uvm_aobj.c revision 1.49 1 /* $NetBSD: uvm_aobj.c,v 1.49 2001/11/10 07:36:59 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.49 2001/11/10 07:36:59 lukem Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 #include <sys/kernel.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * an aobj manages anonymous-memory backed uvm_objects. in addition
62 * to keeping the list of resident pages, it also keeps a list of
63 * allocated swap blocks. depending on the size of the aobj this list
64 * of allocated swap blocks is either stored in an array (small objects)
65 * or in a hash table (large objects).
66 */
67
68 /*
69 * local structures
70 */
71
72 /*
73 * for hash tables, we break the address space of the aobj into blocks
74 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
75 * be a power of two.
76 */
77
78 #define UAO_SWHASH_CLUSTER_SHIFT 4
79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80
81 /* get the "tag" for this page index */
82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
83 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84
85 /* given an ELT and a page index, find the swap slot */
86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
87 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
88
89 /* given an ELT, return its pageidx base */
90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
91 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
92
93 /*
94 * the swhash hash function
95 */
96
97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
98 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
99 & (AOBJ)->u_swhashmask)])
100
101 /*
102 * the swhash threshhold determines if we will use an array or a
103 * hash table to store the list of allocated swap blocks.
104 */
105
106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
107 #define UAO_USES_SWHASH(AOBJ) \
108 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
109
110 /*
111 * the number of buckets in a swhash, with an upper bound
112 */
113
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 UAO_SWHASH_MAXBUCKETS))
118
119
120 /*
121 * uao_swhash_elt: when a hash table is being used, this structure defines
122 * the format of an entry in the bucket list.
123 */
124
125 struct uao_swhash_elt {
126 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
127 voff_t tag; /* our 'tag' */
128 int count; /* our number of active slots */
129 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
130 };
131
132 /*
133 * uao_swhash: the swap hash table structure
134 */
135
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137
138 /*
139 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140 */
141
142 struct pool uao_swhash_elt_pool;
143
144 /*
145 * uvm_aobj: the actual anon-backed uvm_object
146 *
147 * => the uvm_object is at the top of the structure, this allows
148 * (struct uvm_aobj *) == (struct uvm_object *)
149 * => only one of u_swslots and u_swhash is used in any given aobj
150 */
151
152 struct uvm_aobj {
153 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 int u_pages; /* number of pages in entire object */
155 int u_flags; /* the flags (see uvm_aobj.h) */
156 int *u_swslots; /* array of offset->swapslot mappings */
157 /*
158 * hashtable of offset->swapslot mappings
159 * (u_swhash is an array of bucket heads)
160 */
161 struct uao_swhash *u_swhash;
162 u_long u_swhashmask; /* mask for hashtable */
163 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
164 };
165
166 /*
167 * uvm_aobj_pool: pool of uvm_aobj structures
168 */
169
170 struct pool uvm_aobj_pool;
171
172 /*
173 * local functions
174 */
175
176 static struct uao_swhash_elt *uao_find_swhash_elt
177 __P((struct uvm_aobj *, int, boolean_t));
178
179 static void uao_free __P((struct uvm_aobj *));
180 static int uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
181 int *, int, vm_prot_t, int, int));
182 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
183 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
184 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
185
186 /*
187 * aobj_pager
188 *
189 * note that some functions (e.g. put) are handled elsewhere
190 */
191
192 struct uvm_pagerops aobj_pager = {
193 NULL, /* init */
194 uao_reference, /* reference */
195 uao_detach, /* detach */
196 NULL, /* fault */
197 uao_get, /* get */
198 uao_put, /* flush */
199 };
200
201 /*
202 * uao_list: global list of active aobjs, locked by uao_list_lock
203 */
204
205 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
206 static struct simplelock uao_list_lock;
207
208 /*
209 * functions
210 */
211
212 /*
213 * hash table/array related functions
214 */
215
216 /*
217 * uao_find_swhash_elt: find (or create) a hash table entry for a page
218 * offset.
219 *
220 * => the object should be locked by the caller
221 */
222
223 static struct uao_swhash_elt *
224 uao_find_swhash_elt(aobj, pageidx, create)
225 struct uvm_aobj *aobj;
226 int pageidx;
227 boolean_t create;
228 {
229 struct uao_swhash *swhash;
230 struct uao_swhash_elt *elt;
231 voff_t page_tag;
232
233 swhash = UAO_SWHASH_HASH(aobj, pageidx);
234 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
235
236 /*
237 * now search the bucket for the requested tag
238 */
239
240 LIST_FOREACH(elt, swhash, list) {
241 if (elt->tag == page_tag) {
242 return elt;
243 }
244 }
245 if (!create) {
246 return NULL;
247 }
248
249 /*
250 * allocate a new entry for the bucket and init/insert it in
251 */
252
253 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
254 if (elt == NULL) {
255 return NULL;
256 }
257 LIST_INSERT_HEAD(swhash, elt, list);
258 elt->tag = page_tag;
259 elt->count = 0;
260 memset(elt->slots, 0, sizeof(elt->slots));
261 return elt;
262 }
263
264 /*
265 * uao_find_swslot: find the swap slot number for an aobj/pageidx
266 *
267 * => object must be locked by caller
268 */
269
270 int
271 uao_find_swslot(uobj, pageidx)
272 struct uvm_object *uobj;
273 int pageidx;
274 {
275 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
276 struct uao_swhash_elt *elt;
277
278 /*
279 * if noswap flag is set, then we never return a slot
280 */
281
282 if (aobj->u_flags & UAO_FLAG_NOSWAP)
283 return(0);
284
285 /*
286 * if hashing, look in hash table.
287 */
288
289 if (UAO_USES_SWHASH(aobj)) {
290 elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
291 if (elt)
292 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
293 else
294 return(0);
295 }
296
297 /*
298 * otherwise, look in the array
299 */
300
301 return(aobj->u_swslots[pageidx]);
302 }
303
304 /*
305 * uao_set_swslot: set the swap slot for a page in an aobj.
306 *
307 * => setting a slot to zero frees the slot
308 * => object must be locked by caller
309 * => we return the old slot number, or -1 if we failed to allocate
310 * memory to record the new slot number
311 */
312
313 int
314 uao_set_swslot(uobj, pageidx, slot)
315 struct uvm_object *uobj;
316 int pageidx, slot;
317 {
318 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
319 struct uao_swhash_elt *elt;
320 int oldslot;
321 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
322 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
323 aobj, pageidx, slot, 0);
324
325 /*
326 * if noswap flag is set, then we can't set a non-zero slot.
327 */
328
329 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
330 if (slot == 0)
331 return(0);
332
333 printf("uao_set_swslot: uobj = %p\n", uobj);
334 panic("uao_set_swslot: NOSWAP object");
335 }
336
337 /*
338 * are we using a hash table? if so, add it in the hash.
339 */
340
341 if (UAO_USES_SWHASH(aobj)) {
342
343 /*
344 * Avoid allocating an entry just to free it again if
345 * the page had not swap slot in the first place, and
346 * we are freeing.
347 */
348
349 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
350 if (elt == NULL) {
351 return slot ? -1 : 0;
352 }
353
354 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
355 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
356
357 /*
358 * now adjust the elt's reference counter and free it if we've
359 * dropped it to zero.
360 */
361
362 if (slot) {
363 if (oldslot == 0)
364 elt->count++;
365 } else {
366 if (oldslot)
367 elt->count--;
368
369 if (elt->count == 0) {
370 LIST_REMOVE(elt, list);
371 pool_put(&uao_swhash_elt_pool, elt);
372 }
373 }
374 } else {
375 /* we are using an array */
376 oldslot = aobj->u_swslots[pageidx];
377 aobj->u_swslots[pageidx] = slot;
378 }
379 return (oldslot);
380 }
381
382 /*
383 * end of hash/array functions
384 */
385
386 /*
387 * uao_free: free all resources held by an aobj, and then free the aobj
388 *
389 * => the aobj should be dead
390 */
391
392 static void
393 uao_free(aobj)
394 struct uvm_aobj *aobj;
395 {
396 int swpgonlydelta = 0;
397
398 simple_unlock(&aobj->u_obj.vmobjlock);
399 if (UAO_USES_SWHASH(aobj)) {
400 int i, hashbuckets = aobj->u_swhashmask + 1;
401
402 /*
403 * free the swslots from each hash bucket,
404 * then the hash bucket, and finally the hash table itself.
405 */
406
407 for (i = 0; i < hashbuckets; i++) {
408 struct uao_swhash_elt *elt, *next;
409
410 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
411 elt != NULL;
412 elt = next) {
413 int j;
414
415 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
416 int slot = elt->slots[j];
417
418 if (slot == 0) {
419 continue;
420 }
421 uvm_swap_free(slot, 1);
422 swpgonlydelta++;
423 }
424
425 next = LIST_NEXT(elt, list);
426 pool_put(&uao_swhash_elt_pool, elt);
427 }
428 }
429 free(aobj->u_swhash, M_UVMAOBJ);
430 } else {
431 int i;
432
433 /*
434 * free the array
435 */
436
437 for (i = 0; i < aobj->u_pages; i++) {
438 int slot = aobj->u_swslots[i];
439
440 if (slot) {
441 uvm_swap_free(slot, 1);
442 swpgonlydelta++;
443 }
444 }
445 free(aobj->u_swslots, M_UVMAOBJ);
446 }
447
448 /*
449 * finally free the aobj itself
450 */
451
452 pool_put(&uvm_aobj_pool, aobj);
453
454 /*
455 * adjust the counter of pages only in swap for all
456 * the swap slots we've freed.
457 */
458
459 if (swpgonlydelta > 0) {
460 simple_lock(&uvm.swap_data_lock);
461 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
462 uvmexp.swpgonly -= swpgonlydelta;
463 simple_unlock(&uvm.swap_data_lock);
464 }
465 }
466
467 /*
468 * pager functions
469 */
470
471 /*
472 * uao_create: create an aobj of the given size and return its uvm_object.
473 *
474 * => for normal use, flags are always zero
475 * => for the kernel object, the flags are:
476 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
477 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
478 */
479
480 struct uvm_object *
481 uao_create(size, flags)
482 vsize_t size;
483 int flags;
484 {
485 static struct uvm_aobj kernel_object_store;
486 static int kobj_alloced = 0;
487 int pages = round_page(size) >> PAGE_SHIFT;
488 struct uvm_aobj *aobj;
489
490 /*
491 * malloc a new aobj unless we are asked for the kernel object
492 */
493
494 if (flags & UAO_FLAG_KERNOBJ) {
495 KASSERT(!kobj_alloced);
496 aobj = &kernel_object_store;
497 aobj->u_pages = pages;
498 aobj->u_flags = UAO_FLAG_NOSWAP;
499 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
500 kobj_alloced = UAO_FLAG_KERNOBJ;
501 } else if (flags & UAO_FLAG_KERNSWAP) {
502 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
503 aobj = &kernel_object_store;
504 kobj_alloced = UAO_FLAG_KERNSWAP;
505 } else {
506 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
507 aobj->u_pages = pages;
508 aobj->u_flags = 0;
509 aobj->u_obj.uo_refs = 1;
510 }
511
512 /*
513 * allocate hash/array if necessary
514 *
515 * note: in the KERNSWAP case no need to worry about locking since
516 * we are still booting we should be the only thread around.
517 */
518
519 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
520 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
521 M_NOWAIT : M_WAITOK;
522
523 /* allocate hash table or array depending on object size */
524 if (UAO_USES_SWHASH(aobj)) {
525 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
526 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
527 if (aobj->u_swhash == NULL)
528 panic("uao_create: hashinit swhash failed");
529 } else {
530 aobj->u_swslots = malloc(pages * sizeof(int),
531 M_UVMAOBJ, mflags);
532 if (aobj->u_swslots == NULL)
533 panic("uao_create: malloc swslots failed");
534 memset(aobj->u_swslots, 0, pages * sizeof(int));
535 }
536
537 if (flags) {
538 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
539 return(&aobj->u_obj);
540 }
541 }
542
543 /*
544 * init aobj fields
545 */
546
547 simple_lock_init(&aobj->u_obj.vmobjlock);
548 aobj->u_obj.pgops = &aobj_pager;
549 TAILQ_INIT(&aobj->u_obj.memq);
550 aobj->u_obj.uo_npages = 0;
551
552 /*
553 * now that aobj is ready, add it to the global list
554 */
555
556 simple_lock(&uao_list_lock);
557 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
558 simple_unlock(&uao_list_lock);
559 return(&aobj->u_obj);
560 }
561
562
563
564 /*
565 * uao_init: set up aobj pager subsystem
566 *
567 * => called at boot time from uvm_pager_init()
568 */
569
570 void
571 uao_init(void)
572 {
573 static int uao_initialized;
574
575 if (uao_initialized)
576 return;
577 uao_initialized = TRUE;
578 LIST_INIT(&uao_list);
579 simple_lock_init(&uao_list_lock);
580
581 /*
582 * NOTE: Pages fror this pool must not come from a pageable
583 * kernel map!
584 */
585
586 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
587 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
588 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
589 "aobjpl", 0,
590 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
591 }
592
593 /*
594 * uao_reference: add a ref to an aobj
595 *
596 * => aobj must be unlocked
597 * => just lock it and call the locked version
598 */
599
600 void
601 uao_reference(uobj)
602 struct uvm_object *uobj;
603 {
604 simple_lock(&uobj->vmobjlock);
605 uao_reference_locked(uobj);
606 simple_unlock(&uobj->vmobjlock);
607 }
608
609 /*
610 * uao_reference_locked: add a ref to an aobj that is already locked
611 *
612 * => aobj must be locked
613 * this needs to be separate from the normal routine
614 * since sometimes we need to add a reference to an aobj when
615 * it's already locked.
616 */
617
618 void
619 uao_reference_locked(uobj)
620 struct uvm_object *uobj;
621 {
622 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
623
624 /*
625 * kernel_object already has plenty of references, leave it alone.
626 */
627
628 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
629 return;
630
631 uobj->uo_refs++;
632 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
633 uobj, uobj->uo_refs,0,0);
634 }
635
636 /*
637 * uao_detach: drop a reference to an aobj
638 *
639 * => aobj must be unlocked
640 * => just lock it and call the locked version
641 */
642
643 void
644 uao_detach(uobj)
645 struct uvm_object *uobj;
646 {
647 simple_lock(&uobj->vmobjlock);
648 uao_detach_locked(uobj);
649 }
650
651 /*
652 * uao_detach_locked: drop a reference to an aobj
653 *
654 * => aobj must be locked, and is unlocked (or freed) upon return.
655 * this needs to be separate from the normal routine
656 * since sometimes we need to detach from an aobj when
657 * it's already locked.
658 */
659
660 void
661 uao_detach_locked(uobj)
662 struct uvm_object *uobj;
663 {
664 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
665 struct vm_page *pg;
666 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
667
668 /*
669 * detaching from kernel_object is a noop.
670 */
671
672 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
673 simple_unlock(&uobj->vmobjlock);
674 return;
675 }
676
677 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
678 uobj->uo_refs--;
679 if (uobj->uo_refs) {
680 simple_unlock(&uobj->vmobjlock);
681 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
682 return;
683 }
684
685 /*
686 * remove the aobj from the global list.
687 */
688
689 simple_lock(&uao_list_lock);
690 LIST_REMOVE(aobj, u_list);
691 simple_unlock(&uao_list_lock);
692
693 /*
694 * free all the pages left in the aobj. for each page,
695 * when the page is no longer busy (and thus after any disk i/o that
696 * it's involved in is complete), release any swap resources and
697 * free the page itself.
698 */
699
700 uvm_lock_pageq();
701 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
702 pmap_page_protect(pg, VM_PROT_NONE);
703 if (pg->flags & PG_BUSY) {
704 pg->flags |= PG_WANTED;
705 uvm_unlock_pageq();
706 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
707 "uao_det", 0);
708 simple_lock(&uobj->vmobjlock);
709 uvm_lock_pageq();
710 continue;
711 }
712 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
713 uvm_pagefree(pg);
714 }
715 uvm_unlock_pageq();
716
717 /*
718 * finally, free the aobj itself.
719 */
720
721 uao_free(aobj);
722 }
723
724 /*
725 * uao_put: flush pages out of a uvm object
726 *
727 * => object should be locked by caller. we may _unlock_ the object
728 * if (and only if) we need to clean a page (PGO_CLEANIT).
729 * XXXJRT Currently, however, we don't. In the case of cleaning
730 * XXXJRT a page, we simply just deactivate it. Should probably
731 * XXXJRT handle this better, in the future (although "flushing"
732 * XXXJRT anonymous memory isn't terribly important).
733 * => if PGO_CLEANIT is not set, then we will neither unlock the object
734 * or block.
735 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
736 * for flushing.
737 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
738 * that new pages are inserted on the tail end of the list. thus,
739 * we can make a complete pass through the object in one go by starting
740 * at the head and working towards the tail (new pages are put in
741 * front of us).
742 * => NOTE: we are allowed to lock the page queues, so the caller
743 * must not be holding the lock on them [e.g. pagedaemon had
744 * better not call us with the queues locked]
745 * => we return TRUE unless we encountered some sort of I/O error
746 * XXXJRT currently never happens, as we never directly initiate
747 * XXXJRT I/O
748 *
749 * note on page traversal:
750 * we can traverse the pages in an object either by going down the
751 * linked list in "uobj->memq", or we can go over the address range
752 * by page doing hash table lookups for each address. depending
753 * on how many pages are in the object it may be cheaper to do one
754 * or the other. we set "by_list" to true if we are using memq.
755 * if the cost of a hash lookup was equal to the cost of the list
756 * traversal we could compare the number of pages in the start->stop
757 * range to the total number of pages in the object. however, it
758 * seems that a hash table lookup is more expensive than the linked
759 * list traversal, so we multiply the number of pages in the
760 * start->stop range by a penalty which we define below.
761 */
762
763 int
764 uao_put(uobj, start, stop, flags)
765 struct uvm_object *uobj;
766 voff_t start, stop;
767 int flags;
768 {
769 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
770 struct vm_page *pg, *nextpg;
771 boolean_t by_list;
772 voff_t curoff;
773 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
774
775 curoff = 0;
776 if (flags & PGO_ALLPAGES) {
777 start = 0;
778 stop = aobj->u_pages << PAGE_SHIFT;
779 by_list = TRUE; /* always go by the list */
780 } else {
781 start = trunc_page(start);
782 stop = round_page(stop);
783 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
784 printf("uao_flush: strange, got an out of range "
785 "flush (fixed)\n");
786 stop = aobj->u_pages << PAGE_SHIFT;
787 }
788 by_list = (uobj->uo_npages <=
789 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
790 }
791 UVMHIST_LOG(maphist,
792 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
793 start, stop, by_list, flags);
794
795 /*
796 * Don't need to do any work here if we're not freeing
797 * or deactivating pages.
798 */
799
800 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
801 simple_unlock(&uobj->vmobjlock);
802 return 0;
803 }
804
805 /*
806 * now do it. note: we must update nextpg in the body of loop or we
807 * will get stuck. we need to use nextpg because we may free "pg"
808 * before doing the next loop.
809 */
810
811 if (by_list) {
812 pg = TAILQ_FIRST(&uobj->memq);
813 } else {
814 curoff = start;
815 pg = uvm_pagelookup(uobj, curoff);
816 }
817
818 nextpg = NULL;
819 uvm_lock_pageq();
820
821 /* locked: both page queues and uobj */
822 for ( ; (by_list && pg != NULL) ||
823 (!by_list && curoff < stop) ; pg = nextpg) {
824 if (by_list) {
825 nextpg = TAILQ_NEXT(pg, listq);
826 if (pg->offset < start || pg->offset >= stop)
827 continue;
828 } else {
829 curoff += PAGE_SIZE;
830 if (curoff < stop)
831 nextpg = uvm_pagelookup(uobj, curoff);
832 if (pg == NULL)
833 continue;
834 }
835 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
836
837 /*
838 * XXX In these first 3 cases, we always just
839 * XXX deactivate the page. We may want to
840 * XXX handle the different cases more specifically
841 * XXX in the future.
842 */
843
844 case PGO_CLEANIT|PGO_FREE:
845 case PGO_CLEANIT|PGO_DEACTIVATE:
846 case PGO_DEACTIVATE:
847 deactivate_it:
848 /* skip the page if it's loaned or wired */
849 if (pg->loan_count != 0 || pg->wire_count != 0)
850 continue;
851
852 /* ...and deactivate the page. */
853 pmap_clear_reference(pg);
854 uvm_pagedeactivate(pg);
855 continue;
856
857 case PGO_FREE:
858
859 /*
860 * If there are multiple references to
861 * the object, just deactivate the page.
862 */
863
864 if (uobj->uo_refs > 1)
865 goto deactivate_it;
866
867 /* XXX skip the page if it's loaned or wired */
868 if (pg->loan_count != 0 || pg->wire_count != 0)
869 continue;
870
871 /*
872 * wait if the page is busy, then free the swap slot
873 * and the page.
874 */
875
876 pmap_page_protect(pg, VM_PROT_NONE);
877 while (pg->flags & PG_BUSY) {
878 pg->flags |= PG_WANTED;
879 uvm_unlock_pageq();
880 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
881 "uao_put", 0);
882 simple_lock(&uobj->vmobjlock);
883 uvm_lock_pageq();
884 }
885 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
886 uvm_pagefree(pg);
887 continue;
888 }
889 }
890 uvm_unlock_pageq();
891 simple_unlock(&uobj->vmobjlock);
892 return 0;
893 }
894
895 /*
896 * uao_get: fetch me a page
897 *
898 * we have three cases:
899 * 1: page is resident -> just return the page.
900 * 2: page is zero-fill -> allocate a new page and zero it.
901 * 3: page is swapped out -> fetch the page from swap.
902 *
903 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
904 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
905 * then we will need to return EBUSY.
906 *
907 * => prefer map unlocked (not required)
908 * => object must be locked! we will _unlock_ it before starting any I/O.
909 * => flags: PGO_ALLPAGES: get all of the pages
910 * PGO_LOCKED: fault data structures are locked
911 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
912 * => NOTE: caller must check for released pages!!
913 */
914
915 static int
916 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
917 struct uvm_object *uobj;
918 voff_t offset;
919 struct vm_page **pps;
920 int *npagesp;
921 int centeridx, advice, flags;
922 vm_prot_t access_type;
923 {
924 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
925 voff_t current_offset;
926 struct vm_page *ptmp;
927 int lcv, gotpages, maxpages, swslot, error, pageidx;
928 boolean_t done;
929 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
930
931 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
932 aobj, offset, flags,0);
933
934 /*
935 * get number of pages
936 */
937
938 maxpages = *npagesp;
939
940 /*
941 * step 1: handled the case where fault data structures are locked.
942 */
943
944 if (flags & PGO_LOCKED) {
945
946 /*
947 * step 1a: get pages that are already resident. only do
948 * this if the data structures are locked (i.e. the first
949 * time through).
950 */
951
952 done = TRUE; /* be optimistic */
953 gotpages = 0; /* # of pages we got so far */
954 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
955 lcv++, current_offset += PAGE_SIZE) {
956 /* do we care about this page? if not, skip it */
957 if (pps[lcv] == PGO_DONTCARE)
958 continue;
959 ptmp = uvm_pagelookup(uobj, current_offset);
960
961 /*
962 * if page is new, attempt to allocate the page,
963 * zero-fill'd.
964 */
965
966 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
967 current_offset >> PAGE_SHIFT) == 0) {
968 ptmp = uvm_pagealloc(uobj, current_offset,
969 NULL, UVM_PGA_ZERO);
970 if (ptmp) {
971 /* new page */
972 ptmp->flags &= ~(PG_FAKE);
973 ptmp->pqflags |= PQ_AOBJ;
974 goto gotpage;
975 }
976 }
977
978 /*
979 * to be useful must get a non-busy page
980 */
981
982 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
983 if (lcv == centeridx ||
984 (flags & PGO_ALLPAGES) != 0)
985 /* need to do a wait or I/O! */
986 done = FALSE;
987 continue;
988 }
989
990 /*
991 * useful page: busy/lock it and plug it in our
992 * result array
993 */
994
995 /* caller must un-busy this page */
996 ptmp->flags |= PG_BUSY;
997 UVM_PAGE_OWN(ptmp, "uao_get1");
998 gotpage:
999 pps[lcv] = ptmp;
1000 gotpages++;
1001 }
1002
1003 /*
1004 * step 1b: now we've either done everything needed or we
1005 * to unlock and do some waiting or I/O.
1006 */
1007
1008 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1009 *npagesp = gotpages;
1010 if (done)
1011 return 0;
1012 else
1013 return EBUSY;
1014 }
1015
1016 /*
1017 * step 2: get non-resident or busy pages.
1018 * object is locked. data structures are unlocked.
1019 */
1020
1021 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1022 lcv++, current_offset += PAGE_SIZE) {
1023
1024 /*
1025 * - skip over pages we've already gotten or don't want
1026 * - skip over pages we don't _have_ to get
1027 */
1028
1029 if (pps[lcv] != NULL ||
1030 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1031 continue;
1032
1033 pageidx = current_offset >> PAGE_SHIFT;
1034
1035 /*
1036 * we have yet to locate the current page (pps[lcv]). we
1037 * first look for a page that is already at the current offset.
1038 * if we find a page, we check to see if it is busy or
1039 * released. if that is the case, then we sleep on the page
1040 * until it is no longer busy or released and repeat the lookup.
1041 * if the page we found is neither busy nor released, then we
1042 * busy it (so we own it) and plug it into pps[lcv]. this
1043 * 'break's the following while loop and indicates we are
1044 * ready to move on to the next page in the "lcv" loop above.
1045 *
1046 * if we exit the while loop with pps[lcv] still set to NULL,
1047 * then it means that we allocated a new busy/fake/clean page
1048 * ptmp in the object and we need to do I/O to fill in the data.
1049 */
1050
1051 /* top of "pps" while loop */
1052 while (pps[lcv] == NULL) {
1053 /* look for a resident page */
1054 ptmp = uvm_pagelookup(uobj, current_offset);
1055
1056 /* not resident? allocate one now (if we can) */
1057 if (ptmp == NULL) {
1058
1059 ptmp = uvm_pagealloc(uobj, current_offset,
1060 NULL, 0);
1061
1062 /* out of RAM? */
1063 if (ptmp == NULL) {
1064 simple_unlock(&uobj->vmobjlock);
1065 UVMHIST_LOG(pdhist,
1066 "sleeping, ptmp == NULL\n",0,0,0,0);
1067 uvm_wait("uao_getpage");
1068 simple_lock(&uobj->vmobjlock);
1069 continue;
1070 }
1071
1072 /*
1073 * safe with PQ's unlocked: because we just
1074 * alloc'd the page
1075 */
1076
1077 ptmp->pqflags |= PQ_AOBJ;
1078
1079 /*
1080 * got new page ready for I/O. break pps while
1081 * loop. pps[lcv] is still NULL.
1082 */
1083
1084 break;
1085 }
1086
1087 /* page is there, see if we need to wait on it */
1088 if ((ptmp->flags & PG_BUSY) != 0) {
1089 ptmp->flags |= PG_WANTED;
1090 UVMHIST_LOG(pdhist,
1091 "sleeping, ptmp->flags 0x%x\n",
1092 ptmp->flags,0,0,0);
1093 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1094 FALSE, "uao_get", 0);
1095 simple_lock(&uobj->vmobjlock);
1096 continue;
1097 }
1098
1099 /*
1100 * if we get here then the page has become resident and
1101 * unbusy between steps 1 and 2. we busy it now (so we
1102 * own it) and set pps[lcv] (so that we exit the while
1103 * loop).
1104 */
1105
1106 /* we own it, caller must un-busy */
1107 ptmp->flags |= PG_BUSY;
1108 UVM_PAGE_OWN(ptmp, "uao_get2");
1109 pps[lcv] = ptmp;
1110 }
1111
1112 /*
1113 * if we own the valid page at the correct offset, pps[lcv] will
1114 * point to it. nothing more to do except go to the next page.
1115 */
1116
1117 if (pps[lcv])
1118 continue; /* next lcv */
1119
1120 /*
1121 * we have a "fake/busy/clean" page that we just allocated.
1122 * do the needed "i/o", either reading from swap or zeroing.
1123 */
1124
1125 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1126
1127 /*
1128 * just zero the page if there's nothing in swap.
1129 */
1130
1131 if (swslot == 0) {
1132
1133 /*
1134 * page hasn't existed before, just zero it.
1135 */
1136
1137 uvm_pagezero(ptmp);
1138 } else {
1139 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1140 swslot, 0,0,0);
1141
1142 /*
1143 * page in the swapped-out page.
1144 * unlock object for i/o, relock when done.
1145 */
1146
1147 simple_unlock(&uobj->vmobjlock);
1148 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1149 simple_lock(&uobj->vmobjlock);
1150
1151 /*
1152 * I/O done. check for errors.
1153 */
1154
1155 if (error != 0) {
1156 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1157 error,0,0,0);
1158 if (ptmp->flags & PG_WANTED)
1159 wakeup(ptmp);
1160
1161 /*
1162 * remove the swap slot from the aobj
1163 * and mark the aobj as having no real slot.
1164 * don't free the swap slot, thus preventing
1165 * it from being used again.
1166 */
1167
1168 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1169 SWSLOT_BAD);
1170 if (swslot != -1) {
1171 uvm_swap_markbad(swslot, 1);
1172 }
1173
1174 uvm_lock_pageq();
1175 uvm_pagefree(ptmp);
1176 uvm_unlock_pageq();
1177 simple_unlock(&uobj->vmobjlock);
1178 return error;
1179 }
1180 }
1181
1182 /*
1183 * we got the page! clear the fake flag (indicates valid
1184 * data now in page) and plug into our result array. note
1185 * that page is still busy.
1186 *
1187 * it is the callers job to:
1188 * => check if the page is released
1189 * => unbusy the page
1190 * => activate the page
1191 */
1192
1193 ptmp->flags &= ~PG_FAKE;
1194 pps[lcv] = ptmp;
1195 }
1196
1197 /*
1198 * finally, unlock object and return.
1199 */
1200
1201 simple_unlock(&uobj->vmobjlock);
1202 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1203 return 0;
1204 }
1205
1206 /*
1207 * uao_dropswap: release any swap resources from this aobj page.
1208 *
1209 * => aobj must be locked or have a reference count of 0.
1210 */
1211
1212 void
1213 uao_dropswap(uobj, pageidx)
1214 struct uvm_object *uobj;
1215 int pageidx;
1216 {
1217 int slot;
1218
1219 slot = uao_set_swslot(uobj, pageidx, 0);
1220 if (slot) {
1221 uvm_swap_free(slot, 1);
1222 }
1223 }
1224
1225 /*
1226 * page in every page in every aobj that is paged-out to a range of swslots.
1227 *
1228 * => nothing should be locked.
1229 * => returns TRUE if pagein was aborted due to lack of memory.
1230 */
1231
1232 boolean_t
1233 uao_swap_off(startslot, endslot)
1234 int startslot, endslot;
1235 {
1236 struct uvm_aobj *aobj, *nextaobj;
1237 boolean_t rv;
1238
1239 /*
1240 * walk the list of all aobjs.
1241 */
1242
1243 restart:
1244 simple_lock(&uao_list_lock);
1245 for (aobj = LIST_FIRST(&uao_list);
1246 aobj != NULL;
1247 aobj = nextaobj) {
1248
1249 /*
1250 * try to get the object lock, start all over if we fail.
1251 * most of the time we'll get the aobj lock,
1252 * so this should be a rare case.
1253 */
1254
1255 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1256 simple_unlock(&uao_list_lock);
1257 goto restart;
1258 }
1259
1260 /*
1261 * add a ref to the aobj so it doesn't disappear
1262 * while we're working.
1263 */
1264
1265 uao_reference_locked(&aobj->u_obj);
1266
1267 /*
1268 * now it's safe to unlock the uao list.
1269 */
1270
1271 simple_unlock(&uao_list_lock);
1272
1273 /*
1274 * page in any pages in the swslot range.
1275 * if there's an error, abort and return the error.
1276 */
1277
1278 rv = uao_pagein(aobj, startslot, endslot);
1279 if (rv) {
1280 uao_detach_locked(&aobj->u_obj);
1281 return rv;
1282 }
1283
1284 /*
1285 * we're done with this aobj.
1286 * relock the list and drop our ref on the aobj.
1287 */
1288
1289 simple_lock(&uao_list_lock);
1290 nextaobj = LIST_NEXT(aobj, u_list);
1291 uao_detach_locked(&aobj->u_obj);
1292 }
1293
1294 /*
1295 * done with traversal, unlock the list
1296 */
1297 simple_unlock(&uao_list_lock);
1298 return FALSE;
1299 }
1300
1301
1302 /*
1303 * page in any pages from aobj in the given range.
1304 *
1305 * => aobj must be locked and is returned locked.
1306 * => returns TRUE if pagein was aborted due to lack of memory.
1307 */
1308 static boolean_t
1309 uao_pagein(aobj, startslot, endslot)
1310 struct uvm_aobj *aobj;
1311 int startslot, endslot;
1312 {
1313 boolean_t rv;
1314
1315 if (UAO_USES_SWHASH(aobj)) {
1316 struct uao_swhash_elt *elt;
1317 int bucket;
1318
1319 restart:
1320 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1321 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1322 elt != NULL;
1323 elt = LIST_NEXT(elt, list)) {
1324 int i;
1325
1326 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1327 int slot = elt->slots[i];
1328
1329 /*
1330 * if the slot isn't in range, skip it.
1331 */
1332
1333 if (slot < startslot ||
1334 slot >= endslot) {
1335 continue;
1336 }
1337
1338 /*
1339 * process the page,
1340 * the start over on this object
1341 * since the swhash elt
1342 * may have been freed.
1343 */
1344
1345 rv = uao_pagein_page(aobj,
1346 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1347 if (rv) {
1348 return rv;
1349 }
1350 goto restart;
1351 }
1352 }
1353 }
1354 } else {
1355 int i;
1356
1357 for (i = 0; i < aobj->u_pages; i++) {
1358 int slot = aobj->u_swslots[i];
1359
1360 /*
1361 * if the slot isn't in range, skip it
1362 */
1363
1364 if (slot < startslot || slot >= endslot) {
1365 continue;
1366 }
1367
1368 /*
1369 * process the page.
1370 */
1371
1372 rv = uao_pagein_page(aobj, i);
1373 if (rv) {
1374 return rv;
1375 }
1376 }
1377 }
1378
1379 return FALSE;
1380 }
1381
1382 /*
1383 * page in a page from an aobj. used for swap_off.
1384 * returns TRUE if pagein was aborted due to lack of memory.
1385 *
1386 * => aobj must be locked and is returned locked.
1387 */
1388
1389 static boolean_t
1390 uao_pagein_page(aobj, pageidx)
1391 struct uvm_aobj *aobj;
1392 int pageidx;
1393 {
1394 struct vm_page *pg;
1395 int rv, slot, npages;
1396
1397 pg = NULL;
1398 npages = 1;
1399 /* locked: aobj */
1400 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1401 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1402 /* unlocked: aobj */
1403
1404 /*
1405 * relock and finish up.
1406 */
1407
1408 simple_lock(&aobj->u_obj.vmobjlock);
1409 switch (rv) {
1410 case 0:
1411 break;
1412
1413 case EIO:
1414 case ERESTART:
1415
1416 /*
1417 * nothing more to do on errors.
1418 * ERESTART can only mean that the anon was freed,
1419 * so again there's nothing to do.
1420 */
1421
1422 return FALSE;
1423 }
1424
1425 /*
1426 * ok, we've got the page now.
1427 * mark it as dirty, clear its swslot and un-busy it.
1428 */
1429
1430 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1431 uvm_swap_free(slot, 1);
1432 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1433 UVM_PAGE_OWN(pg, NULL);
1434
1435 /*
1436 * deactivate the page (to make sure it's on a page queue).
1437 */
1438
1439 uvm_lock_pageq();
1440 uvm_pagedeactivate(pg);
1441 uvm_unlock_pageq();
1442 return FALSE;
1443 }
1444