uvm_aobj.c revision 1.92 1 /* $NetBSD: uvm_aobj.c,v 1.92 2007/07/24 19:59:35 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.92 2007/07/24 19:59:35 ad Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121
122 /*
123 * uao_swhash_elt: when a hash table is being used, this structure defines
124 * the format of an entry in the bucket list.
125 */
126
127 struct uao_swhash_elt {
128 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
129 voff_t tag; /* our 'tag' */
130 int count; /* our number of active slots */
131 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
132 };
133
134 /*
135 * uao_swhash: the swap hash table structure
136 */
137
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139
140 /*
141 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145 "uaoeltpl", NULL, IPL_VM);
146
147 /*
148 * uvm_aobj: the actual anon-backed uvm_object
149 *
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
153 */
154
155 struct uvm_aobj {
156 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages; /* number of pages in entire object */
158 int u_flags; /* the flags (see uvm_aobj.h) */
159 int *u_swslots; /* array of offset->swapslot mappings */
160 /*
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
163 */
164 struct uao_swhash *u_swhash;
165 u_long u_swhashmask; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
167 };
168
169 /*
170 * uvm_aobj_pool: pool of uvm_aobj structures
171 */
172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
173 &pool_allocator_nointr, IPL_NONE);
174
175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
176
177 /*
178 * local functions
179 */
180
181 static void uao_free(struct uvm_aobj *);
182 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
183 int *, int, vm_prot_t, int, int);
184 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
185
186 #if defined(VMSWAP)
187 static struct uao_swhash_elt *uao_find_swhash_elt
188 (struct uvm_aobj *, int, bool);
189
190 static bool uao_pagein(struct uvm_aobj *, int, int);
191 static bool uao_pagein_page(struct uvm_aobj *, int);
192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
193 #endif /* defined(VMSWAP) */
194
195 /*
196 * aobj_pager
197 *
198 * note that some functions (e.g. put) are handled elsewhere
199 */
200
201 struct uvm_pagerops aobj_pager = {
202 NULL, /* init */
203 uao_reference, /* reference */
204 uao_detach, /* detach */
205 NULL, /* fault */
206 uao_get, /* get */
207 uao_put, /* flush */
208 };
209
210 /*
211 * uao_list: global list of active aobjs, locked by uao_list_lock
212 */
213
214 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
215 static kmutex_t uao_list_lock;
216
217 /*
218 * functions
219 */
220
221 /*
222 * hash table/array related functions
223 */
224
225 #if defined(VMSWAP)
226
227 /*
228 * uao_find_swhash_elt: find (or create) a hash table entry for a page
229 * offset.
230 *
231 * => the object should be locked by the caller
232 */
233
234 static struct uao_swhash_elt *
235 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
236 {
237 struct uao_swhash *swhash;
238 struct uao_swhash_elt *elt;
239 voff_t page_tag;
240
241 swhash = UAO_SWHASH_HASH(aobj, pageidx);
242 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
243
244 /*
245 * now search the bucket for the requested tag
246 */
247
248 LIST_FOREACH(elt, swhash, list) {
249 if (elt->tag == page_tag) {
250 return elt;
251 }
252 }
253 if (!create) {
254 return NULL;
255 }
256
257 /*
258 * allocate a new entry for the bucket and init/insert it in
259 */
260
261 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
262 if (elt == NULL) {
263 return NULL;
264 }
265 LIST_INSERT_HEAD(swhash, elt, list);
266 elt->tag = page_tag;
267 elt->count = 0;
268 memset(elt->slots, 0, sizeof(elt->slots));
269 return elt;
270 }
271
272 /*
273 * uao_find_swslot: find the swap slot number for an aobj/pageidx
274 *
275 * => object must be locked by caller
276 */
277
278 int
279 uao_find_swslot(struct uvm_object *uobj, int pageidx)
280 {
281 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
282 struct uao_swhash_elt *elt;
283
284 /*
285 * if noswap flag is set, then we never return a slot
286 */
287
288 if (aobj->u_flags & UAO_FLAG_NOSWAP)
289 return(0);
290
291 /*
292 * if hashing, look in hash table.
293 */
294
295 if (UAO_USES_SWHASH(aobj)) {
296 elt = uao_find_swhash_elt(aobj, pageidx, false);
297 if (elt)
298 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
299 else
300 return(0);
301 }
302
303 /*
304 * otherwise, look in the array
305 */
306
307 return(aobj->u_swslots[pageidx]);
308 }
309
310 /*
311 * uao_set_swslot: set the swap slot for a page in an aobj.
312 *
313 * => setting a slot to zero frees the slot
314 * => object must be locked by caller
315 * => we return the old slot number, or -1 if we failed to allocate
316 * memory to record the new slot number
317 */
318
319 int
320 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
321 {
322 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
323 struct uao_swhash_elt *elt;
324 int oldslot;
325 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
326 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
327 aobj, pageidx, slot, 0);
328
329 /*
330 * if noswap flag is set, then we can't set a non-zero slot.
331 */
332
333 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
334 if (slot == 0)
335 return(0);
336
337 printf("uao_set_swslot: uobj = %p\n", uobj);
338 panic("uao_set_swslot: NOSWAP object");
339 }
340
341 /*
342 * are we using a hash table? if so, add it in the hash.
343 */
344
345 if (UAO_USES_SWHASH(aobj)) {
346
347 /*
348 * Avoid allocating an entry just to free it again if
349 * the page had not swap slot in the first place, and
350 * we are freeing.
351 */
352
353 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
354 if (elt == NULL) {
355 return slot ? -1 : 0;
356 }
357
358 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
359 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
360
361 /*
362 * now adjust the elt's reference counter and free it if we've
363 * dropped it to zero.
364 */
365
366 if (slot) {
367 if (oldslot == 0)
368 elt->count++;
369 } else {
370 if (oldslot)
371 elt->count--;
372
373 if (elt->count == 0) {
374 LIST_REMOVE(elt, list);
375 pool_put(&uao_swhash_elt_pool, elt);
376 }
377 }
378 } else {
379 /* we are using an array */
380 oldslot = aobj->u_swslots[pageidx];
381 aobj->u_swslots[pageidx] = slot;
382 }
383 return (oldslot);
384 }
385
386 #endif /* defined(VMSWAP) */
387
388 /*
389 * end of hash/array functions
390 */
391
392 /*
393 * uao_free: free all resources held by an aobj, and then free the aobj
394 *
395 * => the aobj should be dead
396 */
397
398 static void
399 uao_free(struct uvm_aobj *aobj)
400 {
401 int swpgonlydelta = 0;
402
403 simple_unlock(&aobj->u_obj.vmobjlock);
404
405 #if defined(VMSWAP)
406 uao_dropswap_range1(aobj, 0, 0);
407
408 if (UAO_USES_SWHASH(aobj)) {
409
410 /*
411 * free the hash table itself.
412 */
413
414 free(aobj->u_swhash, M_UVMAOBJ);
415 } else {
416
417 /*
418 * free the array itsself.
419 */
420
421 free(aobj->u_swslots, M_UVMAOBJ);
422 }
423 #endif /* defined(VMSWAP) */
424
425 /*
426 * finally free the aobj itself
427 */
428
429 pool_put(&uvm_aobj_pool, aobj);
430
431 /*
432 * adjust the counter of pages only in swap for all
433 * the swap slots we've freed.
434 */
435
436 if (swpgonlydelta > 0) {
437 mutex_enter(&uvm_swap_data_lock);
438 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
439 uvmexp.swpgonly -= swpgonlydelta;
440 mutex_exit(&uvm_swap_data_lock);
441 }
442 }
443
444 /*
445 * pager functions
446 */
447
448 /*
449 * uao_create: create an aobj of the given size and return its uvm_object.
450 *
451 * => for normal use, flags are always zero
452 * => for the kernel object, the flags are:
453 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
454 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
455 */
456
457 struct uvm_object *
458 uao_create(vsize_t size, int flags)
459 {
460 static struct uvm_aobj kernel_object_store;
461 static int kobj_alloced = 0;
462 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
463 struct uvm_aobj *aobj;
464 int refs;
465
466 /*
467 * malloc a new aobj unless we are asked for the kernel object
468 */
469
470 if (flags & UAO_FLAG_KERNOBJ) {
471 KASSERT(!kobj_alloced);
472 aobj = &kernel_object_store;
473 aobj->u_pages = pages;
474 aobj->u_flags = UAO_FLAG_NOSWAP;
475 refs = UVM_OBJ_KERN;
476 kobj_alloced = UAO_FLAG_KERNOBJ;
477 } else if (flags & UAO_FLAG_KERNSWAP) {
478 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
479 aobj = &kernel_object_store;
480 kobj_alloced = UAO_FLAG_KERNSWAP;
481 refs = 0xdeadbeaf; /* XXX: gcc */
482 } else {
483 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
484 aobj->u_pages = pages;
485 aobj->u_flags = 0;
486 refs = 1;
487 }
488
489 /*
490 * allocate hash/array if necessary
491 *
492 * note: in the KERNSWAP case no need to worry about locking since
493 * we are still booting we should be the only thread around.
494 */
495
496 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
497 #if defined(VMSWAP)
498 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
499 M_NOWAIT : M_WAITOK;
500
501 /* allocate hash table or array depending on object size */
502 if (UAO_USES_SWHASH(aobj)) {
503 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
504 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
505 if (aobj->u_swhash == NULL)
506 panic("uao_create: hashinit swhash failed");
507 } else {
508 aobj->u_swslots = malloc(pages * sizeof(int),
509 M_UVMAOBJ, mflags);
510 if (aobj->u_swslots == NULL)
511 panic("uao_create: malloc swslots failed");
512 memset(aobj->u_swslots, 0, pages * sizeof(int));
513 }
514 #endif /* defined(VMSWAP) */
515
516 if (flags) {
517 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
518 return(&aobj->u_obj);
519 }
520 }
521
522 /*
523 * init aobj fields
524 */
525
526 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
527
528 /*
529 * now that aobj is ready, add it to the global list
530 */
531
532 mutex_enter(&uao_list_lock);
533 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
534 mutex_exit(&uao_list_lock);
535 return(&aobj->u_obj);
536 }
537
538
539
540 /*
541 * uao_init: set up aobj pager subsystem
542 *
543 * => called at boot time from uvm_pager_init()
544 */
545
546 void
547 uao_init(void)
548 {
549 static int uao_initialized;
550
551 if (uao_initialized)
552 return;
553 uao_initialized = true;
554 LIST_INIT(&uao_list);
555 /* XXXSMP should be adaptive but vmobjlock needs to be too */
556 mutex_init(&uao_list_lock, MUTEX_SPIN, IPL_NONE);
557 }
558
559 /*
560 * uao_reference: add a ref to an aobj
561 *
562 * => aobj must be unlocked
563 * => just lock it and call the locked version
564 */
565
566 void
567 uao_reference(struct uvm_object *uobj)
568 {
569 simple_lock(&uobj->vmobjlock);
570 uao_reference_locked(uobj);
571 simple_unlock(&uobj->vmobjlock);
572 }
573
574 /*
575 * uao_reference_locked: add a ref to an aobj that is already locked
576 *
577 * => aobj must be locked
578 * this needs to be separate from the normal routine
579 * since sometimes we need to add a reference to an aobj when
580 * it's already locked.
581 */
582
583 void
584 uao_reference_locked(struct uvm_object *uobj)
585 {
586 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
587
588 /*
589 * kernel_object already has plenty of references, leave it alone.
590 */
591
592 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
593 return;
594
595 uobj->uo_refs++;
596 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
597 uobj, uobj->uo_refs,0,0);
598 }
599
600 /*
601 * uao_detach: drop a reference to an aobj
602 *
603 * => aobj must be unlocked
604 * => just lock it and call the locked version
605 */
606
607 void
608 uao_detach(struct uvm_object *uobj)
609 {
610 simple_lock(&uobj->vmobjlock);
611 uao_detach_locked(uobj);
612 }
613
614 /*
615 * uao_detach_locked: drop a reference to an aobj
616 *
617 * => aobj must be locked, and is unlocked (or freed) upon return.
618 * this needs to be separate from the normal routine
619 * since sometimes we need to detach from an aobj when
620 * it's already locked.
621 */
622
623 void
624 uao_detach_locked(struct uvm_object *uobj)
625 {
626 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
627 struct vm_page *pg;
628 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
629
630 /*
631 * detaching from kernel_object is a noop.
632 */
633
634 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
635 simple_unlock(&uobj->vmobjlock);
636 return;
637 }
638
639 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
640 uobj->uo_refs--;
641 if (uobj->uo_refs) {
642 simple_unlock(&uobj->vmobjlock);
643 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
644 return;
645 }
646
647 /*
648 * remove the aobj from the global list.
649 */
650
651 mutex_enter(&uao_list_lock);
652 LIST_REMOVE(aobj, u_list);
653 mutex_exit(&uao_list_lock);
654
655 /*
656 * free all the pages left in the aobj. for each page,
657 * when the page is no longer busy (and thus after any disk i/o that
658 * it's involved in is complete), release any swap resources and
659 * free the page itself.
660 */
661
662 uvm_lock_pageq();
663 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
664 pmap_page_protect(pg, VM_PROT_NONE);
665 if (pg->flags & PG_BUSY) {
666 pg->flags |= PG_WANTED;
667 uvm_unlock_pageq();
668 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
669 "uao_det", 0);
670 simple_lock(&uobj->vmobjlock);
671 uvm_lock_pageq();
672 continue;
673 }
674 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
675 uvm_pagefree(pg);
676 }
677 uvm_unlock_pageq();
678
679 /*
680 * finally, free the aobj itself.
681 */
682
683 uao_free(aobj);
684 }
685
686 /*
687 * uao_put: flush pages out of a uvm object
688 *
689 * => object should be locked by caller. we may _unlock_ the object
690 * if (and only if) we need to clean a page (PGO_CLEANIT).
691 * XXXJRT Currently, however, we don't. In the case of cleaning
692 * XXXJRT a page, we simply just deactivate it. Should probably
693 * XXXJRT handle this better, in the future (although "flushing"
694 * XXXJRT anonymous memory isn't terribly important).
695 * => if PGO_CLEANIT is not set, then we will neither unlock the object
696 * or block.
697 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
698 * for flushing.
699 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
700 * that new pages are inserted on the tail end of the list. thus,
701 * we can make a complete pass through the object in one go by starting
702 * at the head and working towards the tail (new pages are put in
703 * front of us).
704 * => NOTE: we are allowed to lock the page queues, so the caller
705 * must not be holding the lock on them [e.g. pagedaemon had
706 * better not call us with the queues locked]
707 * => we return 0 unless we encountered some sort of I/O error
708 * XXXJRT currently never happens, as we never directly initiate
709 * XXXJRT I/O
710 *
711 * note on page traversal:
712 * we can traverse the pages in an object either by going down the
713 * linked list in "uobj->memq", or we can go over the address range
714 * by page doing hash table lookups for each address. depending
715 * on how many pages are in the object it may be cheaper to do one
716 * or the other. we set "by_list" to true if we are using memq.
717 * if the cost of a hash lookup was equal to the cost of the list
718 * traversal we could compare the number of pages in the start->stop
719 * range to the total number of pages in the object. however, it
720 * seems that a hash table lookup is more expensive than the linked
721 * list traversal, so we multiply the number of pages in the
722 * start->stop range by a penalty which we define below.
723 */
724
725 static int
726 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
727 {
728 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
729 struct vm_page *pg, *nextpg, curmp, endmp;
730 bool by_list;
731 voff_t curoff;
732 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
733
734 curoff = 0;
735 if (flags & PGO_ALLPAGES) {
736 start = 0;
737 stop = aobj->u_pages << PAGE_SHIFT;
738 by_list = true; /* always go by the list */
739 } else {
740 start = trunc_page(start);
741 if (stop == 0) {
742 stop = aobj->u_pages << PAGE_SHIFT;
743 } else {
744 stop = round_page(stop);
745 }
746 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
747 printf("uao_flush: strange, got an out of range "
748 "flush (fixed)\n");
749 stop = aobj->u_pages << PAGE_SHIFT;
750 }
751 by_list = (uobj->uo_npages <=
752 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
753 }
754 UVMHIST_LOG(maphist,
755 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
756 start, stop, by_list, flags);
757
758 /*
759 * Don't need to do any work here if we're not freeing
760 * or deactivating pages.
761 */
762
763 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
764 simple_unlock(&uobj->vmobjlock);
765 return 0;
766 }
767
768 /*
769 * Initialize the marker pages. See the comment in
770 * genfs_putpages() also.
771 */
772
773 curmp.uobject = uobj;
774 curmp.offset = (voff_t)-1;
775 curmp.flags = PG_BUSY;
776 endmp.uobject = uobj;
777 endmp.offset = (voff_t)-1;
778 endmp.flags = PG_BUSY;
779
780 /*
781 * now do it. note: we must update nextpg in the body of loop or we
782 * will get stuck. we need to use nextpg if we'll traverse the list
783 * because we may free "pg" before doing the next loop.
784 */
785
786 if (by_list) {
787 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
788 nextpg = TAILQ_FIRST(&uobj->memq);
789 uvm_lwp_hold(curlwp);
790 } else {
791 curoff = start;
792 nextpg = NULL; /* Quell compiler warning */
793 }
794
795 uvm_lock_pageq();
796
797 /* locked: both page queues and uobj */
798 for (;;) {
799 if (by_list) {
800 pg = nextpg;
801 if (pg == &endmp)
802 break;
803 nextpg = TAILQ_NEXT(pg, listq);
804 if (pg->offset < start || pg->offset >= stop)
805 continue;
806 } else {
807 if (curoff < stop) {
808 pg = uvm_pagelookup(uobj, curoff);
809 curoff += PAGE_SIZE;
810 } else
811 break;
812 if (pg == NULL)
813 continue;
814 }
815 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
816
817 /*
818 * XXX In these first 3 cases, we always just
819 * XXX deactivate the page. We may want to
820 * XXX handle the different cases more specifically
821 * XXX in the future.
822 */
823
824 case PGO_CLEANIT|PGO_FREE:
825 case PGO_CLEANIT|PGO_DEACTIVATE:
826 case PGO_DEACTIVATE:
827 deactivate_it:
828 /* skip the page if it's wired */
829 if (pg->wire_count != 0)
830 continue;
831
832 /* ...and deactivate the page. */
833 pmap_clear_reference(pg);
834 uvm_pagedeactivate(pg);
835 continue;
836
837 case PGO_FREE:
838
839 /*
840 * If there are multiple references to
841 * the object, just deactivate the page.
842 */
843
844 if (uobj->uo_refs > 1)
845 goto deactivate_it;
846
847 /*
848 * wait and try again if the page is busy.
849 * otherwise free the swap slot and the page.
850 */
851
852 pmap_page_protect(pg, VM_PROT_NONE);
853 if (pg->flags & PG_BUSY) {
854 if (by_list) {
855 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
856 }
857 pg->flags |= PG_WANTED;
858 uvm_unlock_pageq();
859 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
860 "uao_put", 0);
861 simple_lock(&uobj->vmobjlock);
862 uvm_lock_pageq();
863 if (by_list) {
864 nextpg = TAILQ_NEXT(&curmp, listq);
865 TAILQ_REMOVE(&uobj->memq, &curmp,
866 listq);
867 } else
868 curoff -= PAGE_SIZE;
869 continue;
870 }
871
872 /*
873 * freeing swapslot here is not strictly necessary.
874 * however, leaving it here doesn't save much
875 * because we need to update swap accounting anyway.
876 */
877
878 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
879 uvm_pagefree(pg);
880 continue;
881 }
882 }
883 uvm_unlock_pageq();
884 if (by_list) {
885 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
886 }
887 simple_unlock(&uobj->vmobjlock);
888 if (by_list) {
889 uvm_lwp_rele(curlwp);
890 }
891 return 0;
892 }
893
894 /*
895 * uao_get: fetch me a page
896 *
897 * we have three cases:
898 * 1: page is resident -> just return the page.
899 * 2: page is zero-fill -> allocate a new page and zero it.
900 * 3: page is swapped out -> fetch the page from swap.
901 *
902 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
903 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
904 * then we will need to return EBUSY.
905 *
906 * => prefer map unlocked (not required)
907 * => object must be locked! we will _unlock_ it before starting any I/O.
908 * => flags: PGO_ALLPAGES: get all of the pages
909 * PGO_LOCKED: fault data structures are locked
910 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
911 * => NOTE: caller must check for released pages!!
912 */
913
914 static int
915 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
916 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
917 {
918 #if defined(VMSWAP)
919 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
920 #endif /* defined(VMSWAP) */
921 voff_t current_offset;
922 struct vm_page *ptmp = NULL; /* Quell compiler warning */
923 int lcv, gotpages, maxpages, swslot, pageidx;
924 bool done;
925 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
926
927 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
928 (struct uvm_aobj *)uobj, offset, flags,0);
929
930 /*
931 * get number of pages
932 */
933
934 maxpages = *npagesp;
935
936 /*
937 * step 1: handled the case where fault data structures are locked.
938 */
939
940 if (flags & PGO_LOCKED) {
941
942 /*
943 * step 1a: get pages that are already resident. only do
944 * this if the data structures are locked (i.e. the first
945 * time through).
946 */
947
948 done = true; /* be optimistic */
949 gotpages = 0; /* # of pages we got so far */
950 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
951 lcv++, current_offset += PAGE_SIZE) {
952 /* do we care about this page? if not, skip it */
953 if (pps[lcv] == PGO_DONTCARE)
954 continue;
955 ptmp = uvm_pagelookup(uobj, current_offset);
956
957 /*
958 * if page is new, attempt to allocate the page,
959 * zero-fill'd.
960 */
961
962 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
963 current_offset >> PAGE_SHIFT) == 0) {
964 ptmp = uvm_pagealloc(uobj, current_offset,
965 NULL, UVM_PGA_ZERO);
966 if (ptmp) {
967 /* new page */
968 ptmp->flags &= ~(PG_FAKE);
969 ptmp->pqflags |= PQ_AOBJ;
970 goto gotpage;
971 }
972 }
973
974 /*
975 * to be useful must get a non-busy page
976 */
977
978 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
979 if (lcv == centeridx ||
980 (flags & PGO_ALLPAGES) != 0)
981 /* need to do a wait or I/O! */
982 done = false;
983 continue;
984 }
985
986 /*
987 * useful page: busy/lock it and plug it in our
988 * result array
989 */
990
991 /* caller must un-busy this page */
992 ptmp->flags |= PG_BUSY;
993 UVM_PAGE_OWN(ptmp, "uao_get1");
994 gotpage:
995 pps[lcv] = ptmp;
996 gotpages++;
997 }
998
999 /*
1000 * step 1b: now we've either done everything needed or we
1001 * to unlock and do some waiting or I/O.
1002 */
1003
1004 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1005 *npagesp = gotpages;
1006 if (done)
1007 return 0;
1008 else
1009 return EBUSY;
1010 }
1011
1012 /*
1013 * step 2: get non-resident or busy pages.
1014 * object is locked. data structures are unlocked.
1015 */
1016
1017 if ((flags & PGO_SYNCIO) == 0) {
1018 goto done;
1019 }
1020
1021 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1022 lcv++, current_offset += PAGE_SIZE) {
1023
1024 /*
1025 * - skip over pages we've already gotten or don't want
1026 * - skip over pages we don't _have_ to get
1027 */
1028
1029 if (pps[lcv] != NULL ||
1030 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1031 continue;
1032
1033 pageidx = current_offset >> PAGE_SHIFT;
1034
1035 /*
1036 * we have yet to locate the current page (pps[lcv]). we
1037 * first look for a page that is already at the current offset.
1038 * if we find a page, we check to see if it is busy or
1039 * released. if that is the case, then we sleep on the page
1040 * until it is no longer busy or released and repeat the lookup.
1041 * if the page we found is neither busy nor released, then we
1042 * busy it (so we own it) and plug it into pps[lcv]. this
1043 * 'break's the following while loop and indicates we are
1044 * ready to move on to the next page in the "lcv" loop above.
1045 *
1046 * if we exit the while loop with pps[lcv] still set to NULL,
1047 * then it means that we allocated a new busy/fake/clean page
1048 * ptmp in the object and we need to do I/O to fill in the data.
1049 */
1050
1051 /* top of "pps" while loop */
1052 while (pps[lcv] == NULL) {
1053 /* look for a resident page */
1054 ptmp = uvm_pagelookup(uobj, current_offset);
1055
1056 /* not resident? allocate one now (if we can) */
1057 if (ptmp == NULL) {
1058
1059 ptmp = uvm_pagealloc(uobj, current_offset,
1060 NULL, 0);
1061
1062 /* out of RAM? */
1063 if (ptmp == NULL) {
1064 simple_unlock(&uobj->vmobjlock);
1065 UVMHIST_LOG(pdhist,
1066 "sleeping, ptmp == NULL\n",0,0,0,0);
1067 uvm_wait("uao_getpage");
1068 simple_lock(&uobj->vmobjlock);
1069 continue;
1070 }
1071
1072 /*
1073 * safe with PQ's unlocked: because we just
1074 * alloc'd the page
1075 */
1076
1077 ptmp->pqflags |= PQ_AOBJ;
1078
1079 /*
1080 * got new page ready for I/O. break pps while
1081 * loop. pps[lcv] is still NULL.
1082 */
1083
1084 break;
1085 }
1086
1087 /* page is there, see if we need to wait on it */
1088 if ((ptmp->flags & PG_BUSY) != 0) {
1089 ptmp->flags |= PG_WANTED;
1090 UVMHIST_LOG(pdhist,
1091 "sleeping, ptmp->flags 0x%x\n",
1092 ptmp->flags,0,0,0);
1093 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1094 false, "uao_get", 0);
1095 simple_lock(&uobj->vmobjlock);
1096 continue;
1097 }
1098
1099 /*
1100 * if we get here then the page has become resident and
1101 * unbusy between steps 1 and 2. we busy it now (so we
1102 * own it) and set pps[lcv] (so that we exit the while
1103 * loop).
1104 */
1105
1106 /* we own it, caller must un-busy */
1107 ptmp->flags |= PG_BUSY;
1108 UVM_PAGE_OWN(ptmp, "uao_get2");
1109 pps[lcv] = ptmp;
1110 }
1111
1112 /*
1113 * if we own the valid page at the correct offset, pps[lcv] will
1114 * point to it. nothing more to do except go to the next page.
1115 */
1116
1117 if (pps[lcv])
1118 continue; /* next lcv */
1119
1120 /*
1121 * we have a "fake/busy/clean" page that we just allocated.
1122 * do the needed "i/o", either reading from swap or zeroing.
1123 */
1124
1125 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1126
1127 /*
1128 * just zero the page if there's nothing in swap.
1129 */
1130
1131 if (swslot == 0) {
1132
1133 /*
1134 * page hasn't existed before, just zero it.
1135 */
1136
1137 uvm_pagezero(ptmp);
1138 } else {
1139 #if defined(VMSWAP)
1140 int error;
1141
1142 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1143 swslot, 0,0,0);
1144
1145 /*
1146 * page in the swapped-out page.
1147 * unlock object for i/o, relock when done.
1148 */
1149
1150 simple_unlock(&uobj->vmobjlock);
1151 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1152 simple_lock(&uobj->vmobjlock);
1153
1154 /*
1155 * I/O done. check for errors.
1156 */
1157
1158 if (error != 0) {
1159 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1160 error,0,0,0);
1161 if (ptmp->flags & PG_WANTED)
1162 wakeup(ptmp);
1163
1164 /*
1165 * remove the swap slot from the aobj
1166 * and mark the aobj as having no real slot.
1167 * don't free the swap slot, thus preventing
1168 * it from being used again.
1169 */
1170
1171 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1172 SWSLOT_BAD);
1173 if (swslot > 0) {
1174 uvm_swap_markbad(swslot, 1);
1175 }
1176
1177 uvm_lock_pageq();
1178 uvm_pagefree(ptmp);
1179 uvm_unlock_pageq();
1180 simple_unlock(&uobj->vmobjlock);
1181 return error;
1182 }
1183 #else /* defined(VMSWAP) */
1184 panic("%s: pagein", __func__);
1185 #endif /* defined(VMSWAP) */
1186 }
1187
1188 if ((access_type & VM_PROT_WRITE) == 0) {
1189 ptmp->flags |= PG_CLEAN;
1190 pmap_clear_modify(ptmp);
1191 }
1192
1193 /*
1194 * we got the page! clear the fake flag (indicates valid
1195 * data now in page) and plug into our result array. note
1196 * that page is still busy.
1197 *
1198 * it is the callers job to:
1199 * => check if the page is released
1200 * => unbusy the page
1201 * => activate the page
1202 */
1203
1204 ptmp->flags &= ~PG_FAKE;
1205 pps[lcv] = ptmp;
1206 }
1207
1208 /*
1209 * finally, unlock object and return.
1210 */
1211
1212 done:
1213 simple_unlock(&uobj->vmobjlock);
1214 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1215 return 0;
1216 }
1217
1218 #if defined(VMSWAP)
1219
1220 /*
1221 * uao_dropswap: release any swap resources from this aobj page.
1222 *
1223 * => aobj must be locked or have a reference count of 0.
1224 */
1225
1226 void
1227 uao_dropswap(struct uvm_object *uobj, int pageidx)
1228 {
1229 int slot;
1230
1231 slot = uao_set_swslot(uobj, pageidx, 0);
1232 if (slot) {
1233 uvm_swap_free(slot, 1);
1234 }
1235 }
1236
1237 /*
1238 * page in every page in every aobj that is paged-out to a range of swslots.
1239 *
1240 * => nothing should be locked.
1241 * => returns true if pagein was aborted due to lack of memory.
1242 */
1243
1244 bool
1245 uao_swap_off(int startslot, int endslot)
1246 {
1247 struct uvm_aobj *aobj, *nextaobj;
1248 bool rv;
1249
1250 /*
1251 * walk the list of all aobjs.
1252 */
1253
1254 restart:
1255 mutex_enter(&uao_list_lock);
1256 for (aobj = LIST_FIRST(&uao_list);
1257 aobj != NULL;
1258 aobj = nextaobj) {
1259
1260 /*
1261 * try to get the object lock, start all over if we fail.
1262 * most of the time we'll get the aobj lock,
1263 * so this should be a rare case.
1264 */
1265
1266 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1267 mutex_exit(&uao_list_lock);
1268 goto restart;
1269 }
1270
1271 /*
1272 * add a ref to the aobj so it doesn't disappear
1273 * while we're working.
1274 */
1275
1276 uao_reference_locked(&aobj->u_obj);
1277
1278 /*
1279 * now it's safe to unlock the uao list.
1280 */
1281
1282 mutex_exit(&uao_list_lock);
1283
1284 /*
1285 * page in any pages in the swslot range.
1286 * if there's an error, abort and return the error.
1287 */
1288
1289 rv = uao_pagein(aobj, startslot, endslot);
1290 if (rv) {
1291 uao_detach_locked(&aobj->u_obj);
1292 return rv;
1293 }
1294
1295 /*
1296 * we're done with this aobj.
1297 * relock the list and drop our ref on the aobj.
1298 */
1299
1300 mutex_enter(&uao_list_lock);
1301 nextaobj = LIST_NEXT(aobj, u_list);
1302 uao_detach_locked(&aobj->u_obj);
1303 }
1304
1305 /*
1306 * done with traversal, unlock the list
1307 */
1308 mutex_exit(&uao_list_lock);
1309 return false;
1310 }
1311
1312
1313 /*
1314 * page in any pages from aobj in the given range.
1315 *
1316 * => aobj must be locked and is returned locked.
1317 * => returns true if pagein was aborted due to lack of memory.
1318 */
1319 static bool
1320 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1321 {
1322 bool rv;
1323
1324 if (UAO_USES_SWHASH(aobj)) {
1325 struct uao_swhash_elt *elt;
1326 int buck;
1327
1328 restart:
1329 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1330 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1331 elt != NULL;
1332 elt = LIST_NEXT(elt, list)) {
1333 int i;
1334
1335 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1336 int slot = elt->slots[i];
1337
1338 /*
1339 * if the slot isn't in range, skip it.
1340 */
1341
1342 if (slot < startslot ||
1343 slot >= endslot) {
1344 continue;
1345 }
1346
1347 /*
1348 * process the page,
1349 * the start over on this object
1350 * since the swhash elt
1351 * may have been freed.
1352 */
1353
1354 rv = uao_pagein_page(aobj,
1355 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1356 if (rv) {
1357 return rv;
1358 }
1359 goto restart;
1360 }
1361 }
1362 }
1363 } else {
1364 int i;
1365
1366 for (i = 0; i < aobj->u_pages; i++) {
1367 int slot = aobj->u_swslots[i];
1368
1369 /*
1370 * if the slot isn't in range, skip it
1371 */
1372
1373 if (slot < startslot || slot >= endslot) {
1374 continue;
1375 }
1376
1377 /*
1378 * process the page.
1379 */
1380
1381 rv = uao_pagein_page(aobj, i);
1382 if (rv) {
1383 return rv;
1384 }
1385 }
1386 }
1387
1388 return false;
1389 }
1390
1391 /*
1392 * page in a page from an aobj. used for swap_off.
1393 * returns true if pagein was aborted due to lack of memory.
1394 *
1395 * => aobj must be locked and is returned locked.
1396 */
1397
1398 static bool
1399 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1400 {
1401 struct vm_page *pg;
1402 int rv, npages;
1403
1404 pg = NULL;
1405 npages = 1;
1406 /* locked: aobj */
1407 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1408 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1409 /* unlocked: aobj */
1410
1411 /*
1412 * relock and finish up.
1413 */
1414
1415 simple_lock(&aobj->u_obj.vmobjlock);
1416 switch (rv) {
1417 case 0:
1418 break;
1419
1420 case EIO:
1421 case ERESTART:
1422
1423 /*
1424 * nothing more to do on errors.
1425 * ERESTART can only mean that the anon was freed,
1426 * so again there's nothing to do.
1427 */
1428
1429 return false;
1430
1431 default:
1432 return true;
1433 }
1434
1435 /*
1436 * ok, we've got the page now.
1437 * mark it as dirty, clear its swslot and un-busy it.
1438 */
1439 uao_dropswap(&aobj->u_obj, pageidx);
1440
1441 /*
1442 * make sure it's on a page queue.
1443 */
1444 uvm_lock_pageq();
1445 if (pg->wire_count == 0)
1446 uvm_pageenqueue(pg);
1447 uvm_unlock_pageq();
1448
1449 if (pg->flags & PG_WANTED) {
1450 wakeup(pg);
1451 }
1452 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1453 UVM_PAGE_OWN(pg, NULL);
1454
1455 return false;
1456 }
1457
1458 /*
1459 * uao_dropswap_range: drop swapslots in the range.
1460 *
1461 * => aobj must be locked and is returned locked.
1462 * => start is inclusive. end is exclusive.
1463 */
1464
1465 void
1466 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1467 {
1468 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1469
1470 LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
1471
1472 uao_dropswap_range1(aobj, start, end);
1473 }
1474
1475 static void
1476 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1477 {
1478 int swpgonlydelta = 0;
1479
1480 if (end == 0) {
1481 end = INT64_MAX;
1482 }
1483
1484 if (UAO_USES_SWHASH(aobj)) {
1485 int i, hashbuckets = aobj->u_swhashmask + 1;
1486 voff_t taghi;
1487 voff_t taglo;
1488
1489 taglo = UAO_SWHASH_ELT_TAG(start);
1490 taghi = UAO_SWHASH_ELT_TAG(end);
1491
1492 for (i = 0; i < hashbuckets; i++) {
1493 struct uao_swhash_elt *elt, *next;
1494
1495 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1496 elt != NULL;
1497 elt = next) {
1498 int startidx, endidx;
1499 int j;
1500
1501 next = LIST_NEXT(elt, list);
1502
1503 if (elt->tag < taglo || taghi < elt->tag) {
1504 continue;
1505 }
1506
1507 if (elt->tag == taglo) {
1508 startidx =
1509 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1510 } else {
1511 startidx = 0;
1512 }
1513
1514 if (elt->tag == taghi) {
1515 endidx =
1516 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1517 } else {
1518 endidx = UAO_SWHASH_CLUSTER_SIZE;
1519 }
1520
1521 for (j = startidx; j < endidx; j++) {
1522 int slot = elt->slots[j];
1523
1524 KASSERT(uvm_pagelookup(&aobj->u_obj,
1525 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1526 + j) << PAGE_SHIFT) == NULL);
1527 if (slot > 0) {
1528 uvm_swap_free(slot, 1);
1529 swpgonlydelta++;
1530 KASSERT(elt->count > 0);
1531 elt->slots[j] = 0;
1532 elt->count--;
1533 }
1534 }
1535
1536 if (elt->count == 0) {
1537 LIST_REMOVE(elt, list);
1538 pool_put(&uao_swhash_elt_pool, elt);
1539 }
1540 }
1541 }
1542 } else {
1543 int i;
1544
1545 if (aobj->u_pages < end) {
1546 end = aobj->u_pages;
1547 }
1548 for (i = start; i < end; i++) {
1549 int slot = aobj->u_swslots[i];
1550
1551 if (slot > 0) {
1552 uvm_swap_free(slot, 1);
1553 swpgonlydelta++;
1554 }
1555 }
1556 }
1557
1558 /*
1559 * adjust the counter of pages only in swap for all
1560 * the swap slots we've freed.
1561 */
1562
1563 if (swpgonlydelta > 0) {
1564 mutex_enter(&uvm_swap_data_lock);
1565 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1566 uvmexp.swpgonly -= swpgonlydelta;
1567 mutex_exit(&uvm_swap_data_lock);
1568 }
1569 }
1570
1571 #endif /* defined(VMSWAP) */
1572