free the rest.
1312 */
1313 uao_free(aobj);
1314
1315 return FALSE;
1316 }
1317
1318
1319 /*
1320 * uao_dropswap: release any swap resources from this aobj page.
1321 *
1322 * => aobj must be locked or have a reference count of 0.
1323 */
1324
1325 void
1326 uao_dropswap(uobj, pageidx)
1327 struct uvm_object *uobj;
1328 int pageidx;
1329 {
1330 int slot;
1331
1332 slot = uao_set_swslot(uobj, pageidx, 0);
1333 if (slot) {
1334 uvm_swap_free(slot, 1);
1335 }
1336 }
1337
1338
1339 /*
1340 * page in every page in every aobj that is paged-out to a range of swslots.
1341 *
1342 * => nothing should be locked.
1343 * => returns TRUE if pagein was aborted due to lack of memory.
1344 */
1345 boolean_t
1346 uao_swap_off(startslot, endslot)
1347 int startslot, endslot;
1348 {
1349 struct uvm_aobj *aobj, *nextaobj;
1350
1351 /*
1352 * walk the list of all aobjs.
1353 */
1354
1355 restart:
1356 simple_lock(&uao_list_lock);
1357
1358 for (aobj = LIST_FIRST(&uao_list);
1359 aobj != NULL;
1360 aobj = nextaobj) {
1361 boolean_t rv;
1362
1363 /*
1364 * try to get the object lock,
1365 * start all over if we fail.
1366 * most of the time we'll get the aobj lock,
1367 * so this should be a rare case.
1368 */
1369 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1370 simple_unlock(&uao_list_lock);
1371 goto restart;
1372 }
1373
1374 /*
1375 * add a ref to the aobj so it doesn't disappear
1376 * while we're working.
1377 */
1378 uao_reference_locked(&aobj->u_obj);
1379
1380 /*
1381 * now it's safe to unlock the uao list.
1382 */
1383 simple_unlock(&uao_list_lock);
1384
1385 /*
1386 * page in any pages in the swslot range.
1387 * if there's an error, abort and return the error.
1388 */
1389 rv = uao_pagein(aobj, startslot, endslot);
1390 if (rv) {
1391 uao_detach_locked(&aobj->u_obj);
1392 return rv;
1393 }
1394
1395 /*
1396 * we're done with this aobj.
1397 * relock the list and drop our ref on the aobj.
1398 */
1399 simple_lock(&uao_list_lock);
1400 nextaobj = LIST_NEXT(aobj, u_list);
1401 uao_detach_locked(&aobj->u_obj);
1402 }
1403
1404 /*
1405 * done with traversal, unlock the list
1406 */
1407 simple_unlock(&uao_list_lock);
1408 return FALSE;
1409 }
1410
1411
1412 /*
1413 * page in any pages from aobj in the given range.
1414 *
1415 * => aobj must be locked and is returned locked.
1416 * => returns TRUE if pagein was aborted due to lack of memory.
1417 */
1418 static boolean_t
1419 uao_pagein(aobj, startslot, endslot)
1420 struct uvm_aobj *aobj;
1421 int startslot, endslot;
1422 {
1423 boolean_t rv;
1424
1425 if (UAO_USES_SWHASH(aobj)) {
1426 struct uao_swhash_elt *elt;
1427 int bucket;
1428
1429 restart:
1430 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1431 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1432 elt != NULL;
1433 elt = LIST_NEXT(elt, list)) {
1434 int i;
1435
1436 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1437 int slot = elt->slots[i];
1438
1439 /*
1440 * if the slot isn't in range, skip it.
1441 */
1442 if (slot < startslot ||
1443 slot >= endslot) {
1444 continue;
1445 }
1446
1447 /*
1448 * process the page,
1449 * the start over on this object
1450 * since the swhash elt
1451 * may have been freed.
1452 */
1453 rv = uao_pagein_page(aobj,
1454 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1455 if (rv) {
1456 return rv;
1457 }
1458 goto restart;
1459 }
1460 }
1461 }
1462 } else {
1463 int i;
1464
1465 for (i = 0; i < aobj->u_pages; i++) {
1466 int slot = aobj->u_swslots[i];
1467
1468 /*
1469 * if the slot isn't in range, skip it
1470 */
1471 if (slot < startslot || slot >= endslot) {
1472 continue;
1473 }
1474
1475 /*
1476 * process the page.
1477 */
1478 rv = uao_pagein_page(aobj, i);
1479 if (rv) {
1480 return rv;
1481 }
1482 }
1483 }
1484
1485 return FALSE;
1486 }
1487
1488 /*
1489 * page in a page from an aobj. used for swap_off.
1490 * returns TRUE if pagein was aborted due to lack of memory.
1491 *
1492 * => aobj must be locked and is returned locked.
1493 */
1494 static boolean_t
1495 uao_pagein_page(aobj, pageidx)
1496 struct uvm_aobj *aobj;
1497 int pageidx;
1498 {
1499 struct vm_page *pg;
1500 int rv, slot, npages;
1501 UVMHIST_FUNC("uao_pagein_page"); UVMHIST_CALLED(pdhist);
1502
1503 pg = NULL;
1504 npages = 1;
1505 /* locked: aobj */
1506 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1507 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1508 /* unlocked: aobj */
1509
1510 /*
1511 * relock and finish up.
1512 */
1513 simple_lock(&aobj->u_obj.vmobjlock);
1514
1515 switch (rv) {
1516 case VM_PAGER_OK:
1517 break;
1518
1519 case VM_PAGER_ERROR:
1520 case VM_PAGER_REFAULT:
1521 /*
1522 * nothing more to do on errors.
1523 * VM_PAGER_REFAULT can only mean that the anon was freed,
1524 * so again there's nothing to do.
1525 */
1526 return FALSE;
1527
1528 #ifdef DIAGNOSTIC
1529 default:
1530 panic("uao_pagein_page: uao_get -> %d\n", rv);
1531 #endif
1532 }
1533
1534 #ifdef DIAGNOSTIC
1535 /*
1536 * this should never happen, since we have a reference on the aobj.
1537 */
1538 if (pg->flags & PG_RELEASED) {
1539 panic("uao_pagein_page: found PG_RELEASED page?\n");
1540 }
1541 #endif
1542
1543 /*
1544 * ok, we've got the page now.
1545 * mark it as dirty, clear its swslot and un-busy it.
1546 */
1547 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1548 uvm_swap_free(slot, 1);
1549 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1550 UVM_PAGE_OWN(pg, NULL);
1551
1552 /*
1553 * deactivate the page (to put it on a page queue).
1554 */
1555 pmap_clear_reference(pg);
1556 pmap_page_protect(pg, VM_PROT_NONE);
1557 uvm_lock_pageq();
1558 uvm_pagedeactivate(pg);
1559 uvm_unlock_pageq();
1560
1561 return FALSE;
1562 }
1563