uvm_aobj.c revision 1.48 1 /* $NetBSD: uvm_aobj.c,v 1.48 2001/11/07 14:07:23 chs Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include "opt_uvmhist.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/pool.h>
53 #include <sys/kernel.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 * an aobj manages anonymous-memory backed uvm_objects. in addition
59 * to keeping the list of resident pages, it also keeps a list of
60 * allocated swap blocks. depending on the size of the aobj this list
61 * of allocated swap blocks is either stored in an array (small objects)
62 * or in a hash table (large objects).
63 */
64
65 /*
66 * local structures
67 */
68
69 /*
70 * for hash tables, we break the address space of the aobj into blocks
71 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
72 * be a power of two.
73 */
74
75 #define UAO_SWHASH_CLUSTER_SHIFT 4
76 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
77
78 /* get the "tag" for this page index */
79 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
80 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
81
82 /* given an ELT and a page index, find the swap slot */
83 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
84 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
85
86 /* given an ELT, return its pageidx base */
87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89
90 /*
91 * the swhash hash function
92 */
93
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 & (AOBJ)->u_swhashmask)])
97
98 /*
99 * the swhash threshhold determines if we will use an array or a
100 * hash table to store the list of allocated swap blocks.
101 */
102
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
106
107 /*
108 * the number of buckets in a swhash, with an upper bound
109 */
110
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 UAO_SWHASH_MAXBUCKETS))
115
116
117 /*
118 * uao_swhash_elt: when a hash table is being used, this structure defines
119 * the format of an entry in the bucket list.
120 */
121
122 struct uao_swhash_elt {
123 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
124 voff_t tag; /* our 'tag' */
125 int count; /* our number of active slots */
126 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
127 };
128
129 /*
130 * uao_swhash: the swap hash table structure
131 */
132
133 LIST_HEAD(uao_swhash, uao_swhash_elt);
134
135 /*
136 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
137 */
138
139 struct pool uao_swhash_elt_pool;
140
141 /*
142 * uvm_aobj: the actual anon-backed uvm_object
143 *
144 * => the uvm_object is at the top of the structure, this allows
145 * (struct uvm_aobj *) == (struct uvm_object *)
146 * => only one of u_swslots and u_swhash is used in any given aobj
147 */
148
149 struct uvm_aobj {
150 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
151 int u_pages; /* number of pages in entire object */
152 int u_flags; /* the flags (see uvm_aobj.h) */
153 int *u_swslots; /* array of offset->swapslot mappings */
154 /*
155 * hashtable of offset->swapslot mappings
156 * (u_swhash is an array of bucket heads)
157 */
158 struct uao_swhash *u_swhash;
159 u_long u_swhashmask; /* mask for hashtable */
160 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
161 };
162
163 /*
164 * uvm_aobj_pool: pool of uvm_aobj structures
165 */
166
167 struct pool uvm_aobj_pool;
168
169 /*
170 * local functions
171 */
172
173 static struct uao_swhash_elt *uao_find_swhash_elt
174 __P((struct uvm_aobj *, int, boolean_t));
175
176 static void uao_free __P((struct uvm_aobj *));
177 static int uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
178 int *, int, vm_prot_t, int, int));
179 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
180 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
181 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
182
183 /*
184 * aobj_pager
185 *
186 * note that some functions (e.g. put) are handled elsewhere
187 */
188
189 struct uvm_pagerops aobj_pager = {
190 NULL, /* init */
191 uao_reference, /* reference */
192 uao_detach, /* detach */
193 NULL, /* fault */
194 uao_get, /* get */
195 uao_put, /* flush */
196 };
197
198 /*
199 * uao_list: global list of active aobjs, locked by uao_list_lock
200 */
201
202 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
203 static struct simplelock uao_list_lock;
204
205 /*
206 * functions
207 */
208
209 /*
210 * hash table/array related functions
211 */
212
213 /*
214 * uao_find_swhash_elt: find (or create) a hash table entry for a page
215 * offset.
216 *
217 * => the object should be locked by the caller
218 */
219
220 static struct uao_swhash_elt *
221 uao_find_swhash_elt(aobj, pageidx, create)
222 struct uvm_aobj *aobj;
223 int pageidx;
224 boolean_t create;
225 {
226 struct uao_swhash *swhash;
227 struct uao_swhash_elt *elt;
228 voff_t page_tag;
229
230 swhash = UAO_SWHASH_HASH(aobj, pageidx);
231 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
232
233 /*
234 * now search the bucket for the requested tag
235 */
236
237 LIST_FOREACH(elt, swhash, list) {
238 if (elt->tag == page_tag) {
239 return elt;
240 }
241 }
242 if (!create) {
243 return NULL;
244 }
245
246 /*
247 * allocate a new entry for the bucket and init/insert it in
248 */
249
250 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
251 if (elt == NULL) {
252 return NULL;
253 }
254 LIST_INSERT_HEAD(swhash, elt, list);
255 elt->tag = page_tag;
256 elt->count = 0;
257 memset(elt->slots, 0, sizeof(elt->slots));
258 return elt;
259 }
260
261 /*
262 * uao_find_swslot: find the swap slot number for an aobj/pageidx
263 *
264 * => object must be locked by caller
265 */
266
267 int
268 uao_find_swslot(uobj, pageidx)
269 struct uvm_object *uobj;
270 int pageidx;
271 {
272 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
273 struct uao_swhash_elt *elt;
274
275 /*
276 * if noswap flag is set, then we never return a slot
277 */
278
279 if (aobj->u_flags & UAO_FLAG_NOSWAP)
280 return(0);
281
282 /*
283 * if hashing, look in hash table.
284 */
285
286 if (UAO_USES_SWHASH(aobj)) {
287 elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
288 if (elt)
289 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
290 else
291 return(0);
292 }
293
294 /*
295 * otherwise, look in the array
296 */
297
298 return(aobj->u_swslots[pageidx]);
299 }
300
301 /*
302 * uao_set_swslot: set the swap slot for a page in an aobj.
303 *
304 * => setting a slot to zero frees the slot
305 * => object must be locked by caller
306 * => we return the old slot number, or -1 if we failed to allocate
307 * memory to record the new slot number
308 */
309
310 int
311 uao_set_swslot(uobj, pageidx, slot)
312 struct uvm_object *uobj;
313 int pageidx, slot;
314 {
315 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
316 struct uao_swhash_elt *elt;
317 int oldslot;
318 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
319 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
320 aobj, pageidx, slot, 0);
321
322 /*
323 * if noswap flag is set, then we can't set a non-zero slot.
324 */
325
326 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
327 if (slot == 0)
328 return(0);
329
330 printf("uao_set_swslot: uobj = %p\n", uobj);
331 panic("uao_set_swslot: NOSWAP object");
332 }
333
334 /*
335 * are we using a hash table? if so, add it in the hash.
336 */
337
338 if (UAO_USES_SWHASH(aobj)) {
339
340 /*
341 * Avoid allocating an entry just to free it again if
342 * the page had not swap slot in the first place, and
343 * we are freeing.
344 */
345
346 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
347 if (elt == NULL) {
348 return slot ? -1 : 0;
349 }
350
351 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
352 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
353
354 /*
355 * now adjust the elt's reference counter and free it if we've
356 * dropped it to zero.
357 */
358
359 if (slot) {
360 if (oldslot == 0)
361 elt->count++;
362 } else {
363 if (oldslot)
364 elt->count--;
365
366 if (elt->count == 0) {
367 LIST_REMOVE(elt, list);
368 pool_put(&uao_swhash_elt_pool, elt);
369 }
370 }
371 } else {
372 /* we are using an array */
373 oldslot = aobj->u_swslots[pageidx];
374 aobj->u_swslots[pageidx] = slot;
375 }
376 return (oldslot);
377 }
378
379 /*
380 * end of hash/array functions
381 */
382
383 /*
384 * uao_free: free all resources held by an aobj, and then free the aobj
385 *
386 * => the aobj should be dead
387 */
388
389 static void
390 uao_free(aobj)
391 struct uvm_aobj *aobj;
392 {
393 int swpgonlydelta = 0;
394
395 simple_unlock(&aobj->u_obj.vmobjlock);
396 if (UAO_USES_SWHASH(aobj)) {
397 int i, hashbuckets = aobj->u_swhashmask + 1;
398
399 /*
400 * free the swslots from each hash bucket,
401 * then the hash bucket, and finally the hash table itself.
402 */
403
404 for (i = 0; i < hashbuckets; i++) {
405 struct uao_swhash_elt *elt, *next;
406
407 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
408 elt != NULL;
409 elt = next) {
410 int j;
411
412 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
413 int slot = elt->slots[j];
414
415 if (slot == 0) {
416 continue;
417 }
418 uvm_swap_free(slot, 1);
419 swpgonlydelta++;
420 }
421
422 next = LIST_NEXT(elt, list);
423 pool_put(&uao_swhash_elt_pool, elt);
424 }
425 }
426 free(aobj->u_swhash, M_UVMAOBJ);
427 } else {
428 int i;
429
430 /*
431 * free the array
432 */
433
434 for (i = 0; i < aobj->u_pages; i++) {
435 int slot = aobj->u_swslots[i];
436
437 if (slot) {
438 uvm_swap_free(slot, 1);
439 swpgonlydelta++;
440 }
441 }
442 free(aobj->u_swslots, M_UVMAOBJ);
443 }
444
445 /*
446 * finally free the aobj itself
447 */
448
449 pool_put(&uvm_aobj_pool, aobj);
450
451 /*
452 * adjust the counter of pages only in swap for all
453 * the swap slots we've freed.
454 */
455
456 if (swpgonlydelta > 0) {
457 simple_lock(&uvm.swap_data_lock);
458 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
459 uvmexp.swpgonly -= swpgonlydelta;
460 simple_unlock(&uvm.swap_data_lock);
461 }
462 }
463
464 /*
465 * pager functions
466 */
467
468 /*
469 * uao_create: create an aobj of the given size and return its uvm_object.
470 *
471 * => for normal use, flags are always zero
472 * => for the kernel object, the flags are:
473 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
474 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
475 */
476
477 struct uvm_object *
478 uao_create(size, flags)
479 vsize_t size;
480 int flags;
481 {
482 static struct uvm_aobj kernel_object_store;
483 static int kobj_alloced = 0;
484 int pages = round_page(size) >> PAGE_SHIFT;
485 struct uvm_aobj *aobj;
486
487 /*
488 * malloc a new aobj unless we are asked for the kernel object
489 */
490
491 if (flags & UAO_FLAG_KERNOBJ) {
492 KASSERT(!kobj_alloced);
493 aobj = &kernel_object_store;
494 aobj->u_pages = pages;
495 aobj->u_flags = UAO_FLAG_NOSWAP;
496 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
497 kobj_alloced = UAO_FLAG_KERNOBJ;
498 } else if (flags & UAO_FLAG_KERNSWAP) {
499 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
500 aobj = &kernel_object_store;
501 kobj_alloced = UAO_FLAG_KERNSWAP;
502 } else {
503 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
504 aobj->u_pages = pages;
505 aobj->u_flags = 0;
506 aobj->u_obj.uo_refs = 1;
507 }
508
509 /*
510 * allocate hash/array if necessary
511 *
512 * note: in the KERNSWAP case no need to worry about locking since
513 * we are still booting we should be the only thread around.
514 */
515
516 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
517 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
518 M_NOWAIT : M_WAITOK;
519
520 /* allocate hash table or array depending on object size */
521 if (UAO_USES_SWHASH(aobj)) {
522 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
523 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
524 if (aobj->u_swhash == NULL)
525 panic("uao_create: hashinit swhash failed");
526 } else {
527 aobj->u_swslots = malloc(pages * sizeof(int),
528 M_UVMAOBJ, mflags);
529 if (aobj->u_swslots == NULL)
530 panic("uao_create: malloc swslots failed");
531 memset(aobj->u_swslots, 0, pages * sizeof(int));
532 }
533
534 if (flags) {
535 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
536 return(&aobj->u_obj);
537 }
538 }
539
540 /*
541 * init aobj fields
542 */
543
544 simple_lock_init(&aobj->u_obj.vmobjlock);
545 aobj->u_obj.pgops = &aobj_pager;
546 TAILQ_INIT(&aobj->u_obj.memq);
547 aobj->u_obj.uo_npages = 0;
548
549 /*
550 * now that aobj is ready, add it to the global list
551 */
552
553 simple_lock(&uao_list_lock);
554 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
555 simple_unlock(&uao_list_lock);
556 return(&aobj->u_obj);
557 }
558
559
560
561 /*
562 * uao_init: set up aobj pager subsystem
563 *
564 * => called at boot time from uvm_pager_init()
565 */
566
567 void
568 uao_init(void)
569 {
570 static int uao_initialized;
571
572 if (uao_initialized)
573 return;
574 uao_initialized = TRUE;
575 LIST_INIT(&uao_list);
576 simple_lock_init(&uao_list_lock);
577
578 /*
579 * NOTE: Pages fror this pool must not come from a pageable
580 * kernel map!
581 */
582
583 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
584 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
585 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
586 "aobjpl", 0,
587 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
588 }
589
590 /*
591 * uao_reference: add a ref to an aobj
592 *
593 * => aobj must be unlocked
594 * => just lock it and call the locked version
595 */
596
597 void
598 uao_reference(uobj)
599 struct uvm_object *uobj;
600 {
601 simple_lock(&uobj->vmobjlock);
602 uao_reference_locked(uobj);
603 simple_unlock(&uobj->vmobjlock);
604 }
605
606 /*
607 * uao_reference_locked: add a ref to an aobj that is already locked
608 *
609 * => aobj must be locked
610 * this needs to be separate from the normal routine
611 * since sometimes we need to add a reference to an aobj when
612 * it's already locked.
613 */
614
615 void
616 uao_reference_locked(uobj)
617 struct uvm_object *uobj;
618 {
619 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
620
621 /*
622 * kernel_object already has plenty of references, leave it alone.
623 */
624
625 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
626 return;
627
628 uobj->uo_refs++;
629 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
630 uobj, uobj->uo_refs,0,0);
631 }
632
633 /*
634 * uao_detach: drop a reference to an aobj
635 *
636 * => aobj must be unlocked
637 * => just lock it and call the locked version
638 */
639
640 void
641 uao_detach(uobj)
642 struct uvm_object *uobj;
643 {
644 simple_lock(&uobj->vmobjlock);
645 uao_detach_locked(uobj);
646 }
647
648 /*
649 * uao_detach_locked: drop a reference to an aobj
650 *
651 * => aobj must be locked, and is unlocked (or freed) upon return.
652 * this needs to be separate from the normal routine
653 * since sometimes we need to detach from an aobj when
654 * it's already locked.
655 */
656
657 void
658 uao_detach_locked(uobj)
659 struct uvm_object *uobj;
660 {
661 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
662 struct vm_page *pg;
663 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
664
665 /*
666 * detaching from kernel_object is a noop.
667 */
668
669 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
670 simple_unlock(&uobj->vmobjlock);
671 return;
672 }
673
674 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
675 uobj->uo_refs--;
676 if (uobj->uo_refs) {
677 simple_unlock(&uobj->vmobjlock);
678 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
679 return;
680 }
681
682 /*
683 * remove the aobj from the global list.
684 */
685
686 simple_lock(&uao_list_lock);
687 LIST_REMOVE(aobj, u_list);
688 simple_unlock(&uao_list_lock);
689
690 /*
691 * free all the pages left in the aobj. for each page,
692 * when the page is no longer busy (and thus after any disk i/o that
693 * it's involved in is complete), release any swap resources and
694 * free the page itself.
695 */
696
697 uvm_lock_pageq();
698 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
699 pmap_page_protect(pg, VM_PROT_NONE);
700 if (pg->flags & PG_BUSY) {
701 pg->flags |= PG_WANTED;
702 uvm_unlock_pageq();
703 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
704 "uao_det", 0);
705 simple_lock(&uobj->vmobjlock);
706 uvm_lock_pageq();
707 continue;
708 }
709 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
710 uvm_pagefree(pg);
711 }
712 uvm_unlock_pageq();
713
714 /*
715 * finally, free the aobj itself.
716 */
717
718 uao_free(aobj);
719 }
720
721 /*
722 * uao_put: flush pages out of a uvm object
723 *
724 * => object should be locked by caller. we may _unlock_ the object
725 * if (and only if) we need to clean a page (PGO_CLEANIT).
726 * XXXJRT Currently, however, we don't. In the case of cleaning
727 * XXXJRT a page, we simply just deactivate it. Should probably
728 * XXXJRT handle this better, in the future (although "flushing"
729 * XXXJRT anonymous memory isn't terribly important).
730 * => if PGO_CLEANIT is not set, then we will neither unlock the object
731 * or block.
732 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
733 * for flushing.
734 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
735 * that new pages are inserted on the tail end of the list. thus,
736 * we can make a complete pass through the object in one go by starting
737 * at the head and working towards the tail (new pages are put in
738 * front of us).
739 * => NOTE: we are allowed to lock the page queues, so the caller
740 * must not be holding the lock on them [e.g. pagedaemon had
741 * better not call us with the queues locked]
742 * => we return TRUE unless we encountered some sort of I/O error
743 * XXXJRT currently never happens, as we never directly initiate
744 * XXXJRT I/O
745 *
746 * note on page traversal:
747 * we can traverse the pages in an object either by going down the
748 * linked list in "uobj->memq", or we can go over the address range
749 * by page doing hash table lookups for each address. depending
750 * on how many pages are in the object it may be cheaper to do one
751 * or the other. we set "by_list" to true if we are using memq.
752 * if the cost of a hash lookup was equal to the cost of the list
753 * traversal we could compare the number of pages in the start->stop
754 * range to the total number of pages in the object. however, it
755 * seems that a hash table lookup is more expensive than the linked
756 * list traversal, so we multiply the number of pages in the
757 * start->stop range by a penalty which we define below.
758 */
759
760 int
761 uao_put(uobj, start, stop, flags)
762 struct uvm_object *uobj;
763 voff_t start, stop;
764 int flags;
765 {
766 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
767 struct vm_page *pg, *nextpg;
768 boolean_t by_list;
769 voff_t curoff;
770 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
771
772 curoff = 0;
773 if (flags & PGO_ALLPAGES) {
774 start = 0;
775 stop = aobj->u_pages << PAGE_SHIFT;
776 by_list = TRUE; /* always go by the list */
777 } else {
778 start = trunc_page(start);
779 stop = round_page(stop);
780 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
781 printf("uao_flush: strange, got an out of range "
782 "flush (fixed)\n");
783 stop = aobj->u_pages << PAGE_SHIFT;
784 }
785 by_list = (uobj->uo_npages <=
786 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
787 }
788 UVMHIST_LOG(maphist,
789 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
790 start, stop, by_list, flags);
791
792 /*
793 * Don't need to do any work here if we're not freeing
794 * or deactivating pages.
795 */
796
797 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
798 simple_unlock(&uobj->vmobjlock);
799 return 0;
800 }
801
802 /*
803 * now do it. note: we must update nextpg in the body of loop or we
804 * will get stuck. we need to use nextpg because we may free "pg"
805 * before doing the next loop.
806 */
807
808 if (by_list) {
809 pg = TAILQ_FIRST(&uobj->memq);
810 } else {
811 curoff = start;
812 pg = uvm_pagelookup(uobj, curoff);
813 }
814
815 nextpg = NULL;
816 uvm_lock_pageq();
817
818 /* locked: both page queues and uobj */
819 for ( ; (by_list && pg != NULL) ||
820 (!by_list && curoff < stop) ; pg = nextpg) {
821 if (by_list) {
822 nextpg = TAILQ_NEXT(pg, listq);
823 if (pg->offset < start || pg->offset >= stop)
824 continue;
825 } else {
826 curoff += PAGE_SIZE;
827 if (curoff < stop)
828 nextpg = uvm_pagelookup(uobj, curoff);
829 if (pg == NULL)
830 continue;
831 }
832 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
833
834 /*
835 * XXX In these first 3 cases, we always just
836 * XXX deactivate the page. We may want to
837 * XXX handle the different cases more specifically
838 * XXX in the future.
839 */
840
841 case PGO_CLEANIT|PGO_FREE:
842 case PGO_CLEANIT|PGO_DEACTIVATE:
843 case PGO_DEACTIVATE:
844 deactivate_it:
845 /* skip the page if it's loaned or wired */
846 if (pg->loan_count != 0 || pg->wire_count != 0)
847 continue;
848
849 /* ...and deactivate the page. */
850 pmap_clear_reference(pg);
851 uvm_pagedeactivate(pg);
852 continue;
853
854 case PGO_FREE:
855
856 /*
857 * If there are multiple references to
858 * the object, just deactivate the page.
859 */
860
861 if (uobj->uo_refs > 1)
862 goto deactivate_it;
863
864 /* XXX skip the page if it's loaned or wired */
865 if (pg->loan_count != 0 || pg->wire_count != 0)
866 continue;
867
868 /*
869 * wait if the page is busy, then free the swap slot
870 * and the page.
871 */
872
873 pmap_page_protect(pg, VM_PROT_NONE);
874 while (pg->flags & PG_BUSY) {
875 pg->flags |= PG_WANTED;
876 uvm_unlock_pageq();
877 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
878 "uao_put", 0);
879 simple_lock(&uobj->vmobjlock);
880 uvm_lock_pageq();
881 }
882 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
883 uvm_pagefree(pg);
884 continue;
885 }
886 }
887 uvm_unlock_pageq();
888 simple_unlock(&uobj->vmobjlock);
889 return 0;
890 }
891
892 /*
893 * uao_get: fetch me a page
894 *
895 * we have three cases:
896 * 1: page is resident -> just return the page.
897 * 2: page is zero-fill -> allocate a new page and zero it.
898 * 3: page is swapped out -> fetch the page from swap.
899 *
900 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
901 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
902 * then we will need to return EBUSY.
903 *
904 * => prefer map unlocked (not required)
905 * => object must be locked! we will _unlock_ it before starting any I/O.
906 * => flags: PGO_ALLPAGES: get all of the pages
907 * PGO_LOCKED: fault data structures are locked
908 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
909 * => NOTE: caller must check for released pages!!
910 */
911
912 static int
913 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
914 struct uvm_object *uobj;
915 voff_t offset;
916 struct vm_page **pps;
917 int *npagesp;
918 int centeridx, advice, flags;
919 vm_prot_t access_type;
920 {
921 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
922 voff_t current_offset;
923 struct vm_page *ptmp;
924 int lcv, gotpages, maxpages, swslot, error, pageidx;
925 boolean_t done;
926 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
927
928 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
929 aobj, offset, flags,0);
930
931 /*
932 * get number of pages
933 */
934
935 maxpages = *npagesp;
936
937 /*
938 * step 1: handled the case where fault data structures are locked.
939 */
940
941 if (flags & PGO_LOCKED) {
942
943 /*
944 * step 1a: get pages that are already resident. only do
945 * this if the data structures are locked (i.e. the first
946 * time through).
947 */
948
949 done = TRUE; /* be optimistic */
950 gotpages = 0; /* # of pages we got so far */
951 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
952 lcv++, current_offset += PAGE_SIZE) {
953 /* do we care about this page? if not, skip it */
954 if (pps[lcv] == PGO_DONTCARE)
955 continue;
956 ptmp = uvm_pagelookup(uobj, current_offset);
957
958 /*
959 * if page is new, attempt to allocate the page,
960 * zero-fill'd.
961 */
962
963 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
964 current_offset >> PAGE_SHIFT) == 0) {
965 ptmp = uvm_pagealloc(uobj, current_offset,
966 NULL, UVM_PGA_ZERO);
967 if (ptmp) {
968 /* new page */
969 ptmp->flags &= ~(PG_FAKE);
970 ptmp->pqflags |= PQ_AOBJ;
971 goto gotpage;
972 }
973 }
974
975 /*
976 * to be useful must get a non-busy page
977 */
978
979 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
980 if (lcv == centeridx ||
981 (flags & PGO_ALLPAGES) != 0)
982 /* need to do a wait or I/O! */
983 done = FALSE;
984 continue;
985 }
986
987 /*
988 * useful page: busy/lock it and plug it in our
989 * result array
990 */
991
992 /* caller must un-busy this page */
993 ptmp->flags |= PG_BUSY;
994 UVM_PAGE_OWN(ptmp, "uao_get1");
995 gotpage:
996 pps[lcv] = ptmp;
997 gotpages++;
998 }
999
1000 /*
1001 * step 1b: now we've either done everything needed or we
1002 * to unlock and do some waiting or I/O.
1003 */
1004
1005 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1006 *npagesp = gotpages;
1007 if (done)
1008 return 0;
1009 else
1010 return EBUSY;
1011 }
1012
1013 /*
1014 * step 2: get non-resident or busy pages.
1015 * object is locked. data structures are unlocked.
1016 */
1017
1018 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1019 lcv++, current_offset += PAGE_SIZE) {
1020
1021 /*
1022 * - skip over pages we've already gotten or don't want
1023 * - skip over pages we don't _have_ to get
1024 */
1025
1026 if (pps[lcv] != NULL ||
1027 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1028 continue;
1029
1030 pageidx = current_offset >> PAGE_SHIFT;
1031
1032 /*
1033 * we have yet to locate the current page (pps[lcv]). we
1034 * first look for a page that is already at the current offset.
1035 * if we find a page, we check to see if it is busy or
1036 * released. if that is the case, then we sleep on the page
1037 * until it is no longer busy or released and repeat the lookup.
1038 * if the page we found is neither busy nor released, then we
1039 * busy it (so we own it) and plug it into pps[lcv]. this
1040 * 'break's the following while loop and indicates we are
1041 * ready to move on to the next page in the "lcv" loop above.
1042 *
1043 * if we exit the while loop with pps[lcv] still set to NULL,
1044 * then it means that we allocated a new busy/fake/clean page
1045 * ptmp in the object and we need to do I/O to fill in the data.
1046 */
1047
1048 /* top of "pps" while loop */
1049 while (pps[lcv] == NULL) {
1050 /* look for a resident page */
1051 ptmp = uvm_pagelookup(uobj, current_offset);
1052
1053 /* not resident? allocate one now (if we can) */
1054 if (ptmp == NULL) {
1055
1056 ptmp = uvm_pagealloc(uobj, current_offset,
1057 NULL, 0);
1058
1059 /* out of RAM? */
1060 if (ptmp == NULL) {
1061 simple_unlock(&uobj->vmobjlock);
1062 UVMHIST_LOG(pdhist,
1063 "sleeping, ptmp == NULL\n",0,0,0,0);
1064 uvm_wait("uao_getpage");
1065 simple_lock(&uobj->vmobjlock);
1066 continue;
1067 }
1068
1069 /*
1070 * safe with PQ's unlocked: because we just
1071 * alloc'd the page
1072 */
1073
1074 ptmp->pqflags |= PQ_AOBJ;
1075
1076 /*
1077 * got new page ready for I/O. break pps while
1078 * loop. pps[lcv] is still NULL.
1079 */
1080
1081 break;
1082 }
1083
1084 /* page is there, see if we need to wait on it */
1085 if ((ptmp->flags & PG_BUSY) != 0) {
1086 ptmp->flags |= PG_WANTED;
1087 UVMHIST_LOG(pdhist,
1088 "sleeping, ptmp->flags 0x%x\n",
1089 ptmp->flags,0,0,0);
1090 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1091 FALSE, "uao_get", 0);
1092 simple_lock(&uobj->vmobjlock);
1093 continue;
1094 }
1095
1096 /*
1097 * if we get here then the page has become resident and
1098 * unbusy between steps 1 and 2. we busy it now (so we
1099 * own it) and set pps[lcv] (so that we exit the while
1100 * loop).
1101 */
1102
1103 /* we own it, caller must un-busy */
1104 ptmp->flags |= PG_BUSY;
1105 UVM_PAGE_OWN(ptmp, "uao_get2");
1106 pps[lcv] = ptmp;
1107 }
1108
1109 /*
1110 * if we own the valid page at the correct offset, pps[lcv] will
1111 * point to it. nothing more to do except go to the next page.
1112 */
1113
1114 if (pps[lcv])
1115 continue; /* next lcv */
1116
1117 /*
1118 * we have a "fake/busy/clean" page that we just allocated.
1119 * do the needed "i/o", either reading from swap or zeroing.
1120 */
1121
1122 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1123
1124 /*
1125 * just zero the page if there's nothing in swap.
1126 */
1127
1128 if (swslot == 0) {
1129
1130 /*
1131 * page hasn't existed before, just zero it.
1132 */
1133
1134 uvm_pagezero(ptmp);
1135 } else {
1136 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1137 swslot, 0,0,0);
1138
1139 /*
1140 * page in the swapped-out page.
1141 * unlock object for i/o, relock when done.
1142 */
1143
1144 simple_unlock(&uobj->vmobjlock);
1145 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1146 simple_lock(&uobj->vmobjlock);
1147
1148 /*
1149 * I/O done. check for errors.
1150 */
1151
1152 if (error != 0) {
1153 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1154 error,0,0,0);
1155 if (ptmp->flags & PG_WANTED)
1156 wakeup(ptmp);
1157
1158 /*
1159 * remove the swap slot from the aobj
1160 * and mark the aobj as having no real slot.
1161 * don't free the swap slot, thus preventing
1162 * it from being used again.
1163 */
1164
1165 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1166 SWSLOT_BAD);
1167 if (swslot != -1) {
1168 uvm_swap_markbad(swslot, 1);
1169 }
1170
1171 uvm_lock_pageq();
1172 uvm_pagefree(ptmp);
1173 uvm_unlock_pageq();
1174 simple_unlock(&uobj->vmobjlock);
1175 return error;
1176 }
1177 }
1178
1179 /*
1180 * we got the page! clear the fake flag (indicates valid
1181 * data now in page) and plug into our result array. note
1182 * that page is still busy.
1183 *
1184 * it is the callers job to:
1185 * => check if the page is released
1186 * => unbusy the page
1187 * => activate the page
1188 */
1189
1190 ptmp->flags &= ~PG_FAKE;
1191 pps[lcv] = ptmp;
1192 }
1193
1194 /*
1195 * finally, unlock object and return.
1196 */
1197
1198 simple_unlock(&uobj->vmobjlock);
1199 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1200 return 0;
1201 }
1202
1203 /*
1204 * uao_dropswap: release any swap resources from this aobj page.
1205 *
1206 * => aobj must be locked or have a reference count of 0.
1207 */
1208
1209 void
1210 uao_dropswap(uobj, pageidx)
1211 struct uvm_object *uobj;
1212 int pageidx;
1213 {
1214 int slot;
1215
1216 slot = uao_set_swslot(uobj, pageidx, 0);
1217 if (slot) {
1218 uvm_swap_free(slot, 1);
1219 }
1220 }
1221
1222 /*
1223 * page in every page in every aobj that is paged-out to a range of swslots.
1224 *
1225 * => nothing should be locked.
1226 * => returns TRUE if pagein was aborted due to lack of memory.
1227 */
1228
1229 boolean_t
1230 uao_swap_off(startslot, endslot)
1231 int startslot, endslot;
1232 {
1233 struct uvm_aobj *aobj, *nextaobj;
1234 boolean_t rv;
1235
1236 /*
1237 * walk the list of all aobjs.
1238 */
1239
1240 restart:
1241 simple_lock(&uao_list_lock);
1242 for (aobj = LIST_FIRST(&uao_list);
1243 aobj != NULL;
1244 aobj = nextaobj) {
1245
1246 /*
1247 * try to get the object lock, start all over if we fail.
1248 * most of the time we'll get the aobj lock,
1249 * so this should be a rare case.
1250 */
1251
1252 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1253 simple_unlock(&uao_list_lock);
1254 goto restart;
1255 }
1256
1257 /*
1258 * add a ref to the aobj so it doesn't disappear
1259 * while we're working.
1260 */
1261
1262 uao_reference_locked(&aobj->u_obj);
1263
1264 /*
1265 * now it's safe to unlock the uao list.
1266 */
1267
1268 simple_unlock(&uao_list_lock);
1269
1270 /*
1271 * page in any pages in the swslot range.
1272 * if there's an error, abort and return the error.
1273 */
1274
1275 rv = uao_pagein(aobj, startslot, endslot);
1276 if (rv) {
1277 uao_detach_locked(&aobj->u_obj);
1278 return rv;
1279 }
1280
1281 /*
1282 * we're done with this aobj.
1283 * relock the list and drop our ref on the aobj.
1284 */
1285
1286 simple_lock(&uao_list_lock);
1287 nextaobj = LIST_NEXT(aobj, u_list);
1288 uao_detach_locked(&aobj->u_obj);
1289 }
1290
1291 /*
1292 * done with traversal, unlock the list
1293 */
1294 simple_unlock(&uao_list_lock);
1295 return FALSE;
1296 }
1297
1298
1299 /*
1300 * page in any pages from aobj in the given range.
1301 *
1302 * => aobj must be locked and is returned locked.
1303 * => returns TRUE if pagein was aborted due to lack of memory.
1304 */
1305 static boolean_t
1306 uao_pagein(aobj, startslot, endslot)
1307 struct uvm_aobj *aobj;
1308 int startslot, endslot;
1309 {
1310 boolean_t rv;
1311
1312 if (UAO_USES_SWHASH(aobj)) {
1313 struct uao_swhash_elt *elt;
1314 int bucket;
1315
1316 restart:
1317 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1318 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1319 elt != NULL;
1320 elt = LIST_NEXT(elt, list)) {
1321 int i;
1322
1323 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1324 int slot = elt->slots[i];
1325
1326 /*
1327 * if the slot isn't in range, skip it.
1328 */
1329
1330 if (slot < startslot ||
1331 slot >= endslot) {
1332 continue;
1333 }
1334
1335 /*
1336 * process the page,
1337 * the start over on this object
1338 * since the swhash elt
1339 * may have been freed.
1340 */
1341
1342 rv = uao_pagein_page(aobj,
1343 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1344 if (rv) {
1345 return rv;
1346 }
1347 goto restart;
1348 }
1349 }
1350 }
1351 } else {
1352 int i;
1353
1354 for (i = 0; i < aobj->u_pages; i++) {
1355 int slot = aobj->u_swslots[i];
1356
1357 /*
1358 * if the slot isn't in range, skip it
1359 */
1360
1361 if (slot < startslot || slot >= endslot) {
1362 continue;
1363 }
1364
1365 /*
1366 * process the page.
1367 */
1368
1369 rv = uao_pagein_page(aobj, i);
1370 if (rv) {
1371 return rv;
1372 }
1373 }
1374 }
1375
1376 return FALSE;
1377 }
1378
1379 /*
1380 * page in a page from an aobj. used for swap_off.
1381 * returns TRUE if pagein was aborted due to lack of memory.
1382 *
1383 * => aobj must be locked and is returned locked.
1384 */
1385
1386 static boolean_t
1387 uao_pagein_page(aobj, pageidx)
1388 struct uvm_aobj *aobj;
1389 int pageidx;
1390 {
1391 struct vm_page *pg;
1392 int rv, slot, npages;
1393
1394 pg = NULL;
1395 npages = 1;
1396 /* locked: aobj */
1397 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1398 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1399 /* unlocked: aobj */
1400
1401 /*
1402 * relock and finish up.
1403 */
1404
1405 simple_lock(&aobj->u_obj.vmobjlock);
1406 switch (rv) {
1407 case 0:
1408 break;
1409
1410 case EIO:
1411 case ERESTART:
1412
1413 /*
1414 * nothing more to do on errors.
1415 * ERESTART can only mean that the anon was freed,
1416 * so again there's nothing to do.
1417 */
1418
1419 return FALSE;
1420 }
1421
1422 /*
1423 * ok, we've got the page now.
1424 * mark it as dirty, clear its swslot and un-busy it.
1425 */
1426
1427 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1428 uvm_swap_free(slot, 1);
1429 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1430 UVM_PAGE_OWN(pg, NULL);
1431
1432 /*
1433 * deactivate the page (to make sure it's on a page queue).
1434 */
1435
1436 uvm_lock_pageq();
1437 uvm_pagedeactivate(pg);
1438 uvm_unlock_pageq();
1439 return FALSE;
1440 }
1441