Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.56
      1 /*	$NetBSD: uvm_aobj.c,v 1.56 2003/04/12 14:36:43 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.56 2003/04/12 14:36:43 yamt Exp $");
     47 
     48 #include "opt_uvmhist.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/proc.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/pool.h>
     56 #include <sys/kernel.h>
     57 
     58 #include <uvm/uvm.h>
     59 
     60 /*
     61  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     62  * to keeping the list of resident pages, it also keeps a list of
     63  * allocated swap blocks.  depending on the size of the aobj this list
     64  * of allocated swap blocks is either stored in an array (small objects)
     65  * or in a hash table (large objects).
     66  */
     67 
     68 /*
     69  * local structures
     70  */
     71 
     72 /*
     73  * for hash tables, we break the address space of the aobj into blocks
     74  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     75  * be a power of two.
     76  */
     77 
     78 #define UAO_SWHASH_CLUSTER_SHIFT 4
     79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     80 
     81 /* get the "tag" for this page index */
     82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     83 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     84 
     85 /* given an ELT and a page index, find the swap slot */
     86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     87 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
     88 
     89 /* given an ELT, return its pageidx base */
     90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     91 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     92 
     93 /*
     94  * the swhash hash function
     95  */
     96 
     97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
     98 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
     99 			    & (AOBJ)->u_swhashmask)])
    100 
    101 /*
    102  * the swhash threshhold determines if we will use an array or a
    103  * hash table to store the list of allocated swap blocks.
    104  */
    105 
    106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    107 #define UAO_USES_SWHASH(AOBJ) \
    108 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    109 
    110 /*
    111  * the number of buckets in a swhash, with an upper bound
    112  */
    113 
    114 #define UAO_SWHASH_MAXBUCKETS 256
    115 #define UAO_SWHASH_BUCKETS(AOBJ) \
    116 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    117 	     UAO_SWHASH_MAXBUCKETS))
    118 
    119 
    120 /*
    121  * uao_swhash_elt: when a hash table is being used, this structure defines
    122  * the format of an entry in the bucket list.
    123  */
    124 
    125 struct uao_swhash_elt {
    126 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    127 	voff_t tag;				/* our 'tag' */
    128 	int count;				/* our number of active slots */
    129 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    130 };
    131 
    132 /*
    133  * uao_swhash: the swap hash table structure
    134  */
    135 
    136 LIST_HEAD(uao_swhash, uao_swhash_elt);
    137 
    138 /*
    139  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    140  */
    141 
    142 struct pool uao_swhash_elt_pool;
    143 
    144 /*
    145  * uvm_aobj: the actual anon-backed uvm_object
    146  *
    147  * => the uvm_object is at the top of the structure, this allows
    148  *   (struct uvm_aobj *) == (struct uvm_object *)
    149  * => only one of u_swslots and u_swhash is used in any given aobj
    150  */
    151 
    152 struct uvm_aobj {
    153 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    154 	int u_pages;		 /* number of pages in entire object */
    155 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    156 	int *u_swslots;		 /* array of offset->swapslot mappings */
    157 				 /*
    158 				  * hashtable of offset->swapslot mappings
    159 				  * (u_swhash is an array of bucket heads)
    160 				  */
    161 	struct uao_swhash *u_swhash;
    162 	u_long u_swhashmask;		/* mask for hashtable */
    163 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    164 };
    165 
    166 /*
    167  * uvm_aobj_pool: pool of uvm_aobj structures
    168  */
    169 
    170 struct pool uvm_aobj_pool;
    171 
    172 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
    173 
    174 /*
    175  * local functions
    176  */
    177 
    178 static struct uao_swhash_elt *uao_find_swhash_elt
    179     __P((struct uvm_aobj *, int, boolean_t));
    180 
    181 static void	uao_free __P((struct uvm_aobj *));
    182 static int	uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
    183 		    int *, int, vm_prot_t, int, int));
    184 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
    185 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
    186 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
    187 
    188 /*
    189  * aobj_pager
    190  *
    191  * note that some functions (e.g. put) are handled elsewhere
    192  */
    193 
    194 struct uvm_pagerops aobj_pager = {
    195 	NULL,			/* init */
    196 	uao_reference,		/* reference */
    197 	uao_detach,		/* detach */
    198 	NULL,			/* fault */
    199 	uao_get,		/* get */
    200 	uao_put,		/* flush */
    201 };
    202 
    203 /*
    204  * uao_list: global list of active aobjs, locked by uao_list_lock
    205  */
    206 
    207 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    208 static struct simplelock uao_list_lock;
    209 
    210 /*
    211  * functions
    212  */
    213 
    214 /*
    215  * hash table/array related functions
    216  */
    217 
    218 /*
    219  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    220  * offset.
    221  *
    222  * => the object should be locked by the caller
    223  */
    224 
    225 static struct uao_swhash_elt *
    226 uao_find_swhash_elt(aobj, pageidx, create)
    227 	struct uvm_aobj *aobj;
    228 	int pageidx;
    229 	boolean_t create;
    230 {
    231 	struct uao_swhash *swhash;
    232 	struct uao_swhash_elt *elt;
    233 	voff_t page_tag;
    234 
    235 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    236 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    237 
    238 	/*
    239 	 * now search the bucket for the requested tag
    240 	 */
    241 
    242 	LIST_FOREACH(elt, swhash, list) {
    243 		if (elt->tag == page_tag) {
    244 			return elt;
    245 		}
    246 	}
    247 	if (!create) {
    248 		return NULL;
    249 	}
    250 
    251 	/*
    252 	 * allocate a new entry for the bucket and init/insert it in
    253 	 */
    254 
    255 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    256 	if (elt == NULL) {
    257 		return NULL;
    258 	}
    259 	LIST_INSERT_HEAD(swhash, elt, list);
    260 	elt->tag = page_tag;
    261 	elt->count = 0;
    262 	memset(elt->slots, 0, sizeof(elt->slots));
    263 	return elt;
    264 }
    265 
    266 /*
    267  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    268  *
    269  * => object must be locked by caller
    270  */
    271 
    272 int
    273 uao_find_swslot(uobj, pageidx)
    274 	struct uvm_object *uobj;
    275 	int pageidx;
    276 {
    277 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    278 	struct uao_swhash_elt *elt;
    279 
    280 	/*
    281 	 * if noswap flag is set, then we never return a slot
    282 	 */
    283 
    284 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    285 		return(0);
    286 
    287 	/*
    288 	 * if hashing, look in hash table.
    289 	 */
    290 
    291 	if (UAO_USES_SWHASH(aobj)) {
    292 		elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
    293 		if (elt)
    294 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    295 		else
    296 			return(0);
    297 	}
    298 
    299 	/*
    300 	 * otherwise, look in the array
    301 	 */
    302 
    303 	return(aobj->u_swslots[pageidx]);
    304 }
    305 
    306 /*
    307  * uao_set_swslot: set the swap slot for a page in an aobj.
    308  *
    309  * => setting a slot to zero frees the slot
    310  * => object must be locked by caller
    311  * => we return the old slot number, or -1 if we failed to allocate
    312  *    memory to record the new slot number
    313  */
    314 
    315 int
    316 uao_set_swslot(uobj, pageidx, slot)
    317 	struct uvm_object *uobj;
    318 	int pageidx, slot;
    319 {
    320 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    321 	struct uao_swhash_elt *elt;
    322 	int oldslot;
    323 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    324 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    325 	    aobj, pageidx, slot, 0);
    326 
    327 	/*
    328 	 * if noswap flag is set, then we can't set a non-zero slot.
    329 	 */
    330 
    331 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    332 		if (slot == 0)
    333 			return(0);
    334 
    335 		printf("uao_set_swslot: uobj = %p\n", uobj);
    336 		panic("uao_set_swslot: NOSWAP object");
    337 	}
    338 
    339 	/*
    340 	 * are we using a hash table?  if so, add it in the hash.
    341 	 */
    342 
    343 	if (UAO_USES_SWHASH(aobj)) {
    344 
    345 		/*
    346 		 * Avoid allocating an entry just to free it again if
    347 		 * the page had not swap slot in the first place, and
    348 		 * we are freeing.
    349 		 */
    350 
    351 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    352 		if (elt == NULL) {
    353 			return slot ? -1 : 0;
    354 		}
    355 
    356 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    357 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    358 
    359 		/*
    360 		 * now adjust the elt's reference counter and free it if we've
    361 		 * dropped it to zero.
    362 		 */
    363 
    364 		if (slot) {
    365 			if (oldslot == 0)
    366 				elt->count++;
    367 		} else {
    368 			if (oldslot)
    369 				elt->count--;
    370 
    371 			if (elt->count == 0) {
    372 				LIST_REMOVE(elt, list);
    373 				pool_put(&uao_swhash_elt_pool, elt);
    374 			}
    375 		}
    376 	} else {
    377 		/* we are using an array */
    378 		oldslot = aobj->u_swslots[pageidx];
    379 		aobj->u_swslots[pageidx] = slot;
    380 	}
    381 	return (oldslot);
    382 }
    383 
    384 /*
    385  * end of hash/array functions
    386  */
    387 
    388 /*
    389  * uao_free: free all resources held by an aobj, and then free the aobj
    390  *
    391  * => the aobj should be dead
    392  */
    393 
    394 static void
    395 uao_free(aobj)
    396 	struct uvm_aobj *aobj;
    397 {
    398 	int swpgonlydelta = 0;
    399 
    400 	simple_unlock(&aobj->u_obj.vmobjlock);
    401 	if (UAO_USES_SWHASH(aobj)) {
    402 		int i, hashbuckets = aobj->u_swhashmask + 1;
    403 
    404 		/*
    405 		 * free the swslots from each hash bucket,
    406 		 * then the hash bucket, and finally the hash table itself.
    407 		 */
    408 
    409 		for (i = 0; i < hashbuckets; i++) {
    410 			struct uao_swhash_elt *elt, *next;
    411 
    412 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
    413 			     elt != NULL;
    414 			     elt = next) {
    415 				int j;
    416 
    417 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
    418 					int slot = elt->slots[j];
    419 
    420 					if (slot == 0) {
    421 						continue;
    422 					}
    423 					uvm_swap_free(slot, 1);
    424 					swpgonlydelta++;
    425 				}
    426 
    427 				next = LIST_NEXT(elt, list);
    428 				pool_put(&uao_swhash_elt_pool, elt);
    429 			}
    430 		}
    431 		free(aobj->u_swhash, M_UVMAOBJ);
    432 	} else {
    433 		int i;
    434 
    435 		/*
    436 		 * free the array
    437 		 */
    438 
    439 		for (i = 0; i < aobj->u_pages; i++) {
    440 			int slot = aobj->u_swslots[i];
    441 
    442 			if (slot) {
    443 				uvm_swap_free(slot, 1);
    444 				swpgonlydelta++;
    445 			}
    446 		}
    447 		free(aobj->u_swslots, M_UVMAOBJ);
    448 	}
    449 
    450 	/*
    451 	 * finally free the aobj itself
    452 	 */
    453 
    454 	pool_put(&uvm_aobj_pool, aobj);
    455 
    456 	/*
    457 	 * adjust the counter of pages only in swap for all
    458 	 * the swap slots we've freed.
    459 	 */
    460 
    461 	if (swpgonlydelta > 0) {
    462 		simple_lock(&uvm.swap_data_lock);
    463 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    464 		uvmexp.swpgonly -= swpgonlydelta;
    465 		simple_unlock(&uvm.swap_data_lock);
    466 	}
    467 }
    468 
    469 /*
    470  * pager functions
    471  */
    472 
    473 /*
    474  * uao_create: create an aobj of the given size and return its uvm_object.
    475  *
    476  * => for normal use, flags are always zero
    477  * => for the kernel object, the flags are:
    478  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    479  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    480  */
    481 
    482 struct uvm_object *
    483 uao_create(size, flags)
    484 	vsize_t size;
    485 	int flags;
    486 {
    487 	static struct uvm_aobj kernel_object_store;
    488 	static int kobj_alloced = 0;
    489 	int pages = round_page(size) >> PAGE_SHIFT;
    490 	struct uvm_aobj *aobj;
    491 
    492 	/*
    493 	 * malloc a new aobj unless we are asked for the kernel object
    494 	 */
    495 
    496 	if (flags & UAO_FLAG_KERNOBJ) {
    497 		KASSERT(!kobj_alloced);
    498 		aobj = &kernel_object_store;
    499 		aobj->u_pages = pages;
    500 		aobj->u_flags = UAO_FLAG_NOSWAP;
    501 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
    502 		kobj_alloced = UAO_FLAG_KERNOBJ;
    503 	} else if (flags & UAO_FLAG_KERNSWAP) {
    504 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    505 		aobj = &kernel_object_store;
    506 		kobj_alloced = UAO_FLAG_KERNSWAP;
    507 	} else {
    508 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
    509 		aobj->u_pages = pages;
    510 		aobj->u_flags = 0;
    511 		aobj->u_obj.uo_refs = 1;
    512 	}
    513 
    514 	/*
    515  	 * allocate hash/array if necessary
    516  	 *
    517  	 * note: in the KERNSWAP case no need to worry about locking since
    518  	 * we are still booting we should be the only thread around.
    519  	 */
    520 
    521 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    522 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
    523 		    M_NOWAIT : M_WAITOK;
    524 
    525 		/* allocate hash table or array depending on object size */
    526 		if (UAO_USES_SWHASH(aobj)) {
    527 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    528 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
    529 			if (aobj->u_swhash == NULL)
    530 				panic("uao_create: hashinit swhash failed");
    531 		} else {
    532 			aobj->u_swslots = malloc(pages * sizeof(int),
    533 			    M_UVMAOBJ, mflags);
    534 			if (aobj->u_swslots == NULL)
    535 				panic("uao_create: malloc swslots failed");
    536 			memset(aobj->u_swslots, 0, pages * sizeof(int));
    537 		}
    538 
    539 		if (flags) {
    540 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    541 			return(&aobj->u_obj);
    542 		}
    543 	}
    544 
    545 	/*
    546  	 * init aobj fields
    547  	 */
    548 
    549 	simple_lock_init(&aobj->u_obj.vmobjlock);
    550 	aobj->u_obj.pgops = &aobj_pager;
    551 	TAILQ_INIT(&aobj->u_obj.memq);
    552 	aobj->u_obj.uo_npages = 0;
    553 
    554 	/*
    555  	 * now that aobj is ready, add it to the global list
    556  	 */
    557 
    558 	simple_lock(&uao_list_lock);
    559 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    560 	simple_unlock(&uao_list_lock);
    561 	return(&aobj->u_obj);
    562 }
    563 
    564 
    565 
    566 /*
    567  * uao_init: set up aobj pager subsystem
    568  *
    569  * => called at boot time from uvm_pager_init()
    570  */
    571 
    572 void
    573 uao_init(void)
    574 {
    575 	static int uao_initialized;
    576 
    577 	if (uao_initialized)
    578 		return;
    579 	uao_initialized = TRUE;
    580 	LIST_INIT(&uao_list);
    581 	simple_lock_init(&uao_list_lock);
    582 
    583 	/*
    584 	 * NOTE: Pages fror this pool must not come from a pageable
    585 	 * kernel map!
    586 	 */
    587 
    588 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    589 	    0, 0, 0, "uaoeltpl", NULL);
    590 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
    591 	    "aobjpl", &pool_allocator_nointr);
    592 }
    593 
    594 /*
    595  * uao_reference: add a ref to an aobj
    596  *
    597  * => aobj must be unlocked
    598  * => just lock it and call the locked version
    599  */
    600 
    601 void
    602 uao_reference(uobj)
    603 	struct uvm_object *uobj;
    604 {
    605 	simple_lock(&uobj->vmobjlock);
    606 	uao_reference_locked(uobj);
    607 	simple_unlock(&uobj->vmobjlock);
    608 }
    609 
    610 /*
    611  * uao_reference_locked: add a ref to an aobj that is already locked
    612  *
    613  * => aobj must be locked
    614  * this needs to be separate from the normal routine
    615  * since sometimes we need to add a reference to an aobj when
    616  * it's already locked.
    617  */
    618 
    619 void
    620 uao_reference_locked(uobj)
    621 	struct uvm_object *uobj;
    622 {
    623 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    624 
    625 	/*
    626  	 * kernel_object already has plenty of references, leave it alone.
    627  	 */
    628 
    629 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    630 		return;
    631 
    632 	uobj->uo_refs++;
    633 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    634 		    uobj, uobj->uo_refs,0,0);
    635 }
    636 
    637 /*
    638  * uao_detach: drop a reference to an aobj
    639  *
    640  * => aobj must be unlocked
    641  * => just lock it and call the locked version
    642  */
    643 
    644 void
    645 uao_detach(uobj)
    646 	struct uvm_object *uobj;
    647 {
    648 	simple_lock(&uobj->vmobjlock);
    649 	uao_detach_locked(uobj);
    650 }
    651 
    652 /*
    653  * uao_detach_locked: drop a reference to an aobj
    654  *
    655  * => aobj must be locked, and is unlocked (or freed) upon return.
    656  * this needs to be separate from the normal routine
    657  * since sometimes we need to detach from an aobj when
    658  * it's already locked.
    659  */
    660 
    661 void
    662 uao_detach_locked(uobj)
    663 	struct uvm_object *uobj;
    664 {
    665 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    666 	struct vm_page *pg;
    667 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    668 
    669 	/*
    670  	 * detaching from kernel_object is a noop.
    671  	 */
    672 
    673 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    674 		simple_unlock(&uobj->vmobjlock);
    675 		return;
    676 	}
    677 
    678 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    679 	uobj->uo_refs--;
    680 	if (uobj->uo_refs) {
    681 		simple_unlock(&uobj->vmobjlock);
    682 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    683 		return;
    684 	}
    685 
    686 	/*
    687  	 * remove the aobj from the global list.
    688  	 */
    689 
    690 	simple_lock(&uao_list_lock);
    691 	LIST_REMOVE(aobj, u_list);
    692 	simple_unlock(&uao_list_lock);
    693 
    694 	/*
    695  	 * free all the pages left in the aobj.  for each page,
    696 	 * when the page is no longer busy (and thus after any disk i/o that
    697 	 * it's involved in is complete), release any swap resources and
    698 	 * free the page itself.
    699  	 */
    700 
    701 	uvm_lock_pageq();
    702 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    703 		pmap_page_protect(pg, VM_PROT_NONE);
    704 		if (pg->flags & PG_BUSY) {
    705 			pg->flags |= PG_WANTED;
    706 			uvm_unlock_pageq();
    707 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
    708 			    "uao_det", 0);
    709 			simple_lock(&uobj->vmobjlock);
    710 			uvm_lock_pageq();
    711 			continue;
    712 		}
    713 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    714 		uvm_pagefree(pg);
    715 	}
    716 	uvm_unlock_pageq();
    717 
    718 	/*
    719  	 * finally, free the aobj itself.
    720  	 */
    721 
    722 	uao_free(aobj);
    723 }
    724 
    725 /*
    726  * uao_put: flush pages out of a uvm object
    727  *
    728  * => object should be locked by caller.  we may _unlock_ the object
    729  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    730  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    731  *	XXXJRT a page, we simply just deactivate it.  Should probably
    732  *	XXXJRT handle this better, in the future (although "flushing"
    733  *	XXXJRT anonymous memory isn't terribly important).
    734  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    735  *	or block.
    736  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    737  *	for flushing.
    738  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    739  *	that new pages are inserted on the tail end of the list.  thus,
    740  *	we can make a complete pass through the object in one go by starting
    741  *	at the head and working towards the tail (new pages are put in
    742  *	front of us).
    743  * => NOTE: we are allowed to lock the page queues, so the caller
    744  *	must not be holding the lock on them [e.g. pagedaemon had
    745  *	better not call us with the queues locked]
    746  * => we return TRUE unless we encountered some sort of I/O error
    747  *	XXXJRT currently never happens, as we never directly initiate
    748  *	XXXJRT I/O
    749  *
    750  * note on page traversal:
    751  *	we can traverse the pages in an object either by going down the
    752  *	linked list in "uobj->memq", or we can go over the address range
    753  *	by page doing hash table lookups for each address.  depending
    754  *	on how many pages are in the object it may be cheaper to do one
    755  *	or the other.  we set "by_list" to true if we are using memq.
    756  *	if the cost of a hash lookup was equal to the cost of the list
    757  *	traversal we could compare the number of pages in the start->stop
    758  *	range to the total number of pages in the object.  however, it
    759  *	seems that a hash table lookup is more expensive than the linked
    760  *	list traversal, so we multiply the number of pages in the
    761  *	start->stop range by a penalty which we define below.
    762  */
    763 
    764 int
    765 uao_put(uobj, start, stop, flags)
    766 	struct uvm_object *uobj;
    767 	voff_t start, stop;
    768 	int flags;
    769 {
    770 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    771 	struct vm_page *pg, *nextpg, curmp, endmp;
    772 	boolean_t by_list;
    773 	voff_t curoff;
    774 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    775 
    776 	curoff = 0;
    777 	if (flags & PGO_ALLPAGES) {
    778 		start = 0;
    779 		stop = aobj->u_pages << PAGE_SHIFT;
    780 		by_list = TRUE;		/* always go by the list */
    781 	} else {
    782 		start = trunc_page(start);
    783 		stop = round_page(stop);
    784 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    785 			printf("uao_flush: strange, got an out of range "
    786 			    "flush (fixed)\n");
    787 			stop = aobj->u_pages << PAGE_SHIFT;
    788 		}
    789 		by_list = (uobj->uo_npages <=
    790 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    791 	}
    792 	UVMHIST_LOG(maphist,
    793 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    794 	    start, stop, by_list, flags);
    795 
    796 	/*
    797 	 * Don't need to do any work here if we're not freeing
    798 	 * or deactivating pages.
    799 	 */
    800 
    801 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    802 		simple_unlock(&uobj->vmobjlock);
    803 		return 0;
    804 	}
    805 
    806 	/*
    807 	 * Initialize the marker pages.  See the comment in
    808 	 * genfs_putpages() also.
    809 	 */
    810 
    811 	curmp.uobject = uobj;
    812 	curmp.offset = (voff_t)-1;
    813 	curmp.flags = PG_BUSY;
    814 	endmp.uobject = uobj;
    815 	endmp.offset = (voff_t)-1;
    816 	endmp.flags = PG_BUSY;
    817 
    818 	/*
    819 	 * now do it.  note: we must update nextpg in the body of loop or we
    820 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    821 	 * because we may free "pg" before doing the next loop.
    822 	 */
    823 
    824 	if (by_list) {
    825 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
    826 		nextpg = TAILQ_FIRST(&uobj->memq);
    827 		PHOLD(curlwp);
    828 	} else {
    829 		curoff = start;
    830 		nextpg = NULL;	/* Quell compiler warning */
    831 	}
    832 
    833 	uvm_lock_pageq();
    834 
    835 	/* locked: both page queues and uobj */
    836 	for (;;) {
    837 		if (by_list) {
    838 			pg = nextpg;
    839 			if (pg == &endmp)
    840 				break;
    841 			nextpg = TAILQ_NEXT(pg, listq);
    842 			if (pg->offset < start || pg->offset >= stop)
    843 				continue;
    844 		} else {
    845 			if (curoff < stop) {
    846 				pg = uvm_pagelookup(uobj, curoff);
    847 				curoff += PAGE_SIZE;
    848 			} else
    849 				break;
    850 			if (pg == NULL)
    851 				continue;
    852 		}
    853 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    854 
    855 		/*
    856 		 * XXX In these first 3 cases, we always just
    857 		 * XXX deactivate the page.  We may want to
    858 		 * XXX handle the different cases more specifically
    859 		 * XXX in the future.
    860 		 */
    861 
    862 		case PGO_CLEANIT|PGO_FREE:
    863 		case PGO_CLEANIT|PGO_DEACTIVATE:
    864 		case PGO_DEACTIVATE:
    865  deactivate_it:
    866 			/* skip the page if it's loaned or wired */
    867 			if (pg->loan_count != 0 || pg->wire_count != 0)
    868 				continue;
    869 
    870 			/* ...and deactivate the page. */
    871 			pmap_clear_reference(pg);
    872 			uvm_pagedeactivate(pg);
    873 			continue;
    874 
    875 		case PGO_FREE:
    876 
    877 			/*
    878 			 * If there are multiple references to
    879 			 * the object, just deactivate the page.
    880 			 */
    881 
    882 			if (uobj->uo_refs > 1)
    883 				goto deactivate_it;
    884 
    885 			/* XXX skip the page if it's loaned or wired */
    886 			if (pg->loan_count != 0 || pg->wire_count != 0)
    887 				continue;
    888 
    889 			/*
    890 			 * wait and try again if the page is busy.
    891 			 * otherwise free the swap slot and the page.
    892 			 */
    893 
    894 			pmap_page_protect(pg, VM_PROT_NONE);
    895 			if (pg->flags & PG_BUSY) {
    896 				if (by_list) {
    897 					TAILQ_INSERT_BEFORE(pg, &curmp, listq);
    898 				}
    899 				pg->flags |= PG_WANTED;
    900 				uvm_unlock_pageq();
    901 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    902 				    "uao_put", 0);
    903 				simple_lock(&uobj->vmobjlock);
    904 				uvm_lock_pageq();
    905 				if (by_list) {
    906 					nextpg = TAILQ_NEXT(&curmp, listq);
    907 					TAILQ_REMOVE(&uobj->memq, &curmp,
    908 					    listq);
    909 				} else
    910 					curoff -= PAGE_SIZE;
    911 				continue;
    912 			}
    913 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    914 			uvm_pagefree(pg);
    915 			continue;
    916 		}
    917 	}
    918 	uvm_unlock_pageq();
    919 	if (by_list) {
    920 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
    921 		PRELE(curlwp);
    922 	}
    923 	simple_unlock(&uobj->vmobjlock);
    924 	return 0;
    925 }
    926 
    927 /*
    928  * uao_get: fetch me a page
    929  *
    930  * we have three cases:
    931  * 1: page is resident     -> just return the page.
    932  * 2: page is zero-fill    -> allocate a new page and zero it.
    933  * 3: page is swapped out  -> fetch the page from swap.
    934  *
    935  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    936  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    937  * then we will need to return EBUSY.
    938  *
    939  * => prefer map unlocked (not required)
    940  * => object must be locked!  we will _unlock_ it before starting any I/O.
    941  * => flags: PGO_ALLPAGES: get all of the pages
    942  *           PGO_LOCKED: fault data structures are locked
    943  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    944  * => NOTE: caller must check for released pages!!
    945  */
    946 
    947 static int
    948 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    949 	struct uvm_object *uobj;
    950 	voff_t offset;
    951 	struct vm_page **pps;
    952 	int *npagesp;
    953 	int centeridx, advice, flags;
    954 	vm_prot_t access_type;
    955 {
    956 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    957 	voff_t current_offset;
    958 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    959 	int lcv, gotpages, maxpages, swslot, error, pageidx;
    960 	boolean_t done;
    961 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    962 
    963 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    964 		    aobj, offset, flags,0);
    965 
    966 	/*
    967  	 * get number of pages
    968  	 */
    969 
    970 	maxpages = *npagesp;
    971 
    972 	/*
    973  	 * step 1: handled the case where fault data structures are locked.
    974  	 */
    975 
    976 	if (flags & PGO_LOCKED) {
    977 
    978 		/*
    979  		 * step 1a: get pages that are already resident.   only do
    980 		 * this if the data structures are locked (i.e. the first
    981 		 * time through).
    982  		 */
    983 
    984 		done = TRUE;	/* be optimistic */
    985 		gotpages = 0;	/* # of pages we got so far */
    986 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    987 		    lcv++, current_offset += PAGE_SIZE) {
    988 			/* do we care about this page?  if not, skip it */
    989 			if (pps[lcv] == PGO_DONTCARE)
    990 				continue;
    991 			ptmp = uvm_pagelookup(uobj, current_offset);
    992 
    993 			/*
    994  			 * if page is new, attempt to allocate the page,
    995 			 * zero-fill'd.
    996  			 */
    997 
    998 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
    999 			    current_offset >> PAGE_SHIFT) == 0) {
   1000 				ptmp = uvm_pagealloc(uobj, current_offset,
   1001 				    NULL, UVM_PGA_ZERO);
   1002 				if (ptmp) {
   1003 					/* new page */
   1004 					ptmp->flags &= ~(PG_FAKE);
   1005 					ptmp->pqflags |= PQ_AOBJ;
   1006 					goto gotpage;
   1007 				}
   1008 			}
   1009 
   1010 			/*
   1011 			 * to be useful must get a non-busy page
   1012 			 */
   1013 
   1014 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
   1015 				if (lcv == centeridx ||
   1016 				    (flags & PGO_ALLPAGES) != 0)
   1017 					/* need to do a wait or I/O! */
   1018 					done = FALSE;
   1019 					continue;
   1020 			}
   1021 
   1022 			/*
   1023 			 * useful page: busy/lock it and plug it in our
   1024 			 * result array
   1025 			 */
   1026 
   1027 			/* caller must un-busy this page */
   1028 			ptmp->flags |= PG_BUSY;
   1029 			UVM_PAGE_OWN(ptmp, "uao_get1");
   1030 gotpage:
   1031 			pps[lcv] = ptmp;
   1032 			gotpages++;
   1033 		}
   1034 
   1035 		/*
   1036  		 * step 1b: now we've either done everything needed or we
   1037 		 * to unlock and do some waiting or I/O.
   1038  		 */
   1039 
   1040 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1041 		*npagesp = gotpages;
   1042 		if (done)
   1043 			return 0;
   1044 		else
   1045 			return EBUSY;
   1046 	}
   1047 
   1048 	/*
   1049  	 * step 2: get non-resident or busy pages.
   1050  	 * object is locked.   data structures are unlocked.
   1051  	 */
   1052 
   1053 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1054 	    lcv++, current_offset += PAGE_SIZE) {
   1055 
   1056 		/*
   1057 		 * - skip over pages we've already gotten or don't want
   1058 		 * - skip over pages we don't _have_ to get
   1059 		 */
   1060 
   1061 		if (pps[lcv] != NULL ||
   1062 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1063 			continue;
   1064 
   1065 		pageidx = current_offset >> PAGE_SHIFT;
   1066 
   1067 		/*
   1068  		 * we have yet to locate the current page (pps[lcv]).   we
   1069 		 * first look for a page that is already at the current offset.
   1070 		 * if we find a page, we check to see if it is busy or
   1071 		 * released.  if that is the case, then we sleep on the page
   1072 		 * until it is no longer busy or released and repeat the lookup.
   1073 		 * if the page we found is neither busy nor released, then we
   1074 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1075 		 * 'break's the following while loop and indicates we are
   1076 		 * ready to move on to the next page in the "lcv" loop above.
   1077  		 *
   1078  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1079 		 * then it means that we allocated a new busy/fake/clean page
   1080 		 * ptmp in the object and we need to do I/O to fill in the data.
   1081  		 */
   1082 
   1083 		/* top of "pps" while loop */
   1084 		while (pps[lcv] == NULL) {
   1085 			/* look for a resident page */
   1086 			ptmp = uvm_pagelookup(uobj, current_offset);
   1087 
   1088 			/* not resident?   allocate one now (if we can) */
   1089 			if (ptmp == NULL) {
   1090 
   1091 				ptmp = uvm_pagealloc(uobj, current_offset,
   1092 				    NULL, 0);
   1093 
   1094 				/* out of RAM? */
   1095 				if (ptmp == NULL) {
   1096 					simple_unlock(&uobj->vmobjlock);
   1097 					UVMHIST_LOG(pdhist,
   1098 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1099 					uvm_wait("uao_getpage");
   1100 					simple_lock(&uobj->vmobjlock);
   1101 					continue;
   1102 				}
   1103 
   1104 				/*
   1105 				 * safe with PQ's unlocked: because we just
   1106 				 * alloc'd the page
   1107 				 */
   1108 
   1109 				ptmp->pqflags |= PQ_AOBJ;
   1110 
   1111 				/*
   1112 				 * got new page ready for I/O.  break pps while
   1113 				 * loop.  pps[lcv] is still NULL.
   1114 				 */
   1115 
   1116 				break;
   1117 			}
   1118 
   1119 			/* page is there, see if we need to wait on it */
   1120 			if ((ptmp->flags & PG_BUSY) != 0) {
   1121 				ptmp->flags |= PG_WANTED;
   1122 				UVMHIST_LOG(pdhist,
   1123 				    "sleeping, ptmp->flags 0x%x\n",
   1124 				    ptmp->flags,0,0,0);
   1125 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1126 				    FALSE, "uao_get", 0);
   1127 				simple_lock(&uobj->vmobjlock);
   1128 				continue;
   1129 			}
   1130 
   1131 			/*
   1132  			 * if we get here then the page has become resident and
   1133 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1134 			 * own it) and set pps[lcv] (so that we exit the while
   1135 			 * loop).
   1136  			 */
   1137 
   1138 			/* we own it, caller must un-busy */
   1139 			ptmp->flags |= PG_BUSY;
   1140 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1141 			pps[lcv] = ptmp;
   1142 		}
   1143 
   1144 		/*
   1145  		 * if we own the valid page at the correct offset, pps[lcv] will
   1146  		 * point to it.   nothing more to do except go to the next page.
   1147  		 */
   1148 
   1149 		if (pps[lcv])
   1150 			continue;			/* next lcv */
   1151 
   1152 		/*
   1153  		 * we have a "fake/busy/clean" page that we just allocated.
   1154  		 * do the needed "i/o", either reading from swap or zeroing.
   1155  		 */
   1156 
   1157 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1158 
   1159 		/*
   1160  		 * just zero the page if there's nothing in swap.
   1161  		 */
   1162 
   1163 		if (swslot == 0) {
   1164 
   1165 			/*
   1166 			 * page hasn't existed before, just zero it.
   1167 			 */
   1168 
   1169 			uvm_pagezero(ptmp);
   1170 		} else {
   1171 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1172 			     swslot, 0,0,0);
   1173 
   1174 			/*
   1175 			 * page in the swapped-out page.
   1176 			 * unlock object for i/o, relock when done.
   1177 			 */
   1178 
   1179 			simple_unlock(&uobj->vmobjlock);
   1180 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1181 			simple_lock(&uobj->vmobjlock);
   1182 
   1183 			/*
   1184 			 * I/O done.  check for errors.
   1185 			 */
   1186 
   1187 			if (error != 0) {
   1188 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1189 				    error,0,0,0);
   1190 				if (ptmp->flags & PG_WANTED)
   1191 					wakeup(ptmp);
   1192 
   1193 				/*
   1194 				 * remove the swap slot from the aobj
   1195 				 * and mark the aobj as having no real slot.
   1196 				 * don't free the swap slot, thus preventing
   1197 				 * it from being used again.
   1198 				 */
   1199 
   1200 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1201 							SWSLOT_BAD);
   1202 				if (swslot != -1) {
   1203 					uvm_swap_markbad(swslot, 1);
   1204 				}
   1205 
   1206 				uvm_lock_pageq();
   1207 				uvm_pagefree(ptmp);
   1208 				uvm_unlock_pageq();
   1209 				simple_unlock(&uobj->vmobjlock);
   1210 				return error;
   1211 			}
   1212 		}
   1213 
   1214 		/*
   1215  		 * we got the page!   clear the fake flag (indicates valid
   1216 		 * data now in page) and plug into our result array.   note
   1217 		 * that page is still busy.
   1218  		 *
   1219  		 * it is the callers job to:
   1220  		 * => check if the page is released
   1221  		 * => unbusy the page
   1222  		 * => activate the page
   1223  		 */
   1224 
   1225 		ptmp->flags &= ~PG_FAKE;
   1226 		pps[lcv] = ptmp;
   1227 	}
   1228 
   1229 	/*
   1230  	 * finally, unlock object and return.
   1231  	 */
   1232 
   1233 	simple_unlock(&uobj->vmobjlock);
   1234 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1235 	return 0;
   1236 }
   1237 
   1238 /*
   1239  * uao_dropswap:  release any swap resources from this aobj page.
   1240  *
   1241  * => aobj must be locked or have a reference count of 0.
   1242  */
   1243 
   1244 void
   1245 uao_dropswap(uobj, pageidx)
   1246 	struct uvm_object *uobj;
   1247 	int pageidx;
   1248 {
   1249 	int slot;
   1250 
   1251 	slot = uao_set_swslot(uobj, pageidx, 0);
   1252 	if (slot) {
   1253 		uvm_swap_free(slot, 1);
   1254 	}
   1255 }
   1256 
   1257 /*
   1258  * page in every page in every aobj that is paged-out to a range of swslots.
   1259  *
   1260  * => nothing should be locked.
   1261  * => returns TRUE if pagein was aborted due to lack of memory.
   1262  */
   1263 
   1264 boolean_t
   1265 uao_swap_off(startslot, endslot)
   1266 	int startslot, endslot;
   1267 {
   1268 	struct uvm_aobj *aobj, *nextaobj;
   1269 	boolean_t rv;
   1270 
   1271 	/*
   1272 	 * walk the list of all aobjs.
   1273 	 */
   1274 
   1275 restart:
   1276 	simple_lock(&uao_list_lock);
   1277 	for (aobj = LIST_FIRST(&uao_list);
   1278 	     aobj != NULL;
   1279 	     aobj = nextaobj) {
   1280 
   1281 		/*
   1282 		 * try to get the object lock, start all over if we fail.
   1283 		 * most of the time we'll get the aobj lock,
   1284 		 * so this should be a rare case.
   1285 		 */
   1286 
   1287 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
   1288 			simple_unlock(&uao_list_lock);
   1289 			goto restart;
   1290 		}
   1291 
   1292 		/*
   1293 		 * add a ref to the aobj so it doesn't disappear
   1294 		 * while we're working.
   1295 		 */
   1296 
   1297 		uao_reference_locked(&aobj->u_obj);
   1298 
   1299 		/*
   1300 		 * now it's safe to unlock the uao list.
   1301 		 */
   1302 
   1303 		simple_unlock(&uao_list_lock);
   1304 
   1305 		/*
   1306 		 * page in any pages in the swslot range.
   1307 		 * if there's an error, abort and return the error.
   1308 		 */
   1309 
   1310 		rv = uao_pagein(aobj, startslot, endslot);
   1311 		if (rv) {
   1312 			uao_detach_locked(&aobj->u_obj);
   1313 			return rv;
   1314 		}
   1315 
   1316 		/*
   1317 		 * we're done with this aobj.
   1318 		 * relock the list and drop our ref on the aobj.
   1319 		 */
   1320 
   1321 		simple_lock(&uao_list_lock);
   1322 		nextaobj = LIST_NEXT(aobj, u_list);
   1323 		uao_detach_locked(&aobj->u_obj);
   1324 	}
   1325 
   1326 	/*
   1327 	 * done with traversal, unlock the list
   1328 	 */
   1329 	simple_unlock(&uao_list_lock);
   1330 	return FALSE;
   1331 }
   1332 
   1333 
   1334 /*
   1335  * page in any pages from aobj in the given range.
   1336  *
   1337  * => aobj must be locked and is returned locked.
   1338  * => returns TRUE if pagein was aborted due to lack of memory.
   1339  */
   1340 static boolean_t
   1341 uao_pagein(aobj, startslot, endslot)
   1342 	struct uvm_aobj *aobj;
   1343 	int startslot, endslot;
   1344 {
   1345 	boolean_t rv;
   1346 
   1347 	if (UAO_USES_SWHASH(aobj)) {
   1348 		struct uao_swhash_elt *elt;
   1349 		int bucket;
   1350 
   1351 restart:
   1352 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
   1353 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
   1354 			     elt != NULL;
   1355 			     elt = LIST_NEXT(elt, list)) {
   1356 				int i;
   1357 
   1358 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1359 					int slot = elt->slots[i];
   1360 
   1361 					/*
   1362 					 * if the slot isn't in range, skip it.
   1363 					 */
   1364 
   1365 					if (slot < startslot ||
   1366 					    slot >= endslot) {
   1367 						continue;
   1368 					}
   1369 
   1370 					/*
   1371 					 * process the page,
   1372 					 * the start over on this object
   1373 					 * since the swhash elt
   1374 					 * may have been freed.
   1375 					 */
   1376 
   1377 					rv = uao_pagein_page(aobj,
   1378 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1379 					if (rv) {
   1380 						return rv;
   1381 					}
   1382 					goto restart;
   1383 				}
   1384 			}
   1385 		}
   1386 	} else {
   1387 		int i;
   1388 
   1389 		for (i = 0; i < aobj->u_pages; i++) {
   1390 			int slot = aobj->u_swslots[i];
   1391 
   1392 			/*
   1393 			 * if the slot isn't in range, skip it
   1394 			 */
   1395 
   1396 			if (slot < startslot || slot >= endslot) {
   1397 				continue;
   1398 			}
   1399 
   1400 			/*
   1401 			 * process the page.
   1402 			 */
   1403 
   1404 			rv = uao_pagein_page(aobj, i);
   1405 			if (rv) {
   1406 				return rv;
   1407 			}
   1408 		}
   1409 	}
   1410 
   1411 	return FALSE;
   1412 }
   1413 
   1414 /*
   1415  * page in a page from an aobj.  used for swap_off.
   1416  * returns TRUE if pagein was aborted due to lack of memory.
   1417  *
   1418  * => aobj must be locked and is returned locked.
   1419  */
   1420 
   1421 static boolean_t
   1422 uao_pagein_page(aobj, pageidx)
   1423 	struct uvm_aobj *aobj;
   1424 	int pageidx;
   1425 {
   1426 	struct vm_page *pg;
   1427 	int rv, slot, npages;
   1428 
   1429 	pg = NULL;
   1430 	npages = 1;
   1431 	/* locked: aobj */
   1432 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1433 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
   1434 	/* unlocked: aobj */
   1435 
   1436 	/*
   1437 	 * relock and finish up.
   1438 	 */
   1439 
   1440 	simple_lock(&aobj->u_obj.vmobjlock);
   1441 	switch (rv) {
   1442 	case 0:
   1443 		break;
   1444 
   1445 	case EIO:
   1446 	case ERESTART:
   1447 
   1448 		/*
   1449 		 * nothing more to do on errors.
   1450 		 * ERESTART can only mean that the anon was freed,
   1451 		 * so again there's nothing to do.
   1452 		 */
   1453 
   1454 		return FALSE;
   1455 	}
   1456 
   1457 	/*
   1458 	 * ok, we've got the page now.
   1459 	 * mark it as dirty, clear its swslot and un-busy it.
   1460 	 */
   1461 
   1462 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
   1463 	uvm_swap_free(slot, 1);
   1464 
   1465 	/*
   1466 	 * deactivate the page (to make sure it's on a page queue).
   1467 	 */
   1468 
   1469 	uvm_lock_pageq();
   1470 	uvm_pagedeactivate(pg);
   1471 	uvm_unlock_pageq();
   1472 
   1473 	pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
   1474 	UVM_PAGE_OWN(pg, NULL);
   1475 
   1476 	return FALSE;
   1477 }
   1478