uvm_aobj.c revision 1.89 1 /* $NetBSD: uvm_aobj.c,v 1.89 2007/07/09 21:11:36 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.89 2007/07/09 21:11:36 ad Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121
122 /*
123 * uao_swhash_elt: when a hash table is being used, this structure defines
124 * the format of an entry in the bucket list.
125 */
126
127 struct uao_swhash_elt {
128 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
129 voff_t tag; /* our 'tag' */
130 int count; /* our number of active slots */
131 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
132 };
133
134 /*
135 * uao_swhash: the swap hash table structure
136 */
137
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139
140 /*
141 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145 "uaoeltpl", NULL, IPL_VM);
146
147 /*
148 * uvm_aobj: the actual anon-backed uvm_object
149 *
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
153 */
154
155 struct uvm_aobj {
156 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages; /* number of pages in entire object */
158 int u_flags; /* the flags (see uvm_aobj.h) */
159 int *u_swslots; /* array of offset->swapslot mappings */
160 /*
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
163 */
164 struct uao_swhash *u_swhash;
165 u_long u_swhashmask; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
167 };
168
169 /*
170 * uvm_aobj_pool: pool of uvm_aobj structures
171 */
172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
173 &pool_allocator_nointr, IPL_NONE);
174
175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
176
177 /*
178 * local functions
179 */
180
181 static void uao_free(struct uvm_aobj *);
182 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
183 int *, int, vm_prot_t, int, int);
184 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
185
186 #if defined(VMSWAP)
187 static struct uao_swhash_elt *uao_find_swhash_elt
188 (struct uvm_aobj *, int, bool);
189
190 static bool uao_pagein(struct uvm_aobj *, int, int);
191 static bool uao_pagein_page(struct uvm_aobj *, int);
192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
193 #endif /* defined(VMSWAP) */
194
195 /*
196 * aobj_pager
197 *
198 * note that some functions (e.g. put) are handled elsewhere
199 */
200
201 struct uvm_pagerops aobj_pager = {
202 NULL, /* init */
203 uao_reference, /* reference */
204 uao_detach, /* detach */
205 NULL, /* fault */
206 uao_get, /* get */
207 uao_put, /* flush */
208 };
209
210 /*
211 * uao_list: global list of active aobjs, locked by uao_list_lock
212 */
213
214 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
215 static struct simplelock uao_list_lock;
216
217 /*
218 * functions
219 */
220
221 /*
222 * hash table/array related functions
223 */
224
225 #if defined(VMSWAP)
226
227 /*
228 * uao_find_swhash_elt: find (or create) a hash table entry for a page
229 * offset.
230 *
231 * => the object should be locked by the caller
232 */
233
234 static struct uao_swhash_elt *
235 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
236 {
237 struct uao_swhash *swhash;
238 struct uao_swhash_elt *elt;
239 voff_t page_tag;
240
241 swhash = UAO_SWHASH_HASH(aobj, pageidx);
242 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
243
244 /*
245 * now search the bucket for the requested tag
246 */
247
248 LIST_FOREACH(elt, swhash, list) {
249 if (elt->tag == page_tag) {
250 return elt;
251 }
252 }
253 if (!create) {
254 return NULL;
255 }
256
257 /*
258 * allocate a new entry for the bucket and init/insert it in
259 */
260
261 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
262 if (elt == NULL) {
263 return NULL;
264 }
265 LIST_INSERT_HEAD(swhash, elt, list);
266 elt->tag = page_tag;
267 elt->count = 0;
268 memset(elt->slots, 0, sizeof(elt->slots));
269 return elt;
270 }
271
272 /*
273 * uao_find_swslot: find the swap slot number for an aobj/pageidx
274 *
275 * => object must be locked by caller
276 */
277
278 int
279 uao_find_swslot(struct uvm_object *uobj, int pageidx)
280 {
281 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
282 struct uao_swhash_elt *elt;
283
284 /*
285 * if noswap flag is set, then we never return a slot
286 */
287
288 if (aobj->u_flags & UAO_FLAG_NOSWAP)
289 return(0);
290
291 /*
292 * if hashing, look in hash table.
293 */
294
295 if (UAO_USES_SWHASH(aobj)) {
296 elt = uao_find_swhash_elt(aobj, pageidx, false);
297 if (elt)
298 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
299 else
300 return(0);
301 }
302
303 /*
304 * otherwise, look in the array
305 */
306
307 return(aobj->u_swslots[pageidx]);
308 }
309
310 /*
311 * uao_set_swslot: set the swap slot for a page in an aobj.
312 *
313 * => setting a slot to zero frees the slot
314 * => object must be locked by caller
315 * => we return the old slot number, or -1 if we failed to allocate
316 * memory to record the new slot number
317 */
318
319 int
320 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
321 {
322 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
323 struct uao_swhash_elt *elt;
324 int oldslot;
325 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
326 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
327 aobj, pageidx, slot, 0);
328
329 /*
330 * if noswap flag is set, then we can't set a non-zero slot.
331 */
332
333 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
334 if (slot == 0)
335 return(0);
336
337 printf("uao_set_swslot: uobj = %p\n", uobj);
338 panic("uao_set_swslot: NOSWAP object");
339 }
340
341 /*
342 * are we using a hash table? if so, add it in the hash.
343 */
344
345 if (UAO_USES_SWHASH(aobj)) {
346
347 /*
348 * Avoid allocating an entry just to free it again if
349 * the page had not swap slot in the first place, and
350 * we are freeing.
351 */
352
353 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
354 if (elt == NULL) {
355 return slot ? -1 : 0;
356 }
357
358 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
359 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
360
361 /*
362 * now adjust the elt's reference counter and free it if we've
363 * dropped it to zero.
364 */
365
366 if (slot) {
367 if (oldslot == 0)
368 elt->count++;
369 } else {
370 if (oldslot)
371 elt->count--;
372
373 if (elt->count == 0) {
374 LIST_REMOVE(elt, list);
375 pool_put(&uao_swhash_elt_pool, elt);
376 }
377 }
378 } else {
379 /* we are using an array */
380 oldslot = aobj->u_swslots[pageidx];
381 aobj->u_swslots[pageidx] = slot;
382 }
383 return (oldslot);
384 }
385
386 #endif /* defined(VMSWAP) */
387
388 /*
389 * end of hash/array functions
390 */
391
392 /*
393 * uao_free: free all resources held by an aobj, and then free the aobj
394 *
395 * => the aobj should be dead
396 */
397
398 static void
399 uao_free(struct uvm_aobj *aobj)
400 {
401 int swpgonlydelta = 0;
402
403 simple_unlock(&aobj->u_obj.vmobjlock);
404
405 #if defined(VMSWAP)
406 uao_dropswap_range1(aobj, 0, 0);
407
408 if (UAO_USES_SWHASH(aobj)) {
409
410 /*
411 * free the hash table itself.
412 */
413
414 free(aobj->u_swhash, M_UVMAOBJ);
415 } else {
416
417 /*
418 * free the array itsself.
419 */
420
421 free(aobj->u_swslots, M_UVMAOBJ);
422 }
423 #endif /* defined(VMSWAP) */
424
425 /*
426 * finally free the aobj itself
427 */
428
429 pool_put(&uvm_aobj_pool, aobj);
430
431 /*
432 * adjust the counter of pages only in swap for all
433 * the swap slots we've freed.
434 */
435
436 if (swpgonlydelta > 0) {
437 simple_lock(&uvm.swap_data_lock);
438 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
439 uvmexp.swpgonly -= swpgonlydelta;
440 simple_unlock(&uvm.swap_data_lock);
441 }
442 }
443
444 /*
445 * pager functions
446 */
447
448 /*
449 * uao_create: create an aobj of the given size and return its uvm_object.
450 *
451 * => for normal use, flags are always zero
452 * => for the kernel object, the flags are:
453 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
454 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
455 */
456
457 struct uvm_object *
458 uao_create(vsize_t size, int flags)
459 {
460 static struct uvm_aobj kernel_object_store;
461 static int kobj_alloced = 0;
462 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
463 struct uvm_aobj *aobj;
464 int refs;
465
466 /*
467 * malloc a new aobj unless we are asked for the kernel object
468 */
469
470 if (flags & UAO_FLAG_KERNOBJ) {
471 KASSERT(!kobj_alloced);
472 aobj = &kernel_object_store;
473 aobj->u_pages = pages;
474 aobj->u_flags = UAO_FLAG_NOSWAP;
475 refs = UVM_OBJ_KERN;
476 kobj_alloced = UAO_FLAG_KERNOBJ;
477 } else if (flags & UAO_FLAG_KERNSWAP) {
478 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
479 aobj = &kernel_object_store;
480 kobj_alloced = UAO_FLAG_KERNSWAP;
481 refs = 0xdeadbeaf; /* XXX: gcc */
482 } else {
483 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
484 aobj->u_pages = pages;
485 aobj->u_flags = 0;
486 refs = 1;
487 }
488
489 /*
490 * allocate hash/array if necessary
491 *
492 * note: in the KERNSWAP case no need to worry about locking since
493 * we are still booting we should be the only thread around.
494 */
495
496 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
497 #if defined(VMSWAP)
498 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
499 M_NOWAIT : M_WAITOK;
500
501 /* allocate hash table or array depending on object size */
502 if (UAO_USES_SWHASH(aobj)) {
503 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
504 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
505 if (aobj->u_swhash == NULL)
506 panic("uao_create: hashinit swhash failed");
507 } else {
508 aobj->u_swslots = malloc(pages * sizeof(int),
509 M_UVMAOBJ, mflags);
510 if (aobj->u_swslots == NULL)
511 panic("uao_create: malloc swslots failed");
512 memset(aobj->u_swslots, 0, pages * sizeof(int));
513 }
514 #endif /* defined(VMSWAP) */
515
516 if (flags) {
517 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
518 return(&aobj->u_obj);
519 }
520 }
521
522 /*
523 * init aobj fields
524 */
525
526 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
527
528 /*
529 * now that aobj is ready, add it to the global list
530 */
531
532 simple_lock(&uao_list_lock);
533 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
534 simple_unlock(&uao_list_lock);
535 return(&aobj->u_obj);
536 }
537
538
539
540 /*
541 * uao_init: set up aobj pager subsystem
542 *
543 * => called at boot time from uvm_pager_init()
544 */
545
546 void
547 uao_init(void)
548 {
549 static int uao_initialized;
550
551 if (uao_initialized)
552 return;
553 uao_initialized = true;
554 LIST_INIT(&uao_list);
555 simple_lock_init(&uao_list_lock);
556 }
557
558 /*
559 * uao_reference: add a ref to an aobj
560 *
561 * => aobj must be unlocked
562 * => just lock it and call the locked version
563 */
564
565 void
566 uao_reference(struct uvm_object *uobj)
567 {
568 simple_lock(&uobj->vmobjlock);
569 uao_reference_locked(uobj);
570 simple_unlock(&uobj->vmobjlock);
571 }
572
573 /*
574 * uao_reference_locked: add a ref to an aobj that is already locked
575 *
576 * => aobj must be locked
577 * this needs to be separate from the normal routine
578 * since sometimes we need to add a reference to an aobj when
579 * it's already locked.
580 */
581
582 void
583 uao_reference_locked(struct uvm_object *uobj)
584 {
585 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
586
587 /*
588 * kernel_object already has plenty of references, leave it alone.
589 */
590
591 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
592 return;
593
594 uobj->uo_refs++;
595 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
596 uobj, uobj->uo_refs,0,0);
597 }
598
599 /*
600 * uao_detach: drop a reference to an aobj
601 *
602 * => aobj must be unlocked
603 * => just lock it and call the locked version
604 */
605
606 void
607 uao_detach(struct uvm_object *uobj)
608 {
609 simple_lock(&uobj->vmobjlock);
610 uao_detach_locked(uobj);
611 }
612
613 /*
614 * uao_detach_locked: drop a reference to an aobj
615 *
616 * => aobj must be locked, and is unlocked (or freed) upon return.
617 * this needs to be separate from the normal routine
618 * since sometimes we need to detach from an aobj when
619 * it's already locked.
620 */
621
622 void
623 uao_detach_locked(struct uvm_object *uobj)
624 {
625 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
626 struct vm_page *pg;
627 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
628
629 /*
630 * detaching from kernel_object is a noop.
631 */
632
633 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
634 simple_unlock(&uobj->vmobjlock);
635 return;
636 }
637
638 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
639 uobj->uo_refs--;
640 if (uobj->uo_refs) {
641 simple_unlock(&uobj->vmobjlock);
642 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
643 return;
644 }
645
646 /*
647 * remove the aobj from the global list.
648 */
649
650 simple_lock(&uao_list_lock);
651 LIST_REMOVE(aobj, u_list);
652 simple_unlock(&uao_list_lock);
653
654 /*
655 * free all the pages left in the aobj. for each page,
656 * when the page is no longer busy (and thus after any disk i/o that
657 * it's involved in is complete), release any swap resources and
658 * free the page itself.
659 */
660
661 uvm_lock_pageq();
662 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
663 pmap_page_protect(pg, VM_PROT_NONE);
664 if (pg->flags & PG_BUSY) {
665 pg->flags |= PG_WANTED;
666 uvm_unlock_pageq();
667 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
668 "uao_det", 0);
669 simple_lock(&uobj->vmobjlock);
670 uvm_lock_pageq();
671 continue;
672 }
673 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
674 uvm_pagefree(pg);
675 }
676 uvm_unlock_pageq();
677
678 /*
679 * finally, free the aobj itself.
680 */
681
682 uao_free(aobj);
683 }
684
685 /*
686 * uao_put: flush pages out of a uvm object
687 *
688 * => object should be locked by caller. we may _unlock_ the object
689 * if (and only if) we need to clean a page (PGO_CLEANIT).
690 * XXXJRT Currently, however, we don't. In the case of cleaning
691 * XXXJRT a page, we simply just deactivate it. Should probably
692 * XXXJRT handle this better, in the future (although "flushing"
693 * XXXJRT anonymous memory isn't terribly important).
694 * => if PGO_CLEANIT is not set, then we will neither unlock the object
695 * or block.
696 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
697 * for flushing.
698 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
699 * that new pages are inserted on the tail end of the list. thus,
700 * we can make a complete pass through the object in one go by starting
701 * at the head and working towards the tail (new pages are put in
702 * front of us).
703 * => NOTE: we are allowed to lock the page queues, so the caller
704 * must not be holding the lock on them [e.g. pagedaemon had
705 * better not call us with the queues locked]
706 * => we return 0 unless we encountered some sort of I/O error
707 * XXXJRT currently never happens, as we never directly initiate
708 * XXXJRT I/O
709 *
710 * note on page traversal:
711 * we can traverse the pages in an object either by going down the
712 * linked list in "uobj->memq", or we can go over the address range
713 * by page doing hash table lookups for each address. depending
714 * on how many pages are in the object it may be cheaper to do one
715 * or the other. we set "by_list" to true if we are using memq.
716 * if the cost of a hash lookup was equal to the cost of the list
717 * traversal we could compare the number of pages in the start->stop
718 * range to the total number of pages in the object. however, it
719 * seems that a hash table lookup is more expensive than the linked
720 * list traversal, so we multiply the number of pages in the
721 * start->stop range by a penalty which we define below.
722 */
723
724 static int
725 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
726 {
727 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
728 struct vm_page *pg, *nextpg, curmp, endmp;
729 bool by_list;
730 voff_t curoff;
731 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
732
733 curoff = 0;
734 if (flags & PGO_ALLPAGES) {
735 start = 0;
736 stop = aobj->u_pages << PAGE_SHIFT;
737 by_list = true; /* always go by the list */
738 } else {
739 start = trunc_page(start);
740 if (stop == 0) {
741 stop = aobj->u_pages << PAGE_SHIFT;
742 } else {
743 stop = round_page(stop);
744 }
745 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
746 printf("uao_flush: strange, got an out of range "
747 "flush (fixed)\n");
748 stop = aobj->u_pages << PAGE_SHIFT;
749 }
750 by_list = (uobj->uo_npages <=
751 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
752 }
753 UVMHIST_LOG(maphist,
754 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
755 start, stop, by_list, flags);
756
757 /*
758 * Don't need to do any work here if we're not freeing
759 * or deactivating pages.
760 */
761
762 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
763 simple_unlock(&uobj->vmobjlock);
764 return 0;
765 }
766
767 /*
768 * Initialize the marker pages. See the comment in
769 * genfs_putpages() also.
770 */
771
772 curmp.uobject = uobj;
773 curmp.offset = (voff_t)-1;
774 curmp.flags = PG_BUSY;
775 endmp.uobject = uobj;
776 endmp.offset = (voff_t)-1;
777 endmp.flags = PG_BUSY;
778
779 /*
780 * now do it. note: we must update nextpg in the body of loop or we
781 * will get stuck. we need to use nextpg if we'll traverse the list
782 * because we may free "pg" before doing the next loop.
783 */
784
785 if (by_list) {
786 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
787 nextpg = TAILQ_FIRST(&uobj->memq);
788 uvm_lwp_hold(curlwp);
789 } else {
790 curoff = start;
791 nextpg = NULL; /* Quell compiler warning */
792 }
793
794 uvm_lock_pageq();
795
796 /* locked: both page queues and uobj */
797 for (;;) {
798 if (by_list) {
799 pg = nextpg;
800 if (pg == &endmp)
801 break;
802 nextpg = TAILQ_NEXT(pg, listq);
803 if (pg->offset < start || pg->offset >= stop)
804 continue;
805 } else {
806 if (curoff < stop) {
807 pg = uvm_pagelookup(uobj, curoff);
808 curoff += PAGE_SIZE;
809 } else
810 break;
811 if (pg == NULL)
812 continue;
813 }
814 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
815
816 /*
817 * XXX In these first 3 cases, we always just
818 * XXX deactivate the page. We may want to
819 * XXX handle the different cases more specifically
820 * XXX in the future.
821 */
822
823 case PGO_CLEANIT|PGO_FREE:
824 case PGO_CLEANIT|PGO_DEACTIVATE:
825 case PGO_DEACTIVATE:
826 deactivate_it:
827 /* skip the page if it's wired */
828 if (pg->wire_count != 0)
829 continue;
830
831 /* ...and deactivate the page. */
832 pmap_clear_reference(pg);
833 uvm_pagedeactivate(pg);
834 continue;
835
836 case PGO_FREE:
837
838 /*
839 * If there are multiple references to
840 * the object, just deactivate the page.
841 */
842
843 if (uobj->uo_refs > 1)
844 goto deactivate_it;
845
846 /*
847 * wait and try again if the page is busy.
848 * otherwise free the swap slot and the page.
849 */
850
851 pmap_page_protect(pg, VM_PROT_NONE);
852 if (pg->flags & PG_BUSY) {
853 if (by_list) {
854 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
855 }
856 pg->flags |= PG_WANTED;
857 uvm_unlock_pageq();
858 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
859 "uao_put", 0);
860 simple_lock(&uobj->vmobjlock);
861 uvm_lock_pageq();
862 if (by_list) {
863 nextpg = TAILQ_NEXT(&curmp, listq);
864 TAILQ_REMOVE(&uobj->memq, &curmp,
865 listq);
866 } else
867 curoff -= PAGE_SIZE;
868 continue;
869 }
870
871 /*
872 * freeing swapslot here is not strictly necessary.
873 * however, leaving it here doesn't save much
874 * because we need to update swap accounting anyway.
875 */
876
877 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
878 uvm_pagefree(pg);
879 continue;
880 }
881 }
882 uvm_unlock_pageq();
883 if (by_list) {
884 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
885 }
886 simple_unlock(&uobj->vmobjlock);
887 if (by_list) {
888 uvm_lwp_rele(curlwp);
889 }
890 return 0;
891 }
892
893 /*
894 * uao_get: fetch me a page
895 *
896 * we have three cases:
897 * 1: page is resident -> just return the page.
898 * 2: page is zero-fill -> allocate a new page and zero it.
899 * 3: page is swapped out -> fetch the page from swap.
900 *
901 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
902 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
903 * then we will need to return EBUSY.
904 *
905 * => prefer map unlocked (not required)
906 * => object must be locked! we will _unlock_ it before starting any I/O.
907 * => flags: PGO_ALLPAGES: get all of the pages
908 * PGO_LOCKED: fault data structures are locked
909 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
910 * => NOTE: caller must check for released pages!!
911 */
912
913 static int
914 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
915 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
916 {
917 #if defined(VMSWAP)
918 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
919 #endif /* defined(VMSWAP) */
920 voff_t current_offset;
921 struct vm_page *ptmp = NULL; /* Quell compiler warning */
922 int lcv, gotpages, maxpages, swslot, pageidx;
923 bool done;
924 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
925
926 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
927 (struct uvm_aobj *)uobj, offset, flags,0);
928
929 /*
930 * get number of pages
931 */
932
933 maxpages = *npagesp;
934
935 /*
936 * step 1: handled the case where fault data structures are locked.
937 */
938
939 if (flags & PGO_LOCKED) {
940
941 /*
942 * step 1a: get pages that are already resident. only do
943 * this if the data structures are locked (i.e. the first
944 * time through).
945 */
946
947 done = true; /* be optimistic */
948 gotpages = 0; /* # of pages we got so far */
949 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
950 lcv++, current_offset += PAGE_SIZE) {
951 /* do we care about this page? if not, skip it */
952 if (pps[lcv] == PGO_DONTCARE)
953 continue;
954 ptmp = uvm_pagelookup(uobj, current_offset);
955
956 /*
957 * if page is new, attempt to allocate the page,
958 * zero-fill'd.
959 */
960
961 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
962 current_offset >> PAGE_SHIFT) == 0) {
963 ptmp = uvm_pagealloc(uobj, current_offset,
964 NULL, UVM_PGA_ZERO);
965 if (ptmp) {
966 /* new page */
967 ptmp->flags &= ~(PG_FAKE);
968 ptmp->pqflags |= PQ_AOBJ;
969 goto gotpage;
970 }
971 }
972
973 /*
974 * to be useful must get a non-busy page
975 */
976
977 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
978 if (lcv == centeridx ||
979 (flags & PGO_ALLPAGES) != 0)
980 /* need to do a wait or I/O! */
981 done = false;
982 continue;
983 }
984
985 /*
986 * useful page: busy/lock it and plug it in our
987 * result array
988 */
989
990 /* caller must un-busy this page */
991 ptmp->flags |= PG_BUSY;
992 UVM_PAGE_OWN(ptmp, "uao_get1");
993 gotpage:
994 pps[lcv] = ptmp;
995 gotpages++;
996 }
997
998 /*
999 * step 1b: now we've either done everything needed or we
1000 * to unlock and do some waiting or I/O.
1001 */
1002
1003 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1004 *npagesp = gotpages;
1005 if (done)
1006 return 0;
1007 else
1008 return EBUSY;
1009 }
1010
1011 /*
1012 * step 2: get non-resident or busy pages.
1013 * object is locked. data structures are unlocked.
1014 */
1015
1016 if ((flags & PGO_SYNCIO) == 0) {
1017 goto done;
1018 }
1019
1020 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1021 lcv++, current_offset += PAGE_SIZE) {
1022
1023 /*
1024 * - skip over pages we've already gotten or don't want
1025 * - skip over pages we don't _have_ to get
1026 */
1027
1028 if (pps[lcv] != NULL ||
1029 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1030 continue;
1031
1032 pageidx = current_offset >> PAGE_SHIFT;
1033
1034 /*
1035 * we have yet to locate the current page (pps[lcv]). we
1036 * first look for a page that is already at the current offset.
1037 * if we find a page, we check to see if it is busy or
1038 * released. if that is the case, then we sleep on the page
1039 * until it is no longer busy or released and repeat the lookup.
1040 * if the page we found is neither busy nor released, then we
1041 * busy it (so we own it) and plug it into pps[lcv]. this
1042 * 'break's the following while loop and indicates we are
1043 * ready to move on to the next page in the "lcv" loop above.
1044 *
1045 * if we exit the while loop with pps[lcv] still set to NULL,
1046 * then it means that we allocated a new busy/fake/clean page
1047 * ptmp in the object and we need to do I/O to fill in the data.
1048 */
1049
1050 /* top of "pps" while loop */
1051 while (pps[lcv] == NULL) {
1052 /* look for a resident page */
1053 ptmp = uvm_pagelookup(uobj, current_offset);
1054
1055 /* not resident? allocate one now (if we can) */
1056 if (ptmp == NULL) {
1057
1058 ptmp = uvm_pagealloc(uobj, current_offset,
1059 NULL, 0);
1060
1061 /* out of RAM? */
1062 if (ptmp == NULL) {
1063 simple_unlock(&uobj->vmobjlock);
1064 UVMHIST_LOG(pdhist,
1065 "sleeping, ptmp == NULL\n",0,0,0,0);
1066 uvm_wait("uao_getpage");
1067 simple_lock(&uobj->vmobjlock);
1068 continue;
1069 }
1070
1071 /*
1072 * safe with PQ's unlocked: because we just
1073 * alloc'd the page
1074 */
1075
1076 ptmp->pqflags |= PQ_AOBJ;
1077
1078 /*
1079 * got new page ready for I/O. break pps while
1080 * loop. pps[lcv] is still NULL.
1081 */
1082
1083 break;
1084 }
1085
1086 /* page is there, see if we need to wait on it */
1087 if ((ptmp->flags & PG_BUSY) != 0) {
1088 ptmp->flags |= PG_WANTED;
1089 UVMHIST_LOG(pdhist,
1090 "sleeping, ptmp->flags 0x%x\n",
1091 ptmp->flags,0,0,0);
1092 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1093 false, "uao_get", 0);
1094 simple_lock(&uobj->vmobjlock);
1095 continue;
1096 }
1097
1098 /*
1099 * if we get here then the page has become resident and
1100 * unbusy between steps 1 and 2. we busy it now (so we
1101 * own it) and set pps[lcv] (so that we exit the while
1102 * loop).
1103 */
1104
1105 /* we own it, caller must un-busy */
1106 ptmp->flags |= PG_BUSY;
1107 UVM_PAGE_OWN(ptmp, "uao_get2");
1108 pps[lcv] = ptmp;
1109 }
1110
1111 /*
1112 * if we own the valid page at the correct offset, pps[lcv] will
1113 * point to it. nothing more to do except go to the next page.
1114 */
1115
1116 if (pps[lcv])
1117 continue; /* next lcv */
1118
1119 /*
1120 * we have a "fake/busy/clean" page that we just allocated.
1121 * do the needed "i/o", either reading from swap or zeroing.
1122 */
1123
1124 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1125
1126 /*
1127 * just zero the page if there's nothing in swap.
1128 */
1129
1130 if (swslot == 0) {
1131
1132 /*
1133 * page hasn't existed before, just zero it.
1134 */
1135
1136 uvm_pagezero(ptmp);
1137 } else {
1138 #if defined(VMSWAP)
1139 int error;
1140
1141 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1142 swslot, 0,0,0);
1143
1144 /*
1145 * page in the swapped-out page.
1146 * unlock object for i/o, relock when done.
1147 */
1148
1149 simple_unlock(&uobj->vmobjlock);
1150 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1151 simple_lock(&uobj->vmobjlock);
1152
1153 /*
1154 * I/O done. check for errors.
1155 */
1156
1157 if (error != 0) {
1158 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1159 error,0,0,0);
1160 if (ptmp->flags & PG_WANTED)
1161 wakeup(ptmp);
1162
1163 /*
1164 * remove the swap slot from the aobj
1165 * and mark the aobj as having no real slot.
1166 * don't free the swap slot, thus preventing
1167 * it from being used again.
1168 */
1169
1170 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1171 SWSLOT_BAD);
1172 if (swslot > 0) {
1173 uvm_swap_markbad(swslot, 1);
1174 }
1175
1176 uvm_lock_pageq();
1177 uvm_pagefree(ptmp);
1178 uvm_unlock_pageq();
1179 simple_unlock(&uobj->vmobjlock);
1180 return error;
1181 }
1182 #else /* defined(VMSWAP) */
1183 panic("%s: pagein", __func__);
1184 #endif /* defined(VMSWAP) */
1185 }
1186
1187 if ((access_type & VM_PROT_WRITE) == 0) {
1188 ptmp->flags |= PG_CLEAN;
1189 pmap_clear_modify(ptmp);
1190 }
1191
1192 /*
1193 * we got the page! clear the fake flag (indicates valid
1194 * data now in page) and plug into our result array. note
1195 * that page is still busy.
1196 *
1197 * it is the callers job to:
1198 * => check if the page is released
1199 * => unbusy the page
1200 * => activate the page
1201 */
1202
1203 ptmp->flags &= ~PG_FAKE;
1204 pps[lcv] = ptmp;
1205 }
1206
1207 /*
1208 * finally, unlock object and return.
1209 */
1210
1211 done:
1212 simple_unlock(&uobj->vmobjlock);
1213 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1214 return 0;
1215 }
1216
1217 #if defined(VMSWAP)
1218
1219 /*
1220 * uao_dropswap: release any swap resources from this aobj page.
1221 *
1222 * => aobj must be locked or have a reference count of 0.
1223 */
1224
1225 void
1226 uao_dropswap(struct uvm_object *uobj, int pageidx)
1227 {
1228 int slot;
1229
1230 slot = uao_set_swslot(uobj, pageidx, 0);
1231 if (slot) {
1232 uvm_swap_free(slot, 1);
1233 }
1234 }
1235
1236 /*
1237 * page in every page in every aobj that is paged-out to a range of swslots.
1238 *
1239 * => nothing should be locked.
1240 * => returns true if pagein was aborted due to lack of memory.
1241 */
1242
1243 bool
1244 uao_swap_off(int startslot, int endslot)
1245 {
1246 struct uvm_aobj *aobj, *nextaobj;
1247 bool rv;
1248
1249 /*
1250 * walk the list of all aobjs.
1251 */
1252
1253 restart:
1254 simple_lock(&uao_list_lock);
1255 for (aobj = LIST_FIRST(&uao_list);
1256 aobj != NULL;
1257 aobj = nextaobj) {
1258
1259 /*
1260 * try to get the object lock, start all over if we fail.
1261 * most of the time we'll get the aobj lock,
1262 * so this should be a rare case.
1263 */
1264
1265 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1266 simple_unlock(&uao_list_lock);
1267 goto restart;
1268 }
1269
1270 /*
1271 * add a ref to the aobj so it doesn't disappear
1272 * while we're working.
1273 */
1274
1275 uao_reference_locked(&aobj->u_obj);
1276
1277 /*
1278 * now it's safe to unlock the uao list.
1279 */
1280
1281 simple_unlock(&uao_list_lock);
1282
1283 /*
1284 * page in any pages in the swslot range.
1285 * if there's an error, abort and return the error.
1286 */
1287
1288 rv = uao_pagein(aobj, startslot, endslot);
1289 if (rv) {
1290 uao_detach_locked(&aobj->u_obj);
1291 return rv;
1292 }
1293
1294 /*
1295 * we're done with this aobj.
1296 * relock the list and drop our ref on the aobj.
1297 */
1298
1299 simple_lock(&uao_list_lock);
1300 nextaobj = LIST_NEXT(aobj, u_list);
1301 uao_detach_locked(&aobj->u_obj);
1302 }
1303
1304 /*
1305 * done with traversal, unlock the list
1306 */
1307 simple_unlock(&uao_list_lock);
1308 return false;
1309 }
1310
1311
1312 /*
1313 * page in any pages from aobj in the given range.
1314 *
1315 * => aobj must be locked and is returned locked.
1316 * => returns true if pagein was aborted due to lack of memory.
1317 */
1318 static bool
1319 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1320 {
1321 bool rv;
1322
1323 if (UAO_USES_SWHASH(aobj)) {
1324 struct uao_swhash_elt *elt;
1325 int buck;
1326
1327 restart:
1328 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1329 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1330 elt != NULL;
1331 elt = LIST_NEXT(elt, list)) {
1332 int i;
1333
1334 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1335 int slot = elt->slots[i];
1336
1337 /*
1338 * if the slot isn't in range, skip it.
1339 */
1340
1341 if (slot < startslot ||
1342 slot >= endslot) {
1343 continue;
1344 }
1345
1346 /*
1347 * process the page,
1348 * the start over on this object
1349 * since the swhash elt
1350 * may have been freed.
1351 */
1352
1353 rv = uao_pagein_page(aobj,
1354 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1355 if (rv) {
1356 return rv;
1357 }
1358 goto restart;
1359 }
1360 }
1361 }
1362 } else {
1363 int i;
1364
1365 for (i = 0; i < aobj->u_pages; i++) {
1366 int slot = aobj->u_swslots[i];
1367
1368 /*
1369 * if the slot isn't in range, skip it
1370 */
1371
1372 if (slot < startslot || slot >= endslot) {
1373 continue;
1374 }
1375
1376 /*
1377 * process the page.
1378 */
1379
1380 rv = uao_pagein_page(aobj, i);
1381 if (rv) {
1382 return rv;
1383 }
1384 }
1385 }
1386
1387 return false;
1388 }
1389
1390 /*
1391 * page in a page from an aobj. used for swap_off.
1392 * returns true if pagein was aborted due to lack of memory.
1393 *
1394 * => aobj must be locked and is returned locked.
1395 */
1396
1397 static bool
1398 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1399 {
1400 struct vm_page *pg;
1401 int rv, npages;
1402
1403 pg = NULL;
1404 npages = 1;
1405 /* locked: aobj */
1406 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1407 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1408 /* unlocked: aobj */
1409
1410 /*
1411 * relock and finish up.
1412 */
1413
1414 simple_lock(&aobj->u_obj.vmobjlock);
1415 switch (rv) {
1416 case 0:
1417 break;
1418
1419 case EIO:
1420 case ERESTART:
1421
1422 /*
1423 * nothing more to do on errors.
1424 * ERESTART can only mean that the anon was freed,
1425 * so again there's nothing to do.
1426 */
1427
1428 return false;
1429
1430 default:
1431 return true;
1432 }
1433
1434 /*
1435 * ok, we've got the page now.
1436 * mark it as dirty, clear its swslot and un-busy it.
1437 */
1438 uao_dropswap(&aobj->u_obj, pageidx);
1439
1440 /*
1441 * make sure it's on a page queue.
1442 */
1443 uvm_lock_pageq();
1444 if (pg->wire_count == 0)
1445 uvm_pageenqueue(pg);
1446 uvm_unlock_pageq();
1447
1448 if (pg->flags & PG_WANTED) {
1449 wakeup(pg);
1450 }
1451 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1452 UVM_PAGE_OWN(pg, NULL);
1453
1454 return false;
1455 }
1456
1457 /*
1458 * uao_dropswap_range: drop swapslots in the range.
1459 *
1460 * => aobj must be locked and is returned locked.
1461 * => start is inclusive. end is exclusive.
1462 */
1463
1464 void
1465 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1466 {
1467 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1468
1469 LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
1470
1471 uao_dropswap_range1(aobj, start, end);
1472 }
1473
1474 static void
1475 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1476 {
1477 int swpgonlydelta = 0;
1478
1479 if (end == 0) {
1480 end = INT64_MAX;
1481 }
1482
1483 if (UAO_USES_SWHASH(aobj)) {
1484 int i, hashbuckets = aobj->u_swhashmask + 1;
1485 voff_t taghi;
1486 voff_t taglo;
1487
1488 taglo = UAO_SWHASH_ELT_TAG(start);
1489 taghi = UAO_SWHASH_ELT_TAG(end);
1490
1491 for (i = 0; i < hashbuckets; i++) {
1492 struct uao_swhash_elt *elt, *next;
1493
1494 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1495 elt != NULL;
1496 elt = next) {
1497 int startidx, endidx;
1498 int j;
1499
1500 next = LIST_NEXT(elt, list);
1501
1502 if (elt->tag < taglo || taghi < elt->tag) {
1503 continue;
1504 }
1505
1506 if (elt->tag == taglo) {
1507 startidx =
1508 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1509 } else {
1510 startidx = 0;
1511 }
1512
1513 if (elt->tag == taghi) {
1514 endidx =
1515 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1516 } else {
1517 endidx = UAO_SWHASH_CLUSTER_SIZE;
1518 }
1519
1520 for (j = startidx; j < endidx; j++) {
1521 int slot = elt->slots[j];
1522
1523 KASSERT(uvm_pagelookup(&aobj->u_obj,
1524 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1525 + j) << PAGE_SHIFT) == NULL);
1526 if (slot > 0) {
1527 uvm_swap_free(slot, 1);
1528 swpgonlydelta++;
1529 KASSERT(elt->count > 0);
1530 elt->slots[j] = 0;
1531 elt->count--;
1532 }
1533 }
1534
1535 if (elt->count == 0) {
1536 LIST_REMOVE(elt, list);
1537 pool_put(&uao_swhash_elt_pool, elt);
1538 }
1539 }
1540 }
1541 } else {
1542 int i;
1543
1544 if (aobj->u_pages < end) {
1545 end = aobj->u_pages;
1546 }
1547 for (i = start; i < end; i++) {
1548 int slot = aobj->u_swslots[i];
1549
1550 if (slot > 0) {
1551 uvm_swap_free(slot, 1);
1552 swpgonlydelta++;
1553 }
1554 }
1555 }
1556
1557 /*
1558 * adjust the counter of pages only in swap for all
1559 * the swap slots we've freed.
1560 */
1561
1562 if (swpgonlydelta > 0) {
1563 simple_lock(&uvm.swap_data_lock);
1564 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1565 uvmexp.swpgonly -= swpgonlydelta;
1566 simple_unlock(&uvm.swap_data_lock);
1567 }
1568 }
1569
1570 #endif /* defined(VMSWAP) */
1571