uvm_aobj.c revision 1.44 1 /* $NetBSD: uvm_aobj.c,v 1.44 2001/06/22 06:20:24 chs Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45
46
47 #include "opt_uvmhist.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/pool.h>
55 #include <sys/kernel.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 /* given an ELT and a page index, find the swap slot */
85 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
86 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
87
88 /* given an ELT, return its pageidx base */
89 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
90 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
91
92 /*
93 * the swhash hash function
94 */
95 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
96 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
97 & (AOBJ)->u_swhashmask)])
98
99 /*
100 * the swhash threshhold determines if we will use an array or a
101 * hash table to store the list of allocated swap blocks.
102 */
103
104 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
105 #define UAO_USES_SWHASH(AOBJ) \
106 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
107
108 /*
109 * the number of buckets in a swhash, with an upper bound
110 */
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 UAO_SWHASH_MAXBUCKETS))
115
116
117 /*
118 * uao_swhash_elt: when a hash table is being used, this structure defines
119 * the format of an entry in the bucket list.
120 */
121
122 struct uao_swhash_elt {
123 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
124 voff_t tag; /* our 'tag' */
125 int count; /* our number of active slots */
126 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
127 };
128
129 /*
130 * uao_swhash: the swap hash table structure
131 */
132
133 LIST_HEAD(uao_swhash, uao_swhash_elt);
134
135 /*
136 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
137 */
138
139 struct pool uao_swhash_elt_pool;
140
141 /*
142 * uvm_aobj: the actual anon-backed uvm_object
143 *
144 * => the uvm_object is at the top of the structure, this allows
145 * (struct uvm_device *) == (struct uvm_object *)
146 * => only one of u_swslots and u_swhash is used in any given aobj
147 */
148
149 struct uvm_aobj {
150 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
151 int u_pages; /* number of pages in entire object */
152 int u_flags; /* the flags (see uvm_aobj.h) */
153 int *u_swslots; /* array of offset->swapslot mappings */
154 /*
155 * hashtable of offset->swapslot mappings
156 * (u_swhash is an array of bucket heads)
157 */
158 struct uao_swhash *u_swhash;
159 u_long u_swhashmask; /* mask for hashtable */
160 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
161 };
162
163 /*
164 * uvm_aobj_pool: pool of uvm_aobj structures
165 */
166
167 struct pool uvm_aobj_pool;
168
169 /*
170 * local functions
171 */
172
173 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
174 int, boolean_t));
175 static int uao_find_swslot __P((struct uvm_aobj *, int));
176 static boolean_t uao_flush __P((struct uvm_object *,
177 voff_t, voff_t, int));
178 static void uao_free __P((struct uvm_aobj *));
179 static int uao_get __P((struct uvm_object *, voff_t,
180 struct vm_page **, int *, int,
181 vm_prot_t, int, int));
182 static boolean_t uao_releasepg __P((struct vm_page *,
183 struct vm_page **));
184 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
185 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
186
187 /*
188 * aobj_pager
189 *
190 * note that some functions (e.g. put) are handled elsewhere
191 */
192
193 struct uvm_pagerops aobj_pager = {
194 NULL, /* init */
195 uao_reference, /* reference */
196 uao_detach, /* detach */
197 NULL, /* fault */
198 uao_flush, /* flush */
199 uao_get, /* get */
200 NULL, /* put (done by pagedaemon) */
201 NULL, /* cluster */
202 NULL, /* mk_pcluster */
203 uao_releasepg /* releasepg */
204 };
205
206 /*
207 * uao_list: global list of active aobjs, locked by uao_list_lock
208 */
209
210 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
211 static struct simplelock uao_list_lock;
212
213
214 /*
215 * functions
216 */
217
218 /*
219 * hash table/array related functions
220 */
221
222 /*
223 * uao_find_swhash_elt: find (or create) a hash table entry for a page
224 * offset.
225 *
226 * => the object should be locked by the caller
227 */
228
229 static struct uao_swhash_elt *
230 uao_find_swhash_elt(aobj, pageidx, create)
231 struct uvm_aobj *aobj;
232 int pageidx;
233 boolean_t create;
234 {
235 struct uao_swhash *swhash;
236 struct uao_swhash_elt *elt;
237 voff_t page_tag;
238
239 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
240 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
241
242 /*
243 * now search the bucket for the requested tag
244 */
245 LIST_FOREACH(elt, swhash, list) {
246 if (elt->tag == page_tag)
247 return(elt);
248 }
249
250 /* fail now if we are not allowed to create a new entry in the bucket */
251 if (!create)
252 return NULL;
253
254
255 /*
256 * allocate a new entry for the bucket and init/insert it in
257 */
258 elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
259 LIST_INSERT_HEAD(swhash, elt, list);
260 elt->tag = page_tag;
261 elt->count = 0;
262 memset(elt->slots, 0, sizeof(elt->slots));
263
264 return(elt);
265 }
266
267 /*
268 * uao_find_swslot: find the swap slot number for an aobj/pageidx
269 *
270 * => object must be locked by caller
271 */
272 __inline static int
273 uao_find_swslot(aobj, pageidx)
274 struct uvm_aobj *aobj;
275 int pageidx;
276 {
277
278 /*
279 * if noswap flag is set, then we never return a slot
280 */
281
282 if (aobj->u_flags & UAO_FLAG_NOSWAP)
283 return(0);
284
285 /*
286 * if hashing, look in hash table.
287 */
288
289 if (UAO_USES_SWHASH(aobj)) {
290 struct uao_swhash_elt *elt =
291 uao_find_swhash_elt(aobj, pageidx, FALSE);
292
293 if (elt)
294 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
295 else
296 return(0);
297 }
298
299 /*
300 * otherwise, look in the array
301 */
302 return(aobj->u_swslots[pageidx]);
303 }
304
305 /*
306 * uao_set_swslot: set the swap slot for a page in an aobj.
307 *
308 * => setting a slot to zero frees the slot
309 * => object must be locked by caller
310 */
311 int
312 uao_set_swslot(uobj, pageidx, slot)
313 struct uvm_object *uobj;
314 int pageidx, slot;
315 {
316 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
317 int oldslot;
318 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
319 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
320 aobj, pageidx, slot, 0);
321
322 /*
323 * if noswap flag is set, then we can't set a slot
324 */
325
326 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
327
328 if (slot == 0)
329 return(0); /* a clear is ok */
330
331 /* but a set is not */
332 printf("uao_set_swslot: uobj = %p\n", uobj);
333 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
334 }
335
336 /*
337 * are we using a hash table? if so, add it in the hash.
338 */
339
340 if (UAO_USES_SWHASH(aobj)) {
341
342 /*
343 * Avoid allocating an entry just to free it again if
344 * the page had not swap slot in the first place, and
345 * we are freeing.
346 */
347
348 struct uao_swhash_elt *elt =
349 uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
350 if (elt == NULL) {
351 KASSERT(slot == 0);
352 return (0);
353 }
354
355 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
356 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
357
358 /*
359 * now adjust the elt's reference counter and free it if we've
360 * dropped it to zero.
361 */
362
363 /* an allocation? */
364 if (slot) {
365 if (oldslot == 0)
366 elt->count++;
367 } else { /* freeing slot ... */
368 if (oldslot) /* to be safe */
369 elt->count--;
370
371 if (elt->count == 0) {
372 LIST_REMOVE(elt, list);
373 pool_put(&uao_swhash_elt_pool, elt);
374 }
375 }
376 } else {
377 /* we are using an array */
378 oldslot = aobj->u_swslots[pageidx];
379 aobj->u_swslots[pageidx] = slot;
380 }
381 return (oldslot);
382 }
383
384 /*
385 * end of hash/array functions
386 */
387
388 /*
389 * uao_free: free all resources held by an aobj, and then free the aobj
390 *
391 * => the aobj should be dead
392 */
393 static void
394 uao_free(aobj)
395 struct uvm_aobj *aobj;
396 {
397
398 simple_unlock(&aobj->u_obj.vmobjlock);
399
400 if (UAO_USES_SWHASH(aobj)) {
401 int i, hashbuckets = aobj->u_swhashmask + 1;
402
403 /*
404 * free the swslots from each hash bucket,
405 * then the hash bucket, and finally the hash table itself.
406 */
407 for (i = 0; i < hashbuckets; i++) {
408 struct uao_swhash_elt *elt, *next;
409
410 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
411 elt != NULL;
412 elt = next) {
413 int j;
414
415 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
416 int slot = elt->slots[j];
417
418 if (slot == 0) {
419 continue;
420 }
421 uvm_swap_free(slot, 1);
422
423 /*
424 * this page is no longer
425 * only in swap.
426 */
427 simple_lock(&uvm.swap_data_lock);
428 uvmexp.swpgonly--;
429 simple_unlock(&uvm.swap_data_lock);
430 }
431
432 next = LIST_NEXT(elt, list);
433 pool_put(&uao_swhash_elt_pool, elt);
434 }
435 }
436 free(aobj->u_swhash, M_UVMAOBJ);
437 } else {
438 int i;
439
440 /*
441 * free the array
442 */
443
444 for (i = 0; i < aobj->u_pages; i++) {
445 int slot = aobj->u_swslots[i];
446
447 if (slot) {
448 uvm_swap_free(slot, 1);
449
450 /* this page is no longer only in swap. */
451 simple_lock(&uvm.swap_data_lock);
452 uvmexp.swpgonly--;
453 simple_unlock(&uvm.swap_data_lock);
454 }
455 }
456 free(aobj->u_swslots, M_UVMAOBJ);
457 }
458
459 /*
460 * finally free the aobj itself
461 */
462 pool_put(&uvm_aobj_pool, aobj);
463 }
464
465 /*
466 * pager functions
467 */
468
469 /*
470 * uao_create: create an aobj of the given size and return its uvm_object.
471 *
472 * => for normal use, flags are always zero
473 * => for the kernel object, the flags are:
474 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
475 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
476 */
477 struct uvm_object *
478 uao_create(size, flags)
479 vsize_t size;
480 int flags;
481 {
482 static struct uvm_aobj kernel_object_store; /* home of kernel_object */
483 static int kobj_alloced = 0; /* not allocated yet */
484 int pages = round_page(size) >> PAGE_SHIFT;
485 struct uvm_aobj *aobj;
486
487 /*
488 * malloc a new aobj unless we are asked for the kernel object
489 */
490 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
491 if (kobj_alloced)
492 panic("uao_create: kernel object already allocated");
493
494 aobj = &kernel_object_store;
495 aobj->u_pages = pages;
496 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
497 /* we are special, we never die */
498 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
499 kobj_alloced = UAO_FLAG_KERNOBJ;
500 } else if (flags & UAO_FLAG_KERNSWAP) {
501 aobj = &kernel_object_store;
502 if (kobj_alloced != UAO_FLAG_KERNOBJ)
503 panic("uao_create: asked to enable swap on kernel object");
504 kobj_alloced = UAO_FLAG_KERNSWAP;
505 } else { /* normal object */
506 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
507 aobj->u_pages = pages;
508 aobj->u_flags = 0; /* normal object */
509 aobj->u_obj.uo_refs = 1; /* start with 1 reference */
510 }
511
512 /*
513 * allocate hash/array if necessary
514 *
515 * note: in the KERNSWAP case no need to worry about locking since
516 * we are still booting we should be the only thread around.
517 */
518 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
519 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
520 M_NOWAIT : M_WAITOK;
521
522 /* allocate hash table or array depending on object size */
523 if (UAO_USES_SWHASH(aobj)) {
524 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
525 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
526 if (aobj->u_swhash == NULL)
527 panic("uao_create: hashinit swhash failed");
528 } else {
529 aobj->u_swslots = malloc(pages * sizeof(int),
530 M_UVMAOBJ, mflags);
531 if (aobj->u_swslots == NULL)
532 panic("uao_create: malloc swslots failed");
533 memset(aobj->u_swslots, 0, pages * sizeof(int));
534 }
535
536 if (flags) {
537 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
538 return(&aobj->u_obj);
539 /* done! */
540 }
541 }
542
543 /*
544 * init aobj fields
545 */
546 simple_lock_init(&aobj->u_obj.vmobjlock);
547 aobj->u_obj.pgops = &aobj_pager;
548 TAILQ_INIT(&aobj->u_obj.memq);
549 aobj->u_obj.uo_npages = 0;
550
551 /*
552 * now that aobj is ready, add it to the global list
553 */
554 simple_lock(&uao_list_lock);
555 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
556 simple_unlock(&uao_list_lock);
557
558 /*
559 * done!
560 */
561 return(&aobj->u_obj);
562 }
563
564
565
566 /*
567 * uao_init: set up aobj pager subsystem
568 *
569 * => called at boot time from uvm_pager_init()
570 */
571 void
572 uao_init()
573 {
574 static int uao_initialized;
575
576 if (uao_initialized)
577 return;
578 uao_initialized = TRUE;
579
580 LIST_INIT(&uao_list);
581 simple_lock_init(&uao_list_lock);
582
583 /*
584 * NOTE: Pages fror this pool must not come from a pageable
585 * kernel map!
586 */
587 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
588 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
589
590 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
591 "aobjpl", 0,
592 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
593 }
594
595 /*
596 * uao_reference: add a ref to an aobj
597 *
598 * => aobj must be unlocked
599 * => just lock it and call the locked version
600 */
601 void
602 uao_reference(uobj)
603 struct uvm_object *uobj;
604 {
605 simple_lock(&uobj->vmobjlock);
606 uao_reference_locked(uobj);
607 simple_unlock(&uobj->vmobjlock);
608 }
609
610 /*
611 * uao_reference_locked: add a ref to an aobj that is already locked
612 *
613 * => aobj must be locked
614 * this needs to be separate from the normal routine
615 * since sometimes we need to add a reference to an aobj when
616 * it's already locked.
617 */
618 void
619 uao_reference_locked(uobj)
620 struct uvm_object *uobj;
621 {
622 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
623
624 /*
625 * kernel_object already has plenty of references, leave it alone.
626 */
627
628 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
629 return;
630
631 uobj->uo_refs++; /* bump! */
632 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
633 uobj, uobj->uo_refs,0,0);
634 }
635
636
637 /*
638 * uao_detach: drop a reference to an aobj
639 *
640 * => aobj must be unlocked
641 * => just lock it and call the locked version
642 */
643 void
644 uao_detach(uobj)
645 struct uvm_object *uobj;
646 {
647 simple_lock(&uobj->vmobjlock);
648 uao_detach_locked(uobj);
649 }
650
651
652 /*
653 * uao_detach_locked: drop a reference to an aobj
654 *
655 * => aobj must be locked, and is unlocked (or freed) upon return.
656 * this needs to be separate from the normal routine
657 * since sometimes we need to detach from an aobj when
658 * it's already locked.
659 */
660 void
661 uao_detach_locked(uobj)
662 struct uvm_object *uobj;
663 {
664 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
665 struct vm_page *pg, *nextpg;
666 boolean_t busybody;
667 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
668
669 /*
670 * detaching from kernel_object is a noop.
671 */
672 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
673 simple_unlock(&uobj->vmobjlock);
674 return;
675 }
676
677 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
678 uobj->uo_refs--; /* drop ref! */
679 if (uobj->uo_refs) { /* still more refs? */
680 simple_unlock(&uobj->vmobjlock);
681 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
682 return;
683 }
684
685 /*
686 * remove the aobj from the global list.
687 */
688 simple_lock(&uao_list_lock);
689 LIST_REMOVE(aobj, u_list);
690 simple_unlock(&uao_list_lock);
691
692 /*
693 * free all the pages that aren't PG_BUSY,
694 * mark for release any that are.
695 */
696 busybody = FALSE;
697 for (pg = TAILQ_FIRST(&uobj->memq); pg != NULL; pg = nextpg) {
698 nextpg = TAILQ_NEXT(pg, listq);
699 if (pg->flags & PG_BUSY) {
700 pg->flags |= PG_RELEASED;
701 busybody = TRUE;
702 continue;
703 }
704
705 /* zap the mappings, free the swap slot, free the page */
706 pmap_page_protect(pg, VM_PROT_NONE);
707 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
708 uvm_lock_pageq();
709 uvm_pagefree(pg);
710 uvm_unlock_pageq();
711 }
712
713 /*
714 * if we found any busy pages, we're done for now.
715 * mark the aobj for death, releasepg will finish up for us.
716 */
717 if (busybody) {
718 aobj->u_flags |= UAO_FLAG_KILLME;
719 simple_unlock(&aobj->u_obj.vmobjlock);
720 return;
721 }
722
723 /*
724 * finally, free the rest.
725 */
726 uao_free(aobj);
727 }
728
729 /*
730 * uao_flush: "flush" pages out of a uvm object
731 *
732 * => object should be locked by caller. we may _unlock_ the object
733 * if (and only if) we need to clean a page (PGO_CLEANIT).
734 * XXXJRT Currently, however, we don't. In the case of cleaning
735 * XXXJRT a page, we simply just deactivate it. Should probably
736 * XXXJRT handle this better, in the future (although "flushing"
737 * XXXJRT anonymous memory isn't terribly important).
738 * => if PGO_CLEANIT is not set, then we will neither unlock the object
739 * or block.
740 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
741 * for flushing.
742 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
743 * that new pages are inserted on the tail end of the list. thus,
744 * we can make a complete pass through the object in one go by starting
745 * at the head and working towards the tail (new pages are put in
746 * front of us).
747 * => NOTE: we are allowed to lock the page queues, so the caller
748 * must not be holding the lock on them [e.g. pagedaemon had
749 * better not call us with the queues locked]
750 * => we return TRUE unless we encountered some sort of I/O error
751 * XXXJRT currently never happens, as we never directly initiate
752 * XXXJRT I/O
753 *
754 * comment on "cleaning" object and PG_BUSY pages:
755 * this routine is holding the lock on the object. the only time
756 * that is can run into a PG_BUSY page that it does not own is if
757 * some other process has started I/O on the page (e.g. either
758 * a pagein or a pageout). if the PG_BUSY page is being paged
759 * in, then it can not be dirty (!PG_CLEAN) because no one has
760 * had a change to modify it yet. if the PG_BUSY page is being
761 * paged out then it means that someone else has already started
762 * cleaning the page for us (how nice!). in this case, if we
763 * have syncio specified, then after we make our pass through the
764 * object we need to wait for the other PG_BUSY pages to clear
765 * off (i.e. we need to do an iosync). also note that once a
766 * page is PG_BUSY is must stary in its object until it is un-busyed.
767 * XXXJRT We never actually do this, as we are "flushing" anonymous
768 * XXXJRT memory, which doesn't have persistent backing store.
769 *
770 * note on page traversal:
771 * we can traverse the pages in an object either by going down the
772 * linked list in "uobj->memq", or we can go over the address range
773 * by page doing hash table lookups for each address. depending
774 * on how many pages are in the object it may be cheaper to do one
775 * or the other. we set "by_list" to true if we are using memq.
776 * if the cost of a hash lookup was equal to the cost of the list
777 * traversal we could compare the number of pages in the start->stop
778 * range to the total number of pages in the object. however, it
779 * seems that a hash table lookup is more expensive than the linked
780 * list traversal, so we multiply the number of pages in the
781 * start->stop range by a penalty which we define below.
782 */
783
784 #define UAO_HASH_PENALTY 4 /* XXX: a guess */
785
786 boolean_t
787 uao_flush(uobj, start, stop, flags)
788 struct uvm_object *uobj;
789 voff_t start, stop;
790 int flags;
791 {
792 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
793 struct vm_page *pp, *ppnext;
794 boolean_t retval, by_list;
795 voff_t curoff;
796 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
797
798 curoff = 0; /* XXX: shut up gcc */
799
800 retval = TRUE; /* default to success */
801
802 if (flags & PGO_ALLPAGES) {
803 start = 0;
804 stop = aobj->u_pages << PAGE_SHIFT;
805 by_list = TRUE; /* always go by the list */
806 } else {
807 start = trunc_page(start);
808 stop = round_page(stop);
809 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
810 printf("uao_flush: strange, got an out of range "
811 "flush (fixed)\n");
812 stop = aobj->u_pages << PAGE_SHIFT;
813 }
814 by_list = (uobj->uo_npages <=
815 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
816 }
817
818 UVMHIST_LOG(maphist,
819 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
820 start, stop, by_list, flags);
821
822 /*
823 * Don't need to do any work here if we're not freeing
824 * or deactivating pages.
825 */
826 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
827 UVMHIST_LOG(maphist,
828 "<- done (no work to do)",0,0,0,0);
829 return (retval);
830 }
831
832 /*
833 * now do it. note: we must update ppnext in the body of loop or we
834 * will get stuck. we need to use ppnext because we may free "pp"
835 * before doing the next loop.
836 */
837
838 if (by_list) {
839 pp = uobj->memq.tqh_first;
840 } else {
841 curoff = start;
842 pp = uvm_pagelookup(uobj, curoff);
843 }
844
845 ppnext = NULL; /* XXX: shut up gcc */
846 uvm_lock_pageq(); /* page queues locked */
847
848 /* locked: both page queues and uobj */
849 for ( ; (by_list && pp != NULL) ||
850 (!by_list && curoff < stop) ; pp = ppnext) {
851 if (by_list) {
852 ppnext = TAILQ_NEXT(pp, listq);
853
854 /* range check */
855 if (pp->offset < start || pp->offset >= stop)
856 continue;
857 } else {
858 curoff += PAGE_SIZE;
859 if (curoff < stop)
860 ppnext = uvm_pagelookup(uobj, curoff);
861
862 /* null check */
863 if (pp == NULL)
864 continue;
865 }
866
867 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
868 /*
869 * XXX In these first 3 cases, we always just
870 * XXX deactivate the page. We may want to
871 * XXX handle the different cases more specifically
872 * XXX in the future.
873 */
874 case PGO_CLEANIT|PGO_FREE:
875 case PGO_CLEANIT|PGO_DEACTIVATE:
876 case PGO_DEACTIVATE:
877 deactivate_it:
878 /* skip the page if it's loaned or wired */
879 if (pp->loan_count != 0 ||
880 pp->wire_count != 0)
881 continue;
882
883 /* ...and deactivate the page. */
884 pmap_clear_reference(pp);
885 uvm_pagedeactivate(pp);
886
887 continue;
888
889 case PGO_FREE:
890 /*
891 * If there are multiple references to
892 * the object, just deactivate the page.
893 */
894 if (uobj->uo_refs > 1)
895 goto deactivate_it;
896
897 /* XXX skip the page if it's loaned or wired */
898 if (pp->loan_count != 0 ||
899 pp->wire_count != 0)
900 continue;
901
902 /*
903 * mark the page as released if its busy.
904 */
905 if (pp->flags & PG_BUSY) {
906 pp->flags |= PG_RELEASED;
907 continue;
908 }
909
910 /* zap all mappings for the page. */
911 pmap_page_protect(pp, VM_PROT_NONE);
912
913 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
914 uvm_pagefree(pp);
915
916 continue;
917
918 default:
919 panic("uao_flush: weird flags");
920 }
921 }
922
923 uvm_unlock_pageq();
924
925 UVMHIST_LOG(maphist,
926 "<- done, rv=%d",retval,0,0,0);
927 return (retval);
928 }
929
930 /*
931 * uao_get: fetch me a page
932 *
933 * we have three cases:
934 * 1: page is resident -> just return the page.
935 * 2: page is zero-fill -> allocate a new page and zero it.
936 * 3: page is swapped out -> fetch the page from swap.
937 *
938 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
939 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
940 * then we will need to return EBUSY.
941 *
942 * => prefer map unlocked (not required)
943 * => object must be locked! we will _unlock_ it before starting any I/O.
944 * => flags: PGO_ALLPAGES: get all of the pages
945 * PGO_LOCKED: fault data structures are locked
946 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
947 * => NOTE: caller must check for released pages!!
948 */
949 static int
950 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
951 struct uvm_object *uobj;
952 voff_t offset;
953 struct vm_page **pps;
954 int *npagesp;
955 int centeridx, advice, flags;
956 vm_prot_t access_type;
957 {
958 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
959 voff_t current_offset;
960 struct vm_page *ptmp;
961 int lcv, gotpages, maxpages, swslot, rv, pageidx;
962 boolean_t done;
963 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
964
965 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
966 aobj, offset, flags,0);
967
968 /*
969 * get number of pages
970 */
971 maxpages = *npagesp;
972
973 /*
974 * step 1: handled the case where fault data structures are locked.
975 */
976
977 if (flags & PGO_LOCKED) {
978 /*
979 * step 1a: get pages that are already resident. only do
980 * this if the data structures are locked (i.e. the first
981 * time through).
982 */
983
984 done = TRUE; /* be optimistic */
985 gotpages = 0; /* # of pages we got so far */
986
987 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
988 lcv++, current_offset += PAGE_SIZE) {
989 /* do we care about this page? if not, skip it */
990 if (pps[lcv] == PGO_DONTCARE)
991 continue;
992
993 ptmp = uvm_pagelookup(uobj, current_offset);
994
995 /*
996 * if page is new, attempt to allocate the page,
997 * zero-fill'd.
998 */
999 if (ptmp == NULL && uao_find_swslot(aobj,
1000 current_offset >> PAGE_SHIFT) == 0) {
1001 ptmp = uvm_pagealloc(uobj, current_offset,
1002 NULL, UVM_PGA_ZERO);
1003 if (ptmp) {
1004 /* new page */
1005 ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1006 ptmp->pqflags |= PQ_AOBJ;
1007 UVM_PAGE_OWN(ptmp, NULL);
1008 }
1009 }
1010
1011 /*
1012 * to be useful must get a non-busy, non-released page
1013 */
1014 if (ptmp == NULL ||
1015 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1016 if (lcv == centeridx ||
1017 (flags & PGO_ALLPAGES) != 0)
1018 /* need to do a wait or I/O! */
1019 done = FALSE;
1020 continue;
1021 }
1022
1023 /*
1024 * useful page: busy/lock it and plug it in our
1025 * result array
1026 */
1027 /* caller must un-busy this page */
1028 ptmp->flags |= PG_BUSY;
1029 UVM_PAGE_OWN(ptmp, "uao_get1");
1030 pps[lcv] = ptmp;
1031 gotpages++;
1032
1033 } /* "for" lcv loop */
1034
1035 /*
1036 * step 1b: now we've either done everything needed or we
1037 * to unlock and do some waiting or I/O.
1038 */
1039
1040 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1041
1042 *npagesp = gotpages;
1043 if (done)
1044 /* bingo! */
1045 return(0);
1046 else
1047 /* EEK! Need to unlock and I/O */
1048 return(EBUSY);
1049 }
1050
1051 /*
1052 * step 2: get non-resident or busy pages.
1053 * object is locked. data structures are unlocked.
1054 */
1055
1056 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1057 lcv++, current_offset += PAGE_SIZE) {
1058
1059 /*
1060 * - skip over pages we've already gotten or don't want
1061 * - skip over pages we don't _have_ to get
1062 */
1063
1064 if (pps[lcv] != NULL ||
1065 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1066 continue;
1067
1068 pageidx = current_offset >> PAGE_SHIFT;
1069
1070 /*
1071 * we have yet to locate the current page (pps[lcv]). we
1072 * first look for a page that is already at the current offset.
1073 * if we find a page, we check to see if it is busy or
1074 * released. if that is the case, then we sleep on the page
1075 * until it is no longer busy or released and repeat the lookup.
1076 * if the page we found is neither busy nor released, then we
1077 * busy it (so we own it) and plug it into pps[lcv]. this
1078 * 'break's the following while loop and indicates we are
1079 * ready to move on to the next page in the "lcv" loop above.
1080 *
1081 * if we exit the while loop with pps[lcv] still set to NULL,
1082 * then it means that we allocated a new busy/fake/clean page
1083 * ptmp in the object and we need to do I/O to fill in the data.
1084 */
1085
1086 /* top of "pps" while loop */
1087 while (pps[lcv] == NULL) {
1088 /* look for a resident page */
1089 ptmp = uvm_pagelookup(uobj, current_offset);
1090
1091 /* not resident? allocate one now (if we can) */
1092 if (ptmp == NULL) {
1093
1094 ptmp = uvm_pagealloc(uobj, current_offset,
1095 NULL, 0);
1096
1097 /* out of RAM? */
1098 if (ptmp == NULL) {
1099 simple_unlock(&uobj->vmobjlock);
1100 UVMHIST_LOG(pdhist,
1101 "sleeping, ptmp == NULL\n",0,0,0,0);
1102 uvm_wait("uao_getpage");
1103 simple_lock(&uobj->vmobjlock);
1104 /* goto top of pps while loop */
1105 continue;
1106 }
1107
1108 /*
1109 * safe with PQ's unlocked: because we just
1110 * alloc'd the page
1111 */
1112 ptmp->pqflags |= PQ_AOBJ;
1113
1114 /*
1115 * got new page ready for I/O. break pps while
1116 * loop. pps[lcv] is still NULL.
1117 */
1118 break;
1119 }
1120
1121 /* page is there, see if we need to wait on it */
1122 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1123 ptmp->flags |= PG_WANTED;
1124 UVMHIST_LOG(pdhist,
1125 "sleeping, ptmp->flags 0x%x\n",
1126 ptmp->flags,0,0,0);
1127 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1128 FALSE, "uao_get", 0);
1129 simple_lock(&uobj->vmobjlock);
1130 continue; /* goto top of pps while loop */
1131 }
1132
1133 /*
1134 * if we get here then the page has become resident and
1135 * unbusy between steps 1 and 2. we busy it now (so we
1136 * own it) and set pps[lcv] (so that we exit the while
1137 * loop).
1138 */
1139 /* we own it, caller must un-busy */
1140 ptmp->flags |= PG_BUSY;
1141 UVM_PAGE_OWN(ptmp, "uao_get2");
1142 pps[lcv] = ptmp;
1143 }
1144
1145 /*
1146 * if we own the valid page at the correct offset, pps[lcv] will
1147 * point to it. nothing more to do except go to the next page.
1148 */
1149 if (pps[lcv])
1150 continue; /* next lcv */
1151
1152 /*
1153 * we have a "fake/busy/clean" page that we just allocated.
1154 * do the needed "i/o", either reading from swap or zeroing.
1155 */
1156 swslot = uao_find_swslot(aobj, pageidx);
1157
1158 /*
1159 * just zero the page if there's nothing in swap.
1160 */
1161 if (swslot == 0)
1162 {
1163 /*
1164 * page hasn't existed before, just zero it.
1165 */
1166 uvm_pagezero(ptmp);
1167 } else {
1168 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1169 swslot, 0,0,0);
1170
1171 /*
1172 * page in the swapped-out page.
1173 * unlock object for i/o, relock when done.
1174 */
1175 simple_unlock(&uobj->vmobjlock);
1176 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1177 simple_lock(&uobj->vmobjlock);
1178
1179 /*
1180 * I/O done. check for errors.
1181 */
1182 if (rv != 0)
1183 {
1184 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1185 rv,0,0,0);
1186 if (ptmp->flags & PG_WANTED)
1187 wakeup(ptmp);
1188
1189 /*
1190 * remove the swap slot from the aobj
1191 * and mark the aobj as having no real slot.
1192 * don't free the swap slot, thus preventing
1193 * it from being used again.
1194 */
1195 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1196 SWSLOT_BAD);
1197 uvm_swap_markbad(swslot, 1);
1198
1199 ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1200 UVM_PAGE_OWN(ptmp, NULL);
1201 uvm_lock_pageq();
1202 uvm_pagefree(ptmp);
1203 uvm_unlock_pageq();
1204
1205 simple_unlock(&uobj->vmobjlock);
1206 return (rv);
1207 }
1208 }
1209
1210 /*
1211 * we got the page! clear the fake flag (indicates valid
1212 * data now in page) and plug into our result array. note
1213 * that page is still busy.
1214 *
1215 * it is the callers job to:
1216 * => check if the page is released
1217 * => unbusy the page
1218 * => activate the page
1219 */
1220
1221 ptmp->flags &= ~PG_FAKE; /* data is valid ... */
1222 pmap_clear_modify(ptmp); /* ... and clean */
1223 pps[lcv] = ptmp;
1224
1225 } /* lcv loop */
1226
1227 /*
1228 * finally, unlock object and return.
1229 */
1230
1231 simple_unlock(&uobj->vmobjlock);
1232 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1233 return(0);
1234 }
1235
1236 /*
1237 * uao_releasepg: handle released page in an aobj
1238 *
1239 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1240 * to dispose of.
1241 * => caller must handle PG_WANTED case
1242 * => called with page's object locked, pageq's unlocked
1243 * => returns TRUE if page's object is still alive, FALSE if we
1244 * killed the page's object. if we return TRUE, then we
1245 * return with the object locked.
1246 * => if (nextpgp != NULL) => we return the next page on the queue, and return
1247 * with the page queues locked [for pagedaemon]
1248 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1249 * => we kill the aobj if it is not referenced and we are suppose to
1250 * kill it ("KILLME").
1251 */
1252 static boolean_t
1253 uao_releasepg(pg, nextpgp)
1254 struct vm_page *pg;
1255 struct vm_page **nextpgp; /* OUT */
1256 {
1257 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1258
1259 KASSERT(pg->flags & PG_RELEASED);
1260
1261 /*
1262 * dispose of the page [caller handles PG_WANTED] and swap slot.
1263 */
1264 pmap_page_protect(pg, VM_PROT_NONE);
1265 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1266 uvm_lock_pageq();
1267 if (nextpgp)
1268 *nextpgp = TAILQ_NEXT(pg, pageq); /* next page for daemon */
1269 uvm_pagefree(pg);
1270 if (!nextpgp)
1271 uvm_unlock_pageq(); /* keep locked for daemon */
1272
1273 /*
1274 * if we're not killing the object, we're done.
1275 */
1276 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1277 return TRUE;
1278 KASSERT(aobj->u_obj.uo_refs == 0);
1279
1280 /*
1281 * if there are still pages in the object, we're done for now.
1282 */
1283 if (aobj->u_obj.uo_npages != 0)
1284 return TRUE;
1285
1286 KASSERT(TAILQ_EMPTY(&aobj->u_obj.memq));
1287
1288 /*
1289 * finally, free the rest.
1290 */
1291 uao_free(aobj);
1292
1293 return FALSE;
1294 }
1295
1296
1297 /*
1298 * uao_dropswap: release any swap resources from this aobj page.
1299 *
1300 * => aobj must be locked or have a reference count of 0.
1301 */
1302
1303 void
1304 uao_dropswap(uobj, pageidx)
1305 struct uvm_object *uobj;
1306 int pageidx;
1307 {
1308 int slot;
1309
1310 slot = uao_set_swslot(uobj, pageidx, 0);
1311 if (slot) {
1312 uvm_swap_free(slot, 1);
1313 }
1314 }
1315
1316
1317 /*
1318 * page in every page in every aobj that is paged-out to a range of swslots.
1319 *
1320 * => nothing should be locked.
1321 * => returns TRUE if pagein was aborted due to lack of memory.
1322 */
1323 boolean_t
1324 uao_swap_off(startslot, endslot)
1325 int startslot, endslot;
1326 {
1327 struct uvm_aobj *aobj, *nextaobj;
1328
1329 /*
1330 * walk the list of all aobjs.
1331 */
1332
1333 restart:
1334 simple_lock(&uao_list_lock);
1335
1336 for (aobj = LIST_FIRST(&uao_list);
1337 aobj != NULL;
1338 aobj = nextaobj) {
1339 boolean_t rv;
1340
1341 /*
1342 * try to get the object lock,
1343 * start all over if we fail.
1344 * most of the time we'll get the aobj lock,
1345 * so this should be a rare case.
1346 */
1347 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1348 simple_unlock(&uao_list_lock);
1349 goto restart;
1350 }
1351
1352 /*
1353 * add a ref to the aobj so it doesn't disappear
1354 * while we're working.
1355 */
1356 uao_reference_locked(&aobj->u_obj);
1357
1358 /*
1359 * now it's safe to unlock the uao list.
1360 */
1361 simple_unlock(&uao_list_lock);
1362
1363 /*
1364 * page in any pages in the swslot range.
1365 * if there's an error, abort and return the error.
1366 */
1367 rv = uao_pagein(aobj, startslot, endslot);
1368 if (rv) {
1369 uao_detach_locked(&aobj->u_obj);
1370 return rv;
1371 }
1372
1373 /*
1374 * we're done with this aobj.
1375 * relock the list and drop our ref on the aobj.
1376 */
1377 simple_lock(&uao_list_lock);
1378 nextaobj = LIST_NEXT(aobj, u_list);
1379 uao_detach_locked(&aobj->u_obj);
1380 }
1381
1382 /*
1383 * done with traversal, unlock the list
1384 */
1385 simple_unlock(&uao_list_lock);
1386 return FALSE;
1387 }
1388
1389
1390 /*
1391 * page in any pages from aobj in the given range.
1392 *
1393 * => aobj must be locked and is returned locked.
1394 * => returns TRUE if pagein was aborted due to lack of memory.
1395 */
1396 static boolean_t
1397 uao_pagein(aobj, startslot, endslot)
1398 struct uvm_aobj *aobj;
1399 int startslot, endslot;
1400 {
1401 boolean_t rv;
1402
1403 if (UAO_USES_SWHASH(aobj)) {
1404 struct uao_swhash_elt *elt;
1405 int bucket;
1406
1407 restart:
1408 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1409 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1410 elt != NULL;
1411 elt = LIST_NEXT(elt, list)) {
1412 int i;
1413
1414 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1415 int slot = elt->slots[i];
1416
1417 /*
1418 * if the slot isn't in range, skip it.
1419 */
1420 if (slot < startslot ||
1421 slot >= endslot) {
1422 continue;
1423 }
1424
1425 /*
1426 * process the page,
1427 * the start over on this object
1428 * since the swhash elt
1429 * may have been freed.
1430 */
1431 rv = uao_pagein_page(aobj,
1432 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1433 if (rv) {
1434 return rv;
1435 }
1436 goto restart;
1437 }
1438 }
1439 }
1440 } else {
1441 int i;
1442
1443 for (i = 0; i < aobj->u_pages; i++) {
1444 int slot = aobj->u_swslots[i];
1445
1446 /*
1447 * if the slot isn't in range, skip it
1448 */
1449 if (slot < startslot || slot >= endslot) {
1450 continue;
1451 }
1452
1453 /*
1454 * process the page.
1455 */
1456 rv = uao_pagein_page(aobj, i);
1457 if (rv) {
1458 return rv;
1459 }
1460 }
1461 }
1462
1463 return FALSE;
1464 }
1465
1466 /*
1467 * page in a page from an aobj. used for swap_off.
1468 * returns TRUE if pagein was aborted due to lack of memory.
1469 *
1470 * => aobj must be locked and is returned locked.
1471 */
1472 static boolean_t
1473 uao_pagein_page(aobj, pageidx)
1474 struct uvm_aobj *aobj;
1475 int pageidx;
1476 {
1477 struct vm_page *pg;
1478 int rv, slot, npages;
1479
1480 pg = NULL;
1481 npages = 1;
1482 /* locked: aobj */
1483 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1484 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1485 /* unlocked: aobj */
1486
1487 /*
1488 * relock and finish up.
1489 */
1490 simple_lock(&aobj->u_obj.vmobjlock);
1491
1492 switch (rv) {
1493 case 0:
1494 break;
1495
1496 case EIO:
1497 case ERESTART:
1498 /*
1499 * nothing more to do on errors.
1500 * ERESTART can only mean that the anon was freed,
1501 * so again there's nothing to do.
1502 */
1503 return FALSE;
1504
1505 }
1506 KASSERT((pg->flags & PG_RELEASED) == 0);
1507
1508 /*
1509 * ok, we've got the page now.
1510 * mark it as dirty, clear its swslot and un-busy it.
1511 */
1512 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1513 uvm_swap_free(slot, 1);
1514 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1515 UVM_PAGE_OWN(pg, NULL);
1516
1517 /*
1518 * deactivate the page (to put it on a page queue).
1519 */
1520 pmap_clear_reference(pg);
1521 uvm_lock_pageq();
1522 uvm_pagedeactivate(pg);
1523 uvm_unlock_pageq();
1524
1525 return FALSE;
1526 }
1527