uvm_aobj.c revision 1.36 1 /* $NetBSD: uvm_aobj.c,v 1.36 2000/11/24 20:34:01 chs Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45
46
47 #include "opt_uvmhist.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/pool.h>
54 #include <sys/kernel.h>
55
56 #include <uvm/uvm.h>
57
58 /*
59 * an aobj manages anonymous-memory backed uvm_objects. in addition
60 * to keeping the list of resident pages, it also keeps a list of
61 * allocated swap blocks. depending on the size of the aobj this list
62 * of allocated swap blocks is either stored in an array (small objects)
63 * or in a hash table (large objects).
64 */
65
66 /*
67 * local structures
68 */
69
70 /*
71 * for hash tables, we break the address space of the aobj into blocks
72 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
73 * be a power of two.
74 */
75
76 #define UAO_SWHASH_CLUSTER_SHIFT 4
77 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
78
79 /* get the "tag" for this page index */
80 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
81 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
82
83 /* given an ELT and a page index, find the swap slot */
84 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
85 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
86
87 /* given an ELT, return its pageidx base */
88 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
89 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
90
91 /*
92 * the swhash hash function
93 */
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 & (AOBJ)->u_swhashmask)])
97
98 /*
99 * the swhash threshhold determines if we will use an array or a
100 * hash table to store the list of allocated swap blocks.
101 */
102
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
106
107 /*
108 * the number of buckets in a swhash, with an upper bound
109 */
110 #define UAO_SWHASH_MAXBUCKETS 256
111 #define UAO_SWHASH_BUCKETS(AOBJ) \
112 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
113 UAO_SWHASH_MAXBUCKETS))
114
115
116 /*
117 * uao_swhash_elt: when a hash table is being used, this structure defines
118 * the format of an entry in the bucket list.
119 */
120
121 struct uao_swhash_elt {
122 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
123 voff_t tag; /* our 'tag' */
124 int count; /* our number of active slots */
125 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
126 };
127
128 /*
129 * uao_swhash: the swap hash table structure
130 */
131
132 LIST_HEAD(uao_swhash, uao_swhash_elt);
133
134 /*
135 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
136 */
137
138 struct pool uao_swhash_elt_pool;
139
140 /*
141 * uvm_aobj: the actual anon-backed uvm_object
142 *
143 * => the uvm_object is at the top of the structure, this allows
144 * (struct uvm_device *) == (struct uvm_object *)
145 * => only one of u_swslots and u_swhash is used in any given aobj
146 */
147
148 struct uvm_aobj {
149 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
150 int u_pages; /* number of pages in entire object */
151 int u_flags; /* the flags (see uvm_aobj.h) */
152 int *u_swslots; /* array of offset->swapslot mappings */
153 /*
154 * hashtable of offset->swapslot mappings
155 * (u_swhash is an array of bucket heads)
156 */
157 struct uao_swhash *u_swhash;
158 u_long u_swhashmask; /* mask for hashtable */
159 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
160 };
161
162 /*
163 * uvm_aobj_pool: pool of uvm_aobj structures
164 */
165
166 struct pool uvm_aobj_pool;
167
168 /*
169 * local functions
170 */
171
172 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
173 int, boolean_t));
174 static int uao_find_swslot __P((struct uvm_aobj *, int));
175 static boolean_t uao_flush __P((struct uvm_object *,
176 voff_t, voff_t, int));
177 static void uao_free __P((struct uvm_aobj *));
178 static int uao_get __P((struct uvm_object *, voff_t,
179 vm_page_t *, int *, int,
180 vm_prot_t, int, int));
181 static boolean_t uao_releasepg __P((struct vm_page *,
182 struct vm_page **));
183 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
184 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
185
186
187
188 /*
189 * aobj_pager
190 *
191 * note that some functions (e.g. put) are handled elsewhere
192 */
193
194 struct uvm_pagerops aobj_pager = {
195 NULL, /* init */
196 uao_reference, /* reference */
197 uao_detach, /* detach */
198 NULL, /* fault */
199 uao_flush, /* flush */
200 uao_get, /* get */
201 NULL, /* put (done by pagedaemon) */
202 NULL, /* cluster */
203 NULL, /* mk_pcluster */
204 uao_releasepg /* releasepg */
205 };
206
207 /*
208 * uao_list: global list of active aobjs, locked by uao_list_lock
209 */
210
211 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
212 static simple_lock_data_t uao_list_lock;
213
214
215 /*
216 * functions
217 */
218
219 /*
220 * hash table/array related functions
221 */
222
223 /*
224 * uao_find_swhash_elt: find (or create) a hash table entry for a page
225 * offset.
226 *
227 * => the object should be locked by the caller
228 */
229
230 static struct uao_swhash_elt *
231 uao_find_swhash_elt(aobj, pageidx, create)
232 struct uvm_aobj *aobj;
233 int pageidx;
234 boolean_t create;
235 {
236 struct uao_swhash *swhash;
237 struct uao_swhash_elt *elt;
238 voff_t page_tag;
239
240 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
241 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
242
243 /*
244 * now search the bucket for the requested tag
245 */
246 for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
247 if (elt->tag == page_tag)
248 return(elt);
249 }
250
251 /* fail now if we are not allowed to create a new entry in the bucket */
252 if (!create)
253 return NULL;
254
255
256 /*
257 * allocate a new entry for the bucket and init/insert it in
258 */
259 elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
260 LIST_INSERT_HEAD(swhash, elt, list);
261 elt->tag = page_tag;
262 elt->count = 0;
263 memset(elt->slots, 0, sizeof(elt->slots));
264
265 return(elt);
266 }
267
268 /*
269 * uao_find_swslot: find the swap slot number for an aobj/pageidx
270 *
271 * => object must be locked by caller
272 */
273 __inline static int
274 uao_find_swslot(aobj, pageidx)
275 struct uvm_aobj *aobj;
276 int pageidx;
277 {
278
279 /*
280 * if noswap flag is set, then we never return a slot
281 */
282
283 if (aobj->u_flags & UAO_FLAG_NOSWAP)
284 return(0);
285
286 /*
287 * if hashing, look in hash table.
288 */
289
290 if (UAO_USES_SWHASH(aobj)) {
291 struct uao_swhash_elt *elt =
292 uao_find_swhash_elt(aobj, pageidx, FALSE);
293
294 if (elt)
295 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
296 else
297 return(0);
298 }
299
300 /*
301 * otherwise, look in the array
302 */
303 return(aobj->u_swslots[pageidx]);
304 }
305
306 /*
307 * uao_set_swslot: set the swap slot for a page in an aobj.
308 *
309 * => setting a slot to zero frees the slot
310 * => object must be locked by caller
311 */
312 int
313 uao_set_swslot(uobj, pageidx, slot)
314 struct uvm_object *uobj;
315 int pageidx, slot;
316 {
317 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
318 int oldslot;
319 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
320 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
321 aobj, pageidx, slot, 0);
322
323 /*
324 * if noswap flag is set, then we can't set a slot
325 */
326
327 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
328
329 if (slot == 0)
330 return(0); /* a clear is ok */
331
332 /* but a set is not */
333 printf("uao_set_swslot: uobj = %p\n", uobj);
334 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
335 }
336
337 /*
338 * are we using a hash table? if so, add it in the hash.
339 */
340
341 if (UAO_USES_SWHASH(aobj)) {
342 /*
343 * Avoid allocating an entry just to free it again if
344 * the page had not swap slot in the first place, and
345 * we are freeing.
346 */
347 struct uao_swhash_elt *elt =
348 uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
349 if (elt == NULL) {
350 #ifdef DIAGNOSTIC
351 if (slot)
352 panic("uao_set_swslot: didn't create elt");
353 #endif
354 return (0);
355 }
356
357 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
358 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
359
360 /*
361 * now adjust the elt's reference counter and free it if we've
362 * dropped it to zero.
363 */
364
365 /* an allocation? */
366 if (slot) {
367 if (oldslot == 0)
368 elt->count++;
369 } else { /* freeing slot ... */
370 if (oldslot) /* to be safe */
371 elt->count--;
372
373 if (elt->count == 0) {
374 LIST_REMOVE(elt, list);
375 pool_put(&uao_swhash_elt_pool, elt);
376 }
377 }
378
379 } else {
380 /* we are using an array */
381 oldslot = aobj->u_swslots[pageidx];
382 aobj->u_swslots[pageidx] = slot;
383 }
384 return (oldslot);
385 }
386
387 /*
388 * end of hash/array functions
389 */
390
391 /*
392 * uao_free: free all resources held by an aobj, and then free the aobj
393 *
394 * => the aobj should be dead
395 */
396 static void
397 uao_free(aobj)
398 struct uvm_aobj *aobj;
399 {
400
401 simple_unlock(&aobj->u_obj.vmobjlock);
402
403 if (UAO_USES_SWHASH(aobj)) {
404 int i, hashbuckets = aobj->u_swhashmask + 1;
405
406 /*
407 * free the swslots from each hash bucket,
408 * then the hash bucket, and finally the hash table itself.
409 */
410 for (i = 0; i < hashbuckets; i++) {
411 struct uao_swhash_elt *elt, *next;
412
413 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
414 elt != NULL;
415 elt = next) {
416 int j;
417
418 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
419 int slot = elt->slots[j];
420
421 if (slot) {
422 uvm_swap_free(slot, 1);
423
424 /*
425 * this page is no longer
426 * only in swap.
427 */
428 simple_lock(&uvm.swap_data_lock);
429 uvmexp.swpgonly--;
430 simple_unlock(&uvm.swap_data_lock);
431 }
432 }
433
434 next = LIST_NEXT(elt, list);
435 pool_put(&uao_swhash_elt_pool, elt);
436 }
437 }
438 free(aobj->u_swhash, M_UVMAOBJ);
439 } else {
440 int i;
441
442 /*
443 * free the array
444 */
445
446 for (i = 0; i < aobj->u_pages; i++) {
447 int slot = aobj->u_swslots[i];
448
449 if (slot) {
450 uvm_swap_free(slot, 1);
451
452 /* this page is no longer only in swap. */
453 simple_lock(&uvm.swap_data_lock);
454 uvmexp.swpgonly--;
455 simple_unlock(&uvm.swap_data_lock);
456 }
457 }
458 free(aobj->u_swslots, M_UVMAOBJ);
459 }
460
461 /*
462 * finally free the aobj itself
463 */
464 pool_put(&uvm_aobj_pool, aobj);
465 }
466
467 /*
468 * pager functions
469 */
470
471 /*
472 * uao_create: create an aobj of the given size and return its uvm_object.
473 *
474 * => for normal use, flags are always zero
475 * => for the kernel object, the flags are:
476 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
477 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
478 */
479 struct uvm_object *
480 uao_create(size, flags)
481 vsize_t size;
482 int flags;
483 {
484 static struct uvm_aobj kernel_object_store; /* home of kernel_object */
485 static int kobj_alloced = 0; /* not allocated yet */
486 int pages = round_page(size) >> PAGE_SHIFT;
487 struct uvm_aobj *aobj;
488
489 /*
490 * malloc a new aobj unless we are asked for the kernel object
491 */
492 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
493 if (kobj_alloced)
494 panic("uao_create: kernel object already allocated");
495
496 aobj = &kernel_object_store;
497 aobj->u_pages = pages;
498 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
499 /* we are special, we never die */
500 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
501 kobj_alloced = UAO_FLAG_KERNOBJ;
502 } else if (flags & UAO_FLAG_KERNSWAP) {
503 aobj = &kernel_object_store;
504 if (kobj_alloced != UAO_FLAG_KERNOBJ)
505 panic("uao_create: asked to enable swap on kernel object");
506 kobj_alloced = UAO_FLAG_KERNSWAP;
507 } else { /* normal object */
508 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
509 aobj->u_pages = pages;
510 aobj->u_flags = 0; /* normal object */
511 aobj->u_obj.uo_refs = 1; /* start with 1 reference */
512 }
513
514 /*
515 * allocate hash/array if necessary
516 *
517 * note: in the KERNSWAP case no need to worry about locking since
518 * we are still booting we should be the only thread around.
519 */
520 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
521 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
522 M_NOWAIT : M_WAITOK;
523
524 /* allocate hash table or array depending on object size */
525 if (UAO_USES_SWHASH(aobj)) {
526 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
527 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
528 if (aobj->u_swhash == NULL)
529 panic("uao_create: hashinit swhash failed");
530 } else {
531 aobj->u_swslots = malloc(pages * sizeof(int),
532 M_UVMAOBJ, mflags);
533 if (aobj->u_swslots == NULL)
534 panic("uao_create: malloc swslots failed");
535 memset(aobj->u_swslots, 0, pages * sizeof(int));
536 }
537
538 if (flags) {
539 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
540 return(&aobj->u_obj);
541 /* done! */
542 }
543 }
544
545 /*
546 * init aobj fields
547 */
548 simple_lock_init(&aobj->u_obj.vmobjlock);
549 aobj->u_obj.pgops = &aobj_pager;
550 TAILQ_INIT(&aobj->u_obj.memq);
551 aobj->u_obj.uo_npages = 0;
552
553 /*
554 * now that aobj is ready, add it to the global list
555 */
556 simple_lock(&uao_list_lock);
557 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
558 simple_unlock(&uao_list_lock);
559
560 /*
561 * done!
562 */
563 return(&aobj->u_obj);
564 }
565
566
567
568 /*
569 * uao_init: set up aobj pager subsystem
570 *
571 * => called at boot time from uvm_pager_init()
572 */
573 void
574 uao_init()
575 {
576 static int uao_initialized;
577
578 if (uao_initialized)
579 return;
580 uao_initialized = TRUE;
581
582 LIST_INIT(&uao_list);
583 simple_lock_init(&uao_list_lock);
584
585 /*
586 * NOTE: Pages fror this pool must not come from a pageable
587 * kernel map!
588 */
589 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
590 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
591
592 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
593 "aobjpl", 0,
594 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
595 }
596
597 /*
598 * uao_reference: add a ref to an aobj
599 *
600 * => aobj must be unlocked
601 * => just lock it and call the locked version
602 */
603 void
604 uao_reference(uobj)
605 struct uvm_object *uobj;
606 {
607 simple_lock(&uobj->vmobjlock);
608 uao_reference_locked(uobj);
609 simple_unlock(&uobj->vmobjlock);
610 }
611
612 /*
613 * uao_reference_locked: add a ref to an aobj that is already locked
614 *
615 * => aobj must be locked
616 * this needs to be separate from the normal routine
617 * since sometimes we need to add a reference to an aobj when
618 * it's already locked.
619 */
620 void
621 uao_reference_locked(uobj)
622 struct uvm_object *uobj;
623 {
624 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
625
626 /*
627 * kernel_object already has plenty of references, leave it alone.
628 */
629
630 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
631 return;
632
633 uobj->uo_refs++; /* bump! */
634 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
635 uobj, uobj->uo_refs,0,0);
636 }
637
638
639 /*
640 * uao_detach: drop a reference to an aobj
641 *
642 * => aobj must be unlocked
643 * => just lock it and call the locked version
644 */
645 void
646 uao_detach(uobj)
647 struct uvm_object *uobj;
648 {
649 simple_lock(&uobj->vmobjlock);
650 uao_detach_locked(uobj);
651 }
652
653
654 /*
655 * uao_detach_locked: drop a reference to an aobj
656 *
657 * => aobj must be locked, and is unlocked (or freed) upon return.
658 * this needs to be separate from the normal routine
659 * since sometimes we need to detach from an aobj when
660 * it's already locked.
661 */
662 void
663 uao_detach_locked(uobj)
664 struct uvm_object *uobj;
665 {
666 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
667 struct vm_page *pg;
668 boolean_t busybody;
669 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
670
671 /*
672 * detaching from kernel_object is a noop.
673 */
674 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
675 simple_unlock(&uobj->vmobjlock);
676 return;
677 }
678
679 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
680 uobj->uo_refs--; /* drop ref! */
681 if (uobj->uo_refs) { /* still more refs? */
682 simple_unlock(&uobj->vmobjlock);
683 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
684 return;
685 }
686
687 /*
688 * remove the aobj from the global list.
689 */
690 simple_lock(&uao_list_lock);
691 LIST_REMOVE(aobj, u_list);
692 simple_unlock(&uao_list_lock);
693
694 /*
695 * free all the pages that aren't PG_BUSY,
696 * mark for release any that are.
697 */
698 busybody = FALSE;
699 for (pg = TAILQ_FIRST(&uobj->memq);
700 pg != NULL;
701 pg = TAILQ_NEXT(pg, listq)) {
702 if (pg->flags & PG_BUSY) {
703 pg->flags |= PG_RELEASED;
704 busybody = TRUE;
705 continue;
706 }
707
708 /* zap the mappings, free the swap slot, free the page */
709 pmap_page_protect(pg, VM_PROT_NONE);
710 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
711 uvm_lock_pageq();
712 uvm_pagefree(pg);
713 uvm_unlock_pageq();
714 }
715
716 /*
717 * if we found any busy pages, we're done for now.
718 * mark the aobj for death, releasepg will finish up for us.
719 */
720 if (busybody) {
721 aobj->u_flags |= UAO_FLAG_KILLME;
722 simple_unlock(&aobj->u_obj.vmobjlock);
723 return;
724 }
725
726 /*
727 * finally, free the rest.
728 */
729 uao_free(aobj);
730 }
731
732 /*
733 * uao_flush: "flush" pages out of a uvm object
734 *
735 * => object should be locked by caller. we may _unlock_ the object
736 * if (and only if) we need to clean a page (PGO_CLEANIT).
737 * XXXJRT Currently, however, we don't. In the case of cleaning
738 * XXXJRT a page, we simply just deactivate it. Should probably
739 * XXXJRT handle this better, in the future (although "flushing"
740 * XXXJRT anonymous memory isn't terribly important).
741 * => if PGO_CLEANIT is not set, then we will neither unlock the object
742 * or block.
743 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
744 * for flushing.
745 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
746 * that new pages are inserted on the tail end of the list. thus,
747 * we can make a complete pass through the object in one go by starting
748 * at the head and working towards the tail (new pages are put in
749 * front of us).
750 * => NOTE: we are allowed to lock the page queues, so the caller
751 * must not be holding the lock on them [e.g. pagedaemon had
752 * better not call us with the queues locked]
753 * => we return TRUE unless we encountered some sort of I/O error
754 * XXXJRT currently never happens, as we never directly initiate
755 * XXXJRT I/O
756 *
757 * comment on "cleaning" object and PG_BUSY pages:
758 * this routine is holding the lock on the object. the only time
759 * that is can run into a PG_BUSY page that it does not own is if
760 * some other process has started I/O on the page (e.g. either
761 * a pagein or a pageout). if the PG_BUSY page is being paged
762 * in, then it can not be dirty (!PG_CLEAN) because no one has
763 * had a change to modify it yet. if the PG_BUSY page is being
764 * paged out then it means that someone else has already started
765 * cleaning the page for us (how nice!). in this case, if we
766 * have syncio specified, then after we make our pass through the
767 * object we need to wait for the other PG_BUSY pages to clear
768 * off (i.e. we need to do an iosync). also note that once a
769 * page is PG_BUSY is must stary in its object until it is un-busyed.
770 * XXXJRT We never actually do this, as we are "flushing" anonymous
771 * XXXJRT memory, which doesn't have persistent backing store.
772 *
773 * note on page traversal:
774 * we can traverse the pages in an object either by going down the
775 * linked list in "uobj->memq", or we can go over the address range
776 * by page doing hash table lookups for each address. depending
777 * on how many pages are in the object it may be cheaper to do one
778 * or the other. we set "by_list" to true if we are using memq.
779 * if the cost of a hash lookup was equal to the cost of the list
780 * traversal we could compare the number of pages in the start->stop
781 * range to the total number of pages in the object. however, it
782 * seems that a hash table lookup is more expensive than the linked
783 * list traversal, so we multiply the number of pages in the
784 * start->stop range by a penalty which we define below.
785 */
786
787 #define UAO_HASH_PENALTY 4 /* XXX: a guess */
788
789 boolean_t
790 uao_flush(uobj, start, stop, flags)
791 struct uvm_object *uobj;
792 voff_t start, stop;
793 int flags;
794 {
795 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
796 struct vm_page *pp, *ppnext;
797 boolean_t retval, by_list;
798 voff_t curoff;
799 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
800
801 curoff = 0; /* XXX: shut up gcc */
802
803 retval = TRUE; /* default to success */
804
805 if (flags & PGO_ALLPAGES) {
806 start = 0;
807 stop = aobj->u_pages << PAGE_SHIFT;
808 by_list = TRUE; /* always go by the list */
809 } else {
810 start = trunc_page(start);
811 stop = round_page(stop);
812 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
813 printf("uao_flush: strange, got an out of range "
814 "flush (fixed)\n");
815 stop = aobj->u_pages << PAGE_SHIFT;
816 }
817 by_list = (uobj->uo_npages <=
818 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
819 }
820
821 UVMHIST_LOG(maphist,
822 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
823 start, stop, by_list, flags);
824
825 /*
826 * Don't need to do any work here if we're not freeing
827 * or deactivating pages.
828 */
829 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
830 UVMHIST_LOG(maphist,
831 "<- done (no work to do)",0,0,0,0);
832 return (retval);
833 }
834
835 /*
836 * now do it. note: we must update ppnext in the body of loop or we
837 * will get stuck. we need to use ppnext because we may free "pp"
838 * before doing the next loop.
839 */
840
841 if (by_list) {
842 pp = uobj->memq.tqh_first;
843 } else {
844 curoff = start;
845 pp = uvm_pagelookup(uobj, curoff);
846 }
847
848 ppnext = NULL; /* XXX: shut up gcc */
849 uvm_lock_pageq(); /* page queues locked */
850
851 /* locked: both page queues and uobj */
852 for ( ; (by_list && pp != NULL) ||
853 (!by_list && curoff < stop) ; pp = ppnext) {
854 if (by_list) {
855 ppnext = pp->listq.tqe_next;
856
857 /* range check */
858 if (pp->offset < start || pp->offset >= stop)
859 continue;
860 } else {
861 curoff += PAGE_SIZE;
862 if (curoff < stop)
863 ppnext = uvm_pagelookup(uobj, curoff);
864
865 /* null check */
866 if (pp == NULL)
867 continue;
868 }
869
870 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
871 /*
872 * XXX In these first 3 cases, we always just
873 * XXX deactivate the page. We may want to
874 * XXX handle the different cases more specifically
875 * XXX in the future.
876 */
877 case PGO_CLEANIT|PGO_FREE:
878 case PGO_CLEANIT|PGO_DEACTIVATE:
879 case PGO_DEACTIVATE:
880 deactivate_it:
881 /* skip the page if it's loaned or wired */
882 if (pp->loan_count != 0 ||
883 pp->wire_count != 0)
884 continue;
885
886 /* zap all mappings for the page. */
887 pmap_page_protect(pp, VM_PROT_NONE);
888
889 /* ...and deactivate the page. */
890 uvm_pagedeactivate(pp);
891
892 continue;
893
894 case PGO_FREE:
895 /*
896 * If there are multiple references to
897 * the object, just deactivate the page.
898 */
899 if (uobj->uo_refs > 1)
900 goto deactivate_it;
901
902 /* XXX skip the page if it's loaned or wired */
903 if (pp->loan_count != 0 ||
904 pp->wire_count != 0)
905 continue;
906
907 /*
908 * mark the page as released if its busy.
909 */
910 if (pp->flags & PG_BUSY) {
911 pp->flags |= PG_RELEASED;
912 continue;
913 }
914
915 /* zap all mappings for the page. */
916 pmap_page_protect(pp, VM_PROT_NONE);
917
918 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
919 uvm_pagefree(pp);
920
921 continue;
922
923 default:
924 panic("uao_flush: weird flags");
925 }
926 #ifdef DIAGNOSTIC
927 panic("uao_flush: unreachable code");
928 #endif
929 }
930
931 uvm_unlock_pageq();
932
933 UVMHIST_LOG(maphist,
934 "<- done, rv=%d",retval,0,0,0);
935 return (retval);
936 }
937
938 /*
939 * uao_get: fetch me a page
940 *
941 * we have three cases:
942 * 1: page is resident -> just return the page.
943 * 2: page is zero-fill -> allocate a new page and zero it.
944 * 3: page is swapped out -> fetch the page from swap.
945 *
946 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
947 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
948 * then we will need to return VM_PAGER_UNLOCK.
949 *
950 * => prefer map unlocked (not required)
951 * => object must be locked! we will _unlock_ it before starting any I/O.
952 * => flags: PGO_ALLPAGES: get all of the pages
953 * PGO_LOCKED: fault data structures are locked
954 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
955 * => NOTE: caller must check for released pages!!
956 */
957 static int
958 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
959 struct uvm_object *uobj;
960 voff_t offset;
961 struct vm_page **pps;
962 int *npagesp;
963 int centeridx, advice, flags;
964 vm_prot_t access_type;
965 {
966 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
967 voff_t current_offset;
968 vm_page_t ptmp;
969 int lcv, gotpages, maxpages, swslot, rv, pageidx;
970 boolean_t done;
971 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
972
973 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
974 aobj, offset, flags,0);
975
976 /*
977 * get number of pages
978 */
979 maxpages = *npagesp;
980
981 /*
982 * step 1: handled the case where fault data structures are locked.
983 */
984
985 if (flags & PGO_LOCKED) {
986 /*
987 * step 1a: get pages that are already resident. only do
988 * this if the data structures are locked (i.e. the first
989 * time through).
990 */
991
992 done = TRUE; /* be optimistic */
993 gotpages = 0; /* # of pages we got so far */
994
995 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
996 lcv++, current_offset += PAGE_SIZE) {
997 /* do we care about this page? if not, skip it */
998 if (pps[lcv] == PGO_DONTCARE)
999 continue;
1000
1001 ptmp = uvm_pagelookup(uobj, current_offset);
1002
1003 /*
1004 * if page is new, attempt to allocate the page,
1005 * zero-fill'd.
1006 */
1007 if (ptmp == NULL && uao_find_swslot(aobj,
1008 current_offset >> PAGE_SHIFT) == 0) {
1009 ptmp = uvm_pagealloc(uobj, current_offset,
1010 NULL, UVM_PGA_ZERO);
1011 if (ptmp) {
1012 /* new page */
1013 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1014 ptmp->pqflags |= PQ_AOBJ;
1015 UVM_PAGE_OWN(ptmp, NULL);
1016 }
1017 }
1018
1019 /*
1020 * to be useful must get a non-busy, non-released page
1021 */
1022 if (ptmp == NULL ||
1023 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1024 if (lcv == centeridx ||
1025 (flags & PGO_ALLPAGES) != 0)
1026 /* need to do a wait or I/O! */
1027 done = FALSE;
1028 continue;
1029 }
1030
1031 /*
1032 * useful page: busy/lock it and plug it in our
1033 * result array
1034 */
1035 /* caller must un-busy this page */
1036 ptmp->flags |= PG_BUSY;
1037 UVM_PAGE_OWN(ptmp, "uao_get1");
1038 pps[lcv] = ptmp;
1039 gotpages++;
1040
1041 } /* "for" lcv loop */
1042
1043 /*
1044 * step 1b: now we've either done everything needed or we
1045 * to unlock and do some waiting or I/O.
1046 */
1047
1048 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1049
1050 *npagesp = gotpages;
1051 if (done)
1052 /* bingo! */
1053 return(VM_PAGER_OK);
1054 else
1055 /* EEK! Need to unlock and I/O */
1056 return(VM_PAGER_UNLOCK);
1057 }
1058
1059 /*
1060 * step 2: get non-resident or busy pages.
1061 * object is locked. data structures are unlocked.
1062 */
1063
1064 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1065 lcv++, current_offset += PAGE_SIZE) {
1066
1067 /*
1068 * - skip over pages we've already gotten or don't want
1069 * - skip over pages we don't _have_ to get
1070 */
1071
1072 if (pps[lcv] != NULL ||
1073 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1074 continue;
1075
1076 pageidx = current_offset >> PAGE_SHIFT;
1077
1078 /*
1079 * we have yet to locate the current page (pps[lcv]). we
1080 * first look for a page that is already at the current offset.
1081 * if we find a page, we check to see if it is busy or
1082 * released. if that is the case, then we sleep on the page
1083 * until it is no longer busy or released and repeat the lookup.
1084 * if the page we found is neither busy nor released, then we
1085 * busy it (so we own it) and plug it into pps[lcv]. this
1086 * 'break's the following while loop and indicates we are
1087 * ready to move on to the next page in the "lcv" loop above.
1088 *
1089 * if we exit the while loop with pps[lcv] still set to NULL,
1090 * then it means that we allocated a new busy/fake/clean page
1091 * ptmp in the object and we need to do I/O to fill in the data.
1092 */
1093
1094 /* top of "pps" while loop */
1095 while (pps[lcv] == NULL) {
1096 /* look for a resident page */
1097 ptmp = uvm_pagelookup(uobj, current_offset);
1098
1099 /* not resident? allocate one now (if we can) */
1100 if (ptmp == NULL) {
1101
1102 ptmp = uvm_pagealloc(uobj, current_offset,
1103 NULL, 0);
1104
1105 /* out of RAM? */
1106 if (ptmp == NULL) {
1107 simple_unlock(&uobj->vmobjlock);
1108 UVMHIST_LOG(pdhist,
1109 "sleeping, ptmp == NULL\n",0,0,0,0);
1110 uvm_wait("uao_getpage");
1111 simple_lock(&uobj->vmobjlock);
1112 /* goto top of pps while loop */
1113 continue;
1114 }
1115
1116 /*
1117 * safe with PQ's unlocked: because we just
1118 * alloc'd the page
1119 */
1120 ptmp->pqflags |= PQ_AOBJ;
1121
1122 /*
1123 * got new page ready for I/O. break pps while
1124 * loop. pps[lcv] is still NULL.
1125 */
1126 break;
1127 }
1128
1129 /* page is there, see if we need to wait on it */
1130 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1131 ptmp->flags |= PG_WANTED;
1132 UVMHIST_LOG(pdhist,
1133 "sleeping, ptmp->flags 0x%x\n",
1134 ptmp->flags,0,0,0);
1135 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1136 FALSE, "uao_get", 0);
1137 simple_lock(&uobj->vmobjlock);
1138 continue; /* goto top of pps while loop */
1139 }
1140
1141 /*
1142 * if we get here then the page has become resident and
1143 * unbusy between steps 1 and 2. we busy it now (so we
1144 * own it) and set pps[lcv] (so that we exit the while
1145 * loop).
1146 */
1147 /* we own it, caller must un-busy */
1148 ptmp->flags |= PG_BUSY;
1149 UVM_PAGE_OWN(ptmp, "uao_get2");
1150 pps[lcv] = ptmp;
1151 }
1152
1153 /*
1154 * if we own the valid page at the correct offset, pps[lcv] will
1155 * point to it. nothing more to do except go to the next page.
1156 */
1157 if (pps[lcv])
1158 continue; /* next lcv */
1159
1160 /*
1161 * we have a "fake/busy/clean" page that we just allocated.
1162 * do the needed "i/o", either reading from swap or zeroing.
1163 */
1164 swslot = uao_find_swslot(aobj, pageidx);
1165
1166 /*
1167 * just zero the page if there's nothing in swap.
1168 */
1169 if (swslot == 0)
1170 {
1171 /*
1172 * page hasn't existed before, just zero it.
1173 */
1174 uvm_pagezero(ptmp);
1175 } else {
1176 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1177 swslot, 0,0,0);
1178
1179 /*
1180 * page in the swapped-out page.
1181 * unlock object for i/o, relock when done.
1182 */
1183 simple_unlock(&uobj->vmobjlock);
1184 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1185 simple_lock(&uobj->vmobjlock);
1186
1187 /*
1188 * I/O done. check for errors.
1189 */
1190 if (rv != VM_PAGER_OK)
1191 {
1192 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1193 rv,0,0,0);
1194 if (ptmp->flags & PG_WANTED)
1195 wakeup(ptmp);
1196
1197 /*
1198 * remove the swap slot from the aobj
1199 * and mark the aobj as having no real slot.
1200 * don't free the swap slot, thus preventing
1201 * it from being used again.
1202 */
1203 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1204 SWSLOT_BAD);
1205 uvm_swap_markbad(swslot, 1);
1206
1207 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1208 UVM_PAGE_OWN(ptmp, NULL);
1209 uvm_lock_pageq();
1210 uvm_pagefree(ptmp);
1211 uvm_unlock_pageq();
1212
1213 simple_unlock(&uobj->vmobjlock);
1214 return (rv);
1215 }
1216 }
1217
1218 /*
1219 * we got the page! clear the fake flag (indicates valid
1220 * data now in page) and plug into our result array. note
1221 * that page is still busy.
1222 *
1223 * it is the callers job to:
1224 * => check if the page is released
1225 * => unbusy the page
1226 * => activate the page
1227 */
1228
1229 ptmp->flags &= ~PG_FAKE; /* data is valid ... */
1230 pmap_clear_modify(ptmp); /* ... and clean */
1231 pps[lcv] = ptmp;
1232
1233 } /* lcv loop */
1234
1235 /*
1236 * finally, unlock object and return.
1237 */
1238
1239 simple_unlock(&uobj->vmobjlock);
1240 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1241 return(VM_PAGER_OK);
1242 }
1243
1244 /*
1245 * uao_releasepg: handle released page in an aobj
1246 *
1247 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1248 * to dispose of.
1249 * => caller must handle PG_WANTED case
1250 * => called with page's object locked, pageq's unlocked
1251 * => returns TRUE if page's object is still alive, FALSE if we
1252 * killed the page's object. if we return TRUE, then we
1253 * return with the object locked.
1254 * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1255 * with the page queues locked [for pagedaemon]
1256 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1257 * => we kill the aobj if it is not referenced and we are suppose to
1258 * kill it ("KILLME").
1259 */
1260 static boolean_t
1261 uao_releasepg(pg, nextpgp)
1262 struct vm_page *pg;
1263 struct vm_page **nextpgp; /* OUT */
1264 {
1265 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1266
1267 #ifdef DIAGNOSTIC
1268 if ((pg->flags & PG_RELEASED) == 0)
1269 panic("uao_releasepg: page not released!");
1270 #endif
1271
1272 /*
1273 * dispose of the page [caller handles PG_WANTED] and swap slot.
1274 */
1275 pmap_page_protect(pg, VM_PROT_NONE);
1276 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1277 uvm_lock_pageq();
1278 if (nextpgp)
1279 *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
1280 uvm_pagefree(pg);
1281 if (!nextpgp)
1282 uvm_unlock_pageq(); /* keep locked for daemon */
1283
1284 /*
1285 * if we're not killing the object, we're done.
1286 */
1287 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1288 return TRUE;
1289
1290 #ifdef DIAGNOSTIC
1291 if (aobj->u_obj.uo_refs)
1292 panic("uvm_km_releasepg: kill flag set on referenced object!");
1293 #endif
1294
1295 /*
1296 * if there are still pages in the object, we're done for now.
1297 */
1298 if (aobj->u_obj.uo_npages != 0)
1299 return TRUE;
1300
1301 #ifdef DIAGNOSTIC
1302 if (TAILQ_FIRST(&aobj->u_obj.memq))
1303 panic("uvn_releasepg: pages in object with npages == 0");
1304 #endif
1305
1306 /*
1307 * finally, free the rest.
1308 */
1309 uao_free(aobj);
1310
1311 return FALSE;
1312 }
1313
1314
1315 /*
1316 * uao_dropswap: release any swap resources from this aobj page.
1317 *
1318 * => aobj must be locked or have a reference count of 0.
1319 */
1320
1321 void
1322 uao_dropswap(uobj, pageidx)
1323 struct uvm_object *uobj;
1324 int pageidx;
1325 {
1326 int slot;
1327
1328 slot = uao_set_swslot(uobj, pageidx, 0);
1329 if (slot) {
1330 uvm_swap_free(slot, 1);
1331 }
1332 }
1333
1334
1335 /*
1336 * page in every page in every aobj that is paged-out to a range of swslots.
1337 *
1338 * => nothing should be locked.
1339 * => returns TRUE if pagein was aborted due to lack of memory.
1340 */
1341 boolean_t
1342 uao_swap_off(startslot, endslot)
1343 int startslot, endslot;
1344 {
1345 struct uvm_aobj *aobj, *nextaobj;
1346
1347 /*
1348 * walk the list of all aobjs.
1349 */
1350
1351 restart:
1352 simple_lock(&uao_list_lock);
1353
1354 for (aobj = LIST_FIRST(&uao_list);
1355 aobj != NULL;
1356 aobj = nextaobj) {
1357 boolean_t rv;
1358
1359 /*
1360 * try to get the object lock,
1361 * start all over if we fail.
1362 * most of the time we'll get the aobj lock,
1363 * so this should be a rare case.
1364 */
1365 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1366 simple_unlock(&uao_list_lock);
1367 goto restart;
1368 }
1369
1370 /*
1371 * add a ref to the aobj so it doesn't disappear
1372 * while we're working.
1373 */
1374 uao_reference_locked(&aobj->u_obj);
1375
1376 /*
1377 * now it's safe to unlock the uao list.
1378 */
1379 simple_unlock(&uao_list_lock);
1380
1381 /*
1382 * page in any pages in the swslot range.
1383 * if there's an error, abort and return the error.
1384 */
1385 rv = uao_pagein(aobj, startslot, endslot);
1386 if (rv) {
1387 uao_detach_locked(&aobj->u_obj);
1388 return rv;
1389 }
1390
1391 /*
1392 * we're done with this aobj.
1393 * relock the list and drop our ref on the aobj.
1394 */
1395 simple_lock(&uao_list_lock);
1396 nextaobj = LIST_NEXT(aobj, u_list);
1397 uao_detach_locked(&aobj->u_obj);
1398 }
1399
1400 /*
1401 * done with traversal, unlock the list
1402 */
1403 simple_unlock(&uao_list_lock);
1404 return FALSE;
1405 }
1406
1407
1408 /*
1409 * page in any pages from aobj in the given range.
1410 *
1411 * => aobj must be locked and is returned locked.
1412 * => returns TRUE if pagein was aborted due to lack of memory.
1413 */
1414 static boolean_t
1415 uao_pagein(aobj, startslot, endslot)
1416 struct uvm_aobj *aobj;
1417 int startslot, endslot;
1418 {
1419 boolean_t rv;
1420
1421 if (UAO_USES_SWHASH(aobj)) {
1422 struct uao_swhash_elt *elt;
1423 int bucket;
1424
1425 restart:
1426 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1427 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1428 elt != NULL;
1429 elt = LIST_NEXT(elt, list)) {
1430 int i;
1431
1432 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1433 int slot = elt->slots[i];
1434
1435 /*
1436 * if the slot isn't in range, skip it.
1437 */
1438 if (slot < startslot ||
1439 slot >= endslot) {
1440 continue;
1441 }
1442
1443 /*
1444 * process the page,
1445 * the start over on this object
1446 * since the swhash elt
1447 * may have been freed.
1448 */
1449 rv = uao_pagein_page(aobj,
1450 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1451 if (rv) {
1452 return rv;
1453 }
1454 goto restart;
1455 }
1456 }
1457 }
1458 } else {
1459 int i;
1460
1461 for (i = 0; i < aobj->u_pages; i++) {
1462 int slot = aobj->u_swslots[i];
1463
1464 /*
1465 * if the slot isn't in range, skip it
1466 */
1467 if (slot < startslot || slot >= endslot) {
1468 continue;
1469 }
1470
1471 /*
1472 * process the page.
1473 */
1474 rv = uao_pagein_page(aobj, i);
1475 if (rv) {
1476 return rv;
1477 }
1478 }
1479 }
1480
1481 return FALSE;
1482 }
1483
1484 /*
1485 * page in a page from an aobj. used for swap_off.
1486 * returns TRUE if pagein was aborted due to lack of memory.
1487 *
1488 * => aobj must be locked and is returned locked.
1489 */
1490 static boolean_t
1491 uao_pagein_page(aobj, pageidx)
1492 struct uvm_aobj *aobj;
1493 int pageidx;
1494 {
1495 struct vm_page *pg;
1496 int rv, slot, npages;
1497 UVMHIST_FUNC("uao_pagein_page"); UVMHIST_CALLED(pdhist);
1498
1499 pg = NULL;
1500 npages = 1;
1501 /* locked: aobj */
1502 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1503 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1504 /* unlocked: aobj */
1505
1506 /*
1507 * relock and finish up.
1508 */
1509 simple_lock(&aobj->u_obj.vmobjlock);
1510
1511 switch (rv) {
1512 case VM_PAGER_OK:
1513 break;
1514
1515 case VM_PAGER_ERROR:
1516 case VM_PAGER_REFAULT:
1517 /*
1518 * nothing more to do on errors.
1519 * VM_PAGER_REFAULT can only mean that the anon was freed,
1520 * so again there's nothing to do.
1521 */
1522 return FALSE;
1523
1524 #ifdef DIAGNOSTIC
1525 default:
1526 panic("uao_pagein_page: uao_get -> %d\n", rv);
1527 #endif
1528 }
1529
1530 #ifdef DIAGNOSTIC
1531 /*
1532 * this should never happen, since we have a reference on the aobj.
1533 */
1534 if (pg->flags & PG_RELEASED) {
1535 panic("uao_pagein_page: found PG_RELEASED page?\n");
1536 }
1537 #endif
1538
1539 /*
1540 * ok, we've got the page now.
1541 * mark it as dirty, clear its swslot and un-busy it.
1542 */
1543 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1544 uvm_swap_free(slot, 1);
1545 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1546 UVM_PAGE_OWN(pg, NULL);
1547
1548 /*
1549 * deactivate the page (to put it on a page queue).
1550 */
1551 pmap_clear_reference(pg);
1552 pmap_page_protect(pg, VM_PROT_NONE);
1553 uvm_lock_pageq();
1554 uvm_pagedeactivate(pg);
1555 uvm_unlock_pageq();
1556
1557 return FALSE;
1558 }
1559