uvm_aobj.c revision 1.56.2.4 1 /* $NetBSD: uvm_aobj.c,v 1.56.2.4 2005/11/10 14:12:39 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.56.2.4 2005/11/10 14:12:39 skrll Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 #include <sys/kernel.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * an aobj manages anonymous-memory backed uvm_objects. in addition
62 * to keeping the list of resident pages, it also keeps a list of
63 * allocated swap blocks. depending on the size of the aobj this list
64 * of allocated swap blocks is either stored in an array (small objects)
65 * or in a hash table (large objects).
66 */
67
68 /*
69 * local structures
70 */
71
72 /*
73 * for hash tables, we break the address space of the aobj into blocks
74 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
75 * be a power of two.
76 */
77
78 #define UAO_SWHASH_CLUSTER_SHIFT 4
79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80
81 /* get the "tag" for this page index */
82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
83 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84
85 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
86 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
87
88 /* given an ELT and a page index, find the swap slot */
89 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
90 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
91
92 /* given an ELT, return its pageidx base */
93 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
94 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
95
96 /*
97 * the swhash hash function
98 */
99
100 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
101 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
102 & (AOBJ)->u_swhashmask)])
103
104 /*
105 * the swhash threshhold determines if we will use an array or a
106 * hash table to store the list of allocated swap blocks.
107 */
108
109 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
110 #define UAO_USES_SWHASH(AOBJ) \
111 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
112
113 /*
114 * the number of buckets in a swhash, with an upper bound
115 */
116
117 #define UAO_SWHASH_MAXBUCKETS 256
118 #define UAO_SWHASH_BUCKETS(AOBJ) \
119 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
120 UAO_SWHASH_MAXBUCKETS))
121
122
123 /*
124 * uao_swhash_elt: when a hash table is being used, this structure defines
125 * the format of an entry in the bucket list.
126 */
127
128 struct uao_swhash_elt {
129 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
130 voff_t tag; /* our 'tag' */
131 int count; /* our number of active slots */
132 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
133 };
134
135 /*
136 * uao_swhash: the swap hash table structure
137 */
138
139 LIST_HEAD(uao_swhash, uao_swhash_elt);
140
141 /*
142 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
143 * NOTE: Pages for this pool must not come from a pageable kernel map!
144 */
145 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
146 "uaoeltpl", NULL);
147
148 /*
149 * uvm_aobj: the actual anon-backed uvm_object
150 *
151 * => the uvm_object is at the top of the structure, this allows
152 * (struct uvm_aobj *) == (struct uvm_object *)
153 * => only one of u_swslots and u_swhash is used in any given aobj
154 */
155
156 struct uvm_aobj {
157 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
158 int u_pages; /* number of pages in entire object */
159 int u_flags; /* the flags (see uvm_aobj.h) */
160 int *u_swslots; /* array of offset->swapslot mappings */
161 /*
162 * hashtable of offset->swapslot mappings
163 * (u_swhash is an array of bucket heads)
164 */
165 struct uao_swhash *u_swhash;
166 u_long u_swhashmask; /* mask for hashtable */
167 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
168 };
169
170 /*
171 * uvm_aobj_pool: pool of uvm_aobj structures
172 */
173 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
174 &pool_allocator_nointr);
175
176 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
177
178 /*
179 * local functions
180 */
181
182 static void uao_free(struct uvm_aobj *);
183 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
184 int *, int, vm_prot_t, int, int);
185 static boolean_t uao_put(struct uvm_object *, voff_t, voff_t, int);
186
187 #if defined(VMSWAP)
188 static struct uao_swhash_elt *uao_find_swhash_elt
189 (struct uvm_aobj *, int, boolean_t);
190
191 static boolean_t uao_pagein(struct uvm_aobj *, int, int);
192 static boolean_t uao_pagein_page(struct uvm_aobj *, int);
193 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
194 #endif /* defined(VMSWAP) */
195
196 /*
197 * aobj_pager
198 *
199 * note that some functions (e.g. put) are handled elsewhere
200 */
201
202 struct uvm_pagerops aobj_pager = {
203 NULL, /* init */
204 uao_reference, /* reference */
205 uao_detach, /* detach */
206 NULL, /* fault */
207 uao_get, /* get */
208 uao_put, /* flush */
209 };
210
211 /*
212 * uao_list: global list of active aobjs, locked by uao_list_lock
213 */
214
215 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
216 static struct simplelock uao_list_lock;
217
218 /*
219 * functions
220 */
221
222 /*
223 * hash table/array related functions
224 */
225
226 #if defined(VMSWAP)
227
228 /*
229 * uao_find_swhash_elt: find (or create) a hash table entry for a page
230 * offset.
231 *
232 * => the object should be locked by the caller
233 */
234
235 static struct uao_swhash_elt *
236 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, boolean_t create)
237 {
238 struct uao_swhash *swhash;
239 struct uao_swhash_elt *elt;
240 voff_t page_tag;
241
242 swhash = UAO_SWHASH_HASH(aobj, pageidx);
243 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
244
245 /*
246 * now search the bucket for the requested tag
247 */
248
249 LIST_FOREACH(elt, swhash, list) {
250 if (elt->tag == page_tag) {
251 return elt;
252 }
253 }
254 if (!create) {
255 return NULL;
256 }
257
258 /*
259 * allocate a new entry for the bucket and init/insert it in
260 */
261
262 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
263 if (elt == NULL) {
264 return NULL;
265 }
266 LIST_INSERT_HEAD(swhash, elt, list);
267 elt->tag = page_tag;
268 elt->count = 0;
269 memset(elt->slots, 0, sizeof(elt->slots));
270 return elt;
271 }
272
273 /*
274 * uao_find_swslot: find the swap slot number for an aobj/pageidx
275 *
276 * => object must be locked by caller
277 */
278
279 int
280 uao_find_swslot(struct uvm_object *uobj, int pageidx)
281 {
282 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
283 struct uao_swhash_elt *elt;
284
285 /*
286 * if noswap flag is set, then we never return a slot
287 */
288
289 if (aobj->u_flags & UAO_FLAG_NOSWAP)
290 return(0);
291
292 /*
293 * if hashing, look in hash table.
294 */
295
296 if (UAO_USES_SWHASH(aobj)) {
297 elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
298 if (elt)
299 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
300 else
301 return(0);
302 }
303
304 /*
305 * otherwise, look in the array
306 */
307
308 return(aobj->u_swslots[pageidx]);
309 }
310
311 /*
312 * uao_set_swslot: set the swap slot for a page in an aobj.
313 *
314 * => setting a slot to zero frees the slot
315 * => object must be locked by caller
316 * => we return the old slot number, or -1 if we failed to allocate
317 * memory to record the new slot number
318 */
319
320 int
321 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
322 {
323 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
324 struct uao_swhash_elt *elt;
325 int oldslot;
326 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
327 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
328 aobj, pageidx, slot, 0);
329
330 /*
331 * if noswap flag is set, then we can't set a non-zero slot.
332 */
333
334 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
335 if (slot == 0)
336 return(0);
337
338 printf("uao_set_swslot: uobj = %p\n", uobj);
339 panic("uao_set_swslot: NOSWAP object");
340 }
341
342 /*
343 * are we using a hash table? if so, add it in the hash.
344 */
345
346 if (UAO_USES_SWHASH(aobj)) {
347
348 /*
349 * Avoid allocating an entry just to free it again if
350 * the page had not swap slot in the first place, and
351 * we are freeing.
352 */
353
354 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
355 if (elt == NULL) {
356 return slot ? -1 : 0;
357 }
358
359 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
360 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
361
362 /*
363 * now adjust the elt's reference counter and free it if we've
364 * dropped it to zero.
365 */
366
367 if (slot) {
368 if (oldslot == 0)
369 elt->count++;
370 } else {
371 if (oldslot)
372 elt->count--;
373
374 if (elt->count == 0) {
375 LIST_REMOVE(elt, list);
376 pool_put(&uao_swhash_elt_pool, elt);
377 }
378 }
379 } else {
380 /* we are using an array */
381 oldslot = aobj->u_swslots[pageidx];
382 aobj->u_swslots[pageidx] = slot;
383 }
384 return (oldslot);
385 }
386
387 #endif /* defined(VMSWAP) */
388
389 /*
390 * end of hash/array functions
391 */
392
393 /*
394 * uao_free: free all resources held by an aobj, and then free the aobj
395 *
396 * => the aobj should be dead
397 */
398
399 static void
400 uao_free(struct uvm_aobj *aobj)
401 {
402 int swpgonlydelta = 0;
403
404 simple_unlock(&aobj->u_obj.vmobjlock);
405
406 #if defined(VMSWAP)
407 uao_dropswap_range1(aobj, 0, 0);
408
409 if (UAO_USES_SWHASH(aobj)) {
410
411 /*
412 * free the hash table itself.
413 */
414
415 free(aobj->u_swhash, M_UVMAOBJ);
416 } else {
417
418 /*
419 * free the array itsself.
420 */
421
422 free(aobj->u_swslots, M_UVMAOBJ);
423 }
424 #endif /* defined(VMSWAP) */
425
426 /*
427 * finally free the aobj itself
428 */
429
430 pool_put(&uvm_aobj_pool, aobj);
431
432 /*
433 * adjust the counter of pages only in swap for all
434 * the swap slots we've freed.
435 */
436
437 if (swpgonlydelta > 0) {
438 simple_lock(&uvm.swap_data_lock);
439 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
440 uvmexp.swpgonly -= swpgonlydelta;
441 simple_unlock(&uvm.swap_data_lock);
442 }
443 }
444
445 /*
446 * pager functions
447 */
448
449 /*
450 * uao_create: create an aobj of the given size and return its uvm_object.
451 *
452 * => for normal use, flags are always zero
453 * => for the kernel object, the flags are:
454 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
455 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
456 */
457
458 struct uvm_object *
459 uao_create(vsize_t size, int flags)
460 {
461 static struct uvm_aobj kernel_object_store;
462 static int kobj_alloced = 0;
463 int pages = round_page(size) >> PAGE_SHIFT;
464 struct uvm_aobj *aobj;
465 int refs;
466
467 /*
468 * malloc a new aobj unless we are asked for the kernel object
469 */
470
471 if (flags & UAO_FLAG_KERNOBJ) {
472 KASSERT(!kobj_alloced);
473 aobj = &kernel_object_store;
474 aobj->u_pages = pages;
475 aobj->u_flags = UAO_FLAG_NOSWAP;
476 refs = UVM_OBJ_KERN;
477 kobj_alloced = UAO_FLAG_KERNOBJ;
478 } else if (flags & UAO_FLAG_KERNSWAP) {
479 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
480 aobj = &kernel_object_store;
481 kobj_alloced = UAO_FLAG_KERNSWAP;
482 refs = 0xdeadbeaf; /* XXX: gcc */
483 } else {
484 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
485 aobj->u_pages = pages;
486 aobj->u_flags = 0;
487 refs = 1;
488 }
489
490 /*
491 * allocate hash/array if necessary
492 *
493 * note: in the KERNSWAP case no need to worry about locking since
494 * we are still booting we should be the only thread around.
495 */
496
497 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
498 #if defined(VMSWAP)
499 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
500 M_NOWAIT : M_WAITOK;
501
502 /* allocate hash table or array depending on object size */
503 if (UAO_USES_SWHASH(aobj)) {
504 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
505 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
506 if (aobj->u_swhash == NULL)
507 panic("uao_create: hashinit swhash failed");
508 } else {
509 aobj->u_swslots = malloc(pages * sizeof(int),
510 M_UVMAOBJ, mflags);
511 if (aobj->u_swslots == NULL)
512 panic("uao_create: malloc swslots failed");
513 memset(aobj->u_swslots, 0, pages * sizeof(int));
514 }
515 #endif /* defined(VMSWAP) */
516
517 if (flags) {
518 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
519 return(&aobj->u_obj);
520 }
521 }
522
523 /*
524 * init aobj fields
525 */
526
527 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
528
529 /*
530 * now that aobj is ready, add it to the global list
531 */
532
533 simple_lock(&uao_list_lock);
534 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
535 simple_unlock(&uao_list_lock);
536 return(&aobj->u_obj);
537 }
538
539
540
541 /*
542 * uao_init: set up aobj pager subsystem
543 *
544 * => called at boot time from uvm_pager_init()
545 */
546
547 void
548 uao_init(void)
549 {
550 static int uao_initialized;
551
552 if (uao_initialized)
553 return;
554 uao_initialized = TRUE;
555 LIST_INIT(&uao_list);
556 simple_lock_init(&uao_list_lock);
557 }
558
559 /*
560 * uao_reference: add a ref to an aobj
561 *
562 * => aobj must be unlocked
563 * => just lock it and call the locked version
564 */
565
566 void
567 uao_reference(struct uvm_object *uobj)
568 {
569 simple_lock(&uobj->vmobjlock);
570 uao_reference_locked(uobj);
571 simple_unlock(&uobj->vmobjlock);
572 }
573
574 /*
575 * uao_reference_locked: add a ref to an aobj that is already locked
576 *
577 * => aobj must be locked
578 * this needs to be separate from the normal routine
579 * since sometimes we need to add a reference to an aobj when
580 * it's already locked.
581 */
582
583 void
584 uao_reference_locked(struct uvm_object *uobj)
585 {
586 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
587
588 /*
589 * kernel_object already has plenty of references, leave it alone.
590 */
591
592 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
593 return;
594
595 uobj->uo_refs++;
596 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
597 uobj, uobj->uo_refs,0,0);
598 }
599
600 /*
601 * uao_detach: drop a reference to an aobj
602 *
603 * => aobj must be unlocked
604 * => just lock it and call the locked version
605 */
606
607 void
608 uao_detach(struct uvm_object *uobj)
609 {
610 simple_lock(&uobj->vmobjlock);
611 uao_detach_locked(uobj);
612 }
613
614 /*
615 * uao_detach_locked: drop a reference to an aobj
616 *
617 * => aobj must be locked, and is unlocked (or freed) upon return.
618 * this needs to be separate from the normal routine
619 * since sometimes we need to detach from an aobj when
620 * it's already locked.
621 */
622
623 void
624 uao_detach_locked(struct uvm_object *uobj)
625 {
626 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
627 struct vm_page *pg;
628 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
629
630 /*
631 * detaching from kernel_object is a noop.
632 */
633
634 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
635 simple_unlock(&uobj->vmobjlock);
636 return;
637 }
638
639 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
640 uobj->uo_refs--;
641 if (uobj->uo_refs) {
642 simple_unlock(&uobj->vmobjlock);
643 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
644 return;
645 }
646
647 /*
648 * remove the aobj from the global list.
649 */
650
651 simple_lock(&uao_list_lock);
652 LIST_REMOVE(aobj, u_list);
653 simple_unlock(&uao_list_lock);
654
655 /*
656 * free all the pages left in the aobj. for each page,
657 * when the page is no longer busy (and thus after any disk i/o that
658 * it's involved in is complete), release any swap resources and
659 * free the page itself.
660 */
661
662 uvm_lock_pageq();
663 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
664 pmap_page_protect(pg, VM_PROT_NONE);
665 if (pg->flags & PG_BUSY) {
666 pg->flags |= PG_WANTED;
667 uvm_unlock_pageq();
668 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
669 "uao_det", 0);
670 simple_lock(&uobj->vmobjlock);
671 uvm_lock_pageq();
672 continue;
673 }
674 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
675 uvm_pagefree(pg);
676 }
677 uvm_unlock_pageq();
678
679 /*
680 * finally, free the aobj itself.
681 */
682
683 uao_free(aobj);
684 }
685
686 /*
687 * uao_put: flush pages out of a uvm object
688 *
689 * => object should be locked by caller. we may _unlock_ the object
690 * if (and only if) we need to clean a page (PGO_CLEANIT).
691 * XXXJRT Currently, however, we don't. In the case of cleaning
692 * XXXJRT a page, we simply just deactivate it. Should probably
693 * XXXJRT handle this better, in the future (although "flushing"
694 * XXXJRT anonymous memory isn't terribly important).
695 * => if PGO_CLEANIT is not set, then we will neither unlock the object
696 * or block.
697 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
698 * for flushing.
699 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
700 * that new pages are inserted on the tail end of the list. thus,
701 * we can make a complete pass through the object in one go by starting
702 * at the head and working towards the tail (new pages are put in
703 * front of us).
704 * => NOTE: we are allowed to lock the page queues, so the caller
705 * must not be holding the lock on them [e.g. pagedaemon had
706 * better not call us with the queues locked]
707 * => we return TRUE unless we encountered some sort of I/O error
708 * XXXJRT currently never happens, as we never directly initiate
709 * XXXJRT I/O
710 *
711 * note on page traversal:
712 * we can traverse the pages in an object either by going down the
713 * linked list in "uobj->memq", or we can go over the address range
714 * by page doing hash table lookups for each address. depending
715 * on how many pages are in the object it may be cheaper to do one
716 * or the other. we set "by_list" to true if we are using memq.
717 * if the cost of a hash lookup was equal to the cost of the list
718 * traversal we could compare the number of pages in the start->stop
719 * range to the total number of pages in the object. however, it
720 * seems that a hash table lookup is more expensive than the linked
721 * list traversal, so we multiply the number of pages in the
722 * start->stop range by a penalty which we define below.
723 */
724
725 static int
726 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
727 {
728 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
729 struct vm_page *pg, *nextpg, curmp, endmp;
730 boolean_t by_list;
731 voff_t curoff;
732 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
733
734 curoff = 0;
735 if (flags & PGO_ALLPAGES) {
736 start = 0;
737 stop = aobj->u_pages << PAGE_SHIFT;
738 by_list = TRUE; /* always go by the list */
739 } else {
740 start = trunc_page(start);
741 if (stop == 0) {
742 stop = aobj->u_pages << PAGE_SHIFT;
743 } else {
744 stop = round_page(stop);
745 }
746 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
747 printf("uao_flush: strange, got an out of range "
748 "flush (fixed)\n");
749 stop = aobj->u_pages << PAGE_SHIFT;
750 }
751 by_list = (uobj->uo_npages <=
752 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
753 }
754 UVMHIST_LOG(maphist,
755 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
756 start, stop, by_list, flags);
757
758 /*
759 * Don't need to do any work here if we're not freeing
760 * or deactivating pages.
761 */
762
763 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
764 simple_unlock(&uobj->vmobjlock);
765 return 0;
766 }
767
768 /*
769 * Initialize the marker pages. See the comment in
770 * genfs_putpages() also.
771 */
772
773 curmp.uobject = uobj;
774 curmp.offset = (voff_t)-1;
775 curmp.flags = PG_BUSY;
776 endmp.uobject = uobj;
777 endmp.offset = (voff_t)-1;
778 endmp.flags = PG_BUSY;
779
780 /*
781 * now do it. note: we must update nextpg in the body of loop or we
782 * will get stuck. we need to use nextpg if we'll traverse the list
783 * because we may free "pg" before doing the next loop.
784 */
785
786 if (by_list) {
787 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
788 nextpg = TAILQ_FIRST(&uobj->memq);
789 PHOLD(curlwp);
790 } else {
791 curoff = start;
792 nextpg = NULL; /* Quell compiler warning */
793 }
794
795 uvm_lock_pageq();
796
797 /* locked: both page queues and uobj */
798 for (;;) {
799 if (by_list) {
800 pg = nextpg;
801 if (pg == &endmp)
802 break;
803 nextpg = TAILQ_NEXT(pg, listq);
804 if (pg->offset < start || pg->offset >= stop)
805 continue;
806 } else {
807 if (curoff < stop) {
808 pg = uvm_pagelookup(uobj, curoff);
809 curoff += PAGE_SIZE;
810 } else
811 break;
812 if (pg == NULL)
813 continue;
814 }
815 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
816
817 /*
818 * XXX In these first 3 cases, we always just
819 * XXX deactivate the page. We may want to
820 * XXX handle the different cases more specifically
821 * XXX in the future.
822 */
823
824 case PGO_CLEANIT|PGO_FREE:
825 case PGO_CLEANIT|PGO_DEACTIVATE:
826 case PGO_DEACTIVATE:
827 deactivate_it:
828 /* skip the page if it's loaned or wired */
829 if (pg->loan_count != 0 || pg->wire_count != 0)
830 continue;
831
832 /* ...and deactivate the page. */
833 pmap_clear_reference(pg);
834 uvm_pagedeactivate(pg);
835 continue;
836
837 case PGO_FREE:
838
839 /*
840 * If there are multiple references to
841 * the object, just deactivate the page.
842 */
843
844 if (uobj->uo_refs > 1)
845 goto deactivate_it;
846
847 /*
848 * wait and try again if the page is busy.
849 * otherwise free the swap slot and the page.
850 */
851
852 pmap_page_protect(pg, VM_PROT_NONE);
853 if (pg->flags & PG_BUSY) {
854 if (by_list) {
855 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
856 }
857 pg->flags |= PG_WANTED;
858 uvm_unlock_pageq();
859 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
860 "uao_put", 0);
861 simple_lock(&uobj->vmobjlock);
862 uvm_lock_pageq();
863 if (by_list) {
864 nextpg = TAILQ_NEXT(&curmp, listq);
865 TAILQ_REMOVE(&uobj->memq, &curmp,
866 listq);
867 } else
868 curoff -= PAGE_SIZE;
869 continue;
870 }
871
872 /*
873 * freeing swapslot here is not strictly necessary.
874 * however, leaving it here doesn't save much
875 * because we need to update swap accounting anyway.
876 */
877
878 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
879 uvm_pagefree(pg);
880 continue;
881 }
882 }
883 uvm_unlock_pageq();
884 if (by_list) {
885 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
886 PRELE(curlwp);
887 }
888 simple_unlock(&uobj->vmobjlock);
889 return 0;
890 }
891
892 /*
893 * uao_get: fetch me a page
894 *
895 * we have three cases:
896 * 1: page is resident -> just return the page.
897 * 2: page is zero-fill -> allocate a new page and zero it.
898 * 3: page is swapped out -> fetch the page from swap.
899 *
900 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
901 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
902 * then we will need to return EBUSY.
903 *
904 * => prefer map unlocked (not required)
905 * => object must be locked! we will _unlock_ it before starting any I/O.
906 * => flags: PGO_ALLPAGES: get all of the pages
907 * PGO_LOCKED: fault data structures are locked
908 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
909 * => NOTE: caller must check for released pages!!
910 */
911
912 static int
913 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
914 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
915 {
916 #if defined(VMSWAP)
917 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
918 #endif /* defined(VMSWAP) */
919 voff_t current_offset;
920 struct vm_page *ptmp = NULL; /* Quell compiler warning */
921 int lcv, gotpages, maxpages, swslot, pageidx;
922 boolean_t done;
923 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
924
925 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
926 (struct uvm_aobj *)uobj, offset, flags,0);
927
928 /*
929 * get number of pages
930 */
931
932 maxpages = *npagesp;
933
934 /*
935 * step 1: handled the case where fault data structures are locked.
936 */
937
938 if (flags & PGO_LOCKED) {
939
940 /*
941 * step 1a: get pages that are already resident. only do
942 * this if the data structures are locked (i.e. the first
943 * time through).
944 */
945
946 done = TRUE; /* be optimistic */
947 gotpages = 0; /* # of pages we got so far */
948 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
949 lcv++, current_offset += PAGE_SIZE) {
950 /* do we care about this page? if not, skip it */
951 if (pps[lcv] == PGO_DONTCARE)
952 continue;
953 ptmp = uvm_pagelookup(uobj, current_offset);
954
955 /*
956 * if page is new, attempt to allocate the page,
957 * zero-fill'd.
958 */
959
960 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
961 current_offset >> PAGE_SHIFT) == 0) {
962 ptmp = uvm_pagealloc(uobj, current_offset,
963 NULL, UVM_PGA_ZERO);
964 if (ptmp) {
965 /* new page */
966 ptmp->flags &= ~(PG_FAKE);
967 ptmp->pqflags |= PQ_AOBJ;
968 goto gotpage;
969 }
970 }
971
972 /*
973 * to be useful must get a non-busy page
974 */
975
976 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
977 if (lcv == centeridx ||
978 (flags & PGO_ALLPAGES) != 0)
979 /* need to do a wait or I/O! */
980 done = FALSE;
981 continue;
982 }
983
984 /*
985 * useful page: busy/lock it and plug it in our
986 * result array
987 */
988
989 /* caller must un-busy this page */
990 ptmp->flags |= PG_BUSY;
991 UVM_PAGE_OWN(ptmp, "uao_get1");
992 gotpage:
993 pps[lcv] = ptmp;
994 gotpages++;
995 }
996
997 /*
998 * step 1b: now we've either done everything needed or we
999 * to unlock and do some waiting or I/O.
1000 */
1001
1002 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1003 *npagesp = gotpages;
1004 if (done)
1005 return 0;
1006 else
1007 return EBUSY;
1008 }
1009
1010 /*
1011 * step 2: get non-resident or busy pages.
1012 * object is locked. data structures are unlocked.
1013 */
1014
1015 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1016 lcv++, current_offset += PAGE_SIZE) {
1017
1018 /*
1019 * - skip over pages we've already gotten or don't want
1020 * - skip over pages we don't _have_ to get
1021 */
1022
1023 if (pps[lcv] != NULL ||
1024 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1025 continue;
1026
1027 pageidx = current_offset >> PAGE_SHIFT;
1028
1029 /*
1030 * we have yet to locate the current page (pps[lcv]). we
1031 * first look for a page that is already at the current offset.
1032 * if we find a page, we check to see if it is busy or
1033 * released. if that is the case, then we sleep on the page
1034 * until it is no longer busy or released and repeat the lookup.
1035 * if the page we found is neither busy nor released, then we
1036 * busy it (so we own it) and plug it into pps[lcv]. this
1037 * 'break's the following while loop and indicates we are
1038 * ready to move on to the next page in the "lcv" loop above.
1039 *
1040 * if we exit the while loop with pps[lcv] still set to NULL,
1041 * then it means that we allocated a new busy/fake/clean page
1042 * ptmp in the object and we need to do I/O to fill in the data.
1043 */
1044
1045 /* top of "pps" while loop */
1046 while (pps[lcv] == NULL) {
1047 /* look for a resident page */
1048 ptmp = uvm_pagelookup(uobj, current_offset);
1049
1050 /* not resident? allocate one now (if we can) */
1051 if (ptmp == NULL) {
1052
1053 ptmp = uvm_pagealloc(uobj, current_offset,
1054 NULL, 0);
1055
1056 /* out of RAM? */
1057 if (ptmp == NULL) {
1058 simple_unlock(&uobj->vmobjlock);
1059 UVMHIST_LOG(pdhist,
1060 "sleeping, ptmp == NULL\n",0,0,0,0);
1061 uvm_wait("uao_getpage");
1062 simple_lock(&uobj->vmobjlock);
1063 continue;
1064 }
1065
1066 /*
1067 * safe with PQ's unlocked: because we just
1068 * alloc'd the page
1069 */
1070
1071 ptmp->pqflags |= PQ_AOBJ;
1072
1073 /*
1074 * got new page ready for I/O. break pps while
1075 * loop. pps[lcv] is still NULL.
1076 */
1077
1078 break;
1079 }
1080
1081 /* page is there, see if we need to wait on it */
1082 if ((ptmp->flags & PG_BUSY) != 0) {
1083 ptmp->flags |= PG_WANTED;
1084 UVMHIST_LOG(pdhist,
1085 "sleeping, ptmp->flags 0x%x\n",
1086 ptmp->flags,0,0,0);
1087 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1088 FALSE, "uao_get", 0);
1089 simple_lock(&uobj->vmobjlock);
1090 continue;
1091 }
1092
1093 /*
1094 * if we get here then the page has become resident and
1095 * unbusy between steps 1 and 2. we busy it now (so we
1096 * own it) and set pps[lcv] (so that we exit the while
1097 * loop).
1098 */
1099
1100 /* we own it, caller must un-busy */
1101 ptmp->flags |= PG_BUSY;
1102 UVM_PAGE_OWN(ptmp, "uao_get2");
1103 pps[lcv] = ptmp;
1104 }
1105
1106 /*
1107 * if we own the valid page at the correct offset, pps[lcv] will
1108 * point to it. nothing more to do except go to the next page.
1109 */
1110
1111 if (pps[lcv])
1112 continue; /* next lcv */
1113
1114 /*
1115 * we have a "fake/busy/clean" page that we just allocated.
1116 * do the needed "i/o", either reading from swap or zeroing.
1117 */
1118
1119 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1120
1121 /*
1122 * just zero the page if there's nothing in swap.
1123 */
1124
1125 if (swslot == 0) {
1126
1127 /*
1128 * page hasn't existed before, just zero it.
1129 */
1130
1131 uvm_pagezero(ptmp);
1132 } else {
1133 #if defined(VMSWAP)
1134 int error;
1135
1136 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1137 swslot, 0,0,0);
1138
1139 /*
1140 * page in the swapped-out page.
1141 * unlock object for i/o, relock when done.
1142 */
1143
1144 simple_unlock(&uobj->vmobjlock);
1145 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1146 simple_lock(&uobj->vmobjlock);
1147
1148 /*
1149 * I/O done. check for errors.
1150 */
1151
1152 if (error != 0) {
1153 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1154 error,0,0,0);
1155 if (ptmp->flags & PG_WANTED)
1156 wakeup(ptmp);
1157
1158 /*
1159 * remove the swap slot from the aobj
1160 * and mark the aobj as having no real slot.
1161 * don't free the swap slot, thus preventing
1162 * it from being used again.
1163 */
1164
1165 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1166 SWSLOT_BAD);
1167 if (swslot > 0) {
1168 uvm_swap_markbad(swslot, 1);
1169 }
1170
1171 uvm_lock_pageq();
1172 uvm_pagefree(ptmp);
1173 uvm_unlock_pageq();
1174 simple_unlock(&uobj->vmobjlock);
1175 return error;
1176 }
1177 #else /* defined(VMSWAP) */
1178 panic("%s: pagein", __func__);
1179 #endif /* defined(VMSWAP) */
1180 }
1181
1182 /*
1183 * we got the page! clear the fake flag (indicates valid
1184 * data now in page) and plug into our result array. note
1185 * that page is still busy.
1186 *
1187 * it is the callers job to:
1188 * => check if the page is released
1189 * => unbusy the page
1190 * => activate the page
1191 */
1192
1193 ptmp->flags &= ~PG_FAKE;
1194 pps[lcv] = ptmp;
1195 }
1196
1197 /*
1198 * finally, unlock object and return.
1199 */
1200
1201 simple_unlock(&uobj->vmobjlock);
1202 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1203 return 0;
1204 }
1205
1206 #if defined(VMSWAP)
1207
1208 /*
1209 * uao_dropswap: release any swap resources from this aobj page.
1210 *
1211 * => aobj must be locked or have a reference count of 0.
1212 */
1213
1214 void
1215 uao_dropswap(struct uvm_object *uobj, int pageidx)
1216 {
1217 int slot;
1218
1219 slot = uao_set_swslot(uobj, pageidx, 0);
1220 if (slot) {
1221 uvm_swap_free(slot, 1);
1222 }
1223 }
1224
1225 /*
1226 * page in every page in every aobj that is paged-out to a range of swslots.
1227 *
1228 * => nothing should be locked.
1229 * => returns TRUE if pagein was aborted due to lack of memory.
1230 */
1231
1232 boolean_t
1233 uao_swap_off(int startslot, int endslot)
1234 {
1235 struct uvm_aobj *aobj, *nextaobj;
1236 boolean_t rv;
1237
1238 /*
1239 * walk the list of all aobjs.
1240 */
1241
1242 restart:
1243 simple_lock(&uao_list_lock);
1244 for (aobj = LIST_FIRST(&uao_list);
1245 aobj != NULL;
1246 aobj = nextaobj) {
1247
1248 /*
1249 * try to get the object lock, start all over if we fail.
1250 * most of the time we'll get the aobj lock,
1251 * so this should be a rare case.
1252 */
1253
1254 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1255 simple_unlock(&uao_list_lock);
1256 goto restart;
1257 }
1258
1259 /*
1260 * add a ref to the aobj so it doesn't disappear
1261 * while we're working.
1262 */
1263
1264 uao_reference_locked(&aobj->u_obj);
1265
1266 /*
1267 * now it's safe to unlock the uao list.
1268 */
1269
1270 simple_unlock(&uao_list_lock);
1271
1272 /*
1273 * page in any pages in the swslot range.
1274 * if there's an error, abort and return the error.
1275 */
1276
1277 rv = uao_pagein(aobj, startslot, endslot);
1278 if (rv) {
1279 uao_detach_locked(&aobj->u_obj);
1280 return rv;
1281 }
1282
1283 /*
1284 * we're done with this aobj.
1285 * relock the list and drop our ref on the aobj.
1286 */
1287
1288 simple_lock(&uao_list_lock);
1289 nextaobj = LIST_NEXT(aobj, u_list);
1290 uao_detach_locked(&aobj->u_obj);
1291 }
1292
1293 /*
1294 * done with traversal, unlock the list
1295 */
1296 simple_unlock(&uao_list_lock);
1297 return FALSE;
1298 }
1299
1300
1301 /*
1302 * page in any pages from aobj in the given range.
1303 *
1304 * => aobj must be locked and is returned locked.
1305 * => returns TRUE if pagein was aborted due to lack of memory.
1306 */
1307 static boolean_t
1308 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1309 {
1310 boolean_t rv;
1311
1312 if (UAO_USES_SWHASH(aobj)) {
1313 struct uao_swhash_elt *elt;
1314 int buck;
1315
1316 restart:
1317 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1318 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1319 elt != NULL;
1320 elt = LIST_NEXT(elt, list)) {
1321 int i;
1322
1323 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1324 int slot = elt->slots[i];
1325
1326 /*
1327 * if the slot isn't in range, skip it.
1328 */
1329
1330 if (slot < startslot ||
1331 slot >= endslot) {
1332 continue;
1333 }
1334
1335 /*
1336 * process the page,
1337 * the start over on this object
1338 * since the swhash elt
1339 * may have been freed.
1340 */
1341
1342 rv = uao_pagein_page(aobj,
1343 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1344 if (rv) {
1345 return rv;
1346 }
1347 goto restart;
1348 }
1349 }
1350 }
1351 } else {
1352 int i;
1353
1354 for (i = 0; i < aobj->u_pages; i++) {
1355 int slot = aobj->u_swslots[i];
1356
1357 /*
1358 * if the slot isn't in range, skip it
1359 */
1360
1361 if (slot < startslot || slot >= endslot) {
1362 continue;
1363 }
1364
1365 /*
1366 * process the page.
1367 */
1368
1369 rv = uao_pagein_page(aobj, i);
1370 if (rv) {
1371 return rv;
1372 }
1373 }
1374 }
1375
1376 return FALSE;
1377 }
1378
1379 /*
1380 * page in a page from an aobj. used for swap_off.
1381 * returns TRUE if pagein was aborted due to lack of memory.
1382 *
1383 * => aobj must be locked and is returned locked.
1384 */
1385
1386 static boolean_t
1387 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1388 {
1389 struct vm_page *pg;
1390 int rv, npages;
1391
1392 pg = NULL;
1393 npages = 1;
1394 /* locked: aobj */
1395 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1396 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1397 /* unlocked: aobj */
1398
1399 /*
1400 * relock and finish up.
1401 */
1402
1403 simple_lock(&aobj->u_obj.vmobjlock);
1404 switch (rv) {
1405 case 0:
1406 break;
1407
1408 case EIO:
1409 case ERESTART:
1410
1411 /*
1412 * nothing more to do on errors.
1413 * ERESTART can only mean that the anon was freed,
1414 * so again there's nothing to do.
1415 */
1416
1417 return FALSE;
1418
1419 default:
1420 return TRUE;
1421 }
1422
1423 /*
1424 * ok, we've got the page now.
1425 * mark it as dirty, clear its swslot and un-busy it.
1426 */
1427 uao_dropswap(&aobj->u_obj, pageidx);
1428
1429 /*
1430 * deactivate the page (to make sure it's on a page queue).
1431 */
1432 uvm_lock_pageq();
1433 if (pg->wire_count == 0)
1434 uvm_pagedeactivate(pg);
1435 uvm_unlock_pageq();
1436
1437 if (pg->flags & PG_WANTED) {
1438 wakeup(pg);
1439 }
1440 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1441 UVM_PAGE_OWN(pg, NULL);
1442
1443 return FALSE;
1444 }
1445
1446 /*
1447 * uao_dropswap_range: drop swapslots in the range.
1448 *
1449 * => aobj must be locked and is returned locked.
1450 * => start is inclusive. end is exclusive.
1451 */
1452
1453 void
1454 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1455 {
1456 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1457
1458 LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
1459
1460 uao_dropswap_range1(aobj, start, end);
1461 }
1462
1463 static void
1464 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1465 {
1466 int swpgonlydelta = 0;
1467
1468 if (end == 0) {
1469 end = INT64_MAX;
1470 }
1471
1472 if (UAO_USES_SWHASH(aobj)) {
1473 int i, hashbuckets = aobj->u_swhashmask + 1;
1474 voff_t taghi;
1475 voff_t taglo;
1476
1477 taglo = UAO_SWHASH_ELT_TAG(start);
1478 taghi = UAO_SWHASH_ELT_TAG(end);
1479
1480 for (i = 0; i < hashbuckets; i++) {
1481 struct uao_swhash_elt *elt, *next;
1482
1483 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1484 elt != NULL;
1485 elt = next) {
1486 int startidx, endidx;
1487 int j;
1488
1489 next = LIST_NEXT(elt, list);
1490
1491 if (elt->tag < taglo || taghi < elt->tag) {
1492 continue;
1493 }
1494
1495 if (elt->tag == taglo) {
1496 startidx =
1497 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1498 } else {
1499 startidx = 0;
1500 }
1501
1502 if (elt->tag == taghi) {
1503 endidx =
1504 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1505 } else {
1506 endidx = UAO_SWHASH_CLUSTER_SIZE;
1507 }
1508
1509 for (j = startidx; j < endidx; j++) {
1510 int slot = elt->slots[j];
1511
1512 KASSERT(uvm_pagelookup(&aobj->u_obj,
1513 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1514 + j) << PAGE_SHIFT) == NULL);
1515 if (slot > 0) {
1516 uvm_swap_free(slot, 1);
1517 swpgonlydelta++;
1518 KASSERT(elt->count > 0);
1519 elt->slots[j] = 0;
1520 elt->count--;
1521 }
1522 }
1523
1524 if (elt->count == 0) {
1525 LIST_REMOVE(elt, list);
1526 pool_put(&uao_swhash_elt_pool, elt);
1527 }
1528 }
1529 }
1530 } else {
1531 int i;
1532
1533 if (aobj->u_pages < end) {
1534 end = aobj->u_pages;
1535 }
1536 for (i = start; i < end; i++) {
1537 int slot = aobj->u_swslots[i];
1538
1539 if (slot > 0) {
1540 uvm_swap_free(slot, 1);
1541 swpgonlydelta++;
1542 }
1543 }
1544 }
1545
1546 /*
1547 * adjust the counter of pages only in swap for all
1548 * the swap slots we've freed.
1549 */
1550
1551 if (swpgonlydelta > 0) {
1552 simple_lock(&uvm.swap_data_lock);
1553 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1554 uvmexp.swpgonly -= swpgonlydelta;
1555 simple_unlock(&uvm.swap_data_lock);
1556 }
1557 }
1558
1559 #endif /* defined(VMSWAP) */
1560