Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.87.4.5
      1 /*	$NetBSD: uvm_aobj.c,v 1.87.4.5 2007/08/20 21:28:30 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.87.4.5 2007/08/20 21:28:30 ad Exp $");
     47 
     48 #include "opt_uvmhist.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/proc.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/pool.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     61  * to keeping the list of resident pages, it also keeps a list of
     62  * allocated swap blocks.  depending on the size of the aobj this list
     63  * of allocated swap blocks is either stored in an array (small objects)
     64  * or in a hash table (large objects).
     65  */
     66 
     67 /*
     68  * local structures
     69  */
     70 
     71 /*
     72  * for hash tables, we break the address space of the aobj into blocks
     73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     74  * be a power of two.
     75  */
     76 
     77 #define UAO_SWHASH_CLUSTER_SHIFT 4
     78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     79 
     80 /* get the "tag" for this page index */
     81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     83 
     84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
     85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     86 
     87 /* given an ELT and a page index, find the swap slot */
     88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
     90 
     91 /* given an ELT, return its pageidx base */
     92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     94 
     95 /*
     96  * the swhash hash function
     97  */
     98 
     99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
    100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
    101 			    & (AOBJ)->u_swhashmask)])
    102 
    103 /*
    104  * the swhash threshhold determines if we will use an array or a
    105  * hash table to store the list of allocated swap blocks.
    106  */
    107 
    108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    109 #define UAO_USES_SWHASH(AOBJ) \
    110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    111 
    112 /*
    113  * the number of buckets in a swhash, with an upper bound
    114  */
    115 
    116 #define UAO_SWHASH_MAXBUCKETS 256
    117 #define UAO_SWHASH_BUCKETS(AOBJ) \
    118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    119 	     UAO_SWHASH_MAXBUCKETS))
    120 
    121 
    122 /*
    123  * uao_swhash_elt: when a hash table is being used, this structure defines
    124  * the format of an entry in the bucket list.
    125  */
    126 
    127 struct uao_swhash_elt {
    128 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    129 	voff_t tag;				/* our 'tag' */
    130 	int count;				/* our number of active slots */
    131 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    132 };
    133 
    134 /*
    135  * uao_swhash: the swap hash table structure
    136  */
    137 
    138 LIST_HEAD(uao_swhash, uao_swhash_elt);
    139 
    140 /*
    141  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    142  * NOTE: Pages for this pool must not come from a pageable kernel map!
    143  */
    144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
    145     "uaoeltpl", NULL, IPL_VM);
    146 
    147 /*
    148  * uvm_aobj: the actual anon-backed uvm_object
    149  *
    150  * => the uvm_object is at the top of the structure, this allows
    151  *   (struct uvm_aobj *) == (struct uvm_object *)
    152  * => only one of u_swslots and u_swhash is used in any given aobj
    153  */
    154 
    155 struct uvm_aobj {
    156 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    157 	pgoff_t u_pages;	 /* number of pages in entire object */
    158 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    159 	int *u_swslots;		 /* array of offset->swapslot mappings */
    160 				 /*
    161 				  * hashtable of offset->swapslot mappings
    162 				  * (u_swhash is an array of bucket heads)
    163 				  */
    164 	struct uao_swhash *u_swhash;
    165 	u_long u_swhashmask;		/* mask for hashtable */
    166 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    167 };
    168 
    169 /*
    170  * uvm_aobj_pool: pool of uvm_aobj structures
    171  */
    172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
    173     &pool_allocator_nointr, IPL_NONE);
    174 
    175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
    176 
    177 /*
    178  * local functions
    179  */
    180 
    181 static void	uao_free(struct uvm_aobj *);
    182 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    183 		    int *, int, vm_prot_t, int, int);
    184 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    185 
    186 #if defined(VMSWAP)
    187 static struct uao_swhash_elt *uao_find_swhash_elt
    188     (struct uvm_aobj *, int, bool);
    189 
    190 static bool uao_pagein(struct uvm_aobj *, int, int);
    191 static bool uao_pagein_page(struct uvm_aobj *, int);
    192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
    193 #endif /* defined(VMSWAP) */
    194 
    195 /*
    196  * aobj_pager
    197  *
    198  * note that some functions (e.g. put) are handled elsewhere
    199  */
    200 
    201 struct uvm_pagerops aobj_pager = {
    202 	NULL,			/* init */
    203 	uao_reference,		/* reference */
    204 	uao_detach,		/* detach */
    205 	NULL,			/* fault */
    206 	uao_get,		/* get */
    207 	uao_put,		/* flush */
    208 };
    209 
    210 /*
    211  * uao_list: global list of active aobjs, locked by uao_list_lock
    212  */
    213 
    214 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    215 static kmutex_t uao_list_lock;
    216 
    217 /*
    218  * functions
    219  */
    220 
    221 /*
    222  * hash table/array related functions
    223  */
    224 
    225 #if defined(VMSWAP)
    226 
    227 /*
    228  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    229  * offset.
    230  *
    231  * => the object should be locked by the caller
    232  */
    233 
    234 static struct uao_swhash_elt *
    235 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    236 {
    237 	struct uao_swhash *swhash;
    238 	struct uao_swhash_elt *elt;
    239 	voff_t page_tag;
    240 
    241 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    242 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    243 
    244 	/*
    245 	 * now search the bucket for the requested tag
    246 	 */
    247 
    248 	LIST_FOREACH(elt, swhash, list) {
    249 		if (elt->tag == page_tag) {
    250 			return elt;
    251 		}
    252 	}
    253 	if (!create) {
    254 		return NULL;
    255 	}
    256 
    257 	/*
    258 	 * allocate a new entry for the bucket and init/insert it in
    259 	 */
    260 
    261 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    262 	if (elt == NULL) {
    263 		return NULL;
    264 	}
    265 	LIST_INSERT_HEAD(swhash, elt, list);
    266 	elt->tag = page_tag;
    267 	elt->count = 0;
    268 	memset(elt->slots, 0, sizeof(elt->slots));
    269 	return elt;
    270 }
    271 
    272 /*
    273  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    274  *
    275  * => object must be locked by caller
    276  */
    277 
    278 int
    279 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    280 {
    281 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    282 	struct uao_swhash_elt *elt;
    283 
    284 	/*
    285 	 * if noswap flag is set, then we never return a slot
    286 	 */
    287 
    288 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    289 		return(0);
    290 
    291 	/*
    292 	 * if hashing, look in hash table.
    293 	 */
    294 
    295 	if (UAO_USES_SWHASH(aobj)) {
    296 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    297 		if (elt)
    298 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    299 		else
    300 			return(0);
    301 	}
    302 
    303 	/*
    304 	 * otherwise, look in the array
    305 	 */
    306 
    307 	return(aobj->u_swslots[pageidx]);
    308 }
    309 
    310 /*
    311  * uao_set_swslot: set the swap slot for a page in an aobj.
    312  *
    313  * => setting a slot to zero frees the slot
    314  * => object must be locked by caller
    315  * => we return the old slot number, or -1 if we failed to allocate
    316  *    memory to record the new slot number
    317  */
    318 
    319 int
    320 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    321 {
    322 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    323 	struct uao_swhash_elt *elt;
    324 	int oldslot;
    325 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    326 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    327 	    aobj, pageidx, slot, 0);
    328 
    329 	/*
    330 	 * if noswap flag is set, then we can't set a non-zero slot.
    331 	 */
    332 
    333 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    334 		if (slot == 0)
    335 			return(0);
    336 
    337 		printf("uao_set_swslot: uobj = %p\n", uobj);
    338 		panic("uao_set_swslot: NOSWAP object");
    339 	}
    340 
    341 	/*
    342 	 * are we using a hash table?  if so, add it in the hash.
    343 	 */
    344 
    345 	if (UAO_USES_SWHASH(aobj)) {
    346 
    347 		/*
    348 		 * Avoid allocating an entry just to free it again if
    349 		 * the page had not swap slot in the first place, and
    350 		 * we are freeing.
    351 		 */
    352 
    353 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    354 		if (elt == NULL) {
    355 			return slot ? -1 : 0;
    356 		}
    357 
    358 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    359 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    360 
    361 		/*
    362 		 * now adjust the elt's reference counter and free it if we've
    363 		 * dropped it to zero.
    364 		 */
    365 
    366 		if (slot) {
    367 			if (oldslot == 0)
    368 				elt->count++;
    369 		} else {
    370 			if (oldslot)
    371 				elt->count--;
    372 
    373 			if (elt->count == 0) {
    374 				LIST_REMOVE(elt, list);
    375 				pool_put(&uao_swhash_elt_pool, elt);
    376 			}
    377 		}
    378 	} else {
    379 		/* we are using an array */
    380 		oldslot = aobj->u_swslots[pageidx];
    381 		aobj->u_swslots[pageidx] = slot;
    382 	}
    383 	return (oldslot);
    384 }
    385 
    386 #endif /* defined(VMSWAP) */
    387 
    388 /*
    389  * end of hash/array functions
    390  */
    391 
    392 /*
    393  * uao_free: free all resources held by an aobj, and then free the aobj
    394  *
    395  * => the aobj should be dead
    396  */
    397 
    398 static void
    399 uao_free(struct uvm_aobj *aobj)
    400 {
    401 	int swpgonlydelta = 0;
    402 
    403 
    404 #if defined(VMSWAP)
    405 	uao_dropswap_range1(aobj, 0, 0);
    406 #endif /* defined(VMSWAP) */
    407 
    408 	mutex_exit(&aobj->u_obj.vmobjlock);
    409 
    410 #if defined(VMSWAP)
    411 	if (UAO_USES_SWHASH(aobj)) {
    412 
    413 		/*
    414 		 * free the hash table itself.
    415 		 */
    416 
    417 		free(aobj->u_swhash, M_UVMAOBJ);
    418 	} else {
    419 
    420 		/*
    421 		 * free the array itsself.
    422 		 */
    423 
    424 		free(aobj->u_swslots, M_UVMAOBJ);
    425 	}
    426 #endif /* defined(VMSWAP) */
    427 
    428 	/*
    429 	 * finally free the aobj itself
    430 	 */
    431 
    432 	pool_put(&uvm_aobj_pool, aobj);
    433 
    434 	/*
    435 	 * adjust the counter of pages only in swap for all
    436 	 * the swap slots we've freed.
    437 	 */
    438 
    439 	if (swpgonlydelta > 0) {
    440 		mutex_enter(&uvm_swap_data_lock);
    441 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    442 		uvmexp.swpgonly -= swpgonlydelta;
    443 		mutex_exit(&uvm_swap_data_lock);
    444 	}
    445 }
    446 
    447 /*
    448  * pager functions
    449  */
    450 
    451 /*
    452  * uao_create: create an aobj of the given size and return its uvm_object.
    453  *
    454  * => for normal use, flags are always zero
    455  * => for the kernel object, the flags are:
    456  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    457  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    458  */
    459 
    460 struct uvm_object *
    461 uao_create(vsize_t size, int flags)
    462 {
    463 	static struct uvm_aobj kernel_object_store;
    464 	static int kobj_alloced = 0;
    465 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    466 	struct uvm_aobj *aobj;
    467 	int refs;
    468 
    469 	/*
    470 	 * malloc a new aobj unless we are asked for the kernel object
    471 	 */
    472 
    473 	if (flags & UAO_FLAG_KERNOBJ) {
    474 		KASSERT(!kobj_alloced);
    475 		aobj = &kernel_object_store;
    476 		aobj->u_pages = pages;
    477 		aobj->u_flags = UAO_FLAG_NOSWAP;
    478 		refs = UVM_OBJ_KERN;
    479 		kobj_alloced = UAO_FLAG_KERNOBJ;
    480 	} else if (flags & UAO_FLAG_KERNSWAP) {
    481 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    482 		aobj = &kernel_object_store;
    483 		kobj_alloced = UAO_FLAG_KERNSWAP;
    484 		refs = 0xdeadbeaf; /* XXX: gcc */
    485 	} else {
    486 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
    487 		aobj->u_pages = pages;
    488 		aobj->u_flags = 0;
    489 		refs = 1;
    490 	}
    491 
    492 	/*
    493  	 * allocate hash/array if necessary
    494  	 *
    495  	 * note: in the KERNSWAP case no need to worry about locking since
    496  	 * we are still booting we should be the only thread around.
    497  	 */
    498 
    499 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    500 #if defined(VMSWAP)
    501 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
    502 		    M_NOWAIT : M_WAITOK;
    503 
    504 		/* allocate hash table or array depending on object size */
    505 		if (UAO_USES_SWHASH(aobj)) {
    506 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    507 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
    508 			if (aobj->u_swhash == NULL)
    509 				panic("uao_create: hashinit swhash failed");
    510 		} else {
    511 			aobj->u_swslots = malloc(pages * sizeof(int),
    512 			    M_UVMAOBJ, mflags);
    513 			if (aobj->u_swslots == NULL)
    514 				panic("uao_create: malloc swslots failed");
    515 			memset(aobj->u_swslots, 0, pages * sizeof(int));
    516 		}
    517 #endif /* defined(VMSWAP) */
    518 
    519 		if (flags) {
    520 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    521 			return(&aobj->u_obj);
    522 		}
    523 	}
    524 
    525 	/*
    526  	 * init aobj fields
    527  	 */
    528 
    529 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
    530 
    531 	/*
    532  	 * now that aobj is ready, add it to the global list
    533  	 */
    534 
    535 	mutex_enter(&uao_list_lock);
    536 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    537 	mutex_exit(&uao_list_lock);
    538 	return(&aobj->u_obj);
    539 }
    540 
    541 
    542 
    543 /*
    544  * uao_init: set up aobj pager subsystem
    545  *
    546  * => called at boot time from uvm_pager_init()
    547  */
    548 
    549 void
    550 uao_init(void)
    551 {
    552 	static int uao_initialized;
    553 
    554 	if (uao_initialized)
    555 		return;
    556 	uao_initialized = true;
    557 	LIST_INIT(&uao_list);
    558 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    559 }
    560 
    561 /*
    562  * uao_reference: add a ref to an aobj
    563  *
    564  * => aobj must be unlocked
    565  * => just lock it and call the locked version
    566  */
    567 
    568 void
    569 uao_reference(struct uvm_object *uobj)
    570 {
    571 	mutex_enter(&uobj->vmobjlock);
    572 	uao_reference_locked(uobj);
    573 	mutex_exit(&uobj->vmobjlock);
    574 }
    575 
    576 /*
    577  * uao_reference_locked: add a ref to an aobj that is already locked
    578  *
    579  * => aobj must be locked
    580  * this needs to be separate from the normal routine
    581  * since sometimes we need to add a reference to an aobj when
    582  * it's already locked.
    583  */
    584 
    585 void
    586 uao_reference_locked(struct uvm_object *uobj)
    587 {
    588 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    589 
    590 	/*
    591  	 * kernel_object already has plenty of references, leave it alone.
    592  	 */
    593 
    594 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    595 		return;
    596 
    597 	uobj->uo_refs++;
    598 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    599 		    uobj, uobj->uo_refs,0,0);
    600 }
    601 
    602 /*
    603  * uao_detach: drop a reference to an aobj
    604  *
    605  * => aobj must be unlocked
    606  * => just lock it and call the locked version
    607  */
    608 
    609 void
    610 uao_detach(struct uvm_object *uobj)
    611 {
    612 	mutex_enter(&uobj->vmobjlock);
    613 	uao_detach_locked(uobj);
    614 }
    615 
    616 /*
    617  * uao_detach_locked: drop a reference to an aobj
    618  *
    619  * => aobj must be locked, and is unlocked (or freed) upon return.
    620  * this needs to be separate from the normal routine
    621  * since sometimes we need to detach from an aobj when
    622  * it's already locked.
    623  */
    624 
    625 void
    626 uao_detach_locked(struct uvm_object *uobj)
    627 {
    628 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    629 	struct vm_page *pg;
    630 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    631 
    632 	/*
    633  	 * detaching from kernel_object is a noop.
    634  	 */
    635 
    636 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    637 		mutex_exit(&uobj->vmobjlock);
    638 		return;
    639 	}
    640 
    641 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    642 	uobj->uo_refs--;
    643 	if (uobj->uo_refs) {
    644 		mutex_exit(&uobj->vmobjlock);
    645 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    646 		return;
    647 	}
    648 
    649 	/*
    650  	 * remove the aobj from the global list.
    651  	 */
    652 
    653 	mutex_enter(&uao_list_lock);
    654 	LIST_REMOVE(aobj, u_list);
    655 	mutex_exit(&uao_list_lock);
    656 
    657 	/*
    658  	 * free all the pages left in the aobj.  for each page,
    659 	 * when the page is no longer busy (and thus after any disk i/o that
    660 	 * it's involved in is complete), release any swap resources and
    661 	 * free the page itself.
    662  	 */
    663 
    664 	mutex_enter(&uvm_pageqlock);
    665 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    666 		pmap_page_protect(pg, VM_PROT_NONE);
    667 		if (pg->flags & PG_BUSY) {
    668 			pg->flags |= PG_WANTED;
    669 			mutex_exit(&uvm_pageqlock);
    670 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
    671 			    "uao_det", 0);
    672 			mutex_enter(&uobj->vmobjlock);
    673 			mutex_enter(&uvm_pageqlock);
    674 			continue;
    675 		}
    676 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    677 		uvm_pagefree(pg);
    678 	}
    679 	mutex_exit(&uvm_pageqlock);
    680 
    681 	/*
    682  	 * finally, free the aobj itself.
    683  	 */
    684 
    685 	uao_free(aobj);
    686 }
    687 
    688 /*
    689  * uao_put: flush pages out of a uvm object
    690  *
    691  * => object should be locked by caller.  we may _unlock_ the object
    692  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    693  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    694  *	XXXJRT a page, we simply just deactivate it.  Should probably
    695  *	XXXJRT handle this better, in the future (although "flushing"
    696  *	XXXJRT anonymous memory isn't terribly important).
    697  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    698  *	or block.
    699  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    700  *	for flushing.
    701  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    702  *	that new pages are inserted on the tail end of the list.  thus,
    703  *	we can make a complete pass through the object in one go by starting
    704  *	at the head and working towards the tail (new pages are put in
    705  *	front of us).
    706  * => NOTE: we are allowed to lock the page queues, so the caller
    707  *	must not be holding the lock on them [e.g. pagedaemon had
    708  *	better not call us with the queues locked]
    709  * => we return 0 unless we encountered some sort of I/O error
    710  *	XXXJRT currently never happens, as we never directly initiate
    711  *	XXXJRT I/O
    712  *
    713  * note on page traversal:
    714  *	we can traverse the pages in an object either by going down the
    715  *	linked list in "uobj->memq", or we can go over the address range
    716  *	by page doing hash table lookups for each address.  depending
    717  *	on how many pages are in the object it may be cheaper to do one
    718  *	or the other.  we set "by_list" to true if we are using memq.
    719  *	if the cost of a hash lookup was equal to the cost of the list
    720  *	traversal we could compare the number of pages in the start->stop
    721  *	range to the total number of pages in the object.  however, it
    722  *	seems that a hash table lookup is more expensive than the linked
    723  *	list traversal, so we multiply the number of pages in the
    724  *	start->stop range by a penalty which we define below.
    725  */
    726 
    727 static int
    728 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    729 {
    730 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    731 	struct vm_page *pg, *nextpg, curmp, endmp;
    732 	bool by_list;
    733 	voff_t curoff;
    734 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    735 
    736 	KASSERT(mutex_owned(&uobj->vmobjlock));
    737 
    738 	curoff = 0;
    739 	if (flags & PGO_ALLPAGES) {
    740 		start = 0;
    741 		stop = aobj->u_pages << PAGE_SHIFT;
    742 		by_list = true;		/* always go by the list */
    743 	} else {
    744 		start = trunc_page(start);
    745 		if (stop == 0) {
    746 			stop = aobj->u_pages << PAGE_SHIFT;
    747 		} else {
    748 			stop = round_page(stop);
    749 		}
    750 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    751 			printf("uao_flush: strange, got an out of range "
    752 			    "flush (fixed)\n");
    753 			stop = aobj->u_pages << PAGE_SHIFT;
    754 		}
    755 		by_list = (uobj->uo_npages <=
    756 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    757 	}
    758 	UVMHIST_LOG(maphist,
    759 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    760 	    start, stop, by_list, flags);
    761 
    762 	/*
    763 	 * Don't need to do any work here if we're not freeing
    764 	 * or deactivating pages.
    765 	 */
    766 
    767 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    768 		mutex_exit(&uobj->vmobjlock);
    769 		return 0;
    770 	}
    771 
    772 	/*
    773 	 * Initialize the marker pages.  See the comment in
    774 	 * genfs_putpages() also.
    775 	 */
    776 
    777 	curmp.uobject = uobj;
    778 	curmp.offset = (voff_t)-1;
    779 	curmp.flags = PG_BUSY;
    780 	endmp.uobject = uobj;
    781 	endmp.offset = (voff_t)-1;
    782 	endmp.flags = PG_BUSY;
    783 
    784 	/*
    785 	 * now do it.  note: we must update nextpg in the body of loop or we
    786 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    787 	 * because we may free "pg" before doing the next loop.
    788 	 */
    789 
    790 	if (by_list) {
    791 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
    792 		nextpg = TAILQ_FIRST(&uobj->memq);
    793 		uvm_lwp_hold(curlwp);
    794 	} else {
    795 		curoff = start;
    796 		nextpg = NULL;	/* Quell compiler warning */
    797 	}
    798 
    799 	mutex_enter(&uvm_pageqlock);
    800 
    801 	/* locked: both page queues and uobj */
    802 	for (;;) {
    803 		if (by_list) {
    804 			pg = nextpg;
    805 			if (pg == &endmp)
    806 				break;
    807 			nextpg = TAILQ_NEXT(pg, listq);
    808 			if (pg->offset < start || pg->offset >= stop)
    809 				continue;
    810 		} else {
    811 			if (curoff < stop) {
    812 				pg = uvm_pagelookup(uobj, curoff);
    813 				curoff += PAGE_SIZE;
    814 			} else
    815 				break;
    816 			if (pg == NULL)
    817 				continue;
    818 		}
    819 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    820 
    821 		/*
    822 		 * XXX In these first 3 cases, we always just
    823 		 * XXX deactivate the page.  We may want to
    824 		 * XXX handle the different cases more specifically
    825 		 * XXX in the future.
    826 		 */
    827 
    828 		case PGO_CLEANIT|PGO_FREE:
    829 		case PGO_CLEANIT|PGO_DEACTIVATE:
    830 		case PGO_DEACTIVATE:
    831  deactivate_it:
    832 			/* skip the page if it's wired */
    833 			if (pg->wire_count != 0)
    834 				continue;
    835 
    836 			/* ...and deactivate the page. */
    837 			pmap_clear_reference(pg);
    838 			uvm_pagedeactivate(pg);
    839 			continue;
    840 
    841 		case PGO_FREE:
    842 
    843 			/*
    844 			 * If there are multiple references to
    845 			 * the object, just deactivate the page.
    846 			 */
    847 
    848 			if (uobj->uo_refs > 1)
    849 				goto deactivate_it;
    850 
    851 			/*
    852 			 * wait and try again if the page is busy.
    853 			 * otherwise free the swap slot and the page.
    854 			 */
    855 
    856 			pmap_page_protect(pg, VM_PROT_NONE);
    857 			if (pg->flags & PG_BUSY) {
    858 				if (by_list) {
    859 					TAILQ_INSERT_BEFORE(pg, &curmp, listq);
    860 				}
    861 				pg->flags |= PG_WANTED;
    862 				mutex_exit(&uvm_pageqlock);
    863 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    864 				    "uao_put", 0);
    865 				mutex_enter(&uobj->vmobjlock);
    866 				mutex_enter(&uvm_pageqlock);
    867 				if (by_list) {
    868 					nextpg = TAILQ_NEXT(&curmp, listq);
    869 					TAILQ_REMOVE(&uobj->memq, &curmp,
    870 					    listq);
    871 				} else
    872 					curoff -= PAGE_SIZE;
    873 				continue;
    874 			}
    875 
    876 			/*
    877 			 * freeing swapslot here is not strictly necessary.
    878 			 * however, leaving it here doesn't save much
    879 			 * because we need to update swap accounting anyway.
    880 			 */
    881 
    882 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    883 			uvm_pagefree(pg);
    884 			continue;
    885 		}
    886 	}
    887 	mutex_exit(&uvm_pageqlock);
    888 	if (by_list) {
    889 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
    890 		uvm_lwp_rele(curlwp);
    891 	}
    892 	mutex_exit(&uobj->vmobjlock);
    893 	return 0;
    894 }
    895 
    896 /*
    897  * uao_get: fetch me a page
    898  *
    899  * we have three cases:
    900  * 1: page is resident     -> just return the page.
    901  * 2: page is zero-fill    -> allocate a new page and zero it.
    902  * 3: page is swapped out  -> fetch the page from swap.
    903  *
    904  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    905  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    906  * then we will need to return EBUSY.
    907  *
    908  * => prefer map unlocked (not required)
    909  * => object must be locked!  we will _unlock_ it before starting any I/O.
    910  * => flags: PGO_ALLPAGES: get all of the pages
    911  *           PGO_LOCKED: fault data structures are locked
    912  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    913  * => NOTE: caller must check for released pages!!
    914  */
    915 
    916 static int
    917 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    918     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    919 {
    920 #if defined(VMSWAP)
    921 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    922 #endif /* defined(VMSWAP) */
    923 	voff_t current_offset;
    924 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    925 	int lcv, gotpages, maxpages, swslot, pageidx;
    926 	bool done;
    927 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    928 
    929 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    930 		    (struct uvm_aobj *)uobj, offset, flags,0);
    931 
    932 	/*
    933  	 * get number of pages
    934  	 */
    935 
    936 	maxpages = *npagesp;
    937 
    938 	/*
    939  	 * step 1: handled the case where fault data structures are locked.
    940  	 */
    941 
    942 	if (flags & PGO_LOCKED) {
    943 
    944 		/*
    945  		 * step 1a: get pages that are already resident.   only do
    946 		 * this if the data structures are locked (i.e. the first
    947 		 * time through).
    948  		 */
    949 
    950 		done = true;	/* be optimistic */
    951 		gotpages = 0;	/* # of pages we got so far */
    952 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    953 		    lcv++, current_offset += PAGE_SIZE) {
    954 			/* do we care about this page?  if not, skip it */
    955 			if (pps[lcv] == PGO_DONTCARE)
    956 				continue;
    957 			ptmp = uvm_pagelookup(uobj, current_offset);
    958 
    959 			/*
    960  			 * if page is new, attempt to allocate the page,
    961 			 * zero-fill'd.
    962  			 */
    963 
    964 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
    965 			    current_offset >> PAGE_SHIFT) == 0) {
    966 				ptmp = uvm_pagealloc(uobj, current_offset,
    967 				    NULL, UVM_PGA_ZERO);
    968 				if (ptmp) {
    969 					/* new page */
    970 					ptmp->flags &= ~(PG_FAKE);
    971 					ptmp->pqflags |= PQ_AOBJ;
    972 					goto gotpage;
    973 				}
    974 			}
    975 
    976 			/*
    977 			 * to be useful must get a non-busy page
    978 			 */
    979 
    980 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    981 				if (lcv == centeridx ||
    982 				    (flags & PGO_ALLPAGES) != 0)
    983 					/* need to do a wait or I/O! */
    984 					done = false;
    985 					continue;
    986 			}
    987 
    988 			/*
    989 			 * useful page: busy/lock it and plug it in our
    990 			 * result array
    991 			 */
    992 
    993 			/* caller must un-busy this page */
    994 			ptmp->flags |= PG_BUSY;
    995 			UVM_PAGE_OWN(ptmp, "uao_get1");
    996 gotpage:
    997 			pps[lcv] = ptmp;
    998 			gotpages++;
    999 		}
   1000 
   1001 		/*
   1002  		 * step 1b: now we've either done everything needed or we
   1003 		 * to unlock and do some waiting or I/O.
   1004  		 */
   1005 
   1006 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1007 		*npagesp = gotpages;
   1008 		if (done)
   1009 			return 0;
   1010 		else
   1011 			return EBUSY;
   1012 	}
   1013 
   1014 	/*
   1015  	 * step 2: get non-resident or busy pages.
   1016  	 * object is locked.   data structures are unlocked.
   1017  	 */
   1018 
   1019 	if ((flags & PGO_SYNCIO) == 0) {
   1020 		goto done;
   1021 	}
   1022 
   1023 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1024 	    lcv++, current_offset += PAGE_SIZE) {
   1025 
   1026 		/*
   1027 		 * - skip over pages we've already gotten or don't want
   1028 		 * - skip over pages we don't _have_ to get
   1029 		 */
   1030 
   1031 		if (pps[lcv] != NULL ||
   1032 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1033 			continue;
   1034 
   1035 		pageidx = current_offset >> PAGE_SHIFT;
   1036 
   1037 		/*
   1038  		 * we have yet to locate the current page (pps[lcv]).   we
   1039 		 * first look for a page that is already at the current offset.
   1040 		 * if we find a page, we check to see if it is busy or
   1041 		 * released.  if that is the case, then we sleep on the page
   1042 		 * until it is no longer busy or released and repeat the lookup.
   1043 		 * if the page we found is neither busy nor released, then we
   1044 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1045 		 * 'break's the following while loop and indicates we are
   1046 		 * ready to move on to the next page in the "lcv" loop above.
   1047  		 *
   1048  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1049 		 * then it means that we allocated a new busy/fake/clean page
   1050 		 * ptmp in the object and we need to do I/O to fill in the data.
   1051  		 */
   1052 
   1053 		/* top of "pps" while loop */
   1054 		while (pps[lcv] == NULL) {
   1055 			/* look for a resident page */
   1056 			ptmp = uvm_pagelookup(uobj, current_offset);
   1057 
   1058 			/* not resident?   allocate one now (if we can) */
   1059 			if (ptmp == NULL) {
   1060 
   1061 				ptmp = uvm_pagealloc(uobj, current_offset,
   1062 				    NULL, 0);
   1063 
   1064 				/* out of RAM? */
   1065 				if (ptmp == NULL) {
   1066 					mutex_exit(&uobj->vmobjlock);
   1067 					UVMHIST_LOG(pdhist,
   1068 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1069 					uvm_wait("uao_getpage");
   1070 					mutex_enter(&uobj->vmobjlock);
   1071 					continue;
   1072 				}
   1073 
   1074 				/*
   1075 				 * safe with PQ's unlocked: because we just
   1076 				 * alloc'd the page
   1077 				 */
   1078 
   1079 				ptmp->pqflags |= PQ_AOBJ;
   1080 
   1081 				/*
   1082 				 * got new page ready for I/O.  break pps while
   1083 				 * loop.  pps[lcv] is still NULL.
   1084 				 */
   1085 
   1086 				break;
   1087 			}
   1088 
   1089 			/* page is there, see if we need to wait on it */
   1090 			if ((ptmp->flags & PG_BUSY) != 0) {
   1091 				ptmp->flags |= PG_WANTED;
   1092 				UVMHIST_LOG(pdhist,
   1093 				    "sleeping, ptmp->flags 0x%x\n",
   1094 				    ptmp->flags,0,0,0);
   1095 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1096 				    false, "uao_get", 0);
   1097 				mutex_enter(&uobj->vmobjlock);
   1098 				continue;
   1099 			}
   1100 
   1101 			/*
   1102  			 * if we get here then the page has become resident and
   1103 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1104 			 * own it) and set pps[lcv] (so that we exit the while
   1105 			 * loop).
   1106  			 */
   1107 
   1108 			/* we own it, caller must un-busy */
   1109 			ptmp->flags |= PG_BUSY;
   1110 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1111 			pps[lcv] = ptmp;
   1112 		}
   1113 
   1114 		/*
   1115  		 * if we own the valid page at the correct offset, pps[lcv] will
   1116  		 * point to it.   nothing more to do except go to the next page.
   1117  		 */
   1118 
   1119 		if (pps[lcv])
   1120 			continue;			/* next lcv */
   1121 
   1122 		/*
   1123  		 * we have a "fake/busy/clean" page that we just allocated.
   1124  		 * do the needed "i/o", either reading from swap or zeroing.
   1125  		 */
   1126 
   1127 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1128 
   1129 		/*
   1130  		 * just zero the page if there's nothing in swap.
   1131  		 */
   1132 
   1133 		if (swslot == 0) {
   1134 
   1135 			/*
   1136 			 * page hasn't existed before, just zero it.
   1137 			 */
   1138 
   1139 			uvm_pagezero(ptmp);
   1140 		} else {
   1141 #if defined(VMSWAP)
   1142 			int error;
   1143 
   1144 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1145 			     swslot, 0,0,0);
   1146 
   1147 			/*
   1148 			 * page in the swapped-out page.
   1149 			 * unlock object for i/o, relock when done.
   1150 			 */
   1151 
   1152 			mutex_exit(&uobj->vmobjlock);
   1153 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1154 			mutex_enter(&uobj->vmobjlock);
   1155 
   1156 			/*
   1157 			 * I/O done.  check for errors.
   1158 			 */
   1159 
   1160 			if (error != 0) {
   1161 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1162 				    error,0,0,0);
   1163 				if (ptmp->flags & PG_WANTED)
   1164 					wakeup(ptmp);
   1165 
   1166 				/*
   1167 				 * remove the swap slot from the aobj
   1168 				 * and mark the aobj as having no real slot.
   1169 				 * don't free the swap slot, thus preventing
   1170 				 * it from being used again.
   1171 				 */
   1172 
   1173 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1174 							SWSLOT_BAD);
   1175 				if (swslot > 0) {
   1176 					uvm_swap_markbad(swslot, 1);
   1177 				}
   1178 
   1179 				mutex_enter(&uvm_pageqlock);
   1180 				uvm_pagefree(ptmp);
   1181 				mutex_exit(&uvm_pageqlock);
   1182 				mutex_exit(&uobj->vmobjlock);
   1183 				return error;
   1184 			}
   1185 #else /* defined(VMSWAP) */
   1186 			panic("%s: pagein", __func__);
   1187 #endif /* defined(VMSWAP) */
   1188 		}
   1189 
   1190 		if ((access_type & VM_PROT_WRITE) == 0) {
   1191 			ptmp->flags |= PG_CLEAN;
   1192 			pmap_clear_modify(ptmp);
   1193 		}
   1194 
   1195 		/*
   1196  		 * we got the page!   clear the fake flag (indicates valid
   1197 		 * data now in page) and plug into our result array.   note
   1198 		 * that page is still busy.
   1199  		 *
   1200  		 * it is the callers job to:
   1201  		 * => check if the page is released
   1202  		 * => unbusy the page
   1203  		 * => activate the page
   1204  		 */
   1205 
   1206 		ptmp->flags &= ~PG_FAKE;
   1207 		pps[lcv] = ptmp;
   1208 	}
   1209 
   1210 	/*
   1211  	 * finally, unlock object and return.
   1212  	 */
   1213 
   1214 done:
   1215 	mutex_exit(&uobj->vmobjlock);
   1216 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1217 	return 0;
   1218 }
   1219 
   1220 #if defined(VMSWAP)
   1221 
   1222 /*
   1223  * uao_dropswap:  release any swap resources from this aobj page.
   1224  *
   1225  * => aobj must be locked or have a reference count of 0.
   1226  */
   1227 
   1228 void
   1229 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1230 {
   1231 	int slot;
   1232 
   1233 	slot = uao_set_swslot(uobj, pageidx, 0);
   1234 	if (slot) {
   1235 		uvm_swap_free(slot, 1);
   1236 	}
   1237 }
   1238 
   1239 /*
   1240  * page in every page in every aobj that is paged-out to a range of swslots.
   1241  *
   1242  * => nothing should be locked.
   1243  * => returns true if pagein was aborted due to lack of memory.
   1244  */
   1245 
   1246 bool
   1247 uao_swap_off(int startslot, int endslot)
   1248 {
   1249 	struct uvm_aobj *aobj, *nextaobj;
   1250 	bool rv;
   1251 
   1252 	/*
   1253 	 * walk the list of all aobjs.
   1254 	 */
   1255 
   1256 restart:
   1257 	mutex_enter(&uao_list_lock);
   1258 	for (aobj = LIST_FIRST(&uao_list);
   1259 	     aobj != NULL;
   1260 	     aobj = nextaobj) {
   1261 
   1262 		/*
   1263 		 * try to get the object lock, start all over if we fail.
   1264 		 * most of the time we'll get the aobj lock,
   1265 		 * so this should be a rare case.
   1266 		 */
   1267 
   1268 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
   1269 			mutex_exit(&uao_list_lock);
   1270 			yield();
   1271 			goto restart;
   1272 		}
   1273 
   1274 		/*
   1275 		 * add a ref to the aobj so it doesn't disappear
   1276 		 * while we're working.
   1277 		 */
   1278 
   1279 		uao_reference_locked(&aobj->u_obj);
   1280 
   1281 		/*
   1282 		 * now it's safe to unlock the uao list.
   1283 		 */
   1284 
   1285 		mutex_exit(&uao_list_lock);
   1286 
   1287 		/*
   1288 		 * page in any pages in the swslot range.
   1289 		 * if there's an error, abort and return the error.
   1290 		 */
   1291 
   1292 		rv = uao_pagein(aobj, startslot, endslot);
   1293 		if (rv) {
   1294 			uao_detach_locked(&aobj->u_obj);
   1295 			return rv;
   1296 		}
   1297 
   1298 		/*
   1299 		 * we're done with this aobj.
   1300 		 * relock the list and drop our ref on the aobj.
   1301 		 */
   1302 
   1303 		mutex_enter(&uao_list_lock);
   1304 		nextaobj = LIST_NEXT(aobj, u_list);
   1305 		uao_detach_locked(&aobj->u_obj);
   1306 	}
   1307 
   1308 	/*
   1309 	 * done with traversal, unlock the list
   1310 	 */
   1311 	mutex_exit(&uao_list_lock);
   1312 	return false;
   1313 }
   1314 
   1315 
   1316 /*
   1317  * page in any pages from aobj in the given range.
   1318  *
   1319  * => aobj must be locked and is returned locked.
   1320  * => returns true if pagein was aborted due to lack of memory.
   1321  */
   1322 static bool
   1323 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1324 {
   1325 	bool rv;
   1326 
   1327 	if (UAO_USES_SWHASH(aobj)) {
   1328 		struct uao_swhash_elt *elt;
   1329 		int buck;
   1330 
   1331 restart:
   1332 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1333 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1334 			     elt != NULL;
   1335 			     elt = LIST_NEXT(elt, list)) {
   1336 				int i;
   1337 
   1338 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1339 					int slot = elt->slots[i];
   1340 
   1341 					/*
   1342 					 * if the slot isn't in range, skip it.
   1343 					 */
   1344 
   1345 					if (slot < startslot ||
   1346 					    slot >= endslot) {
   1347 						continue;
   1348 					}
   1349 
   1350 					/*
   1351 					 * process the page,
   1352 					 * the start over on this object
   1353 					 * since the swhash elt
   1354 					 * may have been freed.
   1355 					 */
   1356 
   1357 					rv = uao_pagein_page(aobj,
   1358 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1359 					if (rv) {
   1360 						return rv;
   1361 					}
   1362 					goto restart;
   1363 				}
   1364 			}
   1365 		}
   1366 	} else {
   1367 		int i;
   1368 
   1369 		for (i = 0; i < aobj->u_pages; i++) {
   1370 			int slot = aobj->u_swslots[i];
   1371 
   1372 			/*
   1373 			 * if the slot isn't in range, skip it
   1374 			 */
   1375 
   1376 			if (slot < startslot || slot >= endslot) {
   1377 				continue;
   1378 			}
   1379 
   1380 			/*
   1381 			 * process the page.
   1382 			 */
   1383 
   1384 			rv = uao_pagein_page(aobj, i);
   1385 			if (rv) {
   1386 				return rv;
   1387 			}
   1388 		}
   1389 	}
   1390 
   1391 	return false;
   1392 }
   1393 
   1394 /*
   1395  * page in a page from an aobj.  used for swap_off.
   1396  * returns true if pagein was aborted due to lack of memory.
   1397  *
   1398  * => aobj must be locked and is returned locked.
   1399  */
   1400 
   1401 static bool
   1402 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1403 {
   1404 	struct vm_page *pg;
   1405 	int rv, npages;
   1406 
   1407 	pg = NULL;
   1408 	npages = 1;
   1409 	/* locked: aobj */
   1410 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1411 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
   1412 	/* unlocked: aobj */
   1413 
   1414 	/*
   1415 	 * relock and finish up.
   1416 	 */
   1417 
   1418 	mutex_enter(&aobj->u_obj.vmobjlock);
   1419 	switch (rv) {
   1420 	case 0:
   1421 		break;
   1422 
   1423 	case EIO:
   1424 	case ERESTART:
   1425 
   1426 		/*
   1427 		 * nothing more to do on errors.
   1428 		 * ERESTART can only mean that the anon was freed,
   1429 		 * so again there's nothing to do.
   1430 		 */
   1431 
   1432 		return false;
   1433 
   1434 	default:
   1435 		return true;
   1436 	}
   1437 
   1438 	/*
   1439 	 * ok, we've got the page now.
   1440 	 * mark it as dirty, clear its swslot and un-busy it.
   1441 	 */
   1442 	uao_dropswap(&aobj->u_obj, pageidx);
   1443 
   1444 	/*
   1445 	 * make sure it's on a page queue.
   1446 	 */
   1447 	mutex_enter(&uvm_pageqlock);
   1448 	if (pg->wire_count == 0)
   1449 		uvm_pageenqueue(pg);
   1450 	mutex_exit(&uvm_pageqlock);
   1451 
   1452 	if (pg->flags & PG_WANTED) {
   1453 		wakeup(pg);
   1454 	}
   1455 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1456 	UVM_PAGE_OWN(pg, NULL);
   1457 
   1458 	return false;
   1459 }
   1460 
   1461 /*
   1462  * uao_dropswap_range: drop swapslots in the range.
   1463  *
   1464  * => aobj must be locked and is returned locked.
   1465  * => start is inclusive.  end is exclusive.
   1466  */
   1467 
   1468 void
   1469 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1470 {
   1471 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1472 
   1473 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1474 
   1475 	uao_dropswap_range1(aobj, start, end);
   1476 }
   1477 
   1478 static void
   1479 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
   1480 {
   1481 	int swpgonlydelta = 0;
   1482 
   1483 	if (end == 0) {
   1484 		end = INT64_MAX;
   1485 	}
   1486 
   1487 	if (UAO_USES_SWHASH(aobj)) {
   1488 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1489 		voff_t taghi;
   1490 		voff_t taglo;
   1491 
   1492 		taglo = UAO_SWHASH_ELT_TAG(start);
   1493 		taghi = UAO_SWHASH_ELT_TAG(end);
   1494 
   1495 		for (i = 0; i < hashbuckets; i++) {
   1496 			struct uao_swhash_elt *elt, *next;
   1497 
   1498 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1499 			     elt != NULL;
   1500 			     elt = next) {
   1501 				int startidx, endidx;
   1502 				int j;
   1503 
   1504 				next = LIST_NEXT(elt, list);
   1505 
   1506 				if (elt->tag < taglo || taghi < elt->tag) {
   1507 					continue;
   1508 				}
   1509 
   1510 				if (elt->tag == taglo) {
   1511 					startidx =
   1512 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1513 				} else {
   1514 					startidx = 0;
   1515 				}
   1516 
   1517 				if (elt->tag == taghi) {
   1518 					endidx =
   1519 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1520 				} else {
   1521 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1522 				}
   1523 
   1524 				for (j = startidx; j < endidx; j++) {
   1525 					int slot = elt->slots[j];
   1526 
   1527 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1528 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1529 					    + j) << PAGE_SHIFT) == NULL);
   1530 					if (slot > 0) {
   1531 						uvm_swap_free(slot, 1);
   1532 						swpgonlydelta++;
   1533 						KASSERT(elt->count > 0);
   1534 						elt->slots[j] = 0;
   1535 						elt->count--;
   1536 					}
   1537 				}
   1538 
   1539 				if (elt->count == 0) {
   1540 					LIST_REMOVE(elt, list);
   1541 					pool_put(&uao_swhash_elt_pool, elt);
   1542 				}
   1543 			}
   1544 		}
   1545 	} else {
   1546 		int i;
   1547 
   1548 		if (aobj->u_pages < end) {
   1549 			end = aobj->u_pages;
   1550 		}
   1551 		for (i = start; i < end; i++) {
   1552 			int slot = aobj->u_swslots[i];
   1553 
   1554 			if (slot > 0) {
   1555 				uvm_swap_free(slot, 1);
   1556 				swpgonlydelta++;
   1557 			}
   1558 		}
   1559 	}
   1560 
   1561 	/*
   1562 	 * adjust the counter of pages only in swap for all
   1563 	 * the swap slots we've freed.
   1564 	 */
   1565 
   1566 	if (swpgonlydelta > 0) {
   1567 		mutex_enter(&uvm_swap_data_lock);
   1568 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1569 		uvmexp.swpgonly -= swpgonlydelta;
   1570 		mutex_exit(&uvm_swap_data_lock);
   1571 	}
   1572 }
   1573 
   1574 #endif /* defined(VMSWAP) */
   1575