uvm_aobj.c revision 1.56 1 /* $NetBSD: uvm_aobj.c,v 1.56 2003/04/12 14:36:43 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.56 2003/04/12 14:36:43 yamt Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 #include <sys/kernel.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * an aobj manages anonymous-memory backed uvm_objects. in addition
62 * to keeping the list of resident pages, it also keeps a list of
63 * allocated swap blocks. depending on the size of the aobj this list
64 * of allocated swap blocks is either stored in an array (small objects)
65 * or in a hash table (large objects).
66 */
67
68 /*
69 * local structures
70 */
71
72 /*
73 * for hash tables, we break the address space of the aobj into blocks
74 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
75 * be a power of two.
76 */
77
78 #define UAO_SWHASH_CLUSTER_SHIFT 4
79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80
81 /* get the "tag" for this page index */
82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
83 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84
85 /* given an ELT and a page index, find the swap slot */
86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
87 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
88
89 /* given an ELT, return its pageidx base */
90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
91 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
92
93 /*
94 * the swhash hash function
95 */
96
97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
98 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
99 & (AOBJ)->u_swhashmask)])
100
101 /*
102 * the swhash threshhold determines if we will use an array or a
103 * hash table to store the list of allocated swap blocks.
104 */
105
106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
107 #define UAO_USES_SWHASH(AOBJ) \
108 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
109
110 /*
111 * the number of buckets in a swhash, with an upper bound
112 */
113
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 UAO_SWHASH_MAXBUCKETS))
118
119
120 /*
121 * uao_swhash_elt: when a hash table is being used, this structure defines
122 * the format of an entry in the bucket list.
123 */
124
125 struct uao_swhash_elt {
126 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
127 voff_t tag; /* our 'tag' */
128 int count; /* our number of active slots */
129 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
130 };
131
132 /*
133 * uao_swhash: the swap hash table structure
134 */
135
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137
138 /*
139 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140 */
141
142 struct pool uao_swhash_elt_pool;
143
144 /*
145 * uvm_aobj: the actual anon-backed uvm_object
146 *
147 * => the uvm_object is at the top of the structure, this allows
148 * (struct uvm_aobj *) == (struct uvm_object *)
149 * => only one of u_swslots and u_swhash is used in any given aobj
150 */
151
152 struct uvm_aobj {
153 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 int u_pages; /* number of pages in entire object */
155 int u_flags; /* the flags (see uvm_aobj.h) */
156 int *u_swslots; /* array of offset->swapslot mappings */
157 /*
158 * hashtable of offset->swapslot mappings
159 * (u_swhash is an array of bucket heads)
160 */
161 struct uao_swhash *u_swhash;
162 u_long u_swhashmask; /* mask for hashtable */
163 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
164 };
165
166 /*
167 * uvm_aobj_pool: pool of uvm_aobj structures
168 */
169
170 struct pool uvm_aobj_pool;
171
172 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
173
174 /*
175 * local functions
176 */
177
178 static struct uao_swhash_elt *uao_find_swhash_elt
179 __P((struct uvm_aobj *, int, boolean_t));
180
181 static void uao_free __P((struct uvm_aobj *));
182 static int uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
183 int *, int, vm_prot_t, int, int));
184 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
185 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
186 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
187
188 /*
189 * aobj_pager
190 *
191 * note that some functions (e.g. put) are handled elsewhere
192 */
193
194 struct uvm_pagerops aobj_pager = {
195 NULL, /* init */
196 uao_reference, /* reference */
197 uao_detach, /* detach */
198 NULL, /* fault */
199 uao_get, /* get */
200 uao_put, /* flush */
201 };
202
203 /*
204 * uao_list: global list of active aobjs, locked by uao_list_lock
205 */
206
207 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
208 static struct simplelock uao_list_lock;
209
210 /*
211 * functions
212 */
213
214 /*
215 * hash table/array related functions
216 */
217
218 /*
219 * uao_find_swhash_elt: find (or create) a hash table entry for a page
220 * offset.
221 *
222 * => the object should be locked by the caller
223 */
224
225 static struct uao_swhash_elt *
226 uao_find_swhash_elt(aobj, pageidx, create)
227 struct uvm_aobj *aobj;
228 int pageidx;
229 boolean_t create;
230 {
231 struct uao_swhash *swhash;
232 struct uao_swhash_elt *elt;
233 voff_t page_tag;
234
235 swhash = UAO_SWHASH_HASH(aobj, pageidx);
236 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
237
238 /*
239 * now search the bucket for the requested tag
240 */
241
242 LIST_FOREACH(elt, swhash, list) {
243 if (elt->tag == page_tag) {
244 return elt;
245 }
246 }
247 if (!create) {
248 return NULL;
249 }
250
251 /*
252 * allocate a new entry for the bucket and init/insert it in
253 */
254
255 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
256 if (elt == NULL) {
257 return NULL;
258 }
259 LIST_INSERT_HEAD(swhash, elt, list);
260 elt->tag = page_tag;
261 elt->count = 0;
262 memset(elt->slots, 0, sizeof(elt->slots));
263 return elt;
264 }
265
266 /*
267 * uao_find_swslot: find the swap slot number for an aobj/pageidx
268 *
269 * => object must be locked by caller
270 */
271
272 int
273 uao_find_swslot(uobj, pageidx)
274 struct uvm_object *uobj;
275 int pageidx;
276 {
277 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
278 struct uao_swhash_elt *elt;
279
280 /*
281 * if noswap flag is set, then we never return a slot
282 */
283
284 if (aobj->u_flags & UAO_FLAG_NOSWAP)
285 return(0);
286
287 /*
288 * if hashing, look in hash table.
289 */
290
291 if (UAO_USES_SWHASH(aobj)) {
292 elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
293 if (elt)
294 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
295 else
296 return(0);
297 }
298
299 /*
300 * otherwise, look in the array
301 */
302
303 return(aobj->u_swslots[pageidx]);
304 }
305
306 /*
307 * uao_set_swslot: set the swap slot for a page in an aobj.
308 *
309 * => setting a slot to zero frees the slot
310 * => object must be locked by caller
311 * => we return the old slot number, or -1 if we failed to allocate
312 * memory to record the new slot number
313 */
314
315 int
316 uao_set_swslot(uobj, pageidx, slot)
317 struct uvm_object *uobj;
318 int pageidx, slot;
319 {
320 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
321 struct uao_swhash_elt *elt;
322 int oldslot;
323 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
324 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
325 aobj, pageidx, slot, 0);
326
327 /*
328 * if noswap flag is set, then we can't set a non-zero slot.
329 */
330
331 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
332 if (slot == 0)
333 return(0);
334
335 printf("uao_set_swslot: uobj = %p\n", uobj);
336 panic("uao_set_swslot: NOSWAP object");
337 }
338
339 /*
340 * are we using a hash table? if so, add it in the hash.
341 */
342
343 if (UAO_USES_SWHASH(aobj)) {
344
345 /*
346 * Avoid allocating an entry just to free it again if
347 * the page had not swap slot in the first place, and
348 * we are freeing.
349 */
350
351 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
352 if (elt == NULL) {
353 return slot ? -1 : 0;
354 }
355
356 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
357 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
358
359 /*
360 * now adjust the elt's reference counter and free it if we've
361 * dropped it to zero.
362 */
363
364 if (slot) {
365 if (oldslot == 0)
366 elt->count++;
367 } else {
368 if (oldslot)
369 elt->count--;
370
371 if (elt->count == 0) {
372 LIST_REMOVE(elt, list);
373 pool_put(&uao_swhash_elt_pool, elt);
374 }
375 }
376 } else {
377 /* we are using an array */
378 oldslot = aobj->u_swslots[pageidx];
379 aobj->u_swslots[pageidx] = slot;
380 }
381 return (oldslot);
382 }
383
384 /*
385 * end of hash/array functions
386 */
387
388 /*
389 * uao_free: free all resources held by an aobj, and then free the aobj
390 *
391 * => the aobj should be dead
392 */
393
394 static void
395 uao_free(aobj)
396 struct uvm_aobj *aobj;
397 {
398 int swpgonlydelta = 0;
399
400 simple_unlock(&aobj->u_obj.vmobjlock);
401 if (UAO_USES_SWHASH(aobj)) {
402 int i, hashbuckets = aobj->u_swhashmask + 1;
403
404 /*
405 * free the swslots from each hash bucket,
406 * then the hash bucket, and finally the hash table itself.
407 */
408
409 for (i = 0; i < hashbuckets; i++) {
410 struct uao_swhash_elt *elt, *next;
411
412 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
413 elt != NULL;
414 elt = next) {
415 int j;
416
417 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
418 int slot = elt->slots[j];
419
420 if (slot == 0) {
421 continue;
422 }
423 uvm_swap_free(slot, 1);
424 swpgonlydelta++;
425 }
426
427 next = LIST_NEXT(elt, list);
428 pool_put(&uao_swhash_elt_pool, elt);
429 }
430 }
431 free(aobj->u_swhash, M_UVMAOBJ);
432 } else {
433 int i;
434
435 /*
436 * free the array
437 */
438
439 for (i = 0; i < aobj->u_pages; i++) {
440 int slot = aobj->u_swslots[i];
441
442 if (slot) {
443 uvm_swap_free(slot, 1);
444 swpgonlydelta++;
445 }
446 }
447 free(aobj->u_swslots, M_UVMAOBJ);
448 }
449
450 /*
451 * finally free the aobj itself
452 */
453
454 pool_put(&uvm_aobj_pool, aobj);
455
456 /*
457 * adjust the counter of pages only in swap for all
458 * the swap slots we've freed.
459 */
460
461 if (swpgonlydelta > 0) {
462 simple_lock(&uvm.swap_data_lock);
463 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
464 uvmexp.swpgonly -= swpgonlydelta;
465 simple_unlock(&uvm.swap_data_lock);
466 }
467 }
468
469 /*
470 * pager functions
471 */
472
473 /*
474 * uao_create: create an aobj of the given size and return its uvm_object.
475 *
476 * => for normal use, flags are always zero
477 * => for the kernel object, the flags are:
478 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
479 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
480 */
481
482 struct uvm_object *
483 uao_create(size, flags)
484 vsize_t size;
485 int flags;
486 {
487 static struct uvm_aobj kernel_object_store;
488 static int kobj_alloced = 0;
489 int pages = round_page(size) >> PAGE_SHIFT;
490 struct uvm_aobj *aobj;
491
492 /*
493 * malloc a new aobj unless we are asked for the kernel object
494 */
495
496 if (flags & UAO_FLAG_KERNOBJ) {
497 KASSERT(!kobj_alloced);
498 aobj = &kernel_object_store;
499 aobj->u_pages = pages;
500 aobj->u_flags = UAO_FLAG_NOSWAP;
501 aobj->u_obj.uo_refs = UVM_OBJ_KERN;
502 kobj_alloced = UAO_FLAG_KERNOBJ;
503 } else if (flags & UAO_FLAG_KERNSWAP) {
504 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
505 aobj = &kernel_object_store;
506 kobj_alloced = UAO_FLAG_KERNSWAP;
507 } else {
508 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
509 aobj->u_pages = pages;
510 aobj->u_flags = 0;
511 aobj->u_obj.uo_refs = 1;
512 }
513
514 /*
515 * allocate hash/array if necessary
516 *
517 * note: in the KERNSWAP case no need to worry about locking since
518 * we are still booting we should be the only thread around.
519 */
520
521 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
522 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
523 M_NOWAIT : M_WAITOK;
524
525 /* allocate hash table or array depending on object size */
526 if (UAO_USES_SWHASH(aobj)) {
527 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
528 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
529 if (aobj->u_swhash == NULL)
530 panic("uao_create: hashinit swhash failed");
531 } else {
532 aobj->u_swslots = malloc(pages * sizeof(int),
533 M_UVMAOBJ, mflags);
534 if (aobj->u_swslots == NULL)
535 panic("uao_create: malloc swslots failed");
536 memset(aobj->u_swslots, 0, pages * sizeof(int));
537 }
538
539 if (flags) {
540 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
541 return(&aobj->u_obj);
542 }
543 }
544
545 /*
546 * init aobj fields
547 */
548
549 simple_lock_init(&aobj->u_obj.vmobjlock);
550 aobj->u_obj.pgops = &aobj_pager;
551 TAILQ_INIT(&aobj->u_obj.memq);
552 aobj->u_obj.uo_npages = 0;
553
554 /*
555 * now that aobj is ready, add it to the global list
556 */
557
558 simple_lock(&uao_list_lock);
559 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
560 simple_unlock(&uao_list_lock);
561 return(&aobj->u_obj);
562 }
563
564
565
566 /*
567 * uao_init: set up aobj pager subsystem
568 *
569 * => called at boot time from uvm_pager_init()
570 */
571
572 void
573 uao_init(void)
574 {
575 static int uao_initialized;
576
577 if (uao_initialized)
578 return;
579 uao_initialized = TRUE;
580 LIST_INIT(&uao_list);
581 simple_lock_init(&uao_list_lock);
582
583 /*
584 * NOTE: Pages fror this pool must not come from a pageable
585 * kernel map!
586 */
587
588 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
589 0, 0, 0, "uaoeltpl", NULL);
590 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
591 "aobjpl", &pool_allocator_nointr);
592 }
593
594 /*
595 * uao_reference: add a ref to an aobj
596 *
597 * => aobj must be unlocked
598 * => just lock it and call the locked version
599 */
600
601 void
602 uao_reference(uobj)
603 struct uvm_object *uobj;
604 {
605 simple_lock(&uobj->vmobjlock);
606 uao_reference_locked(uobj);
607 simple_unlock(&uobj->vmobjlock);
608 }
609
610 /*
611 * uao_reference_locked: add a ref to an aobj that is already locked
612 *
613 * => aobj must be locked
614 * this needs to be separate from the normal routine
615 * since sometimes we need to add a reference to an aobj when
616 * it's already locked.
617 */
618
619 void
620 uao_reference_locked(uobj)
621 struct uvm_object *uobj;
622 {
623 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
624
625 /*
626 * kernel_object already has plenty of references, leave it alone.
627 */
628
629 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
630 return;
631
632 uobj->uo_refs++;
633 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
634 uobj, uobj->uo_refs,0,0);
635 }
636
637 /*
638 * uao_detach: drop a reference to an aobj
639 *
640 * => aobj must be unlocked
641 * => just lock it and call the locked version
642 */
643
644 void
645 uao_detach(uobj)
646 struct uvm_object *uobj;
647 {
648 simple_lock(&uobj->vmobjlock);
649 uao_detach_locked(uobj);
650 }
651
652 /*
653 * uao_detach_locked: drop a reference to an aobj
654 *
655 * => aobj must be locked, and is unlocked (or freed) upon return.
656 * this needs to be separate from the normal routine
657 * since sometimes we need to detach from an aobj when
658 * it's already locked.
659 */
660
661 void
662 uao_detach_locked(uobj)
663 struct uvm_object *uobj;
664 {
665 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
666 struct vm_page *pg;
667 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
668
669 /*
670 * detaching from kernel_object is a noop.
671 */
672
673 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
674 simple_unlock(&uobj->vmobjlock);
675 return;
676 }
677
678 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
679 uobj->uo_refs--;
680 if (uobj->uo_refs) {
681 simple_unlock(&uobj->vmobjlock);
682 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
683 return;
684 }
685
686 /*
687 * remove the aobj from the global list.
688 */
689
690 simple_lock(&uao_list_lock);
691 LIST_REMOVE(aobj, u_list);
692 simple_unlock(&uao_list_lock);
693
694 /*
695 * free all the pages left in the aobj. for each page,
696 * when the page is no longer busy (and thus after any disk i/o that
697 * it's involved in is complete), release any swap resources and
698 * free the page itself.
699 */
700
701 uvm_lock_pageq();
702 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
703 pmap_page_protect(pg, VM_PROT_NONE);
704 if (pg->flags & PG_BUSY) {
705 pg->flags |= PG_WANTED;
706 uvm_unlock_pageq();
707 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
708 "uao_det", 0);
709 simple_lock(&uobj->vmobjlock);
710 uvm_lock_pageq();
711 continue;
712 }
713 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
714 uvm_pagefree(pg);
715 }
716 uvm_unlock_pageq();
717
718 /*
719 * finally, free the aobj itself.
720 */
721
722 uao_free(aobj);
723 }
724
725 /*
726 * uao_put: flush pages out of a uvm object
727 *
728 * => object should be locked by caller. we may _unlock_ the object
729 * if (and only if) we need to clean a page (PGO_CLEANIT).
730 * XXXJRT Currently, however, we don't. In the case of cleaning
731 * XXXJRT a page, we simply just deactivate it. Should probably
732 * XXXJRT handle this better, in the future (although "flushing"
733 * XXXJRT anonymous memory isn't terribly important).
734 * => if PGO_CLEANIT is not set, then we will neither unlock the object
735 * or block.
736 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
737 * for flushing.
738 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
739 * that new pages are inserted on the tail end of the list. thus,
740 * we can make a complete pass through the object in one go by starting
741 * at the head and working towards the tail (new pages are put in
742 * front of us).
743 * => NOTE: we are allowed to lock the page queues, so the caller
744 * must not be holding the lock on them [e.g. pagedaemon had
745 * better not call us with the queues locked]
746 * => we return TRUE unless we encountered some sort of I/O error
747 * XXXJRT currently never happens, as we never directly initiate
748 * XXXJRT I/O
749 *
750 * note on page traversal:
751 * we can traverse the pages in an object either by going down the
752 * linked list in "uobj->memq", or we can go over the address range
753 * by page doing hash table lookups for each address. depending
754 * on how many pages are in the object it may be cheaper to do one
755 * or the other. we set "by_list" to true if we are using memq.
756 * if the cost of a hash lookup was equal to the cost of the list
757 * traversal we could compare the number of pages in the start->stop
758 * range to the total number of pages in the object. however, it
759 * seems that a hash table lookup is more expensive than the linked
760 * list traversal, so we multiply the number of pages in the
761 * start->stop range by a penalty which we define below.
762 */
763
764 int
765 uao_put(uobj, start, stop, flags)
766 struct uvm_object *uobj;
767 voff_t start, stop;
768 int flags;
769 {
770 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
771 struct vm_page *pg, *nextpg, curmp, endmp;
772 boolean_t by_list;
773 voff_t curoff;
774 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
775
776 curoff = 0;
777 if (flags & PGO_ALLPAGES) {
778 start = 0;
779 stop = aobj->u_pages << PAGE_SHIFT;
780 by_list = TRUE; /* always go by the list */
781 } else {
782 start = trunc_page(start);
783 stop = round_page(stop);
784 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
785 printf("uao_flush: strange, got an out of range "
786 "flush (fixed)\n");
787 stop = aobj->u_pages << PAGE_SHIFT;
788 }
789 by_list = (uobj->uo_npages <=
790 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
791 }
792 UVMHIST_LOG(maphist,
793 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
794 start, stop, by_list, flags);
795
796 /*
797 * Don't need to do any work here if we're not freeing
798 * or deactivating pages.
799 */
800
801 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
802 simple_unlock(&uobj->vmobjlock);
803 return 0;
804 }
805
806 /*
807 * Initialize the marker pages. See the comment in
808 * genfs_putpages() also.
809 */
810
811 curmp.uobject = uobj;
812 curmp.offset = (voff_t)-1;
813 curmp.flags = PG_BUSY;
814 endmp.uobject = uobj;
815 endmp.offset = (voff_t)-1;
816 endmp.flags = PG_BUSY;
817
818 /*
819 * now do it. note: we must update nextpg in the body of loop or we
820 * will get stuck. we need to use nextpg if we'll traverse the list
821 * because we may free "pg" before doing the next loop.
822 */
823
824 if (by_list) {
825 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
826 nextpg = TAILQ_FIRST(&uobj->memq);
827 PHOLD(curlwp);
828 } else {
829 curoff = start;
830 nextpg = NULL; /* Quell compiler warning */
831 }
832
833 uvm_lock_pageq();
834
835 /* locked: both page queues and uobj */
836 for (;;) {
837 if (by_list) {
838 pg = nextpg;
839 if (pg == &endmp)
840 break;
841 nextpg = TAILQ_NEXT(pg, listq);
842 if (pg->offset < start || pg->offset >= stop)
843 continue;
844 } else {
845 if (curoff < stop) {
846 pg = uvm_pagelookup(uobj, curoff);
847 curoff += PAGE_SIZE;
848 } else
849 break;
850 if (pg == NULL)
851 continue;
852 }
853 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
854
855 /*
856 * XXX In these first 3 cases, we always just
857 * XXX deactivate the page. We may want to
858 * XXX handle the different cases more specifically
859 * XXX in the future.
860 */
861
862 case PGO_CLEANIT|PGO_FREE:
863 case PGO_CLEANIT|PGO_DEACTIVATE:
864 case PGO_DEACTIVATE:
865 deactivate_it:
866 /* skip the page if it's loaned or wired */
867 if (pg->loan_count != 0 || pg->wire_count != 0)
868 continue;
869
870 /* ...and deactivate the page. */
871 pmap_clear_reference(pg);
872 uvm_pagedeactivate(pg);
873 continue;
874
875 case PGO_FREE:
876
877 /*
878 * If there are multiple references to
879 * the object, just deactivate the page.
880 */
881
882 if (uobj->uo_refs > 1)
883 goto deactivate_it;
884
885 /* XXX skip the page if it's loaned or wired */
886 if (pg->loan_count != 0 || pg->wire_count != 0)
887 continue;
888
889 /*
890 * wait and try again if the page is busy.
891 * otherwise free the swap slot and the page.
892 */
893
894 pmap_page_protect(pg, VM_PROT_NONE);
895 if (pg->flags & PG_BUSY) {
896 if (by_list) {
897 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
898 }
899 pg->flags |= PG_WANTED;
900 uvm_unlock_pageq();
901 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
902 "uao_put", 0);
903 simple_lock(&uobj->vmobjlock);
904 uvm_lock_pageq();
905 if (by_list) {
906 nextpg = TAILQ_NEXT(&curmp, listq);
907 TAILQ_REMOVE(&uobj->memq, &curmp,
908 listq);
909 } else
910 curoff -= PAGE_SIZE;
911 continue;
912 }
913 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
914 uvm_pagefree(pg);
915 continue;
916 }
917 }
918 uvm_unlock_pageq();
919 if (by_list) {
920 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
921 PRELE(curlwp);
922 }
923 simple_unlock(&uobj->vmobjlock);
924 return 0;
925 }
926
927 /*
928 * uao_get: fetch me a page
929 *
930 * we have three cases:
931 * 1: page is resident -> just return the page.
932 * 2: page is zero-fill -> allocate a new page and zero it.
933 * 3: page is swapped out -> fetch the page from swap.
934 *
935 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
936 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
937 * then we will need to return EBUSY.
938 *
939 * => prefer map unlocked (not required)
940 * => object must be locked! we will _unlock_ it before starting any I/O.
941 * => flags: PGO_ALLPAGES: get all of the pages
942 * PGO_LOCKED: fault data structures are locked
943 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
944 * => NOTE: caller must check for released pages!!
945 */
946
947 static int
948 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
949 struct uvm_object *uobj;
950 voff_t offset;
951 struct vm_page **pps;
952 int *npagesp;
953 int centeridx, advice, flags;
954 vm_prot_t access_type;
955 {
956 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
957 voff_t current_offset;
958 struct vm_page *ptmp = NULL; /* Quell compiler warning */
959 int lcv, gotpages, maxpages, swslot, error, pageidx;
960 boolean_t done;
961 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
962
963 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
964 aobj, offset, flags,0);
965
966 /*
967 * get number of pages
968 */
969
970 maxpages = *npagesp;
971
972 /*
973 * step 1: handled the case where fault data structures are locked.
974 */
975
976 if (flags & PGO_LOCKED) {
977
978 /*
979 * step 1a: get pages that are already resident. only do
980 * this if the data structures are locked (i.e. the first
981 * time through).
982 */
983
984 done = TRUE; /* be optimistic */
985 gotpages = 0; /* # of pages we got so far */
986 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
987 lcv++, current_offset += PAGE_SIZE) {
988 /* do we care about this page? if not, skip it */
989 if (pps[lcv] == PGO_DONTCARE)
990 continue;
991 ptmp = uvm_pagelookup(uobj, current_offset);
992
993 /*
994 * if page is new, attempt to allocate the page,
995 * zero-fill'd.
996 */
997
998 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
999 current_offset >> PAGE_SHIFT) == 0) {
1000 ptmp = uvm_pagealloc(uobj, current_offset,
1001 NULL, UVM_PGA_ZERO);
1002 if (ptmp) {
1003 /* new page */
1004 ptmp->flags &= ~(PG_FAKE);
1005 ptmp->pqflags |= PQ_AOBJ;
1006 goto gotpage;
1007 }
1008 }
1009
1010 /*
1011 * to be useful must get a non-busy page
1012 */
1013
1014 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
1015 if (lcv == centeridx ||
1016 (flags & PGO_ALLPAGES) != 0)
1017 /* need to do a wait or I/O! */
1018 done = FALSE;
1019 continue;
1020 }
1021
1022 /*
1023 * useful page: busy/lock it and plug it in our
1024 * result array
1025 */
1026
1027 /* caller must un-busy this page */
1028 ptmp->flags |= PG_BUSY;
1029 UVM_PAGE_OWN(ptmp, "uao_get1");
1030 gotpage:
1031 pps[lcv] = ptmp;
1032 gotpages++;
1033 }
1034
1035 /*
1036 * step 1b: now we've either done everything needed or we
1037 * to unlock and do some waiting or I/O.
1038 */
1039
1040 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1041 *npagesp = gotpages;
1042 if (done)
1043 return 0;
1044 else
1045 return EBUSY;
1046 }
1047
1048 /*
1049 * step 2: get non-resident or busy pages.
1050 * object is locked. data structures are unlocked.
1051 */
1052
1053 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1054 lcv++, current_offset += PAGE_SIZE) {
1055
1056 /*
1057 * - skip over pages we've already gotten or don't want
1058 * - skip over pages we don't _have_ to get
1059 */
1060
1061 if (pps[lcv] != NULL ||
1062 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1063 continue;
1064
1065 pageidx = current_offset >> PAGE_SHIFT;
1066
1067 /*
1068 * we have yet to locate the current page (pps[lcv]). we
1069 * first look for a page that is already at the current offset.
1070 * if we find a page, we check to see if it is busy or
1071 * released. if that is the case, then we sleep on the page
1072 * until it is no longer busy or released and repeat the lookup.
1073 * if the page we found is neither busy nor released, then we
1074 * busy it (so we own it) and plug it into pps[lcv]. this
1075 * 'break's the following while loop and indicates we are
1076 * ready to move on to the next page in the "lcv" loop above.
1077 *
1078 * if we exit the while loop with pps[lcv] still set to NULL,
1079 * then it means that we allocated a new busy/fake/clean page
1080 * ptmp in the object and we need to do I/O to fill in the data.
1081 */
1082
1083 /* top of "pps" while loop */
1084 while (pps[lcv] == NULL) {
1085 /* look for a resident page */
1086 ptmp = uvm_pagelookup(uobj, current_offset);
1087
1088 /* not resident? allocate one now (if we can) */
1089 if (ptmp == NULL) {
1090
1091 ptmp = uvm_pagealloc(uobj, current_offset,
1092 NULL, 0);
1093
1094 /* out of RAM? */
1095 if (ptmp == NULL) {
1096 simple_unlock(&uobj->vmobjlock);
1097 UVMHIST_LOG(pdhist,
1098 "sleeping, ptmp == NULL\n",0,0,0,0);
1099 uvm_wait("uao_getpage");
1100 simple_lock(&uobj->vmobjlock);
1101 continue;
1102 }
1103
1104 /*
1105 * safe with PQ's unlocked: because we just
1106 * alloc'd the page
1107 */
1108
1109 ptmp->pqflags |= PQ_AOBJ;
1110
1111 /*
1112 * got new page ready for I/O. break pps while
1113 * loop. pps[lcv] is still NULL.
1114 */
1115
1116 break;
1117 }
1118
1119 /* page is there, see if we need to wait on it */
1120 if ((ptmp->flags & PG_BUSY) != 0) {
1121 ptmp->flags |= PG_WANTED;
1122 UVMHIST_LOG(pdhist,
1123 "sleeping, ptmp->flags 0x%x\n",
1124 ptmp->flags,0,0,0);
1125 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1126 FALSE, "uao_get", 0);
1127 simple_lock(&uobj->vmobjlock);
1128 continue;
1129 }
1130
1131 /*
1132 * if we get here then the page has become resident and
1133 * unbusy between steps 1 and 2. we busy it now (so we
1134 * own it) and set pps[lcv] (so that we exit the while
1135 * loop).
1136 */
1137
1138 /* we own it, caller must un-busy */
1139 ptmp->flags |= PG_BUSY;
1140 UVM_PAGE_OWN(ptmp, "uao_get2");
1141 pps[lcv] = ptmp;
1142 }
1143
1144 /*
1145 * if we own the valid page at the correct offset, pps[lcv] will
1146 * point to it. nothing more to do except go to the next page.
1147 */
1148
1149 if (pps[lcv])
1150 continue; /* next lcv */
1151
1152 /*
1153 * we have a "fake/busy/clean" page that we just allocated.
1154 * do the needed "i/o", either reading from swap or zeroing.
1155 */
1156
1157 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1158
1159 /*
1160 * just zero the page if there's nothing in swap.
1161 */
1162
1163 if (swslot == 0) {
1164
1165 /*
1166 * page hasn't existed before, just zero it.
1167 */
1168
1169 uvm_pagezero(ptmp);
1170 } else {
1171 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1172 swslot, 0,0,0);
1173
1174 /*
1175 * page in the swapped-out page.
1176 * unlock object for i/o, relock when done.
1177 */
1178
1179 simple_unlock(&uobj->vmobjlock);
1180 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1181 simple_lock(&uobj->vmobjlock);
1182
1183 /*
1184 * I/O done. check for errors.
1185 */
1186
1187 if (error != 0) {
1188 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1189 error,0,0,0);
1190 if (ptmp->flags & PG_WANTED)
1191 wakeup(ptmp);
1192
1193 /*
1194 * remove the swap slot from the aobj
1195 * and mark the aobj as having no real slot.
1196 * don't free the swap slot, thus preventing
1197 * it from being used again.
1198 */
1199
1200 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1201 SWSLOT_BAD);
1202 if (swslot != -1) {
1203 uvm_swap_markbad(swslot, 1);
1204 }
1205
1206 uvm_lock_pageq();
1207 uvm_pagefree(ptmp);
1208 uvm_unlock_pageq();
1209 simple_unlock(&uobj->vmobjlock);
1210 return error;
1211 }
1212 }
1213
1214 /*
1215 * we got the page! clear the fake flag (indicates valid
1216 * data now in page) and plug into our result array. note
1217 * that page is still busy.
1218 *
1219 * it is the callers job to:
1220 * => check if the page is released
1221 * => unbusy the page
1222 * => activate the page
1223 */
1224
1225 ptmp->flags &= ~PG_FAKE;
1226 pps[lcv] = ptmp;
1227 }
1228
1229 /*
1230 * finally, unlock object and return.
1231 */
1232
1233 simple_unlock(&uobj->vmobjlock);
1234 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1235 return 0;
1236 }
1237
1238 /*
1239 * uao_dropswap: release any swap resources from this aobj page.
1240 *
1241 * => aobj must be locked or have a reference count of 0.
1242 */
1243
1244 void
1245 uao_dropswap(uobj, pageidx)
1246 struct uvm_object *uobj;
1247 int pageidx;
1248 {
1249 int slot;
1250
1251 slot = uao_set_swslot(uobj, pageidx, 0);
1252 if (slot) {
1253 uvm_swap_free(slot, 1);
1254 }
1255 }
1256
1257 /*
1258 * page in every page in every aobj that is paged-out to a range of swslots.
1259 *
1260 * => nothing should be locked.
1261 * => returns TRUE if pagein was aborted due to lack of memory.
1262 */
1263
1264 boolean_t
1265 uao_swap_off(startslot, endslot)
1266 int startslot, endslot;
1267 {
1268 struct uvm_aobj *aobj, *nextaobj;
1269 boolean_t rv;
1270
1271 /*
1272 * walk the list of all aobjs.
1273 */
1274
1275 restart:
1276 simple_lock(&uao_list_lock);
1277 for (aobj = LIST_FIRST(&uao_list);
1278 aobj != NULL;
1279 aobj = nextaobj) {
1280
1281 /*
1282 * try to get the object lock, start all over if we fail.
1283 * most of the time we'll get the aobj lock,
1284 * so this should be a rare case.
1285 */
1286
1287 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1288 simple_unlock(&uao_list_lock);
1289 goto restart;
1290 }
1291
1292 /*
1293 * add a ref to the aobj so it doesn't disappear
1294 * while we're working.
1295 */
1296
1297 uao_reference_locked(&aobj->u_obj);
1298
1299 /*
1300 * now it's safe to unlock the uao list.
1301 */
1302
1303 simple_unlock(&uao_list_lock);
1304
1305 /*
1306 * page in any pages in the swslot range.
1307 * if there's an error, abort and return the error.
1308 */
1309
1310 rv = uao_pagein(aobj, startslot, endslot);
1311 if (rv) {
1312 uao_detach_locked(&aobj->u_obj);
1313 return rv;
1314 }
1315
1316 /*
1317 * we're done with this aobj.
1318 * relock the list and drop our ref on the aobj.
1319 */
1320
1321 simple_lock(&uao_list_lock);
1322 nextaobj = LIST_NEXT(aobj, u_list);
1323 uao_detach_locked(&aobj->u_obj);
1324 }
1325
1326 /*
1327 * done with traversal, unlock the list
1328 */
1329 simple_unlock(&uao_list_lock);
1330 return FALSE;
1331 }
1332
1333
1334 /*
1335 * page in any pages from aobj in the given range.
1336 *
1337 * => aobj must be locked and is returned locked.
1338 * => returns TRUE if pagein was aborted due to lack of memory.
1339 */
1340 static boolean_t
1341 uao_pagein(aobj, startslot, endslot)
1342 struct uvm_aobj *aobj;
1343 int startslot, endslot;
1344 {
1345 boolean_t rv;
1346
1347 if (UAO_USES_SWHASH(aobj)) {
1348 struct uao_swhash_elt *elt;
1349 int bucket;
1350
1351 restart:
1352 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1353 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1354 elt != NULL;
1355 elt = LIST_NEXT(elt, list)) {
1356 int i;
1357
1358 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1359 int slot = elt->slots[i];
1360
1361 /*
1362 * if the slot isn't in range, skip it.
1363 */
1364
1365 if (slot < startslot ||
1366 slot >= endslot) {
1367 continue;
1368 }
1369
1370 /*
1371 * process the page,
1372 * the start over on this object
1373 * since the swhash elt
1374 * may have been freed.
1375 */
1376
1377 rv = uao_pagein_page(aobj,
1378 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1379 if (rv) {
1380 return rv;
1381 }
1382 goto restart;
1383 }
1384 }
1385 }
1386 } else {
1387 int i;
1388
1389 for (i = 0; i < aobj->u_pages; i++) {
1390 int slot = aobj->u_swslots[i];
1391
1392 /*
1393 * if the slot isn't in range, skip it
1394 */
1395
1396 if (slot < startslot || slot >= endslot) {
1397 continue;
1398 }
1399
1400 /*
1401 * process the page.
1402 */
1403
1404 rv = uao_pagein_page(aobj, i);
1405 if (rv) {
1406 return rv;
1407 }
1408 }
1409 }
1410
1411 return FALSE;
1412 }
1413
1414 /*
1415 * page in a page from an aobj. used for swap_off.
1416 * returns TRUE if pagein was aborted due to lack of memory.
1417 *
1418 * => aobj must be locked and is returned locked.
1419 */
1420
1421 static boolean_t
1422 uao_pagein_page(aobj, pageidx)
1423 struct uvm_aobj *aobj;
1424 int pageidx;
1425 {
1426 struct vm_page *pg;
1427 int rv, slot, npages;
1428
1429 pg = NULL;
1430 npages = 1;
1431 /* locked: aobj */
1432 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1433 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1434 /* unlocked: aobj */
1435
1436 /*
1437 * relock and finish up.
1438 */
1439
1440 simple_lock(&aobj->u_obj.vmobjlock);
1441 switch (rv) {
1442 case 0:
1443 break;
1444
1445 case EIO:
1446 case ERESTART:
1447
1448 /*
1449 * nothing more to do on errors.
1450 * ERESTART can only mean that the anon was freed,
1451 * so again there's nothing to do.
1452 */
1453
1454 return FALSE;
1455 }
1456
1457 /*
1458 * ok, we've got the page now.
1459 * mark it as dirty, clear its swslot and un-busy it.
1460 */
1461
1462 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1463 uvm_swap_free(slot, 1);
1464
1465 /*
1466 * deactivate the page (to make sure it's on a page queue).
1467 */
1468
1469 uvm_lock_pageq();
1470 uvm_pagedeactivate(pg);
1471 uvm_unlock_pageq();
1472
1473 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1474 UVM_PAGE_OWN(pg, NULL);
1475
1476 return FALSE;
1477 }
1478