uvm_aobj.c revision 1.35 1 /* $NetBSD: uvm_aobj.c,v 1.35 2000/11/08 14:28:16 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45
46
47 #include "opt_uvmhist.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/pool.h>
54 #include <sys/kernel.h>
55
56 #include <uvm/uvm.h>
57
58 /*
59 * an aobj manages anonymous-memory backed uvm_objects. in addition
60 * to keeping the list of resident pages, it also keeps a list of
61 * allocated swap blocks. depending on the size of the aobj this list
62 * of allocated swap blocks is either stored in an array (small objects)
63 * or in a hash table (large objects).
64 */
65
66 /*
67 * local structures
68 */
69
70 /*
71 * for hash tables, we break the address space of the aobj into blocks
72 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
73 * be a power of two.
74 */
75
76 #define UAO_SWHASH_CLUSTER_SHIFT 4
77 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
78
79 /* get the "tag" for this page index */
80 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
81 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
82
83 /* given an ELT and a page index, find the swap slot */
84 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
85 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
86
87 /* given an ELT, return its pageidx base */
88 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
89 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
90
91 /*
92 * the swhash hash function
93 */
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 & (AOBJ)->u_swhashmask)])
97
98 /*
99 * the swhash threshhold determines if we will use an array or a
100 * hash table to store the list of allocated swap blocks.
101 */
102
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
106
107 /*
108 * the number of buckets in a swhash, with an upper bound
109 */
110 #define UAO_SWHASH_MAXBUCKETS 256
111 #define UAO_SWHASH_BUCKETS(AOBJ) \
112 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
113 UAO_SWHASH_MAXBUCKETS))
114
115
116 /*
117 * uao_swhash_elt: when a hash table is being used, this structure defines
118 * the format of an entry in the bucket list.
119 */
120
121 struct uao_swhash_elt {
122 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
123 voff_t tag; /* our 'tag' */
124 int count; /* our number of active slots */
125 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
126 };
127
128 /*
129 * uao_swhash: the swap hash table structure
130 */
131
132 LIST_HEAD(uao_swhash, uao_swhash_elt);
133
134 /*
135 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
136 */
137
138 struct pool uao_swhash_elt_pool;
139
140 /*
141 * uvm_aobj: the actual anon-backed uvm_object
142 *
143 * => the uvm_object is at the top of the structure, this allows
144 * (struct uvm_device *) == (struct uvm_object *)
145 * => only one of u_swslots and u_swhash is used in any given aobj
146 */
147
148 struct uvm_aobj {
149 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
150 int u_pages; /* number of pages in entire object */
151 int u_flags; /* the flags (see uvm_aobj.h) */
152 int *u_swslots; /* array of offset->swapslot mappings */
153 /*
154 * hashtable of offset->swapslot mappings
155 * (u_swhash is an array of bucket heads)
156 */
157 struct uao_swhash *u_swhash;
158 u_long u_swhashmask; /* mask for hashtable */
159 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
160 };
161
162 /*
163 * uvm_aobj_pool: pool of uvm_aobj structures
164 */
165
166 struct pool uvm_aobj_pool;
167
168 /*
169 * local functions
170 */
171
172 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
173 int, boolean_t));
174 static int uao_find_swslot __P((struct uvm_aobj *, int));
175 static boolean_t uao_flush __P((struct uvm_object *,
176 voff_t, voff_t, int));
177 static void uao_free __P((struct uvm_aobj *));
178 static int uao_get __P((struct uvm_object *, voff_t,
179 vm_page_t *, int *, int,
180 vm_prot_t, int, int));
181 static boolean_t uao_releasepg __P((struct vm_page *,
182 struct vm_page **));
183 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
184 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
185
186
187
188 /*
189 * aobj_pager
190 *
191 * note that some functions (e.g. put) are handled elsewhere
192 */
193
194 struct uvm_pagerops aobj_pager = {
195 NULL, /* init */
196 uao_reference, /* reference */
197 uao_detach, /* detach */
198 NULL, /* fault */
199 uao_flush, /* flush */
200 uao_get, /* get */
201 NULL, /* asyncget */
202 NULL, /* put (done by pagedaemon) */
203 NULL, /* cluster */
204 NULL, /* mk_pcluster */
205 NULL, /* aiodone */
206 uao_releasepg /* releasepg */
207 };
208
209 /*
210 * uao_list: global list of active aobjs, locked by uao_list_lock
211 */
212
213 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
214 static simple_lock_data_t uao_list_lock;
215
216
217 /*
218 * functions
219 */
220
221 /*
222 * hash table/array related functions
223 */
224
225 /*
226 * uao_find_swhash_elt: find (or create) a hash table entry for a page
227 * offset.
228 *
229 * => the object should be locked by the caller
230 */
231
232 static struct uao_swhash_elt *
233 uao_find_swhash_elt(aobj, pageidx, create)
234 struct uvm_aobj *aobj;
235 int pageidx;
236 boolean_t create;
237 {
238 struct uao_swhash *swhash;
239 struct uao_swhash_elt *elt;
240 voff_t page_tag;
241
242 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
243 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
244
245 /*
246 * now search the bucket for the requested tag
247 */
248 for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
249 if (elt->tag == page_tag)
250 return(elt);
251 }
252
253 /* fail now if we are not allowed to create a new entry in the bucket */
254 if (!create)
255 return NULL;
256
257
258 /*
259 * allocate a new entry for the bucket and init/insert it in
260 */
261 elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
262 LIST_INSERT_HEAD(swhash, elt, list);
263 elt->tag = page_tag;
264 elt->count = 0;
265 memset(elt->slots, 0, sizeof(elt->slots));
266
267 return(elt);
268 }
269
270 /*
271 * uao_find_swslot: find the swap slot number for an aobj/pageidx
272 *
273 * => object must be locked by caller
274 */
275 __inline static int
276 uao_find_swslot(aobj, pageidx)
277 struct uvm_aobj *aobj;
278 int pageidx;
279 {
280
281 /*
282 * if noswap flag is set, then we never return a slot
283 */
284
285 if (aobj->u_flags & UAO_FLAG_NOSWAP)
286 return(0);
287
288 /*
289 * if hashing, look in hash table.
290 */
291
292 if (UAO_USES_SWHASH(aobj)) {
293 struct uao_swhash_elt *elt =
294 uao_find_swhash_elt(aobj, pageidx, FALSE);
295
296 if (elt)
297 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
298 else
299 return(0);
300 }
301
302 /*
303 * otherwise, look in the array
304 */
305 return(aobj->u_swslots[pageidx]);
306 }
307
308 /*
309 * uao_set_swslot: set the swap slot for a page in an aobj.
310 *
311 * => setting a slot to zero frees the slot
312 * => object must be locked by caller
313 */
314 int
315 uao_set_swslot(uobj, pageidx, slot)
316 struct uvm_object *uobj;
317 int pageidx, slot;
318 {
319 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
320 int oldslot;
321 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
322 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
323 aobj, pageidx, slot, 0);
324
325 /*
326 * if noswap flag is set, then we can't set a slot
327 */
328
329 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
330
331 if (slot == 0)
332 return(0); /* a clear is ok */
333
334 /* but a set is not */
335 printf("uao_set_swslot: uobj = %p\n", uobj);
336 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
337 }
338
339 /*
340 * are we using a hash table? if so, add it in the hash.
341 */
342
343 if (UAO_USES_SWHASH(aobj)) {
344 /*
345 * Avoid allocating an entry just to free it again if
346 * the page had not swap slot in the first place, and
347 * we are freeing.
348 */
349 struct uao_swhash_elt *elt =
350 uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
351 if (elt == NULL) {
352 #ifdef DIAGNOSTIC
353 if (slot)
354 panic("uao_set_swslot: didn't create elt");
355 #endif
356 return (0);
357 }
358
359 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
360 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
361
362 /*
363 * now adjust the elt's reference counter and free it if we've
364 * dropped it to zero.
365 */
366
367 /* an allocation? */
368 if (slot) {
369 if (oldslot == 0)
370 elt->count++;
371 } else { /* freeing slot ... */
372 if (oldslot) /* to be safe */
373 elt->count--;
374
375 if (elt->count == 0) {
376 LIST_REMOVE(elt, list);
377 pool_put(&uao_swhash_elt_pool, elt);
378 }
379 }
380
381 } else {
382 /* we are using an array */
383 oldslot = aobj->u_swslots[pageidx];
384 aobj->u_swslots[pageidx] = slot;
385 }
386 return (oldslot);
387 }
388
389 /*
390 * end of hash/array functions
391 */
392
393 /*
394 * uao_free: free all resources held by an aobj, and then free the aobj
395 *
396 * => the aobj should be dead
397 */
398 static void
399 uao_free(aobj)
400 struct uvm_aobj *aobj;
401 {
402
403 simple_unlock(&aobj->u_obj.vmobjlock);
404
405 if (UAO_USES_SWHASH(aobj)) {
406 int i, hashbuckets = aobj->u_swhashmask + 1;
407
408 /*
409 * free the swslots from each hash bucket,
410 * then the hash bucket, and finally the hash table itself.
411 */
412 for (i = 0; i < hashbuckets; i++) {
413 struct uao_swhash_elt *elt, *next;
414
415 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
416 elt != NULL;
417 elt = next) {
418 int j;
419
420 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
421 int slot = elt->slots[j];
422
423 if (slot) {
424 uvm_swap_free(slot, 1);
425
426 /*
427 * this page is no longer
428 * only in swap.
429 */
430 simple_lock(&uvm.swap_data_lock);
431 uvmexp.swpgonly--;
432 simple_unlock(&uvm.swap_data_lock);
433 }
434 }
435
436 next = LIST_NEXT(elt, list);
437 pool_put(&uao_swhash_elt_pool, elt);
438 }
439 }
440 free(aobj->u_swhash, M_UVMAOBJ);
441 } else {
442 int i;
443
444 /*
445 * free the array
446 */
447
448 for (i = 0; i < aobj->u_pages; i++) {
449 int slot = aobj->u_swslots[i];
450
451 if (slot) {
452 uvm_swap_free(slot, 1);
453
454 /* this page is no longer only in swap. */
455 simple_lock(&uvm.swap_data_lock);
456 uvmexp.swpgonly--;
457 simple_unlock(&uvm.swap_data_lock);
458 }
459 }
460 free(aobj->u_swslots, M_UVMAOBJ);
461 }
462
463 /*
464 * finally free the aobj itself
465 */
466 pool_put(&uvm_aobj_pool, aobj);
467 }
468
469 /*
470 * pager functions
471 */
472
473 /*
474 * uao_create: create an aobj of the given size and return its uvm_object.
475 *
476 * => for normal use, flags are always zero
477 * => for the kernel object, the flags are:
478 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
479 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
480 */
481 struct uvm_object *
482 uao_create(size, flags)
483 vsize_t size;
484 int flags;
485 {
486 static struct uvm_aobj kernel_object_store; /* home of kernel_object */
487 static int kobj_alloced = 0; /* not allocated yet */
488 int pages = round_page(size) >> PAGE_SHIFT;
489 struct uvm_aobj *aobj;
490
491 /*
492 * malloc a new aobj unless we are asked for the kernel object
493 */
494 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
495 if (kobj_alloced)
496 panic("uao_create: kernel object already allocated");
497
498 aobj = &kernel_object_store;
499 aobj->u_pages = pages;
500 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
501 /* we are special, we never die */
502 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
503 kobj_alloced = UAO_FLAG_KERNOBJ;
504 } else if (flags & UAO_FLAG_KERNSWAP) {
505 aobj = &kernel_object_store;
506 if (kobj_alloced != UAO_FLAG_KERNOBJ)
507 panic("uao_create: asked to enable swap on kernel object");
508 kobj_alloced = UAO_FLAG_KERNSWAP;
509 } else { /* normal object */
510 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
511 aobj->u_pages = pages;
512 aobj->u_flags = 0; /* normal object */
513 aobj->u_obj.uo_refs = 1; /* start with 1 reference */
514 }
515
516 /*
517 * allocate hash/array if necessary
518 *
519 * note: in the KERNSWAP case no need to worry about locking since
520 * we are still booting we should be the only thread around.
521 */
522 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
523 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
524 M_NOWAIT : M_WAITOK;
525
526 /* allocate hash table or array depending on object size */
527 if (UAO_USES_SWHASH(aobj)) {
528 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
529 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
530 if (aobj->u_swhash == NULL)
531 panic("uao_create: hashinit swhash failed");
532 } else {
533 aobj->u_swslots = malloc(pages * sizeof(int),
534 M_UVMAOBJ, mflags);
535 if (aobj->u_swslots == NULL)
536 panic("uao_create: malloc swslots failed");
537 memset(aobj->u_swslots, 0, pages * sizeof(int));
538 }
539
540 if (flags) {
541 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
542 return(&aobj->u_obj);
543 /* done! */
544 }
545 }
546
547 /*
548 * init aobj fields
549 */
550 simple_lock_init(&aobj->u_obj.vmobjlock);
551 aobj->u_obj.pgops = &aobj_pager;
552 TAILQ_INIT(&aobj->u_obj.memq);
553 aobj->u_obj.uo_npages = 0;
554
555 /*
556 * now that aobj is ready, add it to the global list
557 */
558 simple_lock(&uao_list_lock);
559 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
560 simple_unlock(&uao_list_lock);
561
562 /*
563 * done!
564 */
565 return(&aobj->u_obj);
566 }
567
568
569
570 /*
571 * uao_init: set up aobj pager subsystem
572 *
573 * => called at boot time from uvm_pager_init()
574 */
575 void
576 uao_init()
577 {
578 static int uao_initialized;
579
580 if (uao_initialized)
581 return;
582 uao_initialized = TRUE;
583
584 LIST_INIT(&uao_list);
585 simple_lock_init(&uao_list_lock);
586
587 /*
588 * NOTE: Pages fror this pool must not come from a pageable
589 * kernel map!
590 */
591 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
592 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
593
594 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
595 "aobjpl", 0,
596 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
597 }
598
599 /*
600 * uao_reference: add a ref to an aobj
601 *
602 * => aobj must be unlocked
603 * => just lock it and call the locked version
604 */
605 void
606 uao_reference(uobj)
607 struct uvm_object *uobj;
608 {
609 simple_lock(&uobj->vmobjlock);
610 uao_reference_locked(uobj);
611 simple_unlock(&uobj->vmobjlock);
612 }
613
614 /*
615 * uao_reference_locked: add a ref to an aobj that is already locked
616 *
617 * => aobj must be locked
618 * this needs to be separate from the normal routine
619 * since sometimes we need to add a reference to an aobj when
620 * it's already locked.
621 */
622 void
623 uao_reference_locked(uobj)
624 struct uvm_object *uobj;
625 {
626 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
627
628 /*
629 * kernel_object already has plenty of references, leave it alone.
630 */
631
632 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
633 return;
634
635 uobj->uo_refs++; /* bump! */
636 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
637 uobj, uobj->uo_refs,0,0);
638 }
639
640
641 /*
642 * uao_detach: drop a reference to an aobj
643 *
644 * => aobj must be unlocked
645 * => just lock it and call the locked version
646 */
647 void
648 uao_detach(uobj)
649 struct uvm_object *uobj;
650 {
651 simple_lock(&uobj->vmobjlock);
652 uao_detach_locked(uobj);
653 }
654
655
656 /*
657 * uao_detach_locked: drop a reference to an aobj
658 *
659 * => aobj must be locked, and is unlocked (or freed) upon return.
660 * this needs to be separate from the normal routine
661 * since sometimes we need to detach from an aobj when
662 * it's already locked.
663 */
664 void
665 uao_detach_locked(uobj)
666 struct uvm_object *uobj;
667 {
668 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
669 struct vm_page *pg;
670 boolean_t busybody;
671 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
672
673 /*
674 * detaching from kernel_object is a noop.
675 */
676 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
677 simple_unlock(&uobj->vmobjlock);
678 return;
679 }
680
681 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
682 uobj->uo_refs--; /* drop ref! */
683 if (uobj->uo_refs) { /* still more refs? */
684 simple_unlock(&uobj->vmobjlock);
685 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
686 return;
687 }
688
689 /*
690 * remove the aobj from the global list.
691 */
692 simple_lock(&uao_list_lock);
693 LIST_REMOVE(aobj, u_list);
694 simple_unlock(&uao_list_lock);
695
696 /*
697 * free all the pages that aren't PG_BUSY,
698 * mark for release any that are.
699 */
700 busybody = FALSE;
701 for (pg = TAILQ_FIRST(&uobj->memq);
702 pg != NULL;
703 pg = TAILQ_NEXT(pg, listq)) {
704 if (pg->flags & PG_BUSY) {
705 pg->flags |= PG_RELEASED;
706 busybody = TRUE;
707 continue;
708 }
709
710 /* zap the mappings, free the swap slot, free the page */
711 pmap_page_protect(pg, VM_PROT_NONE);
712 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
713 uvm_lock_pageq();
714 uvm_pagefree(pg);
715 uvm_unlock_pageq();
716 }
717
718 /*
719 * if we found any busy pages, we're done for now.
720 * mark the aobj for death, releasepg will finish up for us.
721 */
722 if (busybody) {
723 aobj->u_flags |= UAO_FLAG_KILLME;
724 simple_unlock(&aobj->u_obj.vmobjlock);
725 return;
726 }
727
728 /*
729 * finally, free the rest.
730 */
731 uao_free(aobj);
732 }
733
734 /*
735 * uao_flush: "flush" pages out of a uvm object
736 *
737 * => object should be locked by caller. we may _unlock_ the object
738 * if (and only if) we need to clean a page (PGO_CLEANIT).
739 * XXXJRT Currently, however, we don't. In the case of cleaning
740 * XXXJRT a page, we simply just deactivate it. Should probably
741 * XXXJRT handle this better, in the future (although "flushing"
742 * XXXJRT anonymous memory isn't terribly important).
743 * => if PGO_CLEANIT is not set, then we will neither unlock the object
744 * or block.
745 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
746 * for flushing.
747 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
748 * that new pages are inserted on the tail end of the list. thus,
749 * we can make a complete pass through the object in one go by starting
750 * at the head and working towards the tail (new pages are put in
751 * front of us).
752 * => NOTE: we are allowed to lock the page queues, so the caller
753 * must not be holding the lock on them [e.g. pagedaemon had
754 * better not call us with the queues locked]
755 * => we return TRUE unless we encountered some sort of I/O error
756 * XXXJRT currently never happens, as we never directly initiate
757 * XXXJRT I/O
758 *
759 * comment on "cleaning" object and PG_BUSY pages:
760 * this routine is holding the lock on the object. the only time
761 * that is can run into a PG_BUSY page that it does not own is if
762 * some other process has started I/O on the page (e.g. either
763 * a pagein or a pageout). if the PG_BUSY page is being paged
764 * in, then it can not be dirty (!PG_CLEAN) because no one has
765 * had a change to modify it yet. if the PG_BUSY page is being
766 * paged out then it means that someone else has already started
767 * cleaning the page for us (how nice!). in this case, if we
768 * have syncio specified, then after we make our pass through the
769 * object we need to wait for the other PG_BUSY pages to clear
770 * off (i.e. we need to do an iosync). also note that once a
771 * page is PG_BUSY is must stary in its object until it is un-busyed.
772 * XXXJRT We never actually do this, as we are "flushing" anonymous
773 * XXXJRT memory, which doesn't have persistent backing store.
774 *
775 * note on page traversal:
776 * we can traverse the pages in an object either by going down the
777 * linked list in "uobj->memq", or we can go over the address range
778 * by page doing hash table lookups for each address. depending
779 * on how many pages are in the object it may be cheaper to do one
780 * or the other. we set "by_list" to true if we are using memq.
781 * if the cost of a hash lookup was equal to the cost of the list
782 * traversal we could compare the number of pages in the start->stop
783 * range to the total number of pages in the object. however, it
784 * seems that a hash table lookup is more expensive than the linked
785 * list traversal, so we multiply the number of pages in the
786 * start->stop range by a penalty which we define below.
787 */
788
789 #define UAO_HASH_PENALTY 4 /* XXX: a guess */
790
791 boolean_t
792 uao_flush(uobj, start, stop, flags)
793 struct uvm_object *uobj;
794 voff_t start, stop;
795 int flags;
796 {
797 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
798 struct vm_page *pp, *ppnext;
799 boolean_t retval, by_list;
800 voff_t curoff;
801 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
802
803 curoff = 0; /* XXX: shut up gcc */
804
805 retval = TRUE; /* default to success */
806
807 if (flags & PGO_ALLPAGES) {
808 start = 0;
809 stop = aobj->u_pages << PAGE_SHIFT;
810 by_list = TRUE; /* always go by the list */
811 } else {
812 start = trunc_page(start);
813 stop = round_page(stop);
814 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
815 printf("uao_flush: strange, got an out of range "
816 "flush (fixed)\n");
817 stop = aobj->u_pages << PAGE_SHIFT;
818 }
819 by_list = (uobj->uo_npages <=
820 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
821 }
822
823 UVMHIST_LOG(maphist,
824 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
825 start, stop, by_list, flags);
826
827 /*
828 * Don't need to do any work here if we're not freeing
829 * or deactivating pages.
830 */
831 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
832 UVMHIST_LOG(maphist,
833 "<- done (no work to do)",0,0,0,0);
834 return (retval);
835 }
836
837 /*
838 * now do it. note: we must update ppnext in the body of loop or we
839 * will get stuck. we need to use ppnext because we may free "pp"
840 * before doing the next loop.
841 */
842
843 if (by_list) {
844 pp = uobj->memq.tqh_first;
845 } else {
846 curoff = start;
847 pp = uvm_pagelookup(uobj, curoff);
848 }
849
850 ppnext = NULL; /* XXX: shut up gcc */
851 uvm_lock_pageq(); /* page queues locked */
852
853 /* locked: both page queues and uobj */
854 for ( ; (by_list && pp != NULL) ||
855 (!by_list && curoff < stop) ; pp = ppnext) {
856 if (by_list) {
857 ppnext = pp->listq.tqe_next;
858
859 /* range check */
860 if (pp->offset < start || pp->offset >= stop)
861 continue;
862 } else {
863 curoff += PAGE_SIZE;
864 if (curoff < stop)
865 ppnext = uvm_pagelookup(uobj, curoff);
866
867 /* null check */
868 if (pp == NULL)
869 continue;
870 }
871
872 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
873 /*
874 * XXX In these first 3 cases, we always just
875 * XXX deactivate the page. We may want to
876 * XXX handle the different cases more specifically
877 * XXX in the future.
878 */
879 case PGO_CLEANIT|PGO_FREE:
880 case PGO_CLEANIT|PGO_DEACTIVATE:
881 case PGO_DEACTIVATE:
882 deactivate_it:
883 /* skip the page if it's loaned or wired */
884 if (pp->loan_count != 0 ||
885 pp->wire_count != 0)
886 continue;
887
888 /* zap all mappings for the page. */
889 pmap_page_protect(pp, VM_PROT_NONE);
890
891 /* ...and deactivate the page. */
892 uvm_pagedeactivate(pp);
893
894 continue;
895
896 case PGO_FREE:
897 /*
898 * If there are multiple references to
899 * the object, just deactivate the page.
900 */
901 if (uobj->uo_refs > 1)
902 goto deactivate_it;
903
904 /* XXX skip the page if it's loaned or wired */
905 if (pp->loan_count != 0 ||
906 pp->wire_count != 0)
907 continue;
908
909 /*
910 * mark the page as released if its busy.
911 */
912 if (pp->flags & PG_BUSY) {
913 pp->flags |= PG_RELEASED;
914 continue;
915 }
916
917 /* zap all mappings for the page. */
918 pmap_page_protect(pp, VM_PROT_NONE);
919
920 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
921 uvm_pagefree(pp);
922
923 continue;
924
925 default:
926 panic("uao_flush: weird flags");
927 }
928 #ifdef DIAGNOSTIC
929 panic("uao_flush: unreachable code");
930 #endif
931 }
932
933 uvm_unlock_pageq();
934
935 UVMHIST_LOG(maphist,
936 "<- done, rv=%d",retval,0,0,0);
937 return (retval);
938 }
939
940 /*
941 * uao_get: fetch me a page
942 *
943 * we have three cases:
944 * 1: page is resident -> just return the page.
945 * 2: page is zero-fill -> allocate a new page and zero it.
946 * 3: page is swapped out -> fetch the page from swap.
947 *
948 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
949 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
950 * then we will need to return VM_PAGER_UNLOCK.
951 *
952 * => prefer map unlocked (not required)
953 * => object must be locked! we will _unlock_ it before starting any I/O.
954 * => flags: PGO_ALLPAGES: get all of the pages
955 * PGO_LOCKED: fault data structures are locked
956 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
957 * => NOTE: caller must check for released pages!!
958 */
959 static int
960 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
961 struct uvm_object *uobj;
962 voff_t offset;
963 struct vm_page **pps;
964 int *npagesp;
965 int centeridx, advice, flags;
966 vm_prot_t access_type;
967 {
968 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
969 voff_t current_offset;
970 vm_page_t ptmp;
971 int lcv, gotpages, maxpages, swslot, rv, pageidx;
972 boolean_t done;
973 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
974
975 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
976 aobj, offset, flags,0);
977
978 /*
979 * get number of pages
980 */
981 maxpages = *npagesp;
982
983 /*
984 * step 1: handled the case where fault data structures are locked.
985 */
986
987 if (flags & PGO_LOCKED) {
988 /*
989 * step 1a: get pages that are already resident. only do
990 * this if the data structures are locked (i.e. the first
991 * time through).
992 */
993
994 done = TRUE; /* be optimistic */
995 gotpages = 0; /* # of pages we got so far */
996
997 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
998 lcv++, current_offset += PAGE_SIZE) {
999 /* do we care about this page? if not, skip it */
1000 if (pps[lcv] == PGO_DONTCARE)
1001 continue;
1002
1003 ptmp = uvm_pagelookup(uobj, current_offset);
1004
1005 /*
1006 * if page is new, attempt to allocate the page,
1007 * zero-fill'd.
1008 */
1009 if (ptmp == NULL && uao_find_swslot(aobj,
1010 current_offset >> PAGE_SHIFT) == 0) {
1011 ptmp = uvm_pagealloc(uobj, current_offset,
1012 NULL, UVM_PGA_ZERO);
1013 if (ptmp) {
1014 /* new page */
1015 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1016 ptmp->pqflags |= PQ_AOBJ;
1017 UVM_PAGE_OWN(ptmp, NULL);
1018 }
1019 }
1020
1021 /*
1022 * to be useful must get a non-busy, non-released page
1023 */
1024 if (ptmp == NULL ||
1025 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1026 if (lcv == centeridx ||
1027 (flags & PGO_ALLPAGES) != 0)
1028 /* need to do a wait or I/O! */
1029 done = FALSE;
1030 continue;
1031 }
1032
1033 /*
1034 * useful page: busy/lock it and plug it in our
1035 * result array
1036 */
1037 /* caller must un-busy this page */
1038 ptmp->flags |= PG_BUSY;
1039 UVM_PAGE_OWN(ptmp, "uao_get1");
1040 pps[lcv] = ptmp;
1041 gotpages++;
1042
1043 } /* "for" lcv loop */
1044
1045 /*
1046 * step 1b: now we've either done everything needed or we
1047 * to unlock and do some waiting or I/O.
1048 */
1049
1050 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1051
1052 *npagesp = gotpages;
1053 if (done)
1054 /* bingo! */
1055 return(VM_PAGER_OK);
1056 else
1057 /* EEK! Need to unlock and I/O */
1058 return(VM_PAGER_UNLOCK);
1059 }
1060
1061 /*
1062 * step 2: get non-resident or busy pages.
1063 * object is locked. data structures are unlocked.
1064 */
1065
1066 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1067 lcv++, current_offset += PAGE_SIZE) {
1068
1069 /*
1070 * - skip over pages we've already gotten or don't want
1071 * - skip over pages we don't _have_ to get
1072 */
1073
1074 if (pps[lcv] != NULL ||
1075 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1076 continue;
1077
1078 pageidx = current_offset >> PAGE_SHIFT;
1079
1080 /*
1081 * we have yet to locate the current page (pps[lcv]). we
1082 * first look for a page that is already at the current offset.
1083 * if we find a page, we check to see if it is busy or
1084 * released. if that is the case, then we sleep on the page
1085 * until it is no longer busy or released and repeat the lookup.
1086 * if the page we found is neither busy nor released, then we
1087 * busy it (so we own it) and plug it into pps[lcv]. this
1088 * 'break's the following while loop and indicates we are
1089 * ready to move on to the next page in the "lcv" loop above.
1090 *
1091 * if we exit the while loop with pps[lcv] still set to NULL,
1092 * then it means that we allocated a new busy/fake/clean page
1093 * ptmp in the object and we need to do I/O to fill in the data.
1094 */
1095
1096 /* top of "pps" while loop */
1097 while (pps[lcv] == NULL) {
1098 /* look for a resident page */
1099 ptmp = uvm_pagelookup(uobj, current_offset);
1100
1101 /* not resident? allocate one now (if we can) */
1102 if (ptmp == NULL) {
1103
1104 ptmp = uvm_pagealloc(uobj, current_offset,
1105 NULL, 0);
1106
1107 /* out of RAM? */
1108 if (ptmp == NULL) {
1109 simple_unlock(&uobj->vmobjlock);
1110 UVMHIST_LOG(pdhist,
1111 "sleeping, ptmp == NULL\n",0,0,0,0);
1112 uvm_wait("uao_getpage");
1113 simple_lock(&uobj->vmobjlock);
1114 /* goto top of pps while loop */
1115 continue;
1116 }
1117
1118 /*
1119 * safe with PQ's unlocked: because we just
1120 * alloc'd the page
1121 */
1122 ptmp->pqflags |= PQ_AOBJ;
1123
1124 /*
1125 * got new page ready for I/O. break pps while
1126 * loop. pps[lcv] is still NULL.
1127 */
1128 break;
1129 }
1130
1131 /* page is there, see if we need to wait on it */
1132 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1133 ptmp->flags |= PG_WANTED;
1134 UVMHIST_LOG(pdhist,
1135 "sleeping, ptmp->flags 0x%x\n",
1136 ptmp->flags,0,0,0);
1137 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1138 FALSE, "uao_get", 0);
1139 simple_lock(&uobj->vmobjlock);
1140 continue; /* goto top of pps while loop */
1141 }
1142
1143 /*
1144 * if we get here then the page has become resident and
1145 * unbusy between steps 1 and 2. we busy it now (so we
1146 * own it) and set pps[lcv] (so that we exit the while
1147 * loop).
1148 */
1149 /* we own it, caller must un-busy */
1150 ptmp->flags |= PG_BUSY;
1151 UVM_PAGE_OWN(ptmp, "uao_get2");
1152 pps[lcv] = ptmp;
1153 }
1154
1155 /*
1156 * if we own the valid page at the correct offset, pps[lcv] will
1157 * point to it. nothing more to do except go to the next page.
1158 */
1159 if (pps[lcv])
1160 continue; /* next lcv */
1161
1162 /*
1163 * we have a "fake/busy/clean" page that we just allocated.
1164 * do the needed "i/o", either reading from swap or zeroing.
1165 */
1166 swslot = uao_find_swslot(aobj, pageidx);
1167
1168 /*
1169 * just zero the page if there's nothing in swap.
1170 */
1171 if (swslot == 0)
1172 {
1173 /*
1174 * page hasn't existed before, just zero it.
1175 */
1176 uvm_pagezero(ptmp);
1177 } else {
1178 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1179 swslot, 0,0,0);
1180
1181 /*
1182 * page in the swapped-out page.
1183 * unlock object for i/o, relock when done.
1184 */
1185 simple_unlock(&uobj->vmobjlock);
1186 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1187 simple_lock(&uobj->vmobjlock);
1188
1189 /*
1190 * I/O done. check for errors.
1191 */
1192 if (rv != VM_PAGER_OK)
1193 {
1194 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1195 rv,0,0,0);
1196 if (ptmp->flags & PG_WANTED)
1197 wakeup(ptmp);
1198
1199 /*
1200 * remove the swap slot from the aobj
1201 * and mark the aobj as having no real slot.
1202 * don't free the swap slot, thus preventing
1203 * it from being used again.
1204 */
1205 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1206 SWSLOT_BAD);
1207 uvm_swap_markbad(swslot, 1);
1208
1209 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1210 UVM_PAGE_OWN(ptmp, NULL);
1211 uvm_lock_pageq();
1212 uvm_pagefree(ptmp);
1213 uvm_unlock_pageq();
1214
1215 simple_unlock(&uobj->vmobjlock);
1216 return (rv);
1217 }
1218 }
1219
1220 /*
1221 * we got the page! clear the fake flag (indicates valid
1222 * data now in page) and plug into our result array. note
1223 * that page is still busy.
1224 *
1225 * it is the callers job to:
1226 * => check if the page is released
1227 * => unbusy the page
1228 * => activate the page
1229 */
1230
1231 ptmp->flags &= ~PG_FAKE; /* data is valid ... */
1232 pmap_clear_modify(ptmp); /* ... and clean */
1233 pps[lcv] = ptmp;
1234
1235 } /* lcv loop */
1236
1237 /*
1238 * finally, unlock object and return.
1239 */
1240
1241 simple_unlock(&uobj->vmobjlock);
1242 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1243 return(VM_PAGER_OK);
1244 }
1245
1246 /*
1247 * uao_releasepg: handle released page in an aobj
1248 *
1249 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1250 * to dispose of.
1251 * => caller must handle PG_WANTED case
1252 * => called with page's object locked, pageq's unlocked
1253 * => returns TRUE if page's object is still alive, FALSE if we
1254 * killed the page's object. if we return TRUE, then we
1255 * return with the object locked.
1256 * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1257 * with the page queues locked [for pagedaemon]
1258 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1259 * => we kill the aobj if it is not referenced and we are suppose to
1260 * kill it ("KILLME").
1261 */
1262 static boolean_t
1263 uao_releasepg(pg, nextpgp)
1264 struct vm_page *pg;
1265 struct vm_page **nextpgp; /* OUT */
1266 {
1267 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1268
1269 #ifdef DIAGNOSTIC
1270 if ((pg->flags & PG_RELEASED) == 0)
1271 panic("uao_releasepg: page not released!");
1272 #endif
1273
1274 /*
1275 * dispose of the page [caller handles PG_WANTED] and swap slot.
1276 */
1277 pmap_page_protect(pg, VM_PROT_NONE);
1278 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1279 uvm_lock_pageq();
1280 if (nextpgp)
1281 *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
1282 uvm_pagefree(pg);
1283 if (!nextpgp)
1284 uvm_unlock_pageq(); /* keep locked for daemon */
1285
1286 /*
1287 * if we're not killing the object, we're done.
1288 */
1289 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1290 return TRUE;
1291
1292 #ifdef DIAGNOSTIC
1293 if (aobj->u_obj.uo_refs)
1294 panic("uvm_km_releasepg: kill flag set on referenced object!");
1295 #endif
1296
1297 /*
1298 * if there are still pages in the object, we're done for now.
1299 */
1300 if (aobj->u_obj.uo_npages != 0)
1301 return TRUE;
1302
1303 #ifdef DIAGNOSTIC
1304 if (TAILQ_FIRST(&aobj->u_obj.memq))
1305 panic("uvn_releasepg: pages in object with npages == 0");
1306 #endif
1307
1308 /*
1309 * finally, free the rest.
1310 */
1311 uao_free(aobj);
1312
1313 return FALSE;
1314 }
1315
1316
1317 /*
1318 * uao_dropswap: release any swap resources from this aobj page.
1319 *
1320 * => aobj must be locked or have a reference count of 0.
1321 */
1322
1323 void
1324 uao_dropswap(uobj, pageidx)
1325 struct uvm_object *uobj;
1326 int pageidx;
1327 {
1328 int slot;
1329
1330 slot = uao_set_swslot(uobj, pageidx, 0);
1331 if (slot) {
1332 uvm_swap_free(slot, 1);
1333 }
1334 }
1335
1336
1337 /*
1338 * page in every page in every aobj that is paged-out to a range of swslots.
1339 *
1340 * => nothing should be locked.
1341 * => returns TRUE if pagein was aborted due to lack of memory.
1342 */
1343 boolean_t
1344 uao_swap_off(startslot, endslot)
1345 int startslot, endslot;
1346 {
1347 struct uvm_aobj *aobj, *nextaobj;
1348
1349 /*
1350 * walk the list of all aobjs.
1351 */
1352
1353 restart:
1354 simple_lock(&uao_list_lock);
1355
1356 for (aobj = LIST_FIRST(&uao_list);
1357 aobj != NULL;
1358 aobj = nextaobj) {
1359 boolean_t rv;
1360
1361 /*
1362 * try to get the object lock,
1363 * start all over if we fail.
1364 * most of the time we'll get the aobj lock,
1365 * so this should be a rare case.
1366 */
1367 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1368 simple_unlock(&uao_list_lock);
1369 goto restart;
1370 }
1371
1372 /*
1373 * add a ref to the aobj so it doesn't disappear
1374 * while we're working.
1375 */
1376 uao_reference_locked(&aobj->u_obj);
1377
1378 /*
1379 * now it's safe to unlock the uao list.
1380 */
1381 simple_unlock(&uao_list_lock);
1382
1383 /*
1384 * page in any pages in the swslot range.
1385 * if there's an error, abort and return the error.
1386 */
1387 rv = uao_pagein(aobj, startslot, endslot);
1388 if (rv) {
1389 uao_detach_locked(&aobj->u_obj);
1390 return rv;
1391 }
1392
1393 /*
1394 * we're done with this aobj.
1395 * relock the list and drop our ref on the aobj.
1396 */
1397 simple_lock(&uao_list_lock);
1398 nextaobj = LIST_NEXT(aobj, u_list);
1399 uao_detach_locked(&aobj->u_obj);
1400 }
1401
1402 /*
1403 * done with traversal, unlock the list
1404 */
1405 simple_unlock(&uao_list_lock);
1406 return FALSE;
1407 }
1408
1409
1410 /*
1411 * page in any pages from aobj in the given range.
1412 *
1413 * => aobj must be locked and is returned locked.
1414 * => returns TRUE if pagein was aborted due to lack of memory.
1415 */
1416 static boolean_t
1417 uao_pagein(aobj, startslot, endslot)
1418 struct uvm_aobj *aobj;
1419 int startslot, endslot;
1420 {
1421 boolean_t rv;
1422
1423 if (UAO_USES_SWHASH(aobj)) {
1424 struct uao_swhash_elt *elt;
1425 int bucket;
1426
1427 restart:
1428 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1429 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1430 elt != NULL;
1431 elt = LIST_NEXT(elt, list)) {
1432 int i;
1433
1434 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1435 int slot = elt->slots[i];
1436
1437 /*
1438 * if the slot isn't in range, skip it.
1439 */
1440 if (slot < startslot ||
1441 slot >= endslot) {
1442 continue;
1443 }
1444
1445 /*
1446 * process the page,
1447 * the start over on this object
1448 * since the swhash elt
1449 * may have been freed.
1450 */
1451 rv = uao_pagein_page(aobj,
1452 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1453 if (rv) {
1454 return rv;
1455 }
1456 goto restart;
1457 }
1458 }
1459 }
1460 } else {
1461 int i;
1462
1463 for (i = 0; i < aobj->u_pages; i++) {
1464 int slot = aobj->u_swslots[i];
1465
1466 /*
1467 * if the slot isn't in range, skip it
1468 */
1469 if (slot < startslot || slot >= endslot) {
1470 continue;
1471 }
1472
1473 /*
1474 * process the page.
1475 */
1476 rv = uao_pagein_page(aobj, i);
1477 if (rv) {
1478 return rv;
1479 }
1480 }
1481 }
1482
1483 return FALSE;
1484 }
1485
1486 /*
1487 * page in a page from an aobj. used for swap_off.
1488 * returns TRUE if pagein was aborted due to lack of memory.
1489 *
1490 * => aobj must be locked and is returned locked.
1491 */
1492 static boolean_t
1493 uao_pagein_page(aobj, pageidx)
1494 struct uvm_aobj *aobj;
1495 int pageidx;
1496 {
1497 struct vm_page *pg;
1498 int rv, slot, npages;
1499 UVMHIST_FUNC("uao_pagein_page"); UVMHIST_CALLED(pdhist);
1500
1501 pg = NULL;
1502 npages = 1;
1503 /* locked: aobj */
1504 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1505 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1506 /* unlocked: aobj */
1507
1508 /*
1509 * relock and finish up.
1510 */
1511 simple_lock(&aobj->u_obj.vmobjlock);
1512
1513 switch (rv) {
1514 case VM_PAGER_OK:
1515 break;
1516
1517 case VM_PAGER_ERROR:
1518 case VM_PAGER_REFAULT:
1519 /*
1520 * nothing more to do on errors.
1521 * VM_PAGER_REFAULT can only mean that the anon was freed,
1522 * so again there's nothing to do.
1523 */
1524 return FALSE;
1525
1526 #ifdef DIAGNOSTIC
1527 default:
1528 panic("uao_pagein_page: uao_get -> %d\n", rv);
1529 #endif
1530 }
1531
1532 #ifdef DIAGNOSTIC
1533 /*
1534 * this should never happen, since we have a reference on the aobj.
1535 */
1536 if (pg->flags & PG_RELEASED) {
1537 panic("uao_pagein_page: found PG_RELEASED page?\n");
1538 }
1539 #endif
1540
1541 /*
1542 * ok, we've got the page now.
1543 * mark it as dirty, clear its swslot and un-busy it.
1544 */
1545 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1546 uvm_swap_free(slot, 1);
1547 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1548 UVM_PAGE_OWN(pg, NULL);
1549
1550 /*
1551 * deactivate the page (to put it on a page queue).
1552 */
1553 pmap_clear_reference(pg);
1554 pmap_page_protect(pg, VM_PROT_NONE);
1555 uvm_lock_pageq();
1556 uvm_pagedeactivate(pg);
1557 uvm_unlock_pageq();
1558
1559 return FALSE;
1560 }
1561