uvm_aobj.c revision 1.93 1 /* $NetBSD: uvm_aobj.c,v 1.93 2007/08/05 10:19:23 pooka Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.93 2007/08/05 10:19:23 pooka Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121
122 /*
123 * uao_swhash_elt: when a hash table is being used, this structure defines
124 * the format of an entry in the bucket list.
125 */
126
127 struct uao_swhash_elt {
128 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
129 voff_t tag; /* our 'tag' */
130 int count; /* our number of active slots */
131 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
132 };
133
134 /*
135 * uao_swhash: the swap hash table structure
136 */
137
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139
140 /*
141 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145 "uaoeltpl", NULL, IPL_VM);
146
147 /*
148 * uvm_aobj: the actual anon-backed uvm_object
149 *
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
153 */
154
155 struct uvm_aobj {
156 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages; /* number of pages in entire object */
158 int u_flags; /* the flags (see uvm_aobj.h) */
159 int *u_swslots; /* array of offset->swapslot mappings */
160 /*
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
163 */
164 struct uao_swhash *u_swhash;
165 u_long u_swhashmask; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
167 };
168
169 /*
170 * uvm_aobj_pool: pool of uvm_aobj structures
171 */
172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
173 &pool_allocator_nointr, IPL_NONE);
174
175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
176
177 /*
178 * local functions
179 */
180
181 static void uao_free(struct uvm_aobj *);
182 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
183 int *, int, vm_prot_t, int, int);
184 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
185
186 #if defined(VMSWAP)
187 static struct uao_swhash_elt *uao_find_swhash_elt
188 (struct uvm_aobj *, int, bool);
189
190 static bool uao_pagein(struct uvm_aobj *, int, int);
191 static bool uao_pagein_page(struct uvm_aobj *, int);
192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
193 #endif /* defined(VMSWAP) */
194
195 /*
196 * aobj_pager
197 *
198 * note that some functions (e.g. put) are handled elsewhere
199 */
200
201 struct uvm_pagerops aobj_pager = {
202 NULL, /* init */
203 uao_reference, /* reference */
204 uao_detach, /* detach */
205 NULL, /* fault */
206 uao_get, /* get */
207 uao_put, /* flush */
208 };
209
210 /*
211 * uao_list: global list of active aobjs, locked by uao_list_lock
212 */
213
214 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
215 static kmutex_t uao_list_lock;
216
217 /*
218 * functions
219 */
220
221 /*
222 * hash table/array related functions
223 */
224
225 #if defined(VMSWAP)
226
227 /*
228 * uao_find_swhash_elt: find (or create) a hash table entry for a page
229 * offset.
230 *
231 * => the object should be locked by the caller
232 */
233
234 static struct uao_swhash_elt *
235 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
236 {
237 struct uao_swhash *swhash;
238 struct uao_swhash_elt *elt;
239 voff_t page_tag;
240
241 swhash = UAO_SWHASH_HASH(aobj, pageidx);
242 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
243
244 /*
245 * now search the bucket for the requested tag
246 */
247
248 LIST_FOREACH(elt, swhash, list) {
249 if (elt->tag == page_tag) {
250 return elt;
251 }
252 }
253 if (!create) {
254 return NULL;
255 }
256
257 /*
258 * allocate a new entry for the bucket and init/insert it in
259 */
260
261 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
262 if (elt == NULL) {
263 return NULL;
264 }
265 LIST_INSERT_HEAD(swhash, elt, list);
266 elt->tag = page_tag;
267 elt->count = 0;
268 memset(elt->slots, 0, sizeof(elt->slots));
269 return elt;
270 }
271
272 /*
273 * uao_find_swslot: find the swap slot number for an aobj/pageidx
274 *
275 * => object must be locked by caller
276 */
277
278 int
279 uao_find_swslot(struct uvm_object *uobj, int pageidx)
280 {
281 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
282 struct uao_swhash_elt *elt;
283
284 /*
285 * if noswap flag is set, then we never return a slot
286 */
287
288 if (aobj->u_flags & UAO_FLAG_NOSWAP)
289 return(0);
290
291 /*
292 * if hashing, look in hash table.
293 */
294
295 if (UAO_USES_SWHASH(aobj)) {
296 elt = uao_find_swhash_elt(aobj, pageidx, false);
297 if (elt)
298 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
299 else
300 return(0);
301 }
302
303 /*
304 * otherwise, look in the array
305 */
306
307 return(aobj->u_swslots[pageidx]);
308 }
309
310 /*
311 * uao_set_swslot: set the swap slot for a page in an aobj.
312 *
313 * => setting a slot to zero frees the slot
314 * => object must be locked by caller
315 * => we return the old slot number, or -1 if we failed to allocate
316 * memory to record the new slot number
317 */
318
319 int
320 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
321 {
322 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
323 struct uao_swhash_elt *elt;
324 int oldslot;
325 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
326 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
327 aobj, pageidx, slot, 0);
328
329 /*
330 * if noswap flag is set, then we can't set a non-zero slot.
331 */
332
333 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
334 if (slot == 0)
335 return(0);
336
337 printf("uao_set_swslot: uobj = %p\n", uobj);
338 panic("uao_set_swslot: NOSWAP object");
339 }
340
341 /*
342 * are we using a hash table? if so, add it in the hash.
343 */
344
345 if (UAO_USES_SWHASH(aobj)) {
346
347 /*
348 * Avoid allocating an entry just to free it again if
349 * the page had not swap slot in the first place, and
350 * we are freeing.
351 */
352
353 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
354 if (elt == NULL) {
355 return slot ? -1 : 0;
356 }
357
358 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
359 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
360
361 /*
362 * now adjust the elt's reference counter and free it if we've
363 * dropped it to zero.
364 */
365
366 if (slot) {
367 if (oldslot == 0)
368 elt->count++;
369 } else {
370 if (oldslot)
371 elt->count--;
372
373 if (elt->count == 0) {
374 LIST_REMOVE(elt, list);
375 pool_put(&uao_swhash_elt_pool, elt);
376 }
377 }
378 } else {
379 /* we are using an array */
380 oldslot = aobj->u_swslots[pageidx];
381 aobj->u_swslots[pageidx] = slot;
382 }
383 return (oldslot);
384 }
385
386 #endif /* defined(VMSWAP) */
387
388 /*
389 * end of hash/array functions
390 */
391
392 /*
393 * uao_free: free all resources held by an aobj, and then free the aobj
394 *
395 * => the aobj should be dead
396 */
397
398 static void
399 uao_free(struct uvm_aobj *aobj)
400 {
401 int swpgonlydelta = 0;
402
403 #if defined(VMSWAP)
404 uao_dropswap_range1(aobj, 0, 0);
405 #endif /* defined(VMSWAP) */
406
407 simple_unlock(&aobj->u_obj.vmobjlock);
408
409 #if defined(VMSWAP)
410 if (UAO_USES_SWHASH(aobj)) {
411
412 /*
413 * free the hash table itself.
414 */
415
416 free(aobj->u_swhash, M_UVMAOBJ);
417 } else {
418
419 /*
420 * free the array itsself.
421 */
422
423 free(aobj->u_swslots, M_UVMAOBJ);
424 }
425 #endif /* defined(VMSWAP) */
426
427 /*
428 * finally free the aobj itself
429 */
430
431 pool_put(&uvm_aobj_pool, aobj);
432
433 /*
434 * adjust the counter of pages only in swap for all
435 * the swap slots we've freed.
436 */
437
438 if (swpgonlydelta > 0) {
439 mutex_enter(&uvm_swap_data_lock);
440 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
441 uvmexp.swpgonly -= swpgonlydelta;
442 mutex_exit(&uvm_swap_data_lock);
443 }
444 }
445
446 /*
447 * pager functions
448 */
449
450 /*
451 * uao_create: create an aobj of the given size and return its uvm_object.
452 *
453 * => for normal use, flags are always zero
454 * => for the kernel object, the flags are:
455 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
456 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
457 */
458
459 struct uvm_object *
460 uao_create(vsize_t size, int flags)
461 {
462 static struct uvm_aobj kernel_object_store;
463 static int kobj_alloced = 0;
464 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
465 struct uvm_aobj *aobj;
466 int refs;
467
468 /*
469 * malloc a new aobj unless we are asked for the kernel object
470 */
471
472 if (flags & UAO_FLAG_KERNOBJ) {
473 KASSERT(!kobj_alloced);
474 aobj = &kernel_object_store;
475 aobj->u_pages = pages;
476 aobj->u_flags = UAO_FLAG_NOSWAP;
477 refs = UVM_OBJ_KERN;
478 kobj_alloced = UAO_FLAG_KERNOBJ;
479 } else if (flags & UAO_FLAG_KERNSWAP) {
480 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
481 aobj = &kernel_object_store;
482 kobj_alloced = UAO_FLAG_KERNSWAP;
483 refs = 0xdeadbeaf; /* XXX: gcc */
484 } else {
485 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
486 aobj->u_pages = pages;
487 aobj->u_flags = 0;
488 refs = 1;
489 }
490
491 /*
492 * allocate hash/array if necessary
493 *
494 * note: in the KERNSWAP case no need to worry about locking since
495 * we are still booting we should be the only thread around.
496 */
497
498 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
499 #if defined(VMSWAP)
500 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
501 M_NOWAIT : M_WAITOK;
502
503 /* allocate hash table or array depending on object size */
504 if (UAO_USES_SWHASH(aobj)) {
505 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
506 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
507 if (aobj->u_swhash == NULL)
508 panic("uao_create: hashinit swhash failed");
509 } else {
510 aobj->u_swslots = malloc(pages * sizeof(int),
511 M_UVMAOBJ, mflags);
512 if (aobj->u_swslots == NULL)
513 panic("uao_create: malloc swslots failed");
514 memset(aobj->u_swslots, 0, pages * sizeof(int));
515 }
516 #endif /* defined(VMSWAP) */
517
518 if (flags) {
519 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
520 return(&aobj->u_obj);
521 }
522 }
523
524 /*
525 * init aobj fields
526 */
527
528 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
529
530 /*
531 * now that aobj is ready, add it to the global list
532 */
533
534 mutex_enter(&uao_list_lock);
535 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
536 mutex_exit(&uao_list_lock);
537 return(&aobj->u_obj);
538 }
539
540
541
542 /*
543 * uao_init: set up aobj pager subsystem
544 *
545 * => called at boot time from uvm_pager_init()
546 */
547
548 void
549 uao_init(void)
550 {
551 static int uao_initialized;
552
553 if (uao_initialized)
554 return;
555 uao_initialized = true;
556 LIST_INIT(&uao_list);
557 /* XXXSMP should be adaptive but vmobjlock needs to be too */
558 mutex_init(&uao_list_lock, MUTEX_SPIN, IPL_NONE);
559 }
560
561 /*
562 * uao_reference: add a ref to an aobj
563 *
564 * => aobj must be unlocked
565 * => just lock it and call the locked version
566 */
567
568 void
569 uao_reference(struct uvm_object *uobj)
570 {
571 simple_lock(&uobj->vmobjlock);
572 uao_reference_locked(uobj);
573 simple_unlock(&uobj->vmobjlock);
574 }
575
576 /*
577 * uao_reference_locked: add a ref to an aobj that is already locked
578 *
579 * => aobj must be locked
580 * this needs to be separate from the normal routine
581 * since sometimes we need to add a reference to an aobj when
582 * it's already locked.
583 */
584
585 void
586 uao_reference_locked(struct uvm_object *uobj)
587 {
588 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
589
590 /*
591 * kernel_object already has plenty of references, leave it alone.
592 */
593
594 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
595 return;
596
597 uobj->uo_refs++;
598 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
599 uobj, uobj->uo_refs,0,0);
600 }
601
602 /*
603 * uao_detach: drop a reference to an aobj
604 *
605 * => aobj must be unlocked
606 * => just lock it and call the locked version
607 */
608
609 void
610 uao_detach(struct uvm_object *uobj)
611 {
612 simple_lock(&uobj->vmobjlock);
613 uao_detach_locked(uobj);
614 }
615
616 /*
617 * uao_detach_locked: drop a reference to an aobj
618 *
619 * => aobj must be locked, and is unlocked (or freed) upon return.
620 * this needs to be separate from the normal routine
621 * since sometimes we need to detach from an aobj when
622 * it's already locked.
623 */
624
625 void
626 uao_detach_locked(struct uvm_object *uobj)
627 {
628 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
629 struct vm_page *pg;
630 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
631
632 /*
633 * detaching from kernel_object is a noop.
634 */
635
636 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
637 simple_unlock(&uobj->vmobjlock);
638 return;
639 }
640
641 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
642 uobj->uo_refs--;
643 if (uobj->uo_refs) {
644 simple_unlock(&uobj->vmobjlock);
645 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
646 return;
647 }
648
649 /*
650 * remove the aobj from the global list.
651 */
652
653 mutex_enter(&uao_list_lock);
654 LIST_REMOVE(aobj, u_list);
655 mutex_exit(&uao_list_lock);
656
657 /*
658 * free all the pages left in the aobj. for each page,
659 * when the page is no longer busy (and thus after any disk i/o that
660 * it's involved in is complete), release any swap resources and
661 * free the page itself.
662 */
663
664 uvm_lock_pageq();
665 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
666 pmap_page_protect(pg, VM_PROT_NONE);
667 if (pg->flags & PG_BUSY) {
668 pg->flags |= PG_WANTED;
669 uvm_unlock_pageq();
670 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
671 "uao_det", 0);
672 simple_lock(&uobj->vmobjlock);
673 uvm_lock_pageq();
674 continue;
675 }
676 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
677 uvm_pagefree(pg);
678 }
679 uvm_unlock_pageq();
680
681 /*
682 * finally, free the aobj itself.
683 */
684
685 uao_free(aobj);
686 }
687
688 /*
689 * uao_put: flush pages out of a uvm object
690 *
691 * => object should be locked by caller. we may _unlock_ the object
692 * if (and only if) we need to clean a page (PGO_CLEANIT).
693 * XXXJRT Currently, however, we don't. In the case of cleaning
694 * XXXJRT a page, we simply just deactivate it. Should probably
695 * XXXJRT handle this better, in the future (although "flushing"
696 * XXXJRT anonymous memory isn't terribly important).
697 * => if PGO_CLEANIT is not set, then we will neither unlock the object
698 * or block.
699 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
700 * for flushing.
701 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
702 * that new pages are inserted on the tail end of the list. thus,
703 * we can make a complete pass through the object in one go by starting
704 * at the head and working towards the tail (new pages are put in
705 * front of us).
706 * => NOTE: we are allowed to lock the page queues, so the caller
707 * must not be holding the lock on them [e.g. pagedaemon had
708 * better not call us with the queues locked]
709 * => we return 0 unless we encountered some sort of I/O error
710 * XXXJRT currently never happens, as we never directly initiate
711 * XXXJRT I/O
712 *
713 * note on page traversal:
714 * we can traverse the pages in an object either by going down the
715 * linked list in "uobj->memq", or we can go over the address range
716 * by page doing hash table lookups for each address. depending
717 * on how many pages are in the object it may be cheaper to do one
718 * or the other. we set "by_list" to true if we are using memq.
719 * if the cost of a hash lookup was equal to the cost of the list
720 * traversal we could compare the number of pages in the start->stop
721 * range to the total number of pages in the object. however, it
722 * seems that a hash table lookup is more expensive than the linked
723 * list traversal, so we multiply the number of pages in the
724 * start->stop range by a penalty which we define below.
725 */
726
727 static int
728 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
729 {
730 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
731 struct vm_page *pg, *nextpg, curmp, endmp;
732 bool by_list;
733 voff_t curoff;
734 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
735
736 curoff = 0;
737 if (flags & PGO_ALLPAGES) {
738 start = 0;
739 stop = aobj->u_pages << PAGE_SHIFT;
740 by_list = true; /* always go by the list */
741 } else {
742 start = trunc_page(start);
743 if (stop == 0) {
744 stop = aobj->u_pages << PAGE_SHIFT;
745 } else {
746 stop = round_page(stop);
747 }
748 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
749 printf("uao_flush: strange, got an out of range "
750 "flush (fixed)\n");
751 stop = aobj->u_pages << PAGE_SHIFT;
752 }
753 by_list = (uobj->uo_npages <=
754 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
755 }
756 UVMHIST_LOG(maphist,
757 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
758 start, stop, by_list, flags);
759
760 /*
761 * Don't need to do any work here if we're not freeing
762 * or deactivating pages.
763 */
764
765 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
766 simple_unlock(&uobj->vmobjlock);
767 return 0;
768 }
769
770 /*
771 * Initialize the marker pages. See the comment in
772 * genfs_putpages() also.
773 */
774
775 curmp.uobject = uobj;
776 curmp.offset = (voff_t)-1;
777 curmp.flags = PG_BUSY;
778 endmp.uobject = uobj;
779 endmp.offset = (voff_t)-1;
780 endmp.flags = PG_BUSY;
781
782 /*
783 * now do it. note: we must update nextpg in the body of loop or we
784 * will get stuck. we need to use nextpg if we'll traverse the list
785 * because we may free "pg" before doing the next loop.
786 */
787
788 if (by_list) {
789 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
790 nextpg = TAILQ_FIRST(&uobj->memq);
791 uvm_lwp_hold(curlwp);
792 } else {
793 curoff = start;
794 nextpg = NULL; /* Quell compiler warning */
795 }
796
797 uvm_lock_pageq();
798
799 /* locked: both page queues and uobj */
800 for (;;) {
801 if (by_list) {
802 pg = nextpg;
803 if (pg == &endmp)
804 break;
805 nextpg = TAILQ_NEXT(pg, listq);
806 if (pg->offset < start || pg->offset >= stop)
807 continue;
808 } else {
809 if (curoff < stop) {
810 pg = uvm_pagelookup(uobj, curoff);
811 curoff += PAGE_SIZE;
812 } else
813 break;
814 if (pg == NULL)
815 continue;
816 }
817 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
818
819 /*
820 * XXX In these first 3 cases, we always just
821 * XXX deactivate the page. We may want to
822 * XXX handle the different cases more specifically
823 * XXX in the future.
824 */
825
826 case PGO_CLEANIT|PGO_FREE:
827 case PGO_CLEANIT|PGO_DEACTIVATE:
828 case PGO_DEACTIVATE:
829 deactivate_it:
830 /* skip the page if it's wired */
831 if (pg->wire_count != 0)
832 continue;
833
834 /* ...and deactivate the page. */
835 pmap_clear_reference(pg);
836 uvm_pagedeactivate(pg);
837 continue;
838
839 case PGO_FREE:
840
841 /*
842 * If there are multiple references to
843 * the object, just deactivate the page.
844 */
845
846 if (uobj->uo_refs > 1)
847 goto deactivate_it;
848
849 /*
850 * wait and try again if the page is busy.
851 * otherwise free the swap slot and the page.
852 */
853
854 pmap_page_protect(pg, VM_PROT_NONE);
855 if (pg->flags & PG_BUSY) {
856 if (by_list) {
857 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
858 }
859 pg->flags |= PG_WANTED;
860 uvm_unlock_pageq();
861 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
862 "uao_put", 0);
863 simple_lock(&uobj->vmobjlock);
864 uvm_lock_pageq();
865 if (by_list) {
866 nextpg = TAILQ_NEXT(&curmp, listq);
867 TAILQ_REMOVE(&uobj->memq, &curmp,
868 listq);
869 } else
870 curoff -= PAGE_SIZE;
871 continue;
872 }
873
874 /*
875 * freeing swapslot here is not strictly necessary.
876 * however, leaving it here doesn't save much
877 * because we need to update swap accounting anyway.
878 */
879
880 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
881 uvm_pagefree(pg);
882 continue;
883 }
884 }
885 uvm_unlock_pageq();
886 if (by_list) {
887 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
888 }
889 simple_unlock(&uobj->vmobjlock);
890 if (by_list) {
891 uvm_lwp_rele(curlwp);
892 }
893 return 0;
894 }
895
896 /*
897 * uao_get: fetch me a page
898 *
899 * we have three cases:
900 * 1: page is resident -> just return the page.
901 * 2: page is zero-fill -> allocate a new page and zero it.
902 * 3: page is swapped out -> fetch the page from swap.
903 *
904 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
905 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
906 * then we will need to return EBUSY.
907 *
908 * => prefer map unlocked (not required)
909 * => object must be locked! we will _unlock_ it before starting any I/O.
910 * => flags: PGO_ALLPAGES: get all of the pages
911 * PGO_LOCKED: fault data structures are locked
912 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
913 * => NOTE: caller must check for released pages!!
914 */
915
916 static int
917 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
918 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
919 {
920 #if defined(VMSWAP)
921 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
922 #endif /* defined(VMSWAP) */
923 voff_t current_offset;
924 struct vm_page *ptmp = NULL; /* Quell compiler warning */
925 int lcv, gotpages, maxpages, swslot, pageidx;
926 bool done;
927 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
928
929 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
930 (struct uvm_aobj *)uobj, offset, flags,0);
931
932 /*
933 * get number of pages
934 */
935
936 maxpages = *npagesp;
937
938 /*
939 * step 1: handled the case where fault data structures are locked.
940 */
941
942 if (flags & PGO_LOCKED) {
943
944 /*
945 * step 1a: get pages that are already resident. only do
946 * this if the data structures are locked (i.e. the first
947 * time through).
948 */
949
950 done = true; /* be optimistic */
951 gotpages = 0; /* # of pages we got so far */
952 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
953 lcv++, current_offset += PAGE_SIZE) {
954 /* do we care about this page? if not, skip it */
955 if (pps[lcv] == PGO_DONTCARE)
956 continue;
957 ptmp = uvm_pagelookup(uobj, current_offset);
958
959 /*
960 * if page is new, attempt to allocate the page,
961 * zero-fill'd.
962 */
963
964 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
965 current_offset >> PAGE_SHIFT) == 0) {
966 ptmp = uvm_pagealloc(uobj, current_offset,
967 NULL, UVM_PGA_ZERO);
968 if (ptmp) {
969 /* new page */
970 ptmp->flags &= ~(PG_FAKE);
971 ptmp->pqflags |= PQ_AOBJ;
972 goto gotpage;
973 }
974 }
975
976 /*
977 * to be useful must get a non-busy page
978 */
979
980 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
981 if (lcv == centeridx ||
982 (flags & PGO_ALLPAGES) != 0)
983 /* need to do a wait or I/O! */
984 done = false;
985 continue;
986 }
987
988 /*
989 * useful page: busy/lock it and plug it in our
990 * result array
991 */
992
993 /* caller must un-busy this page */
994 ptmp->flags |= PG_BUSY;
995 UVM_PAGE_OWN(ptmp, "uao_get1");
996 gotpage:
997 pps[lcv] = ptmp;
998 gotpages++;
999 }
1000
1001 /*
1002 * step 1b: now we've either done everything needed or we
1003 * to unlock and do some waiting or I/O.
1004 */
1005
1006 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1007 *npagesp = gotpages;
1008 if (done)
1009 return 0;
1010 else
1011 return EBUSY;
1012 }
1013
1014 /*
1015 * step 2: get non-resident or busy pages.
1016 * object is locked. data structures are unlocked.
1017 */
1018
1019 if ((flags & PGO_SYNCIO) == 0) {
1020 goto done;
1021 }
1022
1023 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1024 lcv++, current_offset += PAGE_SIZE) {
1025
1026 /*
1027 * - skip over pages we've already gotten or don't want
1028 * - skip over pages we don't _have_ to get
1029 */
1030
1031 if (pps[lcv] != NULL ||
1032 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1033 continue;
1034
1035 pageidx = current_offset >> PAGE_SHIFT;
1036
1037 /*
1038 * we have yet to locate the current page (pps[lcv]). we
1039 * first look for a page that is already at the current offset.
1040 * if we find a page, we check to see if it is busy or
1041 * released. if that is the case, then we sleep on the page
1042 * until it is no longer busy or released and repeat the lookup.
1043 * if the page we found is neither busy nor released, then we
1044 * busy it (so we own it) and plug it into pps[lcv]. this
1045 * 'break's the following while loop and indicates we are
1046 * ready to move on to the next page in the "lcv" loop above.
1047 *
1048 * if we exit the while loop with pps[lcv] still set to NULL,
1049 * then it means that we allocated a new busy/fake/clean page
1050 * ptmp in the object and we need to do I/O to fill in the data.
1051 */
1052
1053 /* top of "pps" while loop */
1054 while (pps[lcv] == NULL) {
1055 /* look for a resident page */
1056 ptmp = uvm_pagelookup(uobj, current_offset);
1057
1058 /* not resident? allocate one now (if we can) */
1059 if (ptmp == NULL) {
1060
1061 ptmp = uvm_pagealloc(uobj, current_offset,
1062 NULL, 0);
1063
1064 /* out of RAM? */
1065 if (ptmp == NULL) {
1066 simple_unlock(&uobj->vmobjlock);
1067 UVMHIST_LOG(pdhist,
1068 "sleeping, ptmp == NULL\n",0,0,0,0);
1069 uvm_wait("uao_getpage");
1070 simple_lock(&uobj->vmobjlock);
1071 continue;
1072 }
1073
1074 /*
1075 * safe with PQ's unlocked: because we just
1076 * alloc'd the page
1077 */
1078
1079 ptmp->pqflags |= PQ_AOBJ;
1080
1081 /*
1082 * got new page ready for I/O. break pps while
1083 * loop. pps[lcv] is still NULL.
1084 */
1085
1086 break;
1087 }
1088
1089 /* page is there, see if we need to wait on it */
1090 if ((ptmp->flags & PG_BUSY) != 0) {
1091 ptmp->flags |= PG_WANTED;
1092 UVMHIST_LOG(pdhist,
1093 "sleeping, ptmp->flags 0x%x\n",
1094 ptmp->flags,0,0,0);
1095 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1096 false, "uao_get", 0);
1097 simple_lock(&uobj->vmobjlock);
1098 continue;
1099 }
1100
1101 /*
1102 * if we get here then the page has become resident and
1103 * unbusy between steps 1 and 2. we busy it now (so we
1104 * own it) and set pps[lcv] (so that we exit the while
1105 * loop).
1106 */
1107
1108 /* we own it, caller must un-busy */
1109 ptmp->flags |= PG_BUSY;
1110 UVM_PAGE_OWN(ptmp, "uao_get2");
1111 pps[lcv] = ptmp;
1112 }
1113
1114 /*
1115 * if we own the valid page at the correct offset, pps[lcv] will
1116 * point to it. nothing more to do except go to the next page.
1117 */
1118
1119 if (pps[lcv])
1120 continue; /* next lcv */
1121
1122 /*
1123 * we have a "fake/busy/clean" page that we just allocated.
1124 * do the needed "i/o", either reading from swap or zeroing.
1125 */
1126
1127 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1128
1129 /*
1130 * just zero the page if there's nothing in swap.
1131 */
1132
1133 if (swslot == 0) {
1134
1135 /*
1136 * page hasn't existed before, just zero it.
1137 */
1138
1139 uvm_pagezero(ptmp);
1140 } else {
1141 #if defined(VMSWAP)
1142 int error;
1143
1144 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1145 swslot, 0,0,0);
1146
1147 /*
1148 * page in the swapped-out page.
1149 * unlock object for i/o, relock when done.
1150 */
1151
1152 simple_unlock(&uobj->vmobjlock);
1153 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1154 simple_lock(&uobj->vmobjlock);
1155
1156 /*
1157 * I/O done. check for errors.
1158 */
1159
1160 if (error != 0) {
1161 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1162 error,0,0,0);
1163 if (ptmp->flags & PG_WANTED)
1164 wakeup(ptmp);
1165
1166 /*
1167 * remove the swap slot from the aobj
1168 * and mark the aobj as having no real slot.
1169 * don't free the swap slot, thus preventing
1170 * it from being used again.
1171 */
1172
1173 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1174 SWSLOT_BAD);
1175 if (swslot > 0) {
1176 uvm_swap_markbad(swslot, 1);
1177 }
1178
1179 uvm_lock_pageq();
1180 uvm_pagefree(ptmp);
1181 uvm_unlock_pageq();
1182 simple_unlock(&uobj->vmobjlock);
1183 return error;
1184 }
1185 #else /* defined(VMSWAP) */
1186 panic("%s: pagein", __func__);
1187 #endif /* defined(VMSWAP) */
1188 }
1189
1190 if ((access_type & VM_PROT_WRITE) == 0) {
1191 ptmp->flags |= PG_CLEAN;
1192 pmap_clear_modify(ptmp);
1193 }
1194
1195 /*
1196 * we got the page! clear the fake flag (indicates valid
1197 * data now in page) and plug into our result array. note
1198 * that page is still busy.
1199 *
1200 * it is the callers job to:
1201 * => check if the page is released
1202 * => unbusy the page
1203 * => activate the page
1204 */
1205
1206 ptmp->flags &= ~PG_FAKE;
1207 pps[lcv] = ptmp;
1208 }
1209
1210 /*
1211 * finally, unlock object and return.
1212 */
1213
1214 done:
1215 simple_unlock(&uobj->vmobjlock);
1216 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1217 return 0;
1218 }
1219
1220 #if defined(VMSWAP)
1221
1222 /*
1223 * uao_dropswap: release any swap resources from this aobj page.
1224 *
1225 * => aobj must be locked or have a reference count of 0.
1226 */
1227
1228 void
1229 uao_dropswap(struct uvm_object *uobj, int pageidx)
1230 {
1231 int slot;
1232
1233 slot = uao_set_swslot(uobj, pageidx, 0);
1234 if (slot) {
1235 uvm_swap_free(slot, 1);
1236 }
1237 }
1238
1239 /*
1240 * page in every page in every aobj that is paged-out to a range of swslots.
1241 *
1242 * => nothing should be locked.
1243 * => returns true if pagein was aborted due to lack of memory.
1244 */
1245
1246 bool
1247 uao_swap_off(int startslot, int endslot)
1248 {
1249 struct uvm_aobj *aobj, *nextaobj;
1250 bool rv;
1251
1252 /*
1253 * walk the list of all aobjs.
1254 */
1255
1256 restart:
1257 mutex_enter(&uao_list_lock);
1258 for (aobj = LIST_FIRST(&uao_list);
1259 aobj != NULL;
1260 aobj = nextaobj) {
1261
1262 /*
1263 * try to get the object lock, start all over if we fail.
1264 * most of the time we'll get the aobj lock,
1265 * so this should be a rare case.
1266 */
1267
1268 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1269 mutex_exit(&uao_list_lock);
1270 goto restart;
1271 }
1272
1273 /*
1274 * add a ref to the aobj so it doesn't disappear
1275 * while we're working.
1276 */
1277
1278 uao_reference_locked(&aobj->u_obj);
1279
1280 /*
1281 * now it's safe to unlock the uao list.
1282 */
1283
1284 mutex_exit(&uao_list_lock);
1285
1286 /*
1287 * page in any pages in the swslot range.
1288 * if there's an error, abort and return the error.
1289 */
1290
1291 rv = uao_pagein(aobj, startslot, endslot);
1292 if (rv) {
1293 uao_detach_locked(&aobj->u_obj);
1294 return rv;
1295 }
1296
1297 /*
1298 * we're done with this aobj.
1299 * relock the list and drop our ref on the aobj.
1300 */
1301
1302 mutex_enter(&uao_list_lock);
1303 nextaobj = LIST_NEXT(aobj, u_list);
1304 uao_detach_locked(&aobj->u_obj);
1305 }
1306
1307 /*
1308 * done with traversal, unlock the list
1309 */
1310 mutex_exit(&uao_list_lock);
1311 return false;
1312 }
1313
1314
1315 /*
1316 * page in any pages from aobj in the given range.
1317 *
1318 * => aobj must be locked and is returned locked.
1319 * => returns true if pagein was aborted due to lack of memory.
1320 */
1321 static bool
1322 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1323 {
1324 bool rv;
1325
1326 if (UAO_USES_SWHASH(aobj)) {
1327 struct uao_swhash_elt *elt;
1328 int buck;
1329
1330 restart:
1331 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1332 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1333 elt != NULL;
1334 elt = LIST_NEXT(elt, list)) {
1335 int i;
1336
1337 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1338 int slot = elt->slots[i];
1339
1340 /*
1341 * if the slot isn't in range, skip it.
1342 */
1343
1344 if (slot < startslot ||
1345 slot >= endslot) {
1346 continue;
1347 }
1348
1349 /*
1350 * process the page,
1351 * the start over on this object
1352 * since the swhash elt
1353 * may have been freed.
1354 */
1355
1356 rv = uao_pagein_page(aobj,
1357 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1358 if (rv) {
1359 return rv;
1360 }
1361 goto restart;
1362 }
1363 }
1364 }
1365 } else {
1366 int i;
1367
1368 for (i = 0; i < aobj->u_pages; i++) {
1369 int slot = aobj->u_swslots[i];
1370
1371 /*
1372 * if the slot isn't in range, skip it
1373 */
1374
1375 if (slot < startslot || slot >= endslot) {
1376 continue;
1377 }
1378
1379 /*
1380 * process the page.
1381 */
1382
1383 rv = uao_pagein_page(aobj, i);
1384 if (rv) {
1385 return rv;
1386 }
1387 }
1388 }
1389
1390 return false;
1391 }
1392
1393 /*
1394 * page in a page from an aobj. used for swap_off.
1395 * returns true if pagein was aborted due to lack of memory.
1396 *
1397 * => aobj must be locked and is returned locked.
1398 */
1399
1400 static bool
1401 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1402 {
1403 struct vm_page *pg;
1404 int rv, npages;
1405
1406 pg = NULL;
1407 npages = 1;
1408 /* locked: aobj */
1409 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1410 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1411 /* unlocked: aobj */
1412
1413 /*
1414 * relock and finish up.
1415 */
1416
1417 simple_lock(&aobj->u_obj.vmobjlock);
1418 switch (rv) {
1419 case 0:
1420 break;
1421
1422 case EIO:
1423 case ERESTART:
1424
1425 /*
1426 * nothing more to do on errors.
1427 * ERESTART can only mean that the anon was freed,
1428 * so again there's nothing to do.
1429 */
1430
1431 return false;
1432
1433 default:
1434 return true;
1435 }
1436
1437 /*
1438 * ok, we've got the page now.
1439 * mark it as dirty, clear its swslot and un-busy it.
1440 */
1441 uao_dropswap(&aobj->u_obj, pageidx);
1442
1443 /*
1444 * make sure it's on a page queue.
1445 */
1446 uvm_lock_pageq();
1447 if (pg->wire_count == 0)
1448 uvm_pageenqueue(pg);
1449 uvm_unlock_pageq();
1450
1451 if (pg->flags & PG_WANTED) {
1452 wakeup(pg);
1453 }
1454 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1455 UVM_PAGE_OWN(pg, NULL);
1456
1457 return false;
1458 }
1459
1460 /*
1461 * uao_dropswap_range: drop swapslots in the range.
1462 *
1463 * => aobj must be locked and is returned locked.
1464 * => start is inclusive. end is exclusive.
1465 */
1466
1467 void
1468 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1469 {
1470 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1471
1472 LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
1473
1474 uao_dropswap_range1(aobj, start, end);
1475 }
1476
1477 static void
1478 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1479 {
1480 int swpgonlydelta = 0;
1481
1482 if (end == 0) {
1483 end = INT64_MAX;
1484 }
1485
1486 if (UAO_USES_SWHASH(aobj)) {
1487 int i, hashbuckets = aobj->u_swhashmask + 1;
1488 voff_t taghi;
1489 voff_t taglo;
1490
1491 taglo = UAO_SWHASH_ELT_TAG(start);
1492 taghi = UAO_SWHASH_ELT_TAG(end);
1493
1494 for (i = 0; i < hashbuckets; i++) {
1495 struct uao_swhash_elt *elt, *next;
1496
1497 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1498 elt != NULL;
1499 elt = next) {
1500 int startidx, endidx;
1501 int j;
1502
1503 next = LIST_NEXT(elt, list);
1504
1505 if (elt->tag < taglo || taghi < elt->tag) {
1506 continue;
1507 }
1508
1509 if (elt->tag == taglo) {
1510 startidx =
1511 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1512 } else {
1513 startidx = 0;
1514 }
1515
1516 if (elt->tag == taghi) {
1517 endidx =
1518 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1519 } else {
1520 endidx = UAO_SWHASH_CLUSTER_SIZE;
1521 }
1522
1523 for (j = startidx; j < endidx; j++) {
1524 int slot = elt->slots[j];
1525
1526 KASSERT(uvm_pagelookup(&aobj->u_obj,
1527 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1528 + j) << PAGE_SHIFT) == NULL);
1529 if (slot > 0) {
1530 uvm_swap_free(slot, 1);
1531 swpgonlydelta++;
1532 KASSERT(elt->count > 0);
1533 elt->slots[j] = 0;
1534 elt->count--;
1535 }
1536 }
1537
1538 if (elt->count == 0) {
1539 LIST_REMOVE(elt, list);
1540 pool_put(&uao_swhash_elt_pool, elt);
1541 }
1542 }
1543 }
1544 } else {
1545 int i;
1546
1547 if (aobj->u_pages < end) {
1548 end = aobj->u_pages;
1549 }
1550 for (i = start; i < end; i++) {
1551 int slot = aobj->u_swslots[i];
1552
1553 if (slot > 0) {
1554 uvm_swap_free(slot, 1);
1555 swpgonlydelta++;
1556 }
1557 }
1558 }
1559
1560 /*
1561 * adjust the counter of pages only in swap for all
1562 * the swap slots we've freed.
1563 */
1564
1565 if (swpgonlydelta > 0) {
1566 mutex_enter(&uvm_swap_data_lock);
1567 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1568 uvmexp.swpgonly -= swpgonlydelta;
1569 mutex_exit(&uvm_swap_data_lock);
1570 }
1571 }
1572
1573 #endif /* defined(VMSWAP) */
1574