Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.65
      1 /*	$NetBSD: uvm_aobj.c,v 1.65 2005/05/29 21:06:33 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.65 2005/05/29 21:06:33 christos Exp $");
     47 
     48 #include "opt_uvmhist.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/proc.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/pool.h>
     56 #include <sys/kernel.h>
     57 
     58 #include <uvm/uvm.h>
     59 
     60 /*
     61  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     62  * to keeping the list of resident pages, it also keeps a list of
     63  * allocated swap blocks.  depending on the size of the aobj this list
     64  * of allocated swap blocks is either stored in an array (small objects)
     65  * or in a hash table (large objects).
     66  */
     67 
     68 /*
     69  * local structures
     70  */
     71 
     72 /*
     73  * for hash tables, we break the address space of the aobj into blocks
     74  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     75  * be a power of two.
     76  */
     77 
     78 #define UAO_SWHASH_CLUSTER_SHIFT 4
     79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     80 
     81 /* get the "tag" for this page index */
     82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     83 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     84 
     85 /* given an ELT and a page index, find the swap slot */
     86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     87 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
     88 
     89 /* given an ELT, return its pageidx base */
     90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     91 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     92 
     93 /*
     94  * the swhash hash function
     95  */
     96 
     97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
     98 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
     99 			    & (AOBJ)->u_swhashmask)])
    100 
    101 /*
    102  * the swhash threshhold determines if we will use an array or a
    103  * hash table to store the list of allocated swap blocks.
    104  */
    105 
    106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    107 #define UAO_USES_SWHASH(AOBJ) \
    108 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    109 
    110 /*
    111  * the number of buckets in a swhash, with an upper bound
    112  */
    113 
    114 #define UAO_SWHASH_MAXBUCKETS 256
    115 #define UAO_SWHASH_BUCKETS(AOBJ) \
    116 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    117 	     UAO_SWHASH_MAXBUCKETS))
    118 
    119 
    120 /*
    121  * uao_swhash_elt: when a hash table is being used, this structure defines
    122  * the format of an entry in the bucket list.
    123  */
    124 
    125 struct uao_swhash_elt {
    126 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    127 	voff_t tag;				/* our 'tag' */
    128 	int count;				/* our number of active slots */
    129 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    130 };
    131 
    132 /*
    133  * uao_swhash: the swap hash table structure
    134  */
    135 
    136 LIST_HEAD(uao_swhash, uao_swhash_elt);
    137 
    138 /*
    139  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    140  * NOTE: Pages for this pool must not come from a pageable kernel map!
    141  */
    142 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
    143     "uaoeltpl", NULL);
    144 
    145 /*
    146  * uvm_aobj: the actual anon-backed uvm_object
    147  *
    148  * => the uvm_object is at the top of the structure, this allows
    149  *   (struct uvm_aobj *) == (struct uvm_object *)
    150  * => only one of u_swslots and u_swhash is used in any given aobj
    151  */
    152 
    153 struct uvm_aobj {
    154 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    155 	int u_pages;		 /* number of pages in entire object */
    156 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    157 	int *u_swslots;		 /* array of offset->swapslot mappings */
    158 				 /*
    159 				  * hashtable of offset->swapslot mappings
    160 				  * (u_swhash is an array of bucket heads)
    161 				  */
    162 	struct uao_swhash *u_swhash;
    163 	u_long u_swhashmask;		/* mask for hashtable */
    164 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    165 };
    166 
    167 /*
    168  * uvm_aobj_pool: pool of uvm_aobj structures
    169  */
    170 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
    171     &pool_allocator_nointr);
    172 
    173 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
    174 
    175 /*
    176  * local functions
    177  */
    178 
    179 static struct uao_swhash_elt *uao_find_swhash_elt
    180     (struct uvm_aobj *, int, boolean_t);
    181 
    182 static void	uao_free(struct uvm_aobj *);
    183 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    184 		    int *, int, vm_prot_t, int, int);
    185 static boolean_t uao_put(struct uvm_object *, voff_t, voff_t, int);
    186 static boolean_t uao_pagein(struct uvm_aobj *, int, int);
    187 static boolean_t uao_pagein_page(struct uvm_aobj *, int);
    188 
    189 /*
    190  * aobj_pager
    191  *
    192  * note that some functions (e.g. put) are handled elsewhere
    193  */
    194 
    195 struct uvm_pagerops aobj_pager = {
    196 	NULL,			/* init */
    197 	uao_reference,		/* reference */
    198 	uao_detach,		/* detach */
    199 	NULL,			/* fault */
    200 	uao_get,		/* get */
    201 	uao_put,		/* flush */
    202 };
    203 
    204 /*
    205  * uao_list: global list of active aobjs, locked by uao_list_lock
    206  */
    207 
    208 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    209 static struct simplelock uao_list_lock;
    210 
    211 /*
    212  * functions
    213  */
    214 
    215 /*
    216  * hash table/array related functions
    217  */
    218 
    219 /*
    220  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    221  * offset.
    222  *
    223  * => the object should be locked by the caller
    224  */
    225 
    226 static struct uao_swhash_elt *
    227 uao_find_swhash_elt(aobj, pageidx, create)
    228 	struct uvm_aobj *aobj;
    229 	int pageidx;
    230 	boolean_t create;
    231 {
    232 	struct uao_swhash *swhash;
    233 	struct uao_swhash_elt *elt;
    234 	voff_t page_tag;
    235 
    236 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    237 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    238 
    239 	/*
    240 	 * now search the bucket for the requested tag
    241 	 */
    242 
    243 	LIST_FOREACH(elt, swhash, list) {
    244 		if (elt->tag == page_tag) {
    245 			return elt;
    246 		}
    247 	}
    248 	if (!create) {
    249 		return NULL;
    250 	}
    251 
    252 	/*
    253 	 * allocate a new entry for the bucket and init/insert it in
    254 	 */
    255 
    256 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    257 	if (elt == NULL) {
    258 		return NULL;
    259 	}
    260 	LIST_INSERT_HEAD(swhash, elt, list);
    261 	elt->tag = page_tag;
    262 	elt->count = 0;
    263 	memset(elt->slots, 0, sizeof(elt->slots));
    264 	return elt;
    265 }
    266 
    267 /*
    268  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    269  *
    270  * => object must be locked by caller
    271  */
    272 
    273 int
    274 uao_find_swslot(uobj, pageidx)
    275 	struct uvm_object *uobj;
    276 	int pageidx;
    277 {
    278 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    279 	struct uao_swhash_elt *elt;
    280 
    281 	/*
    282 	 * if noswap flag is set, then we never return a slot
    283 	 */
    284 
    285 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    286 		return(0);
    287 
    288 	/*
    289 	 * if hashing, look in hash table.
    290 	 */
    291 
    292 	if (UAO_USES_SWHASH(aobj)) {
    293 		elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
    294 		if (elt)
    295 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    296 		else
    297 			return(0);
    298 	}
    299 
    300 	/*
    301 	 * otherwise, look in the array
    302 	 */
    303 
    304 	return(aobj->u_swslots[pageidx]);
    305 }
    306 
    307 /*
    308  * uao_set_swslot: set the swap slot for a page in an aobj.
    309  *
    310  * => setting a slot to zero frees the slot
    311  * => object must be locked by caller
    312  * => we return the old slot number, or -1 if we failed to allocate
    313  *    memory to record the new slot number
    314  */
    315 
    316 int
    317 uao_set_swslot(uobj, pageidx, slot)
    318 	struct uvm_object *uobj;
    319 	int pageidx, slot;
    320 {
    321 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    322 	struct uao_swhash_elt *elt;
    323 	int oldslot;
    324 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    325 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    326 	    aobj, pageidx, slot, 0);
    327 
    328 	/*
    329 	 * if noswap flag is set, then we can't set a non-zero slot.
    330 	 */
    331 
    332 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    333 		if (slot == 0)
    334 			return(0);
    335 
    336 		printf("uao_set_swslot: uobj = %p\n", uobj);
    337 		panic("uao_set_swslot: NOSWAP object");
    338 	}
    339 
    340 	/*
    341 	 * are we using a hash table?  if so, add it in the hash.
    342 	 */
    343 
    344 	if (UAO_USES_SWHASH(aobj)) {
    345 
    346 		/*
    347 		 * Avoid allocating an entry just to free it again if
    348 		 * the page had not swap slot in the first place, and
    349 		 * we are freeing.
    350 		 */
    351 
    352 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    353 		if (elt == NULL) {
    354 			return slot ? -1 : 0;
    355 		}
    356 
    357 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    358 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    359 
    360 		/*
    361 		 * now adjust the elt's reference counter and free it if we've
    362 		 * dropped it to zero.
    363 		 */
    364 
    365 		if (slot) {
    366 			if (oldslot == 0)
    367 				elt->count++;
    368 		} else {
    369 			if (oldslot)
    370 				elt->count--;
    371 
    372 			if (elt->count == 0) {
    373 				LIST_REMOVE(elt, list);
    374 				pool_put(&uao_swhash_elt_pool, elt);
    375 			}
    376 		}
    377 	} else {
    378 		/* we are using an array */
    379 		oldslot = aobj->u_swslots[pageidx];
    380 		aobj->u_swslots[pageidx] = slot;
    381 	}
    382 	return (oldslot);
    383 }
    384 
    385 /*
    386  * end of hash/array functions
    387  */
    388 
    389 /*
    390  * uao_free: free all resources held by an aobj, and then free the aobj
    391  *
    392  * => the aobj should be dead
    393  */
    394 
    395 static void
    396 uao_free(aobj)
    397 	struct uvm_aobj *aobj;
    398 {
    399 	int swpgonlydelta = 0;
    400 
    401 	simple_unlock(&aobj->u_obj.vmobjlock);
    402 	if (UAO_USES_SWHASH(aobj)) {
    403 		int i, hashbuckets = aobj->u_swhashmask + 1;
    404 
    405 		/*
    406 		 * free the swslots from each hash bucket,
    407 		 * then the hash bucket, and finally the hash table itself.
    408 		 */
    409 
    410 		for (i = 0; i < hashbuckets; i++) {
    411 			struct uao_swhash_elt *elt, *next;
    412 
    413 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
    414 			     elt != NULL;
    415 			     elt = next) {
    416 				int j;
    417 
    418 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
    419 					int slot = elt->slots[j];
    420 
    421 					if (slot > 0) {
    422 						uvm_swap_free(slot, 1);
    423 						swpgonlydelta++;
    424 					}
    425 				}
    426 
    427 				next = LIST_NEXT(elt, list);
    428 				pool_put(&uao_swhash_elt_pool, elt);
    429 			}
    430 		}
    431 		free(aobj->u_swhash, M_UVMAOBJ);
    432 	} else {
    433 		int i;
    434 
    435 		/*
    436 		 * free the array
    437 		 */
    438 
    439 		for (i = 0; i < aobj->u_pages; i++) {
    440 			int slot = aobj->u_swslots[i];
    441 
    442 			if (slot > 0) {
    443 				uvm_swap_free(slot, 1);
    444 				swpgonlydelta++;
    445 			}
    446 		}
    447 		free(aobj->u_swslots, M_UVMAOBJ);
    448 	}
    449 
    450 	/*
    451 	 * finally free the aobj itself
    452 	 */
    453 
    454 	pool_put(&uvm_aobj_pool, aobj);
    455 
    456 	/*
    457 	 * adjust the counter of pages only in swap for all
    458 	 * the swap slots we've freed.
    459 	 */
    460 
    461 	if (swpgonlydelta > 0) {
    462 		simple_lock(&uvm.swap_data_lock);
    463 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    464 		uvmexp.swpgonly -= swpgonlydelta;
    465 		simple_unlock(&uvm.swap_data_lock);
    466 	}
    467 }
    468 
    469 /*
    470  * pager functions
    471  */
    472 
    473 /*
    474  * uao_create: create an aobj of the given size and return its uvm_object.
    475  *
    476  * => for normal use, flags are always zero
    477  * => for the kernel object, the flags are:
    478  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    479  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    480  */
    481 
    482 struct uvm_object *
    483 uao_create(size, flags)
    484 	vsize_t size;
    485 	int flags;
    486 {
    487 	static struct uvm_aobj kernel_object_store;
    488 	static int kobj_alloced = 0;
    489 	int pages = round_page(size) >> PAGE_SHIFT;
    490 	struct uvm_aobj *aobj;
    491 
    492 	/*
    493 	 * malloc a new aobj unless we are asked for the kernel object
    494 	 */
    495 
    496 	if (flags & UAO_FLAG_KERNOBJ) {
    497 		KASSERT(!kobj_alloced);
    498 		aobj = &kernel_object_store;
    499 		aobj->u_pages = pages;
    500 		aobj->u_flags = UAO_FLAG_NOSWAP;
    501 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
    502 		kobj_alloced = UAO_FLAG_KERNOBJ;
    503 	} else if (flags & UAO_FLAG_KERNSWAP) {
    504 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    505 		aobj = &kernel_object_store;
    506 		kobj_alloced = UAO_FLAG_KERNSWAP;
    507 	} else {
    508 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
    509 		aobj->u_pages = pages;
    510 		aobj->u_flags = 0;
    511 		aobj->u_obj.uo_refs = 1;
    512 	}
    513 
    514 	/*
    515  	 * allocate hash/array if necessary
    516  	 *
    517  	 * note: in the KERNSWAP case no need to worry about locking since
    518  	 * we are still booting we should be the only thread around.
    519  	 */
    520 
    521 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    522 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
    523 		    M_NOWAIT : M_WAITOK;
    524 
    525 		/* allocate hash table or array depending on object size */
    526 		if (UAO_USES_SWHASH(aobj)) {
    527 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    528 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
    529 			if (aobj->u_swhash == NULL)
    530 				panic("uao_create: hashinit swhash failed");
    531 		} else {
    532 			aobj->u_swslots = malloc(pages * sizeof(int),
    533 			    M_UVMAOBJ, mflags);
    534 			if (aobj->u_swslots == NULL)
    535 				panic("uao_create: malloc swslots failed");
    536 			memset(aobj->u_swslots, 0, pages * sizeof(int));
    537 		}
    538 
    539 		if (flags) {
    540 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    541 			return(&aobj->u_obj);
    542 		}
    543 	}
    544 
    545 	/*
    546  	 * init aobj fields
    547  	 */
    548 
    549 	simple_lock_init(&aobj->u_obj.vmobjlock);
    550 	aobj->u_obj.pgops = &aobj_pager;
    551 	TAILQ_INIT(&aobj->u_obj.memq);
    552 	aobj->u_obj.uo_npages = 0;
    553 
    554 	/*
    555  	 * now that aobj is ready, add it to the global list
    556  	 */
    557 
    558 	simple_lock(&uao_list_lock);
    559 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    560 	simple_unlock(&uao_list_lock);
    561 	return(&aobj->u_obj);
    562 }
    563 
    564 
    565 
    566 /*
    567  * uao_init: set up aobj pager subsystem
    568  *
    569  * => called at boot time from uvm_pager_init()
    570  */
    571 
    572 void
    573 uao_init(void)
    574 {
    575 	static int uao_initialized;
    576 
    577 	if (uao_initialized)
    578 		return;
    579 	uao_initialized = TRUE;
    580 	LIST_INIT(&uao_list);
    581 	simple_lock_init(&uao_list_lock);
    582 }
    583 
    584 /*
    585  * uao_reference: add a ref to an aobj
    586  *
    587  * => aobj must be unlocked
    588  * => just lock it and call the locked version
    589  */
    590 
    591 void
    592 uao_reference(uobj)
    593 	struct uvm_object *uobj;
    594 {
    595 	simple_lock(&uobj->vmobjlock);
    596 	uao_reference_locked(uobj);
    597 	simple_unlock(&uobj->vmobjlock);
    598 }
    599 
    600 /*
    601  * uao_reference_locked: add a ref to an aobj that is already locked
    602  *
    603  * => aobj must be locked
    604  * this needs to be separate from the normal routine
    605  * since sometimes we need to add a reference to an aobj when
    606  * it's already locked.
    607  */
    608 
    609 void
    610 uao_reference_locked(uobj)
    611 	struct uvm_object *uobj;
    612 {
    613 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    614 
    615 	/*
    616  	 * kernel_object already has plenty of references, leave it alone.
    617  	 */
    618 
    619 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    620 		return;
    621 
    622 	uobj->uo_refs++;
    623 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    624 		    uobj, uobj->uo_refs,0,0);
    625 }
    626 
    627 /*
    628  * uao_detach: drop a reference to an aobj
    629  *
    630  * => aobj must be unlocked
    631  * => just lock it and call the locked version
    632  */
    633 
    634 void
    635 uao_detach(uobj)
    636 	struct uvm_object *uobj;
    637 {
    638 	simple_lock(&uobj->vmobjlock);
    639 	uao_detach_locked(uobj);
    640 }
    641 
    642 /*
    643  * uao_detach_locked: drop a reference to an aobj
    644  *
    645  * => aobj must be locked, and is unlocked (or freed) upon return.
    646  * this needs to be separate from the normal routine
    647  * since sometimes we need to detach from an aobj when
    648  * it's already locked.
    649  */
    650 
    651 void
    652 uao_detach_locked(uobj)
    653 	struct uvm_object *uobj;
    654 {
    655 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    656 	struct vm_page *pg;
    657 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    658 
    659 	/*
    660  	 * detaching from kernel_object is a noop.
    661  	 */
    662 
    663 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    664 		simple_unlock(&uobj->vmobjlock);
    665 		return;
    666 	}
    667 
    668 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    669 	uobj->uo_refs--;
    670 	if (uobj->uo_refs) {
    671 		simple_unlock(&uobj->vmobjlock);
    672 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    673 		return;
    674 	}
    675 
    676 	/*
    677  	 * remove the aobj from the global list.
    678  	 */
    679 
    680 	simple_lock(&uao_list_lock);
    681 	LIST_REMOVE(aobj, u_list);
    682 	simple_unlock(&uao_list_lock);
    683 
    684 	/*
    685  	 * free all the pages left in the aobj.  for each page,
    686 	 * when the page is no longer busy (and thus after any disk i/o that
    687 	 * it's involved in is complete), release any swap resources and
    688 	 * free the page itself.
    689  	 */
    690 
    691 	uvm_lock_pageq();
    692 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    693 		pmap_page_protect(pg, VM_PROT_NONE);
    694 		if (pg->flags & PG_BUSY) {
    695 			pg->flags |= PG_WANTED;
    696 			uvm_unlock_pageq();
    697 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
    698 			    "uao_det", 0);
    699 			simple_lock(&uobj->vmobjlock);
    700 			uvm_lock_pageq();
    701 			continue;
    702 		}
    703 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    704 		uvm_pagefree(pg);
    705 	}
    706 	uvm_unlock_pageq();
    707 
    708 	/*
    709  	 * finally, free the aobj itself.
    710  	 */
    711 
    712 	uao_free(aobj);
    713 }
    714 
    715 /*
    716  * uao_put: flush pages out of a uvm object
    717  *
    718  * => object should be locked by caller.  we may _unlock_ the object
    719  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    720  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    721  *	XXXJRT a page, we simply just deactivate it.  Should probably
    722  *	XXXJRT handle this better, in the future (although "flushing"
    723  *	XXXJRT anonymous memory isn't terribly important).
    724  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    725  *	or block.
    726  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    727  *	for flushing.
    728  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    729  *	that new pages are inserted on the tail end of the list.  thus,
    730  *	we can make a complete pass through the object in one go by starting
    731  *	at the head and working towards the tail (new pages are put in
    732  *	front of us).
    733  * => NOTE: we are allowed to lock the page queues, so the caller
    734  *	must not be holding the lock on them [e.g. pagedaemon had
    735  *	better not call us with the queues locked]
    736  * => we return TRUE unless we encountered some sort of I/O error
    737  *	XXXJRT currently never happens, as we never directly initiate
    738  *	XXXJRT I/O
    739  *
    740  * note on page traversal:
    741  *	we can traverse the pages in an object either by going down the
    742  *	linked list in "uobj->memq", or we can go over the address range
    743  *	by page doing hash table lookups for each address.  depending
    744  *	on how many pages are in the object it may be cheaper to do one
    745  *	or the other.  we set "by_list" to true if we are using memq.
    746  *	if the cost of a hash lookup was equal to the cost of the list
    747  *	traversal we could compare the number of pages in the start->stop
    748  *	range to the total number of pages in the object.  however, it
    749  *	seems that a hash table lookup is more expensive than the linked
    750  *	list traversal, so we multiply the number of pages in the
    751  *	start->stop range by a penalty which we define below.
    752  */
    753 
    754 int
    755 uao_put(uobj, start, stop, flags)
    756 	struct uvm_object *uobj;
    757 	voff_t start, stop;
    758 	int flags;
    759 {
    760 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    761 	struct vm_page *pg, *nextpg, curmp, endmp;
    762 	boolean_t by_list;
    763 	voff_t curoff;
    764 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    765 
    766 	curoff = 0;
    767 	if (flags & PGO_ALLPAGES) {
    768 		start = 0;
    769 		stop = aobj->u_pages << PAGE_SHIFT;
    770 		by_list = TRUE;		/* always go by the list */
    771 	} else {
    772 		start = trunc_page(start);
    773 		stop = round_page(stop);
    774 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    775 			printf("uao_flush: strange, got an out of range "
    776 			    "flush (fixed)\n");
    777 			stop = aobj->u_pages << PAGE_SHIFT;
    778 		}
    779 		by_list = (uobj->uo_npages <=
    780 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    781 	}
    782 	UVMHIST_LOG(maphist,
    783 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    784 	    start, stop, by_list, flags);
    785 
    786 	/*
    787 	 * Don't need to do any work here if we're not freeing
    788 	 * or deactivating pages.
    789 	 */
    790 
    791 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    792 		simple_unlock(&uobj->vmobjlock);
    793 		return 0;
    794 	}
    795 
    796 	/*
    797 	 * Initialize the marker pages.  See the comment in
    798 	 * genfs_putpages() also.
    799 	 */
    800 
    801 	curmp.uobject = uobj;
    802 	curmp.offset = (voff_t)-1;
    803 	curmp.flags = PG_BUSY;
    804 	endmp.uobject = uobj;
    805 	endmp.offset = (voff_t)-1;
    806 	endmp.flags = PG_BUSY;
    807 
    808 	/*
    809 	 * now do it.  note: we must update nextpg in the body of loop or we
    810 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    811 	 * because we may free "pg" before doing the next loop.
    812 	 */
    813 
    814 	if (by_list) {
    815 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
    816 		nextpg = TAILQ_FIRST(&uobj->memq);
    817 		PHOLD(curlwp);
    818 	} else {
    819 		curoff = start;
    820 		nextpg = NULL;	/* Quell compiler warning */
    821 	}
    822 
    823 	uvm_lock_pageq();
    824 
    825 	/* locked: both page queues and uobj */
    826 	for (;;) {
    827 		if (by_list) {
    828 			pg = nextpg;
    829 			if (pg == &endmp)
    830 				break;
    831 			nextpg = TAILQ_NEXT(pg, listq);
    832 			if (pg->offset < start || pg->offset >= stop)
    833 				continue;
    834 		} else {
    835 			if (curoff < stop) {
    836 				pg = uvm_pagelookup(uobj, curoff);
    837 				curoff += PAGE_SIZE;
    838 			} else
    839 				break;
    840 			if (pg == NULL)
    841 				continue;
    842 		}
    843 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    844 
    845 		/*
    846 		 * XXX In these first 3 cases, we always just
    847 		 * XXX deactivate the page.  We may want to
    848 		 * XXX handle the different cases more specifically
    849 		 * XXX in the future.
    850 		 */
    851 
    852 		case PGO_CLEANIT|PGO_FREE:
    853 		case PGO_CLEANIT|PGO_DEACTIVATE:
    854 		case PGO_DEACTIVATE:
    855  deactivate_it:
    856 			/* skip the page if it's loaned or wired */
    857 			if (pg->loan_count != 0 || pg->wire_count != 0)
    858 				continue;
    859 
    860 			/* ...and deactivate the page. */
    861 			pmap_clear_reference(pg);
    862 			uvm_pagedeactivate(pg);
    863 			continue;
    864 
    865 		case PGO_FREE:
    866 
    867 			/*
    868 			 * If there are multiple references to
    869 			 * the object, just deactivate the page.
    870 			 */
    871 
    872 			if (uobj->uo_refs > 1)
    873 				goto deactivate_it;
    874 
    875 			/* XXX skip the page if it's loaned or wired */
    876 			if (pg->loan_count != 0 || pg->wire_count != 0)
    877 				continue;
    878 
    879 			/*
    880 			 * wait and try again if the page is busy.
    881 			 * otherwise free the swap slot and the page.
    882 			 */
    883 
    884 			pmap_page_protect(pg, VM_PROT_NONE);
    885 			if (pg->flags & PG_BUSY) {
    886 				if (by_list) {
    887 					TAILQ_INSERT_BEFORE(pg, &curmp, listq);
    888 				}
    889 				pg->flags |= PG_WANTED;
    890 				uvm_unlock_pageq();
    891 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    892 				    "uao_put", 0);
    893 				simple_lock(&uobj->vmobjlock);
    894 				uvm_lock_pageq();
    895 				if (by_list) {
    896 					nextpg = TAILQ_NEXT(&curmp, listq);
    897 					TAILQ_REMOVE(&uobj->memq, &curmp,
    898 					    listq);
    899 				} else
    900 					curoff -= PAGE_SIZE;
    901 				continue;
    902 			}
    903 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    904 			uvm_pagefree(pg);
    905 			continue;
    906 		}
    907 	}
    908 	uvm_unlock_pageq();
    909 	if (by_list) {
    910 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
    911 		PRELE(curlwp);
    912 	}
    913 	simple_unlock(&uobj->vmobjlock);
    914 	return 0;
    915 }
    916 
    917 /*
    918  * uao_get: fetch me a page
    919  *
    920  * we have three cases:
    921  * 1: page is resident     -> just return the page.
    922  * 2: page is zero-fill    -> allocate a new page and zero it.
    923  * 3: page is swapped out  -> fetch the page from swap.
    924  *
    925  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    926  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    927  * then we will need to return EBUSY.
    928  *
    929  * => prefer map unlocked (not required)
    930  * => object must be locked!  we will _unlock_ it before starting any I/O.
    931  * => flags: PGO_ALLPAGES: get all of the pages
    932  *           PGO_LOCKED: fault data structures are locked
    933  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    934  * => NOTE: caller must check for released pages!!
    935  */
    936 
    937 static int
    938 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    939 	struct uvm_object *uobj;
    940 	voff_t offset;
    941 	struct vm_page **pps;
    942 	int *npagesp;
    943 	int centeridx, advice, flags;
    944 	vm_prot_t access_type;
    945 {
    946 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    947 	voff_t current_offset;
    948 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    949 	int lcv, gotpages, maxpages, swslot, error, pageidx;
    950 	boolean_t done;
    951 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    952 
    953 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    954 		    aobj, offset, flags,0);
    955 
    956 	/*
    957  	 * get number of pages
    958  	 */
    959 
    960 	maxpages = *npagesp;
    961 
    962 	/*
    963  	 * step 1: handled the case where fault data structures are locked.
    964  	 */
    965 
    966 	if (flags & PGO_LOCKED) {
    967 
    968 		/*
    969  		 * step 1a: get pages that are already resident.   only do
    970 		 * this if the data structures are locked (i.e. the first
    971 		 * time through).
    972  		 */
    973 
    974 		done = TRUE;	/* be optimistic */
    975 		gotpages = 0;	/* # of pages we got so far */
    976 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    977 		    lcv++, current_offset += PAGE_SIZE) {
    978 			/* do we care about this page?  if not, skip it */
    979 			if (pps[lcv] == PGO_DONTCARE)
    980 				continue;
    981 			ptmp = uvm_pagelookup(uobj, current_offset);
    982 
    983 			/*
    984  			 * if page is new, attempt to allocate the page,
    985 			 * zero-fill'd.
    986  			 */
    987 
    988 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
    989 			    current_offset >> PAGE_SHIFT) == 0) {
    990 				ptmp = uvm_pagealloc(uobj, current_offset,
    991 				    NULL, UVM_PGA_ZERO);
    992 				if (ptmp) {
    993 					/* new page */
    994 					ptmp->flags &= ~(PG_FAKE);
    995 					ptmp->pqflags |= PQ_AOBJ;
    996 					goto gotpage;
    997 				}
    998 			}
    999 
   1000 			/*
   1001 			 * to be useful must get a non-busy page
   1002 			 */
   1003 
   1004 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
   1005 				if (lcv == centeridx ||
   1006 				    (flags & PGO_ALLPAGES) != 0)
   1007 					/* need to do a wait or I/O! */
   1008 					done = FALSE;
   1009 					continue;
   1010 			}
   1011 
   1012 			/*
   1013 			 * useful page: busy/lock it and plug it in our
   1014 			 * result array
   1015 			 */
   1016 
   1017 			/* caller must un-busy this page */
   1018 			ptmp->flags |= PG_BUSY;
   1019 			UVM_PAGE_OWN(ptmp, "uao_get1");
   1020 gotpage:
   1021 			pps[lcv] = ptmp;
   1022 			gotpages++;
   1023 		}
   1024 
   1025 		/*
   1026  		 * step 1b: now we've either done everything needed or we
   1027 		 * to unlock and do some waiting or I/O.
   1028  		 */
   1029 
   1030 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1031 		*npagesp = gotpages;
   1032 		if (done)
   1033 			return 0;
   1034 		else
   1035 			return EBUSY;
   1036 	}
   1037 
   1038 	/*
   1039  	 * step 2: get non-resident or busy pages.
   1040  	 * object is locked.   data structures are unlocked.
   1041  	 */
   1042 
   1043 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1044 	    lcv++, current_offset += PAGE_SIZE) {
   1045 
   1046 		/*
   1047 		 * - skip over pages we've already gotten or don't want
   1048 		 * - skip over pages we don't _have_ to get
   1049 		 */
   1050 
   1051 		if (pps[lcv] != NULL ||
   1052 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1053 			continue;
   1054 
   1055 		pageidx = current_offset >> PAGE_SHIFT;
   1056 
   1057 		/*
   1058  		 * we have yet to locate the current page (pps[lcv]).   we
   1059 		 * first look for a page that is already at the current offset.
   1060 		 * if we find a page, we check to see if it is busy or
   1061 		 * released.  if that is the case, then we sleep on the page
   1062 		 * until it is no longer busy or released and repeat the lookup.
   1063 		 * if the page we found is neither busy nor released, then we
   1064 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1065 		 * 'break's the following while loop and indicates we are
   1066 		 * ready to move on to the next page in the "lcv" loop above.
   1067  		 *
   1068  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1069 		 * then it means that we allocated a new busy/fake/clean page
   1070 		 * ptmp in the object and we need to do I/O to fill in the data.
   1071  		 */
   1072 
   1073 		/* top of "pps" while loop */
   1074 		while (pps[lcv] == NULL) {
   1075 			/* look for a resident page */
   1076 			ptmp = uvm_pagelookup(uobj, current_offset);
   1077 
   1078 			/* not resident?   allocate one now (if we can) */
   1079 			if (ptmp == NULL) {
   1080 
   1081 				ptmp = uvm_pagealloc(uobj, current_offset,
   1082 				    NULL, 0);
   1083 
   1084 				/* out of RAM? */
   1085 				if (ptmp == NULL) {
   1086 					simple_unlock(&uobj->vmobjlock);
   1087 					UVMHIST_LOG(pdhist,
   1088 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1089 					uvm_wait("uao_getpage");
   1090 					simple_lock(&uobj->vmobjlock);
   1091 					continue;
   1092 				}
   1093 
   1094 				/*
   1095 				 * safe with PQ's unlocked: because we just
   1096 				 * alloc'd the page
   1097 				 */
   1098 
   1099 				ptmp->pqflags |= PQ_AOBJ;
   1100 
   1101 				/*
   1102 				 * got new page ready for I/O.  break pps while
   1103 				 * loop.  pps[lcv] is still NULL.
   1104 				 */
   1105 
   1106 				break;
   1107 			}
   1108 
   1109 			/* page is there, see if we need to wait on it */
   1110 			if ((ptmp->flags & PG_BUSY) != 0) {
   1111 				ptmp->flags |= PG_WANTED;
   1112 				UVMHIST_LOG(pdhist,
   1113 				    "sleeping, ptmp->flags 0x%x\n",
   1114 				    ptmp->flags,0,0,0);
   1115 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1116 				    FALSE, "uao_get", 0);
   1117 				simple_lock(&uobj->vmobjlock);
   1118 				continue;
   1119 			}
   1120 
   1121 			/*
   1122  			 * if we get here then the page has become resident and
   1123 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1124 			 * own it) and set pps[lcv] (so that we exit the while
   1125 			 * loop).
   1126  			 */
   1127 
   1128 			/* we own it, caller must un-busy */
   1129 			ptmp->flags |= PG_BUSY;
   1130 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1131 			pps[lcv] = ptmp;
   1132 		}
   1133 
   1134 		/*
   1135  		 * if we own the valid page at the correct offset, pps[lcv] will
   1136  		 * point to it.   nothing more to do except go to the next page.
   1137  		 */
   1138 
   1139 		if (pps[lcv])
   1140 			continue;			/* next lcv */
   1141 
   1142 		/*
   1143  		 * we have a "fake/busy/clean" page that we just allocated.
   1144  		 * do the needed "i/o", either reading from swap or zeroing.
   1145  		 */
   1146 
   1147 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1148 
   1149 		/*
   1150  		 * just zero the page if there's nothing in swap.
   1151  		 */
   1152 
   1153 		if (swslot == 0) {
   1154 
   1155 			/*
   1156 			 * page hasn't existed before, just zero it.
   1157 			 */
   1158 
   1159 			uvm_pagezero(ptmp);
   1160 		} else {
   1161 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1162 			     swslot, 0,0,0);
   1163 
   1164 			/*
   1165 			 * page in the swapped-out page.
   1166 			 * unlock object for i/o, relock when done.
   1167 			 */
   1168 
   1169 			simple_unlock(&uobj->vmobjlock);
   1170 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1171 			simple_lock(&uobj->vmobjlock);
   1172 
   1173 			/*
   1174 			 * I/O done.  check for errors.
   1175 			 */
   1176 
   1177 			if (error != 0) {
   1178 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1179 				    error,0,0,0);
   1180 				if (ptmp->flags & PG_WANTED)
   1181 					wakeup(ptmp);
   1182 
   1183 				/*
   1184 				 * remove the swap slot from the aobj
   1185 				 * and mark the aobj as having no real slot.
   1186 				 * don't free the swap slot, thus preventing
   1187 				 * it from being used again.
   1188 				 */
   1189 
   1190 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1191 							SWSLOT_BAD);
   1192 				if (swslot > 0) {
   1193 					uvm_swap_markbad(swslot, 1);
   1194 				}
   1195 
   1196 				uvm_lock_pageq();
   1197 				uvm_pagefree(ptmp);
   1198 				uvm_unlock_pageq();
   1199 				simple_unlock(&uobj->vmobjlock);
   1200 				return error;
   1201 			}
   1202 		}
   1203 
   1204 		/*
   1205  		 * we got the page!   clear the fake flag (indicates valid
   1206 		 * data now in page) and plug into our result array.   note
   1207 		 * that page is still busy.
   1208  		 *
   1209  		 * it is the callers job to:
   1210  		 * => check if the page is released
   1211  		 * => unbusy the page
   1212  		 * => activate the page
   1213  		 */
   1214 
   1215 		ptmp->flags &= ~PG_FAKE;
   1216 		pps[lcv] = ptmp;
   1217 	}
   1218 
   1219 	/*
   1220  	 * finally, unlock object and return.
   1221  	 */
   1222 
   1223 	simple_unlock(&uobj->vmobjlock);
   1224 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1225 	return 0;
   1226 }
   1227 
   1228 /*
   1229  * uao_dropswap:  release any swap resources from this aobj page.
   1230  *
   1231  * => aobj must be locked or have a reference count of 0.
   1232  */
   1233 
   1234 void
   1235 uao_dropswap(uobj, pageidx)
   1236 	struct uvm_object *uobj;
   1237 	int pageidx;
   1238 {
   1239 	int slot;
   1240 
   1241 	slot = uao_set_swslot(uobj, pageidx, 0);
   1242 	if (slot) {
   1243 		uvm_swap_free(slot, 1);
   1244 	}
   1245 }
   1246 
   1247 /*
   1248  * page in every page in every aobj that is paged-out to a range of swslots.
   1249  *
   1250  * => nothing should be locked.
   1251  * => returns TRUE if pagein was aborted due to lack of memory.
   1252  */
   1253 
   1254 boolean_t
   1255 uao_swap_off(startslot, endslot)
   1256 	int startslot, endslot;
   1257 {
   1258 	struct uvm_aobj *aobj, *nextaobj;
   1259 	boolean_t rv;
   1260 
   1261 	/*
   1262 	 * walk the list of all aobjs.
   1263 	 */
   1264 
   1265 restart:
   1266 	simple_lock(&uao_list_lock);
   1267 	for (aobj = LIST_FIRST(&uao_list);
   1268 	     aobj != NULL;
   1269 	     aobj = nextaobj) {
   1270 
   1271 		/*
   1272 		 * try to get the object lock, start all over if we fail.
   1273 		 * most of the time we'll get the aobj lock,
   1274 		 * so this should be a rare case.
   1275 		 */
   1276 
   1277 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
   1278 			simple_unlock(&uao_list_lock);
   1279 			goto restart;
   1280 		}
   1281 
   1282 		/*
   1283 		 * add a ref to the aobj so it doesn't disappear
   1284 		 * while we're working.
   1285 		 */
   1286 
   1287 		uao_reference_locked(&aobj->u_obj);
   1288 
   1289 		/*
   1290 		 * now it's safe to unlock the uao list.
   1291 		 */
   1292 
   1293 		simple_unlock(&uao_list_lock);
   1294 
   1295 		/*
   1296 		 * page in any pages in the swslot range.
   1297 		 * if there's an error, abort and return the error.
   1298 		 */
   1299 
   1300 		rv = uao_pagein(aobj, startslot, endslot);
   1301 		if (rv) {
   1302 			uao_detach_locked(&aobj->u_obj);
   1303 			return rv;
   1304 		}
   1305 
   1306 		/*
   1307 		 * we're done with this aobj.
   1308 		 * relock the list and drop our ref on the aobj.
   1309 		 */
   1310 
   1311 		simple_lock(&uao_list_lock);
   1312 		nextaobj = LIST_NEXT(aobj, u_list);
   1313 		uao_detach_locked(&aobj->u_obj);
   1314 	}
   1315 
   1316 	/*
   1317 	 * done with traversal, unlock the list
   1318 	 */
   1319 	simple_unlock(&uao_list_lock);
   1320 	return FALSE;
   1321 }
   1322 
   1323 
   1324 /*
   1325  * page in any pages from aobj in the given range.
   1326  *
   1327  * => aobj must be locked and is returned locked.
   1328  * => returns TRUE if pagein was aborted due to lack of memory.
   1329  */
   1330 static boolean_t
   1331 uao_pagein(aobj, startslot, endslot)
   1332 	struct uvm_aobj *aobj;
   1333 	int startslot, endslot;
   1334 {
   1335 	boolean_t rv;
   1336 
   1337 	if (UAO_USES_SWHASH(aobj)) {
   1338 		struct uao_swhash_elt *elt;
   1339 		int buck;
   1340 
   1341 restart:
   1342 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1343 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1344 			     elt != NULL;
   1345 			     elt = LIST_NEXT(elt, list)) {
   1346 				int i;
   1347 
   1348 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1349 					int slot = elt->slots[i];
   1350 
   1351 					/*
   1352 					 * if the slot isn't in range, skip it.
   1353 					 */
   1354 
   1355 					if (slot < startslot ||
   1356 					    slot >= endslot) {
   1357 						continue;
   1358 					}
   1359 
   1360 					/*
   1361 					 * process the page,
   1362 					 * the start over on this object
   1363 					 * since the swhash elt
   1364 					 * may have been freed.
   1365 					 */
   1366 
   1367 					rv = uao_pagein_page(aobj,
   1368 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1369 					if (rv) {
   1370 						return rv;
   1371 					}
   1372 					goto restart;
   1373 				}
   1374 			}
   1375 		}
   1376 	} else {
   1377 		int i;
   1378 
   1379 		for (i = 0; i < aobj->u_pages; i++) {
   1380 			int slot = aobj->u_swslots[i];
   1381 
   1382 			/*
   1383 			 * if the slot isn't in range, skip it
   1384 			 */
   1385 
   1386 			if (slot < startslot || slot >= endslot) {
   1387 				continue;
   1388 			}
   1389 
   1390 			/*
   1391 			 * process the page.
   1392 			 */
   1393 
   1394 			rv = uao_pagein_page(aobj, i);
   1395 			if (rv) {
   1396 				return rv;
   1397 			}
   1398 		}
   1399 	}
   1400 
   1401 	return FALSE;
   1402 }
   1403 
   1404 /*
   1405  * page in a page from an aobj.  used for swap_off.
   1406  * returns TRUE if pagein was aborted due to lack of memory.
   1407  *
   1408  * => aobj must be locked and is returned locked.
   1409  */
   1410 
   1411 static boolean_t
   1412 uao_pagein_page(aobj, pageidx)
   1413 	struct uvm_aobj *aobj;
   1414 	int pageidx;
   1415 {
   1416 	struct vm_page *pg;
   1417 	int rv, npages;
   1418 
   1419 	pg = NULL;
   1420 	npages = 1;
   1421 	/* locked: aobj */
   1422 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1423 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
   1424 	/* unlocked: aobj */
   1425 
   1426 	/*
   1427 	 * relock and finish up.
   1428 	 */
   1429 
   1430 	simple_lock(&aobj->u_obj.vmobjlock);
   1431 	switch (rv) {
   1432 	case 0:
   1433 		break;
   1434 
   1435 	case EIO:
   1436 	case ERESTART:
   1437 
   1438 		/*
   1439 		 * nothing more to do on errors.
   1440 		 * ERESTART can only mean that the anon was freed,
   1441 		 * so again there's nothing to do.
   1442 		 */
   1443 
   1444 		return FALSE;
   1445 
   1446 	default:
   1447 		return TRUE;
   1448 	}
   1449 
   1450 	/*
   1451 	 * ok, we've got the page now.
   1452 	 * mark it as dirty, clear its swslot and un-busy it.
   1453 	 */
   1454 	uao_dropswap(&aobj->u_obj, pageidx);
   1455 
   1456 	/*
   1457 	 * deactivate the page (to make sure it's on a page queue).
   1458 	 */
   1459 	uvm_lock_pageq();
   1460 	if (pg->wire_count == 0)
   1461 		uvm_pagedeactivate(pg);
   1462 	uvm_unlock_pageq();
   1463 
   1464 	if (pg->flags & PG_WANTED) {
   1465 		wakeup(pg);
   1466 	}
   1467 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1468 	UVM_PAGE_OWN(pg, NULL);
   1469 
   1470 	return FALSE;
   1471 }
   1472