uvm_aobj.c revision 1.53 1 /* $NetBSD: uvm_aobj.c,v 1.53 2003/01/18 09:42:57 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.53 2003/01/18 09:42:57 thorpej Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 #include <sys/kernel.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * an aobj manages anonymous-memory backed uvm_objects. in addition
62 * to keeping the list of resident pages, it also keeps a list of
63 * allocated swap blocks. depending on the size of the aobj this list
64 * of allocated swap blocks is either stored in an array (small objects)
65 * or in a hash table (large objects).
66 */
67
68 /*
69 * local structures
70 */
71
72 /*
73 * for hash tables, we break the address space of the aobj into blocks
74 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
75 * be a power of two.
76 */
77
78 #define UAO_SWHASH_CLUSTER_SHIFT 4
79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80
81 /* get the "tag" for this page index */
82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
83 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84
85 /* given an ELT and a page index, find the swap slot */
86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
87 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
88
89 /* given an ELT, return its pageidx base */
90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
91 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
92
93 /*
94 * the swhash hash function
95 */
96
97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
98 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
99 & (AOBJ)->u_swhashmask)])
100
101 /*
102 * the swhash threshhold determines if we will use an array or a
103 * hash table to store the list of allocated swap blocks.
104 */
105
106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
107 #define UAO_USES_SWHASH(AOBJ) \
108 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
109
110 /*
111 * the number of buckets in a swhash, with an upper bound
112 */
113
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 UAO_SWHASH_MAXBUCKETS))
118
119
120 /*
121 * uao_swhash_elt: when a hash table is being used, this structure defines
122 * the format of an entry in the bucket list.
123 */
124
125 struct uao_swhash_elt {
126 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
127 voff_t tag; /* our 'tag' */
128 int count; /* our number of active slots */
129 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
130 };
131
132 /*
133 * uao_swhash: the swap hash table structure
134 */
135
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137
138 /*
139 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140 */
141
142 struct pool uao_swhash_elt_pool;
143
144 /*
145 * uvm_aobj: the actual anon-backed uvm_object
146 *
147 * => the uvm_object is at the top of the structure, this allows
148 * (struct uvm_aobj *) == (struct uvm_object *)
149 * => only one of u_swslots and u_swhash is used in any given aobj
150 */
151
152 struct uvm_aobj {
153 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 int u_pages; /* number of pages in entire object */
155 int u_flags; /* the flags (see uvm_aobj.h) */
156 int *u_swslots; /* array of offset->swapslot mappings */
157 /*
158 * hashtable of offset->swapslot mappings
159 * (u_swhash is an array of bucket heads)
160 */
161 struct uao_swhash *u_swhash;
162 u_long u_swhashmask; /* mask for hashtable */
163 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
164 };
165
166 /*
167 * uvm_aobj_pool: pool of uvm_aobj structures
168 */
169
170 struct pool uvm_aobj_pool;
171
172 /*
173 * local functions
174 */
175
176 static struct uao_swhash_elt *uao_find_swhash_elt
177 __P((struct uvm_aobj *, int, boolean_t));
178
179 static void uao_free __P((struct uvm_aobj *));
180 static int uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
181 int *, int, vm_prot_t, int, int));
182 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
183 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
184 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
185
186 /*
187 * aobj_pager
188 *
189 * note that some functions (e.g. put) are handled elsewhere
190 */
191
192 struct uvm_pagerops aobj_pager = {
193 NULL, /* init */
194 uao_reference, /* reference */
195 uao_detach, /* detach */
196 NULL, /* fault */
197 uao_get, /* get */
198 uao_put, /* flush */
199 };
200
201 /*
202 * uao_list: global list of active aobjs, locked by uao_list_lock
203 */
204
205 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
206 static struct simplelock uao_list_lock;
207
208 /*
209 * functions
210 */
211
212 /*
213 * hash table/array related functions
214 */
215
216 /*
217 * uao_find_swhash_elt: find (or create) a hash table entry for a page
218 * offset.
219 *
220 * => the object should be locked by the caller
221 */
222
223 static struct uao_swhash_elt *
224 uao_find_swhash_elt(aobj, pageidx, create)
225 struct uvm_aobj *aobj;
226 int pageidx;
227 boolean_t create;
228 {
229 struct uao_swhash *swhash;
230 struct uao_swhash_elt *elt;
231 voff_t page_tag;
232
233 swhash = UAO_SWHASH_HASH(aobj, pageidx);
234 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
235
236 /*
237 * now search the bucket for the requested tag
238 */
239
240 LIST_FOREACH(elt, swhash, list) {
241 if (elt->tag == page_tag) {
242 return elt;
243 }
244 }
245 if (!create) {
246 return NULL;
247 }
248
249 /*
250 * allocate a new entry for the bucket and init/insert it in
251 */
252
253 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
254 if (elt == NULL) {
255 return NULL;
256 }
257 LIST_INSERT_HEAD(swhash, elt, list);
258 elt->tag = page_tag;
259 elt->count = 0;
260 memset(elt->slots, 0, sizeof(elt->slots));
261 return elt;
262 }
263
264 /*
265 * uao_find_swslot: find the swap slot number for an aobj/pageidx
266 *
267 * => object must be locked by caller
268 */
269
270 int
271 uao_find_swslot(uobj, pageidx)
272 struct uvm_object *uobj;
273 int pageidx;
274 {
275 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
276 struct uao_swhash_elt *elt;
277
278 /*
279 * if noswap flag is set, then we never return a slot
280 */
281
282 if (aobj->u_flags & UAO_FLAG_NOSWAP)
283 return(0);
284
285 /*
286 * if hashing, look in hash table.
287 */
288
289 if (UAO_USES_SWHASH(aobj)) {
290 elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
291 if (elt)
292 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
293 else
294 return(0);
295 }
296
297 /*
298 * otherwise, look in the array
299 */
300
301 return(aobj->u_swslots[pageidx]);
302 }
303
304 /*
305 * uao_set_swslot: set the swap slot for a page in an aobj.
306 *
307 * => setting a slot to zero frees the slot
308 * => object must be locked by caller
309 * => we return the old slot number, or -1 if we failed to allocate
310 * memory to record the new slot number
311 */
312
313 int
314 uao_set_swslot(uobj, pageidx, slot)
315 struct uvm_object *uobj;
316 int pageidx, slot;
317 {
318 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
319 struct uao_swhash_elt *elt;
320 int oldslot;
321 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
322 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
323 aobj, pageidx, slot, 0);
324
325 /*
326 * if noswap flag is set, then we can't set a non-zero slot.
327 */
328
329 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
330 if (slot == 0)
331 return(0);
332
333 printf("uao_set_swslot: uobj = %p\n", uobj);
334 panic("uao_set_swslot: NOSWAP object");
335 }
336
337 /*
338 * are we using a hash table? if so, add it in the hash.
339 */
340
341 if (UAO_USES_SWHASH(aobj)) {
342
343 /*
344 * Avoid allocating an entry just to free it again if
345 * the page had not swap slot in the first place, and
346 * we are freeing.
347 */
348
349 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
350 if (elt == NULL) {
351 return slot ? -1 : 0;
352 }
353
354 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
355 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
356
357 /*
358 * now adjust the elt's reference counter and free it if we've
359 * dropped it to zero.
360 */
361
362 if (slot) {
363 if (oldslot == 0)
364 elt->count++;
365 } else {
366 if (oldslot)
367 elt->count--;
368
369 if (elt->count == 0) {
370 LIST_REMOVE(elt, list);
371 pool_put(&uao_swhash_elt_pool, elt);
372 }
373 }
374 } else {
375 /* we are using an array */
376 oldslot = aobj->u_swslots[pageidx];
377 aobj->u_swslots[pageidx] = slot;
378 }
379 return (oldslot);
380 }
381
382 /*
383 * end of hash/array functions
384 */
385
386 /*
387 * uao_free: free all resources held by an aobj, and then free the aobj
388 *
389 * => the aobj should be dead
390 */
391
392 static void
393 uao_free(aobj)
394 struct uvm_aobj *aobj;
395 {
396 int swpgonlydelta = 0;
397
398 simple_unlock(&aobj->u_obj.vmobjlock);
399 if (UAO_USES_SWHASH(aobj)) {
400 int i, hashbuckets = aobj->u_swhashmask + 1;
401
402 /*
403 * free the swslots from each hash bucket,
404 * then the hash bucket, and finally the hash table itself.
405 */
406
407 for (i = 0; i < hashbuckets; i++) {
408 struct uao_swhash_elt *elt, *next;
409
410 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
411 elt != NULL;
412 elt = next) {
413 int j;
414
415 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
416 int slot = elt->slots[j];
417
418 if (slot == 0) {
419 continue;
420 }
421 uvm_swap_free(slot, 1);
422 swpgonlydelta++;
423 }
424
425 next = LIST_NEXT(elt, list);
426 pool_put(&uao_swhash_elt_pool, elt);
427 }
428 }
429 free(aobj->u_swhash, M_UVMAOBJ);
430 } else {
431 int i;
432
433 /*
434 * free the array
435 */
436
437 for (i = 0; i < aobj->u_pages; i++) {
438 int slot = aobj->u_swslots[i];
439
440 if (slot) {
441 uvm_swap_free(slot, 1);
442 swpgonlydelta++;
443 }
444 }
445 free(aobj->u_swslots, M_UVMAOBJ);
446 }
447
448 /*
449 * finally free the aobj itself
450 */
451
452 pool_put(&uvm_aobj_pool, aobj);
453
454 /*
455 * adjust the counter of pages only in swap for all
456 * the swap slots we've freed.
457 */
458
459 if (swpgonlydelta > 0) {
460 simple_lock(&uvm.swap_data_lock);
461 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
462 uvmexp.swpgonly -= swpgonlydelta;
463 simple_unlock(&uvm.swap_data_lock);
464 }
465 }
466
467 /*
468 * pager functions
469 */
470
471 /*
472 * uao_create: create an aobj of the given size and return its uvm_object.
473 *
474 * => for normal use, flags are always zero
475 * => for the kernel object, the flags are:
476 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
477 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
478 */
479
480 struct uvm_object *
481 uao_create(size, flags)
482 vsize_t size;
483 int flags;
484 {
485 static struct uvm_aobj kernel_object_store;
486 static int kobj_alloced = 0;
487 int pages = round_page(size) >> PAGE_SHIFT;
488 struct uvm_aobj *aobj;
489
490 /*
491 * malloc a new aobj unless we are asked for the kernel object
492 */
493
494 if (flags & UAO_FLAG_KERNOBJ) {
495 KASSERT(!kobj_alloced);
496 aobj = &kernel_object_store;
497 aobj->u_pages = pages;
498 aobj->u_flags = UAO_FLAG_NOSWAP;
499 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
500 kobj_alloced = UAO_FLAG_KERNOBJ;
501 } else if (flags & UAO_FLAG_KERNSWAP) {
502 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
503 aobj = &kernel_object_store;
504 kobj_alloced = UAO_FLAG_KERNSWAP;
505 } else {
506 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
507 aobj->u_pages = pages;
508 aobj->u_flags = 0;
509 aobj->u_obj.uo_refs = 1;
510 }
511
512 /*
513 * allocate hash/array if necessary
514 *
515 * note: in the KERNSWAP case no need to worry about locking since
516 * we are still booting we should be the only thread around.
517 */
518
519 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
520 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
521 M_NOWAIT : M_WAITOK;
522
523 /* allocate hash table or array depending on object size */
524 if (UAO_USES_SWHASH(aobj)) {
525 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
526 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
527 if (aobj->u_swhash == NULL)
528 panic("uao_create: hashinit swhash failed");
529 } else {
530 aobj->u_swslots = malloc(pages * sizeof(int),
531 M_UVMAOBJ, mflags);
532 if (aobj->u_swslots == NULL)
533 panic("uao_create: malloc swslots failed");
534 memset(aobj->u_swslots, 0, pages * sizeof(int));
535 }
536
537 if (flags) {
538 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
539 return(&aobj->u_obj);
540 }
541 }
542
543 /*
544 * init aobj fields
545 */
546
547 simple_lock_init(&aobj->u_obj.vmobjlock);
548 aobj->u_obj.pgops = &aobj_pager;
549 TAILQ_INIT(&aobj->u_obj.memq);
550 aobj->u_obj.uo_npages = 0;
551
552 /*
553 * now that aobj is ready, add it to the global list
554 */
555
556 simple_lock(&uao_list_lock);
557 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
558 simple_unlock(&uao_list_lock);
559 return(&aobj->u_obj);
560 }
561
562
563
564 /*
565 * uao_init: set up aobj pager subsystem
566 *
567 * => called at boot time from uvm_pager_init()
568 */
569
570 void
571 uao_init(void)
572 {
573 static int uao_initialized;
574
575 if (uao_initialized)
576 return;
577 uao_initialized = TRUE;
578 LIST_INIT(&uao_list);
579 simple_lock_init(&uao_list_lock);
580
581 /*
582 * NOTE: Pages fror this pool must not come from a pageable
583 * kernel map!
584 */
585
586 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
587 0, 0, 0, "uaoeltpl", NULL);
588 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
589 "aobjpl", &pool_allocator_nointr);
590 }
591
592 /*
593 * uao_reference: add a ref to an aobj
594 *
595 * => aobj must be unlocked
596 * => just lock it and call the locked version
597 */
598
599 void
600 uao_reference(uobj)
601 struct uvm_object *uobj;
602 {
603 simple_lock(&uobj->vmobjlock);
604 uao_reference_locked(uobj);
605 simple_unlock(&uobj->vmobjlock);
606 }
607
608 /*
609 * uao_reference_locked: add a ref to an aobj that is already locked
610 *
611 * => aobj must be locked
612 * this needs to be separate from the normal routine
613 * since sometimes we need to add a reference to an aobj when
614 * it's already locked.
615 */
616
617 void
618 uao_reference_locked(uobj)
619 struct uvm_object *uobj;
620 {
621 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
622
623 /*
624 * kernel_object already has plenty of references, leave it alone.
625 */
626
627 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
628 return;
629
630 uobj->uo_refs++;
631 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
632 uobj, uobj->uo_refs,0,0);
633 }
634
635 /*
636 * uao_detach: drop a reference to an aobj
637 *
638 * => aobj must be unlocked
639 * => just lock it and call the locked version
640 */
641
642 void
643 uao_detach(uobj)
644 struct uvm_object *uobj;
645 {
646 simple_lock(&uobj->vmobjlock);
647 uao_detach_locked(uobj);
648 }
649
650 /*
651 * uao_detach_locked: drop a reference to an aobj
652 *
653 * => aobj must be locked, and is unlocked (or freed) upon return.
654 * this needs to be separate from the normal routine
655 * since sometimes we need to detach from an aobj when
656 * it's already locked.
657 */
658
659 void
660 uao_detach_locked(uobj)
661 struct uvm_object *uobj;
662 {
663 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
664 struct vm_page *pg;
665 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
666
667 /*
668 * detaching from kernel_object is a noop.
669 */
670
671 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
672 simple_unlock(&uobj->vmobjlock);
673 return;
674 }
675
676 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
677 uobj->uo_refs--;
678 if (uobj->uo_refs) {
679 simple_unlock(&uobj->vmobjlock);
680 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
681 return;
682 }
683
684 /*
685 * remove the aobj from the global list.
686 */
687
688 simple_lock(&uao_list_lock);
689 LIST_REMOVE(aobj, u_list);
690 simple_unlock(&uao_list_lock);
691
692 /*
693 * free all the pages left in the aobj. for each page,
694 * when the page is no longer busy (and thus after any disk i/o that
695 * it's involved in is complete), release any swap resources and
696 * free the page itself.
697 */
698
699 uvm_lock_pageq();
700 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
701 pmap_page_protect(pg, VM_PROT_NONE);
702 if (pg->flags & PG_BUSY) {
703 pg->flags |= PG_WANTED;
704 uvm_unlock_pageq();
705 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
706 "uao_det", 0);
707 simple_lock(&uobj->vmobjlock);
708 uvm_lock_pageq();
709 continue;
710 }
711 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
712 uvm_pagefree(pg);
713 }
714 uvm_unlock_pageq();
715
716 /*
717 * finally, free the aobj itself.
718 */
719
720 uao_free(aobj);
721 }
722
723 /*
724 * uao_put: flush pages out of a uvm object
725 *
726 * => object should be locked by caller. we may _unlock_ the object
727 * if (and only if) we need to clean a page (PGO_CLEANIT).
728 * XXXJRT Currently, however, we don't. In the case of cleaning
729 * XXXJRT a page, we simply just deactivate it. Should probably
730 * XXXJRT handle this better, in the future (although "flushing"
731 * XXXJRT anonymous memory isn't terribly important).
732 * => if PGO_CLEANIT is not set, then we will neither unlock the object
733 * or block.
734 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
735 * for flushing.
736 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
737 * that new pages are inserted on the tail end of the list. thus,
738 * we can make a complete pass through the object in one go by starting
739 * at the head and working towards the tail (new pages are put in
740 * front of us).
741 * => NOTE: we are allowed to lock the page queues, so the caller
742 * must not be holding the lock on them [e.g. pagedaemon had
743 * better not call us with the queues locked]
744 * => we return TRUE unless we encountered some sort of I/O error
745 * XXXJRT currently never happens, as we never directly initiate
746 * XXXJRT I/O
747 *
748 * note on page traversal:
749 * we can traverse the pages in an object either by going down the
750 * linked list in "uobj->memq", or we can go over the address range
751 * by page doing hash table lookups for each address. depending
752 * on how many pages are in the object it may be cheaper to do one
753 * or the other. we set "by_list" to true if we are using memq.
754 * if the cost of a hash lookup was equal to the cost of the list
755 * traversal we could compare the number of pages in the start->stop
756 * range to the total number of pages in the object. however, it
757 * seems that a hash table lookup is more expensive than the linked
758 * list traversal, so we multiply the number of pages in the
759 * start->stop range by a penalty which we define below.
760 */
761
762 int
763 uao_put(uobj, start, stop, flags)
764 struct uvm_object *uobj;
765 voff_t start, stop;
766 int flags;
767 {
768 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
769 struct vm_page *pg, *nextpg, curmp, endmp;
770 boolean_t by_list;
771 voff_t curoff;
772 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
773
774 curoff = 0;
775 if (flags & PGO_ALLPAGES) {
776 start = 0;
777 stop = aobj->u_pages << PAGE_SHIFT;
778 by_list = TRUE; /* always go by the list */
779 } else {
780 start = trunc_page(start);
781 stop = round_page(stop);
782 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
783 printf("uao_flush: strange, got an out of range "
784 "flush (fixed)\n");
785 stop = aobj->u_pages << PAGE_SHIFT;
786 }
787 by_list = (uobj->uo_npages <=
788 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
789 }
790 UVMHIST_LOG(maphist,
791 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
792 start, stop, by_list, flags);
793
794 /*
795 * Don't need to do any work here if we're not freeing
796 * or deactivating pages.
797 */
798
799 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
800 simple_unlock(&uobj->vmobjlock);
801 return 0;
802 }
803
804 /*
805 * Initialize the marker pages. See the comment in
806 * genfs_putpages() also.
807 */
808
809 curmp.uobject = uobj;
810 curmp.offset = (voff_t)-1;
811 curmp.flags = PG_BUSY;
812 endmp.uobject = uobj;
813 endmp.offset = (voff_t)-1;
814 endmp.flags = PG_BUSY;
815
816 /*
817 * now do it. note: we must update nextpg in the body of loop or we
818 * will get stuck. we need to use nextpg if we'll traverse the list
819 * because we may free "pg" before doing the next loop.
820 */
821
822 if (by_list) {
823 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
824 nextpg = TAILQ_FIRST(&uobj->memq);
825 PHOLD(curlwp);
826 } else {
827 curoff = start;
828 nextpg = NULL; /* Quell compiler warning */
829 }
830
831 uvm_lock_pageq();
832
833 /* locked: both page queues and uobj */
834 for (;;) {
835 if (by_list) {
836 pg = nextpg;
837 if (pg == &endmp)
838 break;
839 nextpg = TAILQ_NEXT(pg, listq);
840 if (pg->offset < start || pg->offset >= stop)
841 continue;
842 } else {
843 if (curoff < stop) {
844 pg = uvm_pagelookup(uobj, curoff);
845 curoff += PAGE_SIZE;
846 } else
847 break;
848 if (pg == NULL)
849 continue;
850 }
851 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
852
853 /*
854 * XXX In these first 3 cases, we always just
855 * XXX deactivate the page. We may want to
856 * XXX handle the different cases more specifically
857 * XXX in the future.
858 */
859
860 case PGO_CLEANIT|PGO_FREE:
861 case PGO_CLEANIT|PGO_DEACTIVATE:
862 case PGO_DEACTIVATE:
863 deactivate_it:
864 /* skip the page if it's loaned or wired */
865 if (pg->loan_count != 0 || pg->wire_count != 0)
866 continue;
867
868 /* ...and deactivate the page. */
869 pmap_clear_reference(pg);
870 uvm_pagedeactivate(pg);
871 continue;
872
873 case PGO_FREE:
874
875 /*
876 * If there are multiple references to
877 * the object, just deactivate the page.
878 */
879
880 if (uobj->uo_refs > 1)
881 goto deactivate_it;
882
883 /* XXX skip the page if it's loaned or wired */
884 if (pg->loan_count != 0 || pg->wire_count != 0)
885 continue;
886
887 /*
888 * wait and try again if the page is busy.
889 * otherwise free the swap slot and the page.
890 */
891
892 pmap_page_protect(pg, VM_PROT_NONE);
893 if (pg->flags & PG_BUSY) {
894 if (by_list) {
895 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
896 }
897 pg->flags |= PG_WANTED;
898 uvm_unlock_pageq();
899 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
900 "uao_put", 0);
901 simple_lock(&uobj->vmobjlock);
902 uvm_lock_pageq();
903 if (by_list) {
904 nextpg = TAILQ_NEXT(&curmp, listq);
905 TAILQ_REMOVE(&uobj->memq, &curmp,
906 listq);
907 } else
908 curoff -= PAGE_SIZE;
909 continue;
910 }
911 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
912 uvm_pagefree(pg);
913 continue;
914 }
915 }
916 uvm_unlock_pageq();
917 simple_unlock(&uobj->vmobjlock);
918 if (by_list) {
919 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
920 PRELE(curlwp);
921 }
922 return 0;
923 }
924
925 /*
926 * uao_get: fetch me a page
927 *
928 * we have three cases:
929 * 1: page is resident -> just return the page.
930 * 2: page is zero-fill -> allocate a new page and zero it.
931 * 3: page is swapped out -> fetch the page from swap.
932 *
933 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
934 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
935 * then we will need to return EBUSY.
936 *
937 * => prefer map unlocked (not required)
938 * => object must be locked! we will _unlock_ it before starting any I/O.
939 * => flags: PGO_ALLPAGES: get all of the pages
940 * PGO_LOCKED: fault data structures are locked
941 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
942 * => NOTE: caller must check for released pages!!
943 */
944
945 static int
946 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
947 struct uvm_object *uobj;
948 voff_t offset;
949 struct vm_page **pps;
950 int *npagesp;
951 int centeridx, advice, flags;
952 vm_prot_t access_type;
953 {
954 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
955 voff_t current_offset;
956 struct vm_page *ptmp = NULL; /* Quell compiler warning */
957 int lcv, gotpages, maxpages, swslot, error, pageidx;
958 boolean_t done;
959 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
960
961 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
962 aobj, offset, flags,0);
963
964 /*
965 * get number of pages
966 */
967
968 maxpages = *npagesp;
969
970 /*
971 * step 1: handled the case where fault data structures are locked.
972 */
973
974 if (flags & PGO_LOCKED) {
975
976 /*
977 * step 1a: get pages that are already resident. only do
978 * this if the data structures are locked (i.e. the first
979 * time through).
980 */
981
982 done = TRUE; /* be optimistic */
983 gotpages = 0; /* # of pages we got so far */
984 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
985 lcv++, current_offset += PAGE_SIZE) {
986 /* do we care about this page? if not, skip it */
987 if (pps[lcv] == PGO_DONTCARE)
988 continue;
989 ptmp = uvm_pagelookup(uobj, current_offset);
990
991 /*
992 * if page is new, attempt to allocate the page,
993 * zero-fill'd.
994 */
995
996 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
997 current_offset >> PAGE_SHIFT) == 0) {
998 ptmp = uvm_pagealloc(uobj, current_offset,
999 NULL, UVM_PGA_ZERO);
1000 if (ptmp) {
1001 /* new page */
1002 ptmp->flags &= ~(PG_FAKE);
1003 ptmp->pqflags |= PQ_AOBJ;
1004 goto gotpage;
1005 }
1006 }
1007
1008 /*
1009 * to be useful must get a non-busy page
1010 */
1011
1012 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
1013 if (lcv == centeridx ||
1014 (flags & PGO_ALLPAGES) != 0)
1015 /* need to do a wait or I/O! */
1016 done = FALSE;
1017 continue;
1018 }
1019
1020 /*
1021 * useful page: busy/lock it and plug it in our
1022 * result array
1023 */
1024
1025 /* caller must un-busy this page */
1026 ptmp->flags |= PG_BUSY;
1027 UVM_PAGE_OWN(ptmp, "uao_get1");
1028 gotpage:
1029 pps[lcv] = ptmp;
1030 gotpages++;
1031 }
1032
1033 /*
1034 * step 1b: now we've either done everything needed or we
1035 * to unlock and do some waiting or I/O.
1036 */
1037
1038 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1039 *npagesp = gotpages;
1040 if (done)
1041 return 0;
1042 else
1043 return EBUSY;
1044 }
1045
1046 /*
1047 * step 2: get non-resident or busy pages.
1048 * object is locked. data structures are unlocked.
1049 */
1050
1051 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1052 lcv++, current_offset += PAGE_SIZE) {
1053
1054 /*
1055 * - skip over pages we've already gotten or don't want
1056 * - skip over pages we don't _have_ to get
1057 */
1058
1059 if (pps[lcv] != NULL ||
1060 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1061 continue;
1062
1063 pageidx = current_offset >> PAGE_SHIFT;
1064
1065 /*
1066 * we have yet to locate the current page (pps[lcv]). we
1067 * first look for a page that is already at the current offset.
1068 * if we find a page, we check to see if it is busy or
1069 * released. if that is the case, then we sleep on the page
1070 * until it is no longer busy or released and repeat the lookup.
1071 * if the page we found is neither busy nor released, then we
1072 * busy it (so we own it) and plug it into pps[lcv]. this
1073 * 'break's the following while loop and indicates we are
1074 * ready to move on to the next page in the "lcv" loop above.
1075 *
1076 * if we exit the while loop with pps[lcv] still set to NULL,
1077 * then it means that we allocated a new busy/fake/clean page
1078 * ptmp in the object and we need to do I/O to fill in the data.
1079 */
1080
1081 /* top of "pps" while loop */
1082 while (pps[lcv] == NULL) {
1083 /* look for a resident page */
1084 ptmp = uvm_pagelookup(uobj, current_offset);
1085
1086 /* not resident? allocate one now (if we can) */
1087 if (ptmp == NULL) {
1088
1089 ptmp = uvm_pagealloc(uobj, current_offset,
1090 NULL, 0);
1091
1092 /* out of RAM? */
1093 if (ptmp == NULL) {
1094 simple_unlock(&uobj->vmobjlock);
1095 UVMHIST_LOG(pdhist,
1096 "sleeping, ptmp == NULL\n",0,0,0,0);
1097 uvm_wait("uao_getpage");
1098 simple_lock(&uobj->vmobjlock);
1099 continue;
1100 }
1101
1102 /*
1103 * safe with PQ's unlocked: because we just
1104 * alloc'd the page
1105 */
1106
1107 ptmp->pqflags |= PQ_AOBJ;
1108
1109 /*
1110 * got new page ready for I/O. break pps while
1111 * loop. pps[lcv] is still NULL.
1112 */
1113
1114 break;
1115 }
1116
1117 /* page is there, see if we need to wait on it */
1118 if ((ptmp->flags & PG_BUSY) != 0) {
1119 ptmp->flags |= PG_WANTED;
1120 UVMHIST_LOG(pdhist,
1121 "sleeping, ptmp->flags 0x%x\n",
1122 ptmp->flags,0,0,0);
1123 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1124 FALSE, "uao_get", 0);
1125 simple_lock(&uobj->vmobjlock);
1126 continue;
1127 }
1128
1129 /*
1130 * if we get here then the page has become resident and
1131 * unbusy between steps 1 and 2. we busy it now (so we
1132 * own it) and set pps[lcv] (so that we exit the while
1133 * loop).
1134 */
1135
1136 /* we own it, caller must un-busy */
1137 ptmp->flags |= PG_BUSY;
1138 UVM_PAGE_OWN(ptmp, "uao_get2");
1139 pps[lcv] = ptmp;
1140 }
1141
1142 /*
1143 * if we own the valid page at the correct offset, pps[lcv] will
1144 * point to it. nothing more to do except go to the next page.
1145 */
1146
1147 if (pps[lcv])
1148 continue; /* next lcv */
1149
1150 /*
1151 * we have a "fake/busy/clean" page that we just allocated.
1152 * do the needed "i/o", either reading from swap or zeroing.
1153 */
1154
1155 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1156
1157 /*
1158 * just zero the page if there's nothing in swap.
1159 */
1160
1161 if (swslot == 0) {
1162
1163 /*
1164 * page hasn't existed before, just zero it.
1165 */
1166
1167 uvm_pagezero(ptmp);
1168 } else {
1169 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1170 swslot, 0,0,0);
1171
1172 /*
1173 * page in the swapped-out page.
1174 * unlock object for i/o, relock when done.
1175 */
1176
1177 simple_unlock(&uobj->vmobjlock);
1178 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1179 simple_lock(&uobj->vmobjlock);
1180
1181 /*
1182 * I/O done. check for errors.
1183 */
1184
1185 if (error != 0) {
1186 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1187 error,0,0,0);
1188 if (ptmp->flags & PG_WANTED)
1189 wakeup(ptmp);
1190
1191 /*
1192 * remove the swap slot from the aobj
1193 * and mark the aobj as having no real slot.
1194 * don't free the swap slot, thus preventing
1195 * it from being used again.
1196 */
1197
1198 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1199 SWSLOT_BAD);
1200 if (swslot != -1) {
1201 uvm_swap_markbad(swslot, 1);
1202 }
1203
1204 uvm_lock_pageq();
1205 uvm_pagefree(ptmp);
1206 uvm_unlock_pageq();
1207 simple_unlock(&uobj->vmobjlock);
1208 return error;
1209 }
1210 }
1211
1212 /*
1213 * we got the page! clear the fake flag (indicates valid
1214 * data now in page) and plug into our result array. note
1215 * that page is still busy.
1216 *
1217 * it is the callers job to:
1218 * => check if the page is released
1219 * => unbusy the page
1220 * => activate the page
1221 */
1222
1223 ptmp->flags &= ~PG_FAKE;
1224 pps[lcv] = ptmp;
1225 }
1226
1227 /*
1228 * finally, unlock object and return.
1229 */
1230
1231 simple_unlock(&uobj->vmobjlock);
1232 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1233 return 0;
1234 }
1235
1236 /*
1237 * uao_dropswap: release any swap resources from this aobj page.
1238 *
1239 * => aobj must be locked or have a reference count of 0.
1240 */
1241
1242 void
1243 uao_dropswap(uobj, pageidx)
1244 struct uvm_object *uobj;
1245 int pageidx;
1246 {
1247 int slot;
1248
1249 slot = uao_set_swslot(uobj, pageidx, 0);
1250 if (slot) {
1251 uvm_swap_free(slot, 1);
1252 }
1253 }
1254
1255 /*
1256 * page in every page in every aobj that is paged-out to a range of swslots.
1257 *
1258 * => nothing should be locked.
1259 * => returns TRUE if pagein was aborted due to lack of memory.
1260 */
1261
1262 boolean_t
1263 uao_swap_off(startslot, endslot)
1264 int startslot, endslot;
1265 {
1266 struct uvm_aobj *aobj, *nextaobj;
1267 boolean_t rv;
1268
1269 /*
1270 * walk the list of all aobjs.
1271 */
1272
1273 restart:
1274 simple_lock(&uao_list_lock);
1275 for (aobj = LIST_FIRST(&uao_list);
1276 aobj != NULL;
1277 aobj = nextaobj) {
1278
1279 /*
1280 * try to get the object lock, start all over if we fail.
1281 * most of the time we'll get the aobj lock,
1282 * so this should be a rare case.
1283 */
1284
1285 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1286 simple_unlock(&uao_list_lock);
1287 goto restart;
1288 }
1289
1290 /*
1291 * add a ref to the aobj so it doesn't disappear
1292 * while we're working.
1293 */
1294
1295 uao_reference_locked(&aobj->u_obj);
1296
1297 /*
1298 * now it's safe to unlock the uao list.
1299 */
1300
1301 simple_unlock(&uao_list_lock);
1302
1303 /*
1304 * page in any pages in the swslot range.
1305 * if there's an error, abort and return the error.
1306 */
1307
1308 rv = uao_pagein(aobj, startslot, endslot);
1309 if (rv) {
1310 uao_detach_locked(&aobj->u_obj);
1311 return rv;
1312 }
1313
1314 /*
1315 * we're done with this aobj.
1316 * relock the list and drop our ref on the aobj.
1317 */
1318
1319 simple_lock(&uao_list_lock);
1320 nextaobj = LIST_NEXT(aobj, u_list);
1321 uao_detach_locked(&aobj->u_obj);
1322 }
1323
1324 /*
1325 * done with traversal, unlock the list
1326 */
1327 simple_unlock(&uao_list_lock);
1328 return FALSE;
1329 }
1330
1331
1332 /*
1333 * page in any pages from aobj in the given range.
1334 *
1335 * => aobj must be locked and is returned locked.
1336 * => returns TRUE if pagein was aborted due to lack of memory.
1337 */
1338 static boolean_t
1339 uao_pagein(aobj, startslot, endslot)
1340 struct uvm_aobj *aobj;
1341 int startslot, endslot;
1342 {
1343 boolean_t rv;
1344
1345 if (UAO_USES_SWHASH(aobj)) {
1346 struct uao_swhash_elt *elt;
1347 int bucket;
1348
1349 restart:
1350 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1351 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1352 elt != NULL;
1353 elt = LIST_NEXT(elt, list)) {
1354 int i;
1355
1356 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1357 int slot = elt->slots[i];
1358
1359 /*
1360 * if the slot isn't in range, skip it.
1361 */
1362
1363 if (slot < startslot ||
1364 slot >= endslot) {
1365 continue;
1366 }
1367
1368 /*
1369 * process the page,
1370 * the start over on this object
1371 * since the swhash elt
1372 * may have been freed.
1373 */
1374
1375 rv = uao_pagein_page(aobj,
1376 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1377 if (rv) {
1378 return rv;
1379 }
1380 goto restart;
1381 }
1382 }
1383 }
1384 } else {
1385 int i;
1386
1387 for (i = 0; i < aobj->u_pages; i++) {
1388 int slot = aobj->u_swslots[i];
1389
1390 /*
1391 * if the slot isn't in range, skip it
1392 */
1393
1394 if (slot < startslot || slot >= endslot) {
1395 continue;
1396 }
1397
1398 /*
1399 * process the page.
1400 */
1401
1402 rv = uao_pagein_page(aobj, i);
1403 if (rv) {
1404 return rv;
1405 }
1406 }
1407 }
1408
1409 return FALSE;
1410 }
1411
1412 /*
1413 * page in a page from an aobj. used for swap_off.
1414 * returns TRUE if pagein was aborted due to lack of memory.
1415 *
1416 * => aobj must be locked and is returned locked.
1417 */
1418
1419 static boolean_t
1420 uao_pagein_page(aobj, pageidx)
1421 struct uvm_aobj *aobj;
1422 int pageidx;
1423 {
1424 struct vm_page *pg;
1425 int rv, slot, npages;
1426
1427 pg = NULL;
1428 npages = 1;
1429 /* locked: aobj */
1430 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1431 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1432 /* unlocked: aobj */
1433
1434 /*
1435 * relock and finish up.
1436 */
1437
1438 simple_lock(&aobj->u_obj.vmobjlock);
1439 switch (rv) {
1440 case 0:
1441 break;
1442
1443 case EIO:
1444 case ERESTART:
1445
1446 /*
1447 * nothing more to do on errors.
1448 * ERESTART can only mean that the anon was freed,
1449 * so again there's nothing to do.
1450 */
1451
1452 return FALSE;
1453 }
1454
1455 /*
1456 * ok, we've got the page now.
1457 * mark it as dirty, clear its swslot and un-busy it.
1458 */
1459
1460 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1461 uvm_swap_free(slot, 1);
1462 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1463 UVM_PAGE_OWN(pg, NULL);
1464
1465 /*
1466 * deactivate the page (to make sure it's on a page queue).
1467 */
1468
1469 uvm_lock_pageq();
1470 uvm_pagedeactivate(pg);
1471 uvm_unlock_pageq();
1472 return FALSE;
1473 }
1474