uvm_aobj.c revision 1.51 1 /* $NetBSD: uvm_aobj.c,v 1.51 2002/05/09 07:04:23 enami Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.51 2002/05/09 07:04:23 enami Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 #include <sys/kernel.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * an aobj manages anonymous-memory backed uvm_objects. in addition
62 * to keeping the list of resident pages, it also keeps a list of
63 * allocated swap blocks. depending on the size of the aobj this list
64 * of allocated swap blocks is either stored in an array (small objects)
65 * or in a hash table (large objects).
66 */
67
68 /*
69 * local structures
70 */
71
72 /*
73 * for hash tables, we break the address space of the aobj into blocks
74 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
75 * be a power of two.
76 */
77
78 #define UAO_SWHASH_CLUSTER_SHIFT 4
79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80
81 /* get the "tag" for this page index */
82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
83 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84
85 /* given an ELT and a page index, find the swap slot */
86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
87 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
88
89 /* given an ELT, return its pageidx base */
90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
91 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
92
93 /*
94 * the swhash hash function
95 */
96
97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
98 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
99 & (AOBJ)->u_swhashmask)])
100
101 /*
102 * the swhash threshhold determines if we will use an array or a
103 * hash table to store the list of allocated swap blocks.
104 */
105
106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
107 #define UAO_USES_SWHASH(AOBJ) \
108 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
109
110 /*
111 * the number of buckets in a swhash, with an upper bound
112 */
113
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 UAO_SWHASH_MAXBUCKETS))
118
119
120 /*
121 * uao_swhash_elt: when a hash table is being used, this structure defines
122 * the format of an entry in the bucket list.
123 */
124
125 struct uao_swhash_elt {
126 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
127 voff_t tag; /* our 'tag' */
128 int count; /* our number of active slots */
129 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
130 };
131
132 /*
133 * uao_swhash: the swap hash table structure
134 */
135
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137
138 /*
139 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140 */
141
142 struct pool uao_swhash_elt_pool;
143
144 /*
145 * uvm_aobj: the actual anon-backed uvm_object
146 *
147 * => the uvm_object is at the top of the structure, this allows
148 * (struct uvm_aobj *) == (struct uvm_object *)
149 * => only one of u_swslots and u_swhash is used in any given aobj
150 */
151
152 struct uvm_aobj {
153 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 int u_pages; /* number of pages in entire object */
155 int u_flags; /* the flags (see uvm_aobj.h) */
156 int *u_swslots; /* array of offset->swapslot mappings */
157 /*
158 * hashtable of offset->swapslot mappings
159 * (u_swhash is an array of bucket heads)
160 */
161 struct uao_swhash *u_swhash;
162 u_long u_swhashmask; /* mask for hashtable */
163 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
164 };
165
166 /*
167 * uvm_aobj_pool: pool of uvm_aobj structures
168 */
169
170 struct pool uvm_aobj_pool;
171
172 /*
173 * local functions
174 */
175
176 static struct uao_swhash_elt *uao_find_swhash_elt
177 __P((struct uvm_aobj *, int, boolean_t));
178
179 static void uao_free __P((struct uvm_aobj *));
180 static int uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
181 int *, int, vm_prot_t, int, int));
182 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
183 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
184 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
185
186 /*
187 * aobj_pager
188 *
189 * note that some functions (e.g. put) are handled elsewhere
190 */
191
192 struct uvm_pagerops aobj_pager = {
193 NULL, /* init */
194 uao_reference, /* reference */
195 uao_detach, /* detach */
196 NULL, /* fault */
197 uao_get, /* get */
198 uao_put, /* flush */
199 };
200
201 /*
202 * uao_list: global list of active aobjs, locked by uao_list_lock
203 */
204
205 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
206 static struct simplelock uao_list_lock;
207
208 /*
209 * functions
210 */
211
212 /*
213 * hash table/array related functions
214 */
215
216 /*
217 * uao_find_swhash_elt: find (or create) a hash table entry for a page
218 * offset.
219 *
220 * => the object should be locked by the caller
221 */
222
223 static struct uao_swhash_elt *
224 uao_find_swhash_elt(aobj, pageidx, create)
225 struct uvm_aobj *aobj;
226 int pageidx;
227 boolean_t create;
228 {
229 struct uao_swhash *swhash;
230 struct uao_swhash_elt *elt;
231 voff_t page_tag;
232
233 swhash = UAO_SWHASH_HASH(aobj, pageidx);
234 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
235
236 /*
237 * now search the bucket for the requested tag
238 */
239
240 LIST_FOREACH(elt, swhash, list) {
241 if (elt->tag == page_tag) {
242 return elt;
243 }
244 }
245 if (!create) {
246 return NULL;
247 }
248
249 /*
250 * allocate a new entry for the bucket and init/insert it in
251 */
252
253 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
254 if (elt == NULL) {
255 return NULL;
256 }
257 LIST_INSERT_HEAD(swhash, elt, list);
258 elt->tag = page_tag;
259 elt->count = 0;
260 memset(elt->slots, 0, sizeof(elt->slots));
261 return elt;
262 }
263
264 /*
265 * uao_find_swslot: find the swap slot number for an aobj/pageidx
266 *
267 * => object must be locked by caller
268 */
269
270 int
271 uao_find_swslot(uobj, pageidx)
272 struct uvm_object *uobj;
273 int pageidx;
274 {
275 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
276 struct uao_swhash_elt *elt;
277
278 /*
279 * if noswap flag is set, then we never return a slot
280 */
281
282 if (aobj->u_flags & UAO_FLAG_NOSWAP)
283 return(0);
284
285 /*
286 * if hashing, look in hash table.
287 */
288
289 if (UAO_USES_SWHASH(aobj)) {
290 elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
291 if (elt)
292 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
293 else
294 return(0);
295 }
296
297 /*
298 * otherwise, look in the array
299 */
300
301 return(aobj->u_swslots[pageidx]);
302 }
303
304 /*
305 * uao_set_swslot: set the swap slot for a page in an aobj.
306 *
307 * => setting a slot to zero frees the slot
308 * => object must be locked by caller
309 * => we return the old slot number, or -1 if we failed to allocate
310 * memory to record the new slot number
311 */
312
313 int
314 uao_set_swslot(uobj, pageidx, slot)
315 struct uvm_object *uobj;
316 int pageidx, slot;
317 {
318 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
319 struct uao_swhash_elt *elt;
320 int oldslot;
321 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
322 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
323 aobj, pageidx, slot, 0);
324
325 /*
326 * if noswap flag is set, then we can't set a non-zero slot.
327 */
328
329 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
330 if (slot == 0)
331 return(0);
332
333 printf("uao_set_swslot: uobj = %p\n", uobj);
334 panic("uao_set_swslot: NOSWAP object");
335 }
336
337 /*
338 * are we using a hash table? if so, add it in the hash.
339 */
340
341 if (UAO_USES_SWHASH(aobj)) {
342
343 /*
344 * Avoid allocating an entry just to free it again if
345 * the page had not swap slot in the first place, and
346 * we are freeing.
347 */
348
349 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
350 if (elt == NULL) {
351 return slot ? -1 : 0;
352 }
353
354 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
355 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
356
357 /*
358 * now adjust the elt's reference counter and free it if we've
359 * dropped it to zero.
360 */
361
362 if (slot) {
363 if (oldslot == 0)
364 elt->count++;
365 } else {
366 if (oldslot)
367 elt->count--;
368
369 if (elt->count == 0) {
370 LIST_REMOVE(elt, list);
371 pool_put(&uao_swhash_elt_pool, elt);
372 }
373 }
374 } else {
375 /* we are using an array */
376 oldslot = aobj->u_swslots[pageidx];
377 aobj->u_swslots[pageidx] = slot;
378 }
379 return (oldslot);
380 }
381
382 /*
383 * end of hash/array functions
384 */
385
386 /*
387 * uao_free: free all resources held by an aobj, and then free the aobj
388 *
389 * => the aobj should be dead
390 */
391
392 static void
393 uao_free(aobj)
394 struct uvm_aobj *aobj;
395 {
396 int swpgonlydelta = 0;
397
398 simple_unlock(&aobj->u_obj.vmobjlock);
399 if (UAO_USES_SWHASH(aobj)) {
400 int i, hashbuckets = aobj->u_swhashmask + 1;
401
402 /*
403 * free the swslots from each hash bucket,
404 * then the hash bucket, and finally the hash table itself.
405 */
406
407 for (i = 0; i < hashbuckets; i++) {
408 struct uao_swhash_elt *elt, *next;
409
410 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
411 elt != NULL;
412 elt = next) {
413 int j;
414
415 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
416 int slot = elt->slots[j];
417
418 if (slot == 0) {
419 continue;
420 }
421 uvm_swap_free(slot, 1);
422 swpgonlydelta++;
423 }
424
425 next = LIST_NEXT(elt, list);
426 pool_put(&uao_swhash_elt_pool, elt);
427 }
428 }
429 free(aobj->u_swhash, M_UVMAOBJ);
430 } else {
431 int i;
432
433 /*
434 * free the array
435 */
436
437 for (i = 0; i < aobj->u_pages; i++) {
438 int slot = aobj->u_swslots[i];
439
440 if (slot) {
441 uvm_swap_free(slot, 1);
442 swpgonlydelta++;
443 }
444 }
445 free(aobj->u_swslots, M_UVMAOBJ);
446 }
447
448 /*
449 * finally free the aobj itself
450 */
451
452 pool_put(&uvm_aobj_pool, aobj);
453
454 /*
455 * adjust the counter of pages only in swap for all
456 * the swap slots we've freed.
457 */
458
459 if (swpgonlydelta > 0) {
460 simple_lock(&uvm.swap_data_lock);
461 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
462 uvmexp.swpgonly -= swpgonlydelta;
463 simple_unlock(&uvm.swap_data_lock);
464 }
465 }
466
467 /*
468 * pager functions
469 */
470
471 /*
472 * uao_create: create an aobj of the given size and return its uvm_object.
473 *
474 * => for normal use, flags are always zero
475 * => for the kernel object, the flags are:
476 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
477 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
478 */
479
480 struct uvm_object *
481 uao_create(size, flags)
482 vsize_t size;
483 int flags;
484 {
485 static struct uvm_aobj kernel_object_store;
486 static int kobj_alloced = 0;
487 int pages = round_page(size) >> PAGE_SHIFT;
488 struct uvm_aobj *aobj;
489
490 /*
491 * malloc a new aobj unless we are asked for the kernel object
492 */
493
494 if (flags & UAO_FLAG_KERNOBJ) {
495 KASSERT(!kobj_alloced);
496 aobj = &kernel_object_store;
497 aobj->u_pages = pages;
498 aobj->u_flags = UAO_FLAG_NOSWAP;
499 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
500 kobj_alloced = UAO_FLAG_KERNOBJ;
501 } else if (flags & UAO_FLAG_KERNSWAP) {
502 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
503 aobj = &kernel_object_store;
504 kobj_alloced = UAO_FLAG_KERNSWAP;
505 } else {
506 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
507 aobj->u_pages = pages;
508 aobj->u_flags = 0;
509 aobj->u_obj.uo_refs = 1;
510 }
511
512 /*
513 * allocate hash/array if necessary
514 *
515 * note: in the KERNSWAP case no need to worry about locking since
516 * we are still booting we should be the only thread around.
517 */
518
519 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
520 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
521 M_NOWAIT : M_WAITOK;
522
523 /* allocate hash table or array depending on object size */
524 if (UAO_USES_SWHASH(aobj)) {
525 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
526 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
527 if (aobj->u_swhash == NULL)
528 panic("uao_create: hashinit swhash failed");
529 } else {
530 aobj->u_swslots = malloc(pages * sizeof(int),
531 M_UVMAOBJ, mflags);
532 if (aobj->u_swslots == NULL)
533 panic("uao_create: malloc swslots failed");
534 memset(aobj->u_swslots, 0, pages * sizeof(int));
535 }
536
537 if (flags) {
538 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
539 return(&aobj->u_obj);
540 }
541 }
542
543 /*
544 * init aobj fields
545 */
546
547 simple_lock_init(&aobj->u_obj.vmobjlock);
548 aobj->u_obj.pgops = &aobj_pager;
549 TAILQ_INIT(&aobj->u_obj.memq);
550 aobj->u_obj.uo_npages = 0;
551
552 /*
553 * now that aobj is ready, add it to the global list
554 */
555
556 simple_lock(&uao_list_lock);
557 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
558 simple_unlock(&uao_list_lock);
559 return(&aobj->u_obj);
560 }
561
562
563
564 /*
565 * uao_init: set up aobj pager subsystem
566 *
567 * => called at boot time from uvm_pager_init()
568 */
569
570 void
571 uao_init(void)
572 {
573 static int uao_initialized;
574
575 if (uao_initialized)
576 return;
577 uao_initialized = TRUE;
578 LIST_INIT(&uao_list);
579 simple_lock_init(&uao_list_lock);
580
581 /*
582 * NOTE: Pages fror this pool must not come from a pageable
583 * kernel map!
584 */
585
586 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
587 0, 0, 0, "uaoeltpl", NULL);
588 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
589 "aobjpl", &pool_allocator_nointr);
590 }
591
592 /*
593 * uao_reference: add a ref to an aobj
594 *
595 * => aobj must be unlocked
596 * => just lock it and call the locked version
597 */
598
599 void
600 uao_reference(uobj)
601 struct uvm_object *uobj;
602 {
603 simple_lock(&uobj->vmobjlock);
604 uao_reference_locked(uobj);
605 simple_unlock(&uobj->vmobjlock);
606 }
607
608 /*
609 * uao_reference_locked: add a ref to an aobj that is already locked
610 *
611 * => aobj must be locked
612 * this needs to be separate from the normal routine
613 * since sometimes we need to add a reference to an aobj when
614 * it's already locked.
615 */
616
617 void
618 uao_reference_locked(uobj)
619 struct uvm_object *uobj;
620 {
621 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
622
623 /*
624 * kernel_object already has plenty of references, leave it alone.
625 */
626
627 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
628 return;
629
630 uobj->uo_refs++;
631 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
632 uobj, uobj->uo_refs,0,0);
633 }
634
635 /*
636 * uao_detach: drop a reference to an aobj
637 *
638 * => aobj must be unlocked
639 * => just lock it and call the locked version
640 */
641
642 void
643 uao_detach(uobj)
644 struct uvm_object *uobj;
645 {
646 simple_lock(&uobj->vmobjlock);
647 uao_detach_locked(uobj);
648 }
649
650 /*
651 * uao_detach_locked: drop a reference to an aobj
652 *
653 * => aobj must be locked, and is unlocked (or freed) upon return.
654 * this needs to be separate from the normal routine
655 * since sometimes we need to detach from an aobj when
656 * it's already locked.
657 */
658
659 void
660 uao_detach_locked(uobj)
661 struct uvm_object *uobj;
662 {
663 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
664 struct vm_page *pg;
665 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
666
667 /*
668 * detaching from kernel_object is a noop.
669 */
670
671 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
672 simple_unlock(&uobj->vmobjlock);
673 return;
674 }
675
676 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
677 uobj->uo_refs--;
678 if (uobj->uo_refs) {
679 simple_unlock(&uobj->vmobjlock);
680 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
681 return;
682 }
683
684 /*
685 * remove the aobj from the global list.
686 */
687
688 simple_lock(&uao_list_lock);
689 LIST_REMOVE(aobj, u_list);
690 simple_unlock(&uao_list_lock);
691
692 /*
693 * free all the pages left in the aobj. for each page,
694 * when the page is no longer busy (and thus after any disk i/o that
695 * it's involved in is complete), release any swap resources and
696 * free the page itself.
697 */
698
699 uvm_lock_pageq();
700 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
701 pmap_page_protect(pg, VM_PROT_NONE);
702 if (pg->flags & PG_BUSY) {
703 pg->flags |= PG_WANTED;
704 uvm_unlock_pageq();
705 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
706 "uao_det", 0);
707 simple_lock(&uobj->vmobjlock);
708 uvm_lock_pageq();
709 continue;
710 }
711 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
712 uvm_pagefree(pg);
713 }
714 uvm_unlock_pageq();
715
716 /*
717 * finally, free the aobj itself.
718 */
719
720 uao_free(aobj);
721 }
722
723 /*
724 * uao_put: flush pages out of a uvm object
725 *
726 * => object should be locked by caller. we may _unlock_ the object
727 * if (and only if) we need to clean a page (PGO_CLEANIT).
728 * XXXJRT Currently, however, we don't. In the case of cleaning
729 * XXXJRT a page, we simply just deactivate it. Should probably
730 * XXXJRT handle this better, in the future (although "flushing"
731 * XXXJRT anonymous memory isn't terribly important).
732 * => if PGO_CLEANIT is not set, then we will neither unlock the object
733 * or block.
734 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
735 * for flushing.
736 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
737 * that new pages are inserted on the tail end of the list. thus,
738 * we can make a complete pass through the object in one go by starting
739 * at the head and working towards the tail (new pages are put in
740 * front of us).
741 * => NOTE: we are allowed to lock the page queues, so the caller
742 * must not be holding the lock on them [e.g. pagedaemon had
743 * better not call us with the queues locked]
744 * => we return TRUE unless we encountered some sort of I/O error
745 * XXXJRT currently never happens, as we never directly initiate
746 * XXXJRT I/O
747 *
748 * note on page traversal:
749 * we can traverse the pages in an object either by going down the
750 * linked list in "uobj->memq", or we can go over the address range
751 * by page doing hash table lookups for each address. depending
752 * on how many pages are in the object it may be cheaper to do one
753 * or the other. we set "by_list" to true if we are using memq.
754 * if the cost of a hash lookup was equal to the cost of the list
755 * traversal we could compare the number of pages in the start->stop
756 * range to the total number of pages in the object. however, it
757 * seems that a hash table lookup is more expensive than the linked
758 * list traversal, so we multiply the number of pages in the
759 * start->stop range by a penalty which we define below.
760 */
761
762 int
763 uao_put(uobj, start, stop, flags)
764 struct uvm_object *uobj;
765 voff_t start, stop;
766 int flags;
767 {
768 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
769 struct vm_page *pg, *nextpg, curmp, endmp;
770 boolean_t by_list;
771 voff_t curoff;
772 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
773
774 curoff = 0;
775 if (flags & PGO_ALLPAGES) {
776 start = 0;
777 stop = aobj->u_pages << PAGE_SHIFT;
778 by_list = TRUE; /* always go by the list */
779 } else {
780 start = trunc_page(start);
781 stop = round_page(stop);
782 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
783 printf("uao_flush: strange, got an out of range "
784 "flush (fixed)\n");
785 stop = aobj->u_pages << PAGE_SHIFT;
786 }
787 by_list = (uobj->uo_npages <=
788 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
789 }
790 UVMHIST_LOG(maphist,
791 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
792 start, stop, by_list, flags);
793
794 /*
795 * Don't need to do any work here if we're not freeing
796 * or deactivating pages.
797 */
798
799 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
800 simple_unlock(&uobj->vmobjlock);
801 return 0;
802 }
803
804 /*
805 * Initialize the marker pages. See the comment in
806 * genfs_putpages() also.
807 */
808
809 curmp.uobject = uobj;
810 curmp.offset = (voff_t)-1;
811 curmp.flags = PG_BUSY;
812 endmp.uobject = uobj;
813 endmp.offset = (voff_t)-1;
814 endmp.flags = PG_BUSY;
815
816 /*
817 * now do it. note: we must update nextpg in the body of loop or we
818 * will get stuck. we need to use nextpg if we'll traverse the list
819 * because we may free "pg" before doing the next loop.
820 */
821
822 if (by_list) {
823 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
824 nextpg = TAILQ_FIRST(&uobj->memq);
825 PHOLD(curproc);
826 } else {
827 curoff = start;
828 }
829
830 uvm_lock_pageq();
831
832 /* locked: both page queues and uobj */
833 for (;;) {
834 if (by_list) {
835 pg = nextpg;
836 if (pg == &endmp)
837 break;
838 nextpg = TAILQ_NEXT(pg, listq);
839 if (pg->offset < start || pg->offset >= stop)
840 continue;
841 } else {
842 if (curoff < stop) {
843 pg = uvm_pagelookup(uobj, curoff);
844 curoff += PAGE_SIZE;
845 } else
846 break;
847 if (pg == NULL)
848 continue;
849 }
850 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
851
852 /*
853 * XXX In these first 3 cases, we always just
854 * XXX deactivate the page. We may want to
855 * XXX handle the different cases more specifically
856 * XXX in the future.
857 */
858
859 case PGO_CLEANIT|PGO_FREE:
860 case PGO_CLEANIT|PGO_DEACTIVATE:
861 case PGO_DEACTIVATE:
862 deactivate_it:
863 /* skip the page if it's loaned or wired */
864 if (pg->loan_count != 0 || pg->wire_count != 0)
865 continue;
866
867 /* ...and deactivate the page. */
868 pmap_clear_reference(pg);
869 uvm_pagedeactivate(pg);
870 continue;
871
872 case PGO_FREE:
873
874 /*
875 * If there are multiple references to
876 * the object, just deactivate the page.
877 */
878
879 if (uobj->uo_refs > 1)
880 goto deactivate_it;
881
882 /* XXX skip the page if it's loaned or wired */
883 if (pg->loan_count != 0 || pg->wire_count != 0)
884 continue;
885
886 /*
887 * wait and try again if the page is busy.
888 * otherwise free the swap slot and the page.
889 */
890
891 pmap_page_protect(pg, VM_PROT_NONE);
892 if (pg->flags & PG_BUSY) {
893 if (by_list) {
894 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
895 }
896 pg->flags |= PG_WANTED;
897 uvm_unlock_pageq();
898 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
899 "uao_put", 0);
900 simple_lock(&uobj->vmobjlock);
901 uvm_lock_pageq();
902 if (by_list) {
903 nextpg = TAILQ_NEXT(&curmp, listq);
904 TAILQ_REMOVE(&uobj->memq, &curmp,
905 listq);
906 } else
907 curoff -= PAGE_SIZE;
908 continue;
909 }
910 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
911 uvm_pagefree(pg);
912 continue;
913 }
914 }
915 uvm_unlock_pageq();
916 simple_unlock(&uobj->vmobjlock);
917 if (by_list) {
918 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
919 PRELE(curproc);
920 }
921 return 0;
922 }
923
924 /*
925 * uao_get: fetch me a page
926 *
927 * we have three cases:
928 * 1: page is resident -> just return the page.
929 * 2: page is zero-fill -> allocate a new page and zero it.
930 * 3: page is swapped out -> fetch the page from swap.
931 *
932 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
933 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
934 * then we will need to return EBUSY.
935 *
936 * => prefer map unlocked (not required)
937 * => object must be locked! we will _unlock_ it before starting any I/O.
938 * => flags: PGO_ALLPAGES: get all of the pages
939 * PGO_LOCKED: fault data structures are locked
940 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
941 * => NOTE: caller must check for released pages!!
942 */
943
944 static int
945 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
946 struct uvm_object *uobj;
947 voff_t offset;
948 struct vm_page **pps;
949 int *npagesp;
950 int centeridx, advice, flags;
951 vm_prot_t access_type;
952 {
953 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
954 voff_t current_offset;
955 struct vm_page *ptmp;
956 int lcv, gotpages, maxpages, swslot, error, pageidx;
957 boolean_t done;
958 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
959
960 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
961 aobj, offset, flags,0);
962
963 /*
964 * get number of pages
965 */
966
967 maxpages = *npagesp;
968
969 /*
970 * step 1: handled the case where fault data structures are locked.
971 */
972
973 if (flags & PGO_LOCKED) {
974
975 /*
976 * step 1a: get pages that are already resident. only do
977 * this if the data structures are locked (i.e. the first
978 * time through).
979 */
980
981 done = TRUE; /* be optimistic */
982 gotpages = 0; /* # of pages we got so far */
983 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
984 lcv++, current_offset += PAGE_SIZE) {
985 /* do we care about this page? if not, skip it */
986 if (pps[lcv] == PGO_DONTCARE)
987 continue;
988 ptmp = uvm_pagelookup(uobj, current_offset);
989
990 /*
991 * if page is new, attempt to allocate the page,
992 * zero-fill'd.
993 */
994
995 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
996 current_offset >> PAGE_SHIFT) == 0) {
997 ptmp = uvm_pagealloc(uobj, current_offset,
998 NULL, UVM_PGA_ZERO);
999 if (ptmp) {
1000 /* new page */
1001 ptmp->flags &= ~(PG_FAKE);
1002 ptmp->pqflags |= PQ_AOBJ;
1003 goto gotpage;
1004 }
1005 }
1006
1007 /*
1008 * to be useful must get a non-busy page
1009 */
1010
1011 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
1012 if (lcv == centeridx ||
1013 (flags & PGO_ALLPAGES) != 0)
1014 /* need to do a wait or I/O! */
1015 done = FALSE;
1016 continue;
1017 }
1018
1019 /*
1020 * useful page: busy/lock it and plug it in our
1021 * result array
1022 */
1023
1024 /* caller must un-busy this page */
1025 ptmp->flags |= PG_BUSY;
1026 UVM_PAGE_OWN(ptmp, "uao_get1");
1027 gotpage:
1028 pps[lcv] = ptmp;
1029 gotpages++;
1030 }
1031
1032 /*
1033 * step 1b: now we've either done everything needed or we
1034 * to unlock and do some waiting or I/O.
1035 */
1036
1037 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1038 *npagesp = gotpages;
1039 if (done)
1040 return 0;
1041 else
1042 return EBUSY;
1043 }
1044
1045 /*
1046 * step 2: get non-resident or busy pages.
1047 * object is locked. data structures are unlocked.
1048 */
1049
1050 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1051 lcv++, current_offset += PAGE_SIZE) {
1052
1053 /*
1054 * - skip over pages we've already gotten or don't want
1055 * - skip over pages we don't _have_ to get
1056 */
1057
1058 if (pps[lcv] != NULL ||
1059 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1060 continue;
1061
1062 pageidx = current_offset >> PAGE_SHIFT;
1063
1064 /*
1065 * we have yet to locate the current page (pps[lcv]). we
1066 * first look for a page that is already at the current offset.
1067 * if we find a page, we check to see if it is busy or
1068 * released. if that is the case, then we sleep on the page
1069 * until it is no longer busy or released and repeat the lookup.
1070 * if the page we found is neither busy nor released, then we
1071 * busy it (so we own it) and plug it into pps[lcv]. this
1072 * 'break's the following while loop and indicates we are
1073 * ready to move on to the next page in the "lcv" loop above.
1074 *
1075 * if we exit the while loop with pps[lcv] still set to NULL,
1076 * then it means that we allocated a new busy/fake/clean page
1077 * ptmp in the object and we need to do I/O to fill in the data.
1078 */
1079
1080 /* top of "pps" while loop */
1081 while (pps[lcv] == NULL) {
1082 /* look for a resident page */
1083 ptmp = uvm_pagelookup(uobj, current_offset);
1084
1085 /* not resident? allocate one now (if we can) */
1086 if (ptmp == NULL) {
1087
1088 ptmp = uvm_pagealloc(uobj, current_offset,
1089 NULL, 0);
1090
1091 /* out of RAM? */
1092 if (ptmp == NULL) {
1093 simple_unlock(&uobj->vmobjlock);
1094 UVMHIST_LOG(pdhist,
1095 "sleeping, ptmp == NULL\n",0,0,0,0);
1096 uvm_wait("uao_getpage");
1097 simple_lock(&uobj->vmobjlock);
1098 continue;
1099 }
1100
1101 /*
1102 * safe with PQ's unlocked: because we just
1103 * alloc'd the page
1104 */
1105
1106 ptmp->pqflags |= PQ_AOBJ;
1107
1108 /*
1109 * got new page ready for I/O. break pps while
1110 * loop. pps[lcv] is still NULL.
1111 */
1112
1113 break;
1114 }
1115
1116 /* page is there, see if we need to wait on it */
1117 if ((ptmp->flags & PG_BUSY) != 0) {
1118 ptmp->flags |= PG_WANTED;
1119 UVMHIST_LOG(pdhist,
1120 "sleeping, ptmp->flags 0x%x\n",
1121 ptmp->flags,0,0,0);
1122 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1123 FALSE, "uao_get", 0);
1124 simple_lock(&uobj->vmobjlock);
1125 continue;
1126 }
1127
1128 /*
1129 * if we get here then the page has become resident and
1130 * unbusy between steps 1 and 2. we busy it now (so we
1131 * own it) and set pps[lcv] (so that we exit the while
1132 * loop).
1133 */
1134
1135 /* we own it, caller must un-busy */
1136 ptmp->flags |= PG_BUSY;
1137 UVM_PAGE_OWN(ptmp, "uao_get2");
1138 pps[lcv] = ptmp;
1139 }
1140
1141 /*
1142 * if we own the valid page at the correct offset, pps[lcv] will
1143 * point to it. nothing more to do except go to the next page.
1144 */
1145
1146 if (pps[lcv])
1147 continue; /* next lcv */
1148
1149 /*
1150 * we have a "fake/busy/clean" page that we just allocated.
1151 * do the needed "i/o", either reading from swap or zeroing.
1152 */
1153
1154 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1155
1156 /*
1157 * just zero the page if there's nothing in swap.
1158 */
1159
1160 if (swslot == 0) {
1161
1162 /*
1163 * page hasn't existed before, just zero it.
1164 */
1165
1166 uvm_pagezero(ptmp);
1167 } else {
1168 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1169 swslot, 0,0,0);
1170
1171 /*
1172 * page in the swapped-out page.
1173 * unlock object for i/o, relock when done.
1174 */
1175
1176 simple_unlock(&uobj->vmobjlock);
1177 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1178 simple_lock(&uobj->vmobjlock);
1179
1180 /*
1181 * I/O done. check for errors.
1182 */
1183
1184 if (error != 0) {
1185 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1186 error,0,0,0);
1187 if (ptmp->flags & PG_WANTED)
1188 wakeup(ptmp);
1189
1190 /*
1191 * remove the swap slot from the aobj
1192 * and mark the aobj as having no real slot.
1193 * don't free the swap slot, thus preventing
1194 * it from being used again.
1195 */
1196
1197 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1198 SWSLOT_BAD);
1199 if (swslot != -1) {
1200 uvm_swap_markbad(swslot, 1);
1201 }
1202
1203 uvm_lock_pageq();
1204 uvm_pagefree(ptmp);
1205 uvm_unlock_pageq();
1206 simple_unlock(&uobj->vmobjlock);
1207 return error;
1208 }
1209 }
1210
1211 /*
1212 * we got the page! clear the fake flag (indicates valid
1213 * data now in page) and plug into our result array. note
1214 * that page is still busy.
1215 *
1216 * it is the callers job to:
1217 * => check if the page is released
1218 * => unbusy the page
1219 * => activate the page
1220 */
1221
1222 ptmp->flags &= ~PG_FAKE;
1223 pps[lcv] = ptmp;
1224 }
1225
1226 /*
1227 * finally, unlock object and return.
1228 */
1229
1230 simple_unlock(&uobj->vmobjlock);
1231 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1232 return 0;
1233 }
1234
1235 /*
1236 * uao_dropswap: release any swap resources from this aobj page.
1237 *
1238 * => aobj must be locked or have a reference count of 0.
1239 */
1240
1241 void
1242 uao_dropswap(uobj, pageidx)
1243 struct uvm_object *uobj;
1244 int pageidx;
1245 {
1246 int slot;
1247
1248 slot = uao_set_swslot(uobj, pageidx, 0);
1249 if (slot) {
1250 uvm_swap_free(slot, 1);
1251 }
1252 }
1253
1254 /*
1255 * page in every page in every aobj that is paged-out to a range of swslots.
1256 *
1257 * => nothing should be locked.
1258 * => returns TRUE if pagein was aborted due to lack of memory.
1259 */
1260
1261 boolean_t
1262 uao_swap_off(startslot, endslot)
1263 int startslot, endslot;
1264 {
1265 struct uvm_aobj *aobj, *nextaobj;
1266 boolean_t rv;
1267
1268 /*
1269 * walk the list of all aobjs.
1270 */
1271
1272 restart:
1273 simple_lock(&uao_list_lock);
1274 for (aobj = LIST_FIRST(&uao_list);
1275 aobj != NULL;
1276 aobj = nextaobj) {
1277
1278 /*
1279 * try to get the object lock, start all over if we fail.
1280 * most of the time we'll get the aobj lock,
1281 * so this should be a rare case.
1282 */
1283
1284 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1285 simple_unlock(&uao_list_lock);
1286 goto restart;
1287 }
1288
1289 /*
1290 * add a ref to the aobj so it doesn't disappear
1291 * while we're working.
1292 */
1293
1294 uao_reference_locked(&aobj->u_obj);
1295
1296 /*
1297 * now it's safe to unlock the uao list.
1298 */
1299
1300 simple_unlock(&uao_list_lock);
1301
1302 /*
1303 * page in any pages in the swslot range.
1304 * if there's an error, abort and return the error.
1305 */
1306
1307 rv = uao_pagein(aobj, startslot, endslot);
1308 if (rv) {
1309 uao_detach_locked(&aobj->u_obj);
1310 return rv;
1311 }
1312
1313 /*
1314 * we're done with this aobj.
1315 * relock the list and drop our ref on the aobj.
1316 */
1317
1318 simple_lock(&uao_list_lock);
1319 nextaobj = LIST_NEXT(aobj, u_list);
1320 uao_detach_locked(&aobj->u_obj);
1321 }
1322
1323 /*
1324 * done with traversal, unlock the list
1325 */
1326 simple_unlock(&uao_list_lock);
1327 return FALSE;
1328 }
1329
1330
1331 /*
1332 * page in any pages from aobj in the given range.
1333 *
1334 * => aobj must be locked and is returned locked.
1335 * => returns TRUE if pagein was aborted due to lack of memory.
1336 */
1337 static boolean_t
1338 uao_pagein(aobj, startslot, endslot)
1339 struct uvm_aobj *aobj;
1340 int startslot, endslot;
1341 {
1342 boolean_t rv;
1343
1344 if (UAO_USES_SWHASH(aobj)) {
1345 struct uao_swhash_elt *elt;
1346 int bucket;
1347
1348 restart:
1349 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1350 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1351 elt != NULL;
1352 elt = LIST_NEXT(elt, list)) {
1353 int i;
1354
1355 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1356 int slot = elt->slots[i];
1357
1358 /*
1359 * if the slot isn't in range, skip it.
1360 */
1361
1362 if (slot < startslot ||
1363 slot >= endslot) {
1364 continue;
1365 }
1366
1367 /*
1368 * process the page,
1369 * the start over on this object
1370 * since the swhash elt
1371 * may have been freed.
1372 */
1373
1374 rv = uao_pagein_page(aobj,
1375 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1376 if (rv) {
1377 return rv;
1378 }
1379 goto restart;
1380 }
1381 }
1382 }
1383 } else {
1384 int i;
1385
1386 for (i = 0; i < aobj->u_pages; i++) {
1387 int slot = aobj->u_swslots[i];
1388
1389 /*
1390 * if the slot isn't in range, skip it
1391 */
1392
1393 if (slot < startslot || slot >= endslot) {
1394 continue;
1395 }
1396
1397 /*
1398 * process the page.
1399 */
1400
1401 rv = uao_pagein_page(aobj, i);
1402 if (rv) {
1403 return rv;
1404 }
1405 }
1406 }
1407
1408 return FALSE;
1409 }
1410
1411 /*
1412 * page in a page from an aobj. used for swap_off.
1413 * returns TRUE if pagein was aborted due to lack of memory.
1414 *
1415 * => aobj must be locked and is returned locked.
1416 */
1417
1418 static boolean_t
1419 uao_pagein_page(aobj, pageidx)
1420 struct uvm_aobj *aobj;
1421 int pageidx;
1422 {
1423 struct vm_page *pg;
1424 int rv, slot, npages;
1425
1426 pg = NULL;
1427 npages = 1;
1428 /* locked: aobj */
1429 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1430 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1431 /* unlocked: aobj */
1432
1433 /*
1434 * relock and finish up.
1435 */
1436
1437 simple_lock(&aobj->u_obj.vmobjlock);
1438 switch (rv) {
1439 case 0:
1440 break;
1441
1442 case EIO:
1443 case ERESTART:
1444
1445 /*
1446 * nothing more to do on errors.
1447 * ERESTART can only mean that the anon was freed,
1448 * so again there's nothing to do.
1449 */
1450
1451 return FALSE;
1452 }
1453
1454 /*
1455 * ok, we've got the page now.
1456 * mark it as dirty, clear its swslot and un-busy it.
1457 */
1458
1459 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1460 uvm_swap_free(slot, 1);
1461 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1462 UVM_PAGE_OWN(pg, NULL);
1463
1464 /*
1465 * deactivate the page (to make sure it's on a page queue).
1466 */
1467
1468 uvm_lock_pageq();
1469 uvm_pagedeactivate(pg);
1470 uvm_unlock_pageq();
1471 return FALSE;
1472 }
1473