uvm_aobj.c revision 1.96 1 /* $NetBSD: uvm_aobj.c,v 1.96 2008/01/02 11:49:15 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.96 2008/01/02 11:49:15 ad Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121
122 /*
123 * uao_swhash_elt: when a hash table is being used, this structure defines
124 * the format of an entry in the bucket list.
125 */
126
127 struct uao_swhash_elt {
128 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
129 voff_t tag; /* our 'tag' */
130 int count; /* our number of active slots */
131 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
132 };
133
134 /*
135 * uao_swhash: the swap hash table structure
136 */
137
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139
140 /*
141 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145 "uaoeltpl", NULL, IPL_VM);
146
147 /*
148 * uvm_aobj: the actual anon-backed uvm_object
149 *
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
153 */
154
155 struct uvm_aobj {
156 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages; /* number of pages in entire object */
158 int u_flags; /* the flags (see uvm_aobj.h) */
159 int *u_swslots; /* array of offset->swapslot mappings */
160 /*
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
163 */
164 struct uao_swhash *u_swhash;
165 u_long u_swhashmask; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
167 };
168
169 /*
170 * uvm_aobj_pool: pool of uvm_aobj structures
171 */
172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
173 &pool_allocator_nointr, IPL_NONE);
174
175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
176
177 /*
178 * local functions
179 */
180
181 static void uao_free(struct uvm_aobj *);
182 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
183 int *, int, vm_prot_t, int, int);
184 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
185
186 #if defined(VMSWAP)
187 static struct uao_swhash_elt *uao_find_swhash_elt
188 (struct uvm_aobj *, int, bool);
189
190 static bool uao_pagein(struct uvm_aobj *, int, int);
191 static bool uao_pagein_page(struct uvm_aobj *, int);
192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
193 #endif /* defined(VMSWAP) */
194
195 /*
196 * aobj_pager
197 *
198 * note that some functions (e.g. put) are handled elsewhere
199 */
200
201 const struct uvm_pagerops aobj_pager = {
202 .pgo_reference = uao_reference,
203 .pgo_detach = uao_detach,
204 .pgo_get = uao_get,
205 .pgo_put = uao_put,
206 };
207
208 /*
209 * uao_list: global list of active aobjs, locked by uao_list_lock
210 */
211
212 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
213 static kmutex_t uao_list_lock;
214
215 /*
216 * functions
217 */
218
219 /*
220 * hash table/array related functions
221 */
222
223 #if defined(VMSWAP)
224
225 /*
226 * uao_find_swhash_elt: find (or create) a hash table entry for a page
227 * offset.
228 *
229 * => the object should be locked by the caller
230 */
231
232 static struct uao_swhash_elt *
233 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
234 {
235 struct uao_swhash *swhash;
236 struct uao_swhash_elt *elt;
237 voff_t page_tag;
238
239 swhash = UAO_SWHASH_HASH(aobj, pageidx);
240 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
241
242 /*
243 * now search the bucket for the requested tag
244 */
245
246 LIST_FOREACH(elt, swhash, list) {
247 if (elt->tag == page_tag) {
248 return elt;
249 }
250 }
251 if (!create) {
252 return NULL;
253 }
254
255 /*
256 * allocate a new entry for the bucket and init/insert it in
257 */
258
259 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
260 if (elt == NULL) {
261 return NULL;
262 }
263 LIST_INSERT_HEAD(swhash, elt, list);
264 elt->tag = page_tag;
265 elt->count = 0;
266 memset(elt->slots, 0, sizeof(elt->slots));
267 return elt;
268 }
269
270 /*
271 * uao_find_swslot: find the swap slot number for an aobj/pageidx
272 *
273 * => object must be locked by caller
274 */
275
276 int
277 uao_find_swslot(struct uvm_object *uobj, int pageidx)
278 {
279 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
280 struct uao_swhash_elt *elt;
281
282 /*
283 * if noswap flag is set, then we never return a slot
284 */
285
286 if (aobj->u_flags & UAO_FLAG_NOSWAP)
287 return(0);
288
289 /*
290 * if hashing, look in hash table.
291 */
292
293 if (UAO_USES_SWHASH(aobj)) {
294 elt = uao_find_swhash_elt(aobj, pageidx, false);
295 if (elt)
296 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
297 else
298 return(0);
299 }
300
301 /*
302 * otherwise, look in the array
303 */
304
305 return(aobj->u_swslots[pageidx]);
306 }
307
308 /*
309 * uao_set_swslot: set the swap slot for a page in an aobj.
310 *
311 * => setting a slot to zero frees the slot
312 * => object must be locked by caller
313 * => we return the old slot number, or -1 if we failed to allocate
314 * memory to record the new slot number
315 */
316
317 int
318 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
319 {
320 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
321 struct uao_swhash_elt *elt;
322 int oldslot;
323 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
324 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
325 aobj, pageidx, slot, 0);
326
327 /*
328 * if noswap flag is set, then we can't set a non-zero slot.
329 */
330
331 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
332 if (slot == 0)
333 return(0);
334
335 printf("uao_set_swslot: uobj = %p\n", uobj);
336 panic("uao_set_swslot: NOSWAP object");
337 }
338
339 /*
340 * are we using a hash table? if so, add it in the hash.
341 */
342
343 if (UAO_USES_SWHASH(aobj)) {
344
345 /*
346 * Avoid allocating an entry just to free it again if
347 * the page had not swap slot in the first place, and
348 * we are freeing.
349 */
350
351 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
352 if (elt == NULL) {
353 return slot ? -1 : 0;
354 }
355
356 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
357 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
358
359 /*
360 * now adjust the elt's reference counter and free it if we've
361 * dropped it to zero.
362 */
363
364 if (slot) {
365 if (oldslot == 0)
366 elt->count++;
367 } else {
368 if (oldslot)
369 elt->count--;
370
371 if (elt->count == 0) {
372 LIST_REMOVE(elt, list);
373 pool_put(&uao_swhash_elt_pool, elt);
374 }
375 }
376 } else {
377 /* we are using an array */
378 oldslot = aobj->u_swslots[pageidx];
379 aobj->u_swslots[pageidx] = slot;
380 }
381 return (oldslot);
382 }
383
384 #endif /* defined(VMSWAP) */
385
386 /*
387 * end of hash/array functions
388 */
389
390 /*
391 * uao_free: free all resources held by an aobj, and then free the aobj
392 *
393 * => the aobj should be dead
394 */
395
396 static void
397 uao_free(struct uvm_aobj *aobj)
398 {
399 int swpgonlydelta = 0;
400
401
402 #if defined(VMSWAP)
403 uao_dropswap_range1(aobj, 0, 0);
404 #endif /* defined(VMSWAP) */
405
406 mutex_exit(&aobj->u_obj.vmobjlock);
407
408 #if defined(VMSWAP)
409 if (UAO_USES_SWHASH(aobj)) {
410
411 /*
412 * free the hash table itself.
413 */
414
415 free(aobj->u_swhash, M_UVMAOBJ);
416 } else {
417
418 /*
419 * free the array itsself.
420 */
421
422 free(aobj->u_swslots, M_UVMAOBJ);
423 }
424 #endif /* defined(VMSWAP) */
425
426 /*
427 * finally free the aobj itself
428 */
429
430 UVM_OBJ_DESTROY(&aobj->u_obj);
431 pool_put(&uvm_aobj_pool, aobj);
432
433 /*
434 * adjust the counter of pages only in swap for all
435 * the swap slots we've freed.
436 */
437
438 if (swpgonlydelta > 0) {
439 mutex_enter(&uvm_swap_data_lock);
440 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
441 uvmexp.swpgonly -= swpgonlydelta;
442 mutex_exit(&uvm_swap_data_lock);
443 }
444 }
445
446 /*
447 * pager functions
448 */
449
450 /*
451 * uao_create: create an aobj of the given size and return its uvm_object.
452 *
453 * => for normal use, flags are always zero
454 * => for the kernel object, the flags are:
455 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
456 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
457 */
458
459 struct uvm_object *
460 uao_create(vsize_t size, int flags)
461 {
462 static struct uvm_aobj kernel_object_store;
463 static int kobj_alloced = 0;
464 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
465 struct uvm_aobj *aobj;
466 int refs;
467
468 /*
469 * malloc a new aobj unless we are asked for the kernel object
470 */
471
472 if (flags & UAO_FLAG_KERNOBJ) {
473 KASSERT(!kobj_alloced);
474 aobj = &kernel_object_store;
475 aobj->u_pages = pages;
476 aobj->u_flags = UAO_FLAG_NOSWAP;
477 refs = UVM_OBJ_KERN;
478 kobj_alloced = UAO_FLAG_KERNOBJ;
479 } else if (flags & UAO_FLAG_KERNSWAP) {
480 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
481 aobj = &kernel_object_store;
482 kobj_alloced = UAO_FLAG_KERNSWAP;
483 refs = 0xdeadbeaf; /* XXX: gcc */
484 } else {
485 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
486 aobj->u_pages = pages;
487 aobj->u_flags = 0;
488 refs = 1;
489 }
490
491 /*
492 * allocate hash/array if necessary
493 *
494 * note: in the KERNSWAP case no need to worry about locking since
495 * we are still booting we should be the only thread around.
496 */
497
498 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
499 #if defined(VMSWAP)
500 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
501 M_NOWAIT : M_WAITOK;
502
503 /* allocate hash table or array depending on object size */
504 if (UAO_USES_SWHASH(aobj)) {
505 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
506 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
507 if (aobj->u_swhash == NULL)
508 panic("uao_create: hashinit swhash failed");
509 } else {
510 aobj->u_swslots = malloc(pages * sizeof(int),
511 M_UVMAOBJ, mflags);
512 if (aobj->u_swslots == NULL)
513 panic("uao_create: malloc swslots failed");
514 memset(aobj->u_swslots, 0, pages * sizeof(int));
515 }
516 #endif /* defined(VMSWAP) */
517
518 if (flags) {
519 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
520 return(&aobj->u_obj);
521 }
522 }
523
524 /*
525 * init aobj fields
526 */
527
528 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
529
530 /*
531 * now that aobj is ready, add it to the global list
532 */
533
534 mutex_enter(&uao_list_lock);
535 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
536 mutex_exit(&uao_list_lock);
537 return(&aobj->u_obj);
538 }
539
540
541
542 /*
543 * uao_init: set up aobj pager subsystem
544 *
545 * => called at boot time from uvm_pager_init()
546 */
547
548 void
549 uao_init(void)
550 {
551 static int uao_initialized;
552
553 if (uao_initialized)
554 return;
555 uao_initialized = true;
556 LIST_INIT(&uao_list);
557 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
558 }
559
560 /*
561 * uao_reference: add a ref to an aobj
562 *
563 * => aobj must be unlocked
564 * => just lock it and call the locked version
565 */
566
567 void
568 uao_reference(struct uvm_object *uobj)
569 {
570 mutex_enter(&uobj->vmobjlock);
571 uao_reference_locked(uobj);
572 mutex_exit(&uobj->vmobjlock);
573 }
574
575 /*
576 * uao_reference_locked: add a ref to an aobj that is already locked
577 *
578 * => aobj must be locked
579 * this needs to be separate from the normal routine
580 * since sometimes we need to add a reference to an aobj when
581 * it's already locked.
582 */
583
584 void
585 uao_reference_locked(struct uvm_object *uobj)
586 {
587 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
588
589 /*
590 * kernel_object already has plenty of references, leave it alone.
591 */
592
593 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
594 return;
595
596 uobj->uo_refs++;
597 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
598 uobj, uobj->uo_refs,0,0);
599 }
600
601 /*
602 * uao_detach: drop a reference to an aobj
603 *
604 * => aobj must be unlocked
605 * => just lock it and call the locked version
606 */
607
608 void
609 uao_detach(struct uvm_object *uobj)
610 {
611 mutex_enter(&uobj->vmobjlock);
612 uao_detach_locked(uobj);
613 }
614
615 /*
616 * uao_detach_locked: drop a reference to an aobj
617 *
618 * => aobj must be locked, and is unlocked (or freed) upon return.
619 * this needs to be separate from the normal routine
620 * since sometimes we need to detach from an aobj when
621 * it's already locked.
622 */
623
624 void
625 uao_detach_locked(struct uvm_object *uobj)
626 {
627 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
628 struct vm_page *pg;
629 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
630
631 /*
632 * detaching from kernel_object is a noop.
633 */
634
635 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
636 mutex_exit(&uobj->vmobjlock);
637 return;
638 }
639
640 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
641 uobj->uo_refs--;
642 if (uobj->uo_refs) {
643 mutex_exit(&uobj->vmobjlock);
644 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
645 return;
646 }
647
648 /*
649 * remove the aobj from the global list.
650 */
651
652 mutex_enter(&uao_list_lock);
653 LIST_REMOVE(aobj, u_list);
654 mutex_exit(&uao_list_lock);
655
656 /*
657 * free all the pages left in the aobj. for each page,
658 * when the page is no longer busy (and thus after any disk i/o that
659 * it's involved in is complete), release any swap resources and
660 * free the page itself.
661 */
662
663 mutex_enter(&uvm_pageqlock);
664 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
665 pmap_page_protect(pg, VM_PROT_NONE);
666 if (pg->flags & PG_BUSY) {
667 pg->flags |= PG_WANTED;
668 mutex_exit(&uvm_pageqlock);
669 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
670 "uao_det", 0);
671 mutex_enter(&uobj->vmobjlock);
672 mutex_enter(&uvm_pageqlock);
673 continue;
674 }
675 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
676 uvm_pagefree(pg);
677 }
678 mutex_exit(&uvm_pageqlock);
679
680 /*
681 * finally, free the aobj itself.
682 */
683
684 uao_free(aobj);
685 }
686
687 /*
688 * uao_put: flush pages out of a uvm object
689 *
690 * => object should be locked by caller. we may _unlock_ the object
691 * if (and only if) we need to clean a page (PGO_CLEANIT).
692 * XXXJRT Currently, however, we don't. In the case of cleaning
693 * XXXJRT a page, we simply just deactivate it. Should probably
694 * XXXJRT handle this better, in the future (although "flushing"
695 * XXXJRT anonymous memory isn't terribly important).
696 * => if PGO_CLEANIT is not set, then we will neither unlock the object
697 * or block.
698 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
699 * for flushing.
700 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
701 * that new pages are inserted on the tail end of the list. thus,
702 * we can make a complete pass through the object in one go by starting
703 * at the head and working towards the tail (new pages are put in
704 * front of us).
705 * => NOTE: we are allowed to lock the page queues, so the caller
706 * must not be holding the lock on them [e.g. pagedaemon had
707 * better not call us with the queues locked]
708 * => we return 0 unless we encountered some sort of I/O error
709 * XXXJRT currently never happens, as we never directly initiate
710 * XXXJRT I/O
711 *
712 * note on page traversal:
713 * we can traverse the pages in an object either by going down the
714 * linked list in "uobj->memq", or we can go over the address range
715 * by page doing hash table lookups for each address. depending
716 * on how many pages are in the object it may be cheaper to do one
717 * or the other. we set "by_list" to true if we are using memq.
718 * if the cost of a hash lookup was equal to the cost of the list
719 * traversal we could compare the number of pages in the start->stop
720 * range to the total number of pages in the object. however, it
721 * seems that a hash table lookup is more expensive than the linked
722 * list traversal, so we multiply the number of pages in the
723 * start->stop range by a penalty which we define below.
724 */
725
726 static int
727 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
728 {
729 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
730 struct vm_page *pg, *nextpg, curmp, endmp;
731 bool by_list;
732 voff_t curoff;
733 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
734
735 KASSERT(mutex_owned(&uobj->vmobjlock));
736
737 curoff = 0;
738 if (flags & PGO_ALLPAGES) {
739 start = 0;
740 stop = aobj->u_pages << PAGE_SHIFT;
741 by_list = true; /* always go by the list */
742 } else {
743 start = trunc_page(start);
744 if (stop == 0) {
745 stop = aobj->u_pages << PAGE_SHIFT;
746 } else {
747 stop = round_page(stop);
748 }
749 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
750 printf("uao_flush: strange, got an out of range "
751 "flush (fixed)\n");
752 stop = aobj->u_pages << PAGE_SHIFT;
753 }
754 by_list = (uobj->uo_npages <=
755 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
756 }
757 UVMHIST_LOG(maphist,
758 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
759 start, stop, by_list, flags);
760
761 /*
762 * Don't need to do any work here if we're not freeing
763 * or deactivating pages.
764 */
765
766 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
767 mutex_exit(&uobj->vmobjlock);
768 return 0;
769 }
770
771 /*
772 * Initialize the marker pages. See the comment in
773 * genfs_putpages() also.
774 */
775
776 curmp.uobject = uobj;
777 curmp.offset = (voff_t)-1;
778 curmp.flags = PG_BUSY;
779 endmp.uobject = uobj;
780 endmp.offset = (voff_t)-1;
781 endmp.flags = PG_BUSY;
782
783 /*
784 * now do it. note: we must update nextpg in the body of loop or we
785 * will get stuck. we need to use nextpg if we'll traverse the list
786 * because we may free "pg" before doing the next loop.
787 */
788
789 if (by_list) {
790 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
791 nextpg = TAILQ_FIRST(&uobj->memq);
792 uvm_lwp_hold(curlwp);
793 } else {
794 curoff = start;
795 nextpg = NULL; /* Quell compiler warning */
796 }
797
798 mutex_enter(&uvm_pageqlock);
799
800 /* locked: both page queues and uobj */
801 for (;;) {
802 if (by_list) {
803 pg = nextpg;
804 if (pg == &endmp)
805 break;
806 nextpg = TAILQ_NEXT(pg, listq);
807 if (pg->offset < start || pg->offset >= stop)
808 continue;
809 } else {
810 if (curoff < stop) {
811 pg = uvm_pagelookup(uobj, curoff);
812 curoff += PAGE_SIZE;
813 } else
814 break;
815 if (pg == NULL)
816 continue;
817 }
818 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
819
820 /*
821 * XXX In these first 3 cases, we always just
822 * XXX deactivate the page. We may want to
823 * XXX handle the different cases more specifically
824 * XXX in the future.
825 */
826
827 case PGO_CLEANIT|PGO_FREE:
828 case PGO_CLEANIT|PGO_DEACTIVATE:
829 case PGO_DEACTIVATE:
830 deactivate_it:
831 /* skip the page if it's wired */
832 if (pg->wire_count != 0)
833 continue;
834
835 /* ...and deactivate the page. */
836 pmap_clear_reference(pg);
837 uvm_pagedeactivate(pg);
838 continue;
839
840 case PGO_FREE:
841
842 /*
843 * If there are multiple references to
844 * the object, just deactivate the page.
845 */
846
847 if (uobj->uo_refs > 1)
848 goto deactivate_it;
849
850 /*
851 * wait and try again if the page is busy.
852 * otherwise free the swap slot and the page.
853 */
854
855 pmap_page_protect(pg, VM_PROT_NONE);
856 if (pg->flags & PG_BUSY) {
857 if (by_list) {
858 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
859 }
860 pg->flags |= PG_WANTED;
861 mutex_exit(&uvm_pageqlock);
862 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
863 "uao_put", 0);
864 mutex_enter(&uobj->vmobjlock);
865 mutex_enter(&uvm_pageqlock);
866 if (by_list) {
867 nextpg = TAILQ_NEXT(&curmp, listq);
868 TAILQ_REMOVE(&uobj->memq, &curmp,
869 listq);
870 } else
871 curoff -= PAGE_SIZE;
872 continue;
873 }
874
875 /*
876 * freeing swapslot here is not strictly necessary.
877 * however, leaving it here doesn't save much
878 * because we need to update swap accounting anyway.
879 */
880
881 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
882 uvm_pagefree(pg);
883 continue;
884 }
885 }
886 mutex_exit(&uvm_pageqlock);
887 if (by_list) {
888 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
889 uvm_lwp_rele(curlwp);
890 }
891 mutex_exit(&uobj->vmobjlock);
892 return 0;
893 }
894
895 /*
896 * uao_get: fetch me a page
897 *
898 * we have three cases:
899 * 1: page is resident -> just return the page.
900 * 2: page is zero-fill -> allocate a new page and zero it.
901 * 3: page is swapped out -> fetch the page from swap.
902 *
903 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
904 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
905 * then we will need to return EBUSY.
906 *
907 * => prefer map unlocked (not required)
908 * => object must be locked! we will _unlock_ it before starting any I/O.
909 * => flags: PGO_ALLPAGES: get all of the pages
910 * PGO_LOCKED: fault data structures are locked
911 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
912 * => NOTE: caller must check for released pages!!
913 */
914
915 static int
916 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
917 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
918 {
919 #if defined(VMSWAP)
920 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
921 #endif /* defined(VMSWAP) */
922 voff_t current_offset;
923 struct vm_page *ptmp = NULL; /* Quell compiler warning */
924 int lcv, gotpages, maxpages, swslot, pageidx;
925 bool done;
926 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
927
928 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
929 (struct uvm_aobj *)uobj, offset, flags,0);
930
931 /*
932 * get number of pages
933 */
934
935 maxpages = *npagesp;
936
937 /*
938 * step 1: handled the case where fault data structures are locked.
939 */
940
941 if (flags & PGO_LOCKED) {
942
943 /*
944 * step 1a: get pages that are already resident. only do
945 * this if the data structures are locked (i.e. the first
946 * time through).
947 */
948
949 done = true; /* be optimistic */
950 gotpages = 0; /* # of pages we got so far */
951 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
952 lcv++, current_offset += PAGE_SIZE) {
953 /* do we care about this page? if not, skip it */
954 if (pps[lcv] == PGO_DONTCARE)
955 continue;
956 ptmp = uvm_pagelookup(uobj, current_offset);
957
958 /*
959 * if page is new, attempt to allocate the page,
960 * zero-fill'd.
961 */
962
963 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
964 current_offset >> PAGE_SHIFT) == 0) {
965 ptmp = uvm_pagealloc(uobj, current_offset,
966 NULL, UVM_PGA_ZERO);
967 if (ptmp) {
968 /* new page */
969 ptmp->flags &= ~(PG_FAKE);
970 ptmp->pqflags |= PQ_AOBJ;
971 goto gotpage;
972 }
973 }
974
975 /*
976 * to be useful must get a non-busy page
977 */
978
979 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
980 if (lcv == centeridx ||
981 (flags & PGO_ALLPAGES) != 0)
982 /* need to do a wait or I/O! */
983 done = false;
984 continue;
985 }
986
987 /*
988 * useful page: busy/lock it and plug it in our
989 * result array
990 */
991
992 /* caller must un-busy this page */
993 ptmp->flags |= PG_BUSY;
994 UVM_PAGE_OWN(ptmp, "uao_get1");
995 gotpage:
996 pps[lcv] = ptmp;
997 gotpages++;
998 }
999
1000 /*
1001 * step 1b: now we've either done everything needed or we
1002 * to unlock and do some waiting or I/O.
1003 */
1004
1005 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1006 *npagesp = gotpages;
1007 if (done)
1008 return 0;
1009 else
1010 return EBUSY;
1011 }
1012
1013 /*
1014 * step 2: get non-resident or busy pages.
1015 * object is locked. data structures are unlocked.
1016 */
1017
1018 if ((flags & PGO_SYNCIO) == 0) {
1019 goto done;
1020 }
1021
1022 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1023 lcv++, current_offset += PAGE_SIZE) {
1024
1025 /*
1026 * - skip over pages we've already gotten or don't want
1027 * - skip over pages we don't _have_ to get
1028 */
1029
1030 if (pps[lcv] != NULL ||
1031 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1032 continue;
1033
1034 pageidx = current_offset >> PAGE_SHIFT;
1035
1036 /*
1037 * we have yet to locate the current page (pps[lcv]). we
1038 * first look for a page that is already at the current offset.
1039 * if we find a page, we check to see if it is busy or
1040 * released. if that is the case, then we sleep on the page
1041 * until it is no longer busy or released and repeat the lookup.
1042 * if the page we found is neither busy nor released, then we
1043 * busy it (so we own it) and plug it into pps[lcv]. this
1044 * 'break's the following while loop and indicates we are
1045 * ready to move on to the next page in the "lcv" loop above.
1046 *
1047 * if we exit the while loop with pps[lcv] still set to NULL,
1048 * then it means that we allocated a new busy/fake/clean page
1049 * ptmp in the object and we need to do I/O to fill in the data.
1050 */
1051
1052 /* top of "pps" while loop */
1053 while (pps[lcv] == NULL) {
1054 /* look for a resident page */
1055 ptmp = uvm_pagelookup(uobj, current_offset);
1056
1057 /* not resident? allocate one now (if we can) */
1058 if (ptmp == NULL) {
1059
1060 ptmp = uvm_pagealloc(uobj, current_offset,
1061 NULL, 0);
1062
1063 /* out of RAM? */
1064 if (ptmp == NULL) {
1065 mutex_exit(&uobj->vmobjlock);
1066 UVMHIST_LOG(pdhist,
1067 "sleeping, ptmp == NULL\n",0,0,0,0);
1068 uvm_wait("uao_getpage");
1069 mutex_enter(&uobj->vmobjlock);
1070 continue;
1071 }
1072
1073 /*
1074 * safe with PQ's unlocked: because we just
1075 * alloc'd the page
1076 */
1077
1078 ptmp->pqflags |= PQ_AOBJ;
1079
1080 /*
1081 * got new page ready for I/O. break pps while
1082 * loop. pps[lcv] is still NULL.
1083 */
1084
1085 break;
1086 }
1087
1088 /* page is there, see if we need to wait on it */
1089 if ((ptmp->flags & PG_BUSY) != 0) {
1090 ptmp->flags |= PG_WANTED;
1091 UVMHIST_LOG(pdhist,
1092 "sleeping, ptmp->flags 0x%x\n",
1093 ptmp->flags,0,0,0);
1094 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1095 false, "uao_get", 0);
1096 mutex_enter(&uobj->vmobjlock);
1097 continue;
1098 }
1099
1100 /*
1101 * if we get here then the page has become resident and
1102 * unbusy between steps 1 and 2. we busy it now (so we
1103 * own it) and set pps[lcv] (so that we exit the while
1104 * loop).
1105 */
1106
1107 /* we own it, caller must un-busy */
1108 ptmp->flags |= PG_BUSY;
1109 UVM_PAGE_OWN(ptmp, "uao_get2");
1110 pps[lcv] = ptmp;
1111 }
1112
1113 /*
1114 * if we own the valid page at the correct offset, pps[lcv] will
1115 * point to it. nothing more to do except go to the next page.
1116 */
1117
1118 if (pps[lcv])
1119 continue; /* next lcv */
1120
1121 /*
1122 * we have a "fake/busy/clean" page that we just allocated.
1123 * do the needed "i/o", either reading from swap or zeroing.
1124 */
1125
1126 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1127
1128 /*
1129 * just zero the page if there's nothing in swap.
1130 */
1131
1132 if (swslot == 0) {
1133
1134 /*
1135 * page hasn't existed before, just zero it.
1136 */
1137
1138 uvm_pagezero(ptmp);
1139 } else {
1140 #if defined(VMSWAP)
1141 int error;
1142
1143 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1144 swslot, 0,0,0);
1145
1146 /*
1147 * page in the swapped-out page.
1148 * unlock object for i/o, relock when done.
1149 */
1150
1151 mutex_exit(&uobj->vmobjlock);
1152 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1153 mutex_enter(&uobj->vmobjlock);
1154
1155 /*
1156 * I/O done. check for errors.
1157 */
1158
1159 if (error != 0) {
1160 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1161 error,0,0,0);
1162 if (ptmp->flags & PG_WANTED)
1163 wakeup(ptmp);
1164
1165 /*
1166 * remove the swap slot from the aobj
1167 * and mark the aobj as having no real slot.
1168 * don't free the swap slot, thus preventing
1169 * it from being used again.
1170 */
1171
1172 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1173 SWSLOT_BAD);
1174 if (swslot > 0) {
1175 uvm_swap_markbad(swslot, 1);
1176 }
1177
1178 mutex_enter(&uvm_pageqlock);
1179 uvm_pagefree(ptmp);
1180 mutex_exit(&uvm_pageqlock);
1181 mutex_exit(&uobj->vmobjlock);
1182 return error;
1183 }
1184 #else /* defined(VMSWAP) */
1185 panic("%s: pagein", __func__);
1186 #endif /* defined(VMSWAP) */
1187 }
1188
1189 if ((access_type & VM_PROT_WRITE) == 0) {
1190 ptmp->flags |= PG_CLEAN;
1191 pmap_clear_modify(ptmp);
1192 }
1193
1194 /*
1195 * we got the page! clear the fake flag (indicates valid
1196 * data now in page) and plug into our result array. note
1197 * that page is still busy.
1198 *
1199 * it is the callers job to:
1200 * => check if the page is released
1201 * => unbusy the page
1202 * => activate the page
1203 */
1204
1205 ptmp->flags &= ~PG_FAKE;
1206 pps[lcv] = ptmp;
1207 }
1208
1209 /*
1210 * finally, unlock object and return.
1211 */
1212
1213 done:
1214 mutex_exit(&uobj->vmobjlock);
1215 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1216 return 0;
1217 }
1218
1219 #if defined(VMSWAP)
1220
1221 /*
1222 * uao_dropswap: release any swap resources from this aobj page.
1223 *
1224 * => aobj must be locked or have a reference count of 0.
1225 */
1226
1227 void
1228 uao_dropswap(struct uvm_object *uobj, int pageidx)
1229 {
1230 int slot;
1231
1232 slot = uao_set_swslot(uobj, pageidx, 0);
1233 if (slot) {
1234 uvm_swap_free(slot, 1);
1235 }
1236 }
1237
1238 /*
1239 * page in every page in every aobj that is paged-out to a range of swslots.
1240 *
1241 * => nothing should be locked.
1242 * => returns true if pagein was aborted due to lack of memory.
1243 */
1244
1245 bool
1246 uao_swap_off(int startslot, int endslot)
1247 {
1248 struct uvm_aobj *aobj, *nextaobj;
1249 bool rv;
1250
1251 /*
1252 * walk the list of all aobjs.
1253 */
1254
1255 restart:
1256 mutex_enter(&uao_list_lock);
1257 for (aobj = LIST_FIRST(&uao_list);
1258 aobj != NULL;
1259 aobj = nextaobj) {
1260
1261 /*
1262 * try to get the object lock, start all over if we fail.
1263 * most of the time we'll get the aobj lock,
1264 * so this should be a rare case.
1265 */
1266
1267 if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1268 mutex_exit(&uao_list_lock);
1269 /* XXX Better than yielding but inadequate. */
1270 kpause("livelock", false, 1, NULL);
1271 goto restart;
1272 }
1273
1274 /*
1275 * add a ref to the aobj so it doesn't disappear
1276 * while we're working.
1277 */
1278
1279 uao_reference_locked(&aobj->u_obj);
1280
1281 /*
1282 * now it's safe to unlock the uao list.
1283 */
1284
1285 mutex_exit(&uao_list_lock);
1286
1287 /*
1288 * page in any pages in the swslot range.
1289 * if there's an error, abort and return the error.
1290 */
1291
1292 rv = uao_pagein(aobj, startslot, endslot);
1293 if (rv) {
1294 uao_detach_locked(&aobj->u_obj);
1295 return rv;
1296 }
1297
1298 /*
1299 * we're done with this aobj.
1300 * relock the list and drop our ref on the aobj.
1301 */
1302
1303 mutex_enter(&uao_list_lock);
1304 nextaobj = LIST_NEXT(aobj, u_list);
1305 uao_detach_locked(&aobj->u_obj);
1306 }
1307
1308 /*
1309 * done with traversal, unlock the list
1310 */
1311 mutex_exit(&uao_list_lock);
1312 return false;
1313 }
1314
1315
1316 /*
1317 * page in any pages from aobj in the given range.
1318 *
1319 * => aobj must be locked and is returned locked.
1320 * => returns true if pagein was aborted due to lack of memory.
1321 */
1322 static bool
1323 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1324 {
1325 bool rv;
1326
1327 if (UAO_USES_SWHASH(aobj)) {
1328 struct uao_swhash_elt *elt;
1329 int buck;
1330
1331 restart:
1332 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1333 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1334 elt != NULL;
1335 elt = LIST_NEXT(elt, list)) {
1336 int i;
1337
1338 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1339 int slot = elt->slots[i];
1340
1341 /*
1342 * if the slot isn't in range, skip it.
1343 */
1344
1345 if (slot < startslot ||
1346 slot >= endslot) {
1347 continue;
1348 }
1349
1350 /*
1351 * process the page,
1352 * the start over on this object
1353 * since the swhash elt
1354 * may have been freed.
1355 */
1356
1357 rv = uao_pagein_page(aobj,
1358 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1359 if (rv) {
1360 return rv;
1361 }
1362 goto restart;
1363 }
1364 }
1365 }
1366 } else {
1367 int i;
1368
1369 for (i = 0; i < aobj->u_pages; i++) {
1370 int slot = aobj->u_swslots[i];
1371
1372 /*
1373 * if the slot isn't in range, skip it
1374 */
1375
1376 if (slot < startslot || slot >= endslot) {
1377 continue;
1378 }
1379
1380 /*
1381 * process the page.
1382 */
1383
1384 rv = uao_pagein_page(aobj, i);
1385 if (rv) {
1386 return rv;
1387 }
1388 }
1389 }
1390
1391 return false;
1392 }
1393
1394 /*
1395 * page in a page from an aobj. used for swap_off.
1396 * returns true if pagein was aborted due to lack of memory.
1397 *
1398 * => aobj must be locked and is returned locked.
1399 */
1400
1401 static bool
1402 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1403 {
1404 struct vm_page *pg;
1405 int rv, npages;
1406
1407 pg = NULL;
1408 npages = 1;
1409 /* locked: aobj */
1410 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1411 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1412 /* unlocked: aobj */
1413
1414 /*
1415 * relock and finish up.
1416 */
1417
1418 mutex_enter(&aobj->u_obj.vmobjlock);
1419 switch (rv) {
1420 case 0:
1421 break;
1422
1423 case EIO:
1424 case ERESTART:
1425
1426 /*
1427 * nothing more to do on errors.
1428 * ERESTART can only mean that the anon was freed,
1429 * so again there's nothing to do.
1430 */
1431
1432 return false;
1433
1434 default:
1435 return true;
1436 }
1437
1438 /*
1439 * ok, we've got the page now.
1440 * mark it as dirty, clear its swslot and un-busy it.
1441 */
1442 uao_dropswap(&aobj->u_obj, pageidx);
1443
1444 /*
1445 * make sure it's on a page queue.
1446 */
1447 mutex_enter(&uvm_pageqlock);
1448 if (pg->wire_count == 0)
1449 uvm_pageenqueue(pg);
1450 mutex_exit(&uvm_pageqlock);
1451
1452 if (pg->flags & PG_WANTED) {
1453 wakeup(pg);
1454 }
1455 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1456 UVM_PAGE_OWN(pg, NULL);
1457
1458 return false;
1459 }
1460
1461 /*
1462 * uao_dropswap_range: drop swapslots in the range.
1463 *
1464 * => aobj must be locked and is returned locked.
1465 * => start is inclusive. end is exclusive.
1466 */
1467
1468 void
1469 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1470 {
1471 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1472
1473 KASSERT(mutex_owned(&uobj->vmobjlock));
1474
1475 uao_dropswap_range1(aobj, start, end);
1476 }
1477
1478 static void
1479 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1480 {
1481 int swpgonlydelta = 0;
1482
1483 if (end == 0) {
1484 end = INT64_MAX;
1485 }
1486
1487 if (UAO_USES_SWHASH(aobj)) {
1488 int i, hashbuckets = aobj->u_swhashmask + 1;
1489 voff_t taghi;
1490 voff_t taglo;
1491
1492 taglo = UAO_SWHASH_ELT_TAG(start);
1493 taghi = UAO_SWHASH_ELT_TAG(end);
1494
1495 for (i = 0; i < hashbuckets; i++) {
1496 struct uao_swhash_elt *elt, *next;
1497
1498 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1499 elt != NULL;
1500 elt = next) {
1501 int startidx, endidx;
1502 int j;
1503
1504 next = LIST_NEXT(elt, list);
1505
1506 if (elt->tag < taglo || taghi < elt->tag) {
1507 continue;
1508 }
1509
1510 if (elt->tag == taglo) {
1511 startidx =
1512 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1513 } else {
1514 startidx = 0;
1515 }
1516
1517 if (elt->tag == taghi) {
1518 endidx =
1519 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1520 } else {
1521 endidx = UAO_SWHASH_CLUSTER_SIZE;
1522 }
1523
1524 for (j = startidx; j < endidx; j++) {
1525 int slot = elt->slots[j];
1526
1527 KASSERT(uvm_pagelookup(&aobj->u_obj,
1528 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1529 + j) << PAGE_SHIFT) == NULL);
1530 if (slot > 0) {
1531 uvm_swap_free(slot, 1);
1532 swpgonlydelta++;
1533 KASSERT(elt->count > 0);
1534 elt->slots[j] = 0;
1535 elt->count--;
1536 }
1537 }
1538
1539 if (elt->count == 0) {
1540 LIST_REMOVE(elt, list);
1541 pool_put(&uao_swhash_elt_pool, elt);
1542 }
1543 }
1544 }
1545 } else {
1546 int i;
1547
1548 if (aobj->u_pages < end) {
1549 end = aobj->u_pages;
1550 }
1551 for (i = start; i < end; i++) {
1552 int slot = aobj->u_swslots[i];
1553
1554 if (slot > 0) {
1555 uvm_swap_free(slot, 1);
1556 swpgonlydelta++;
1557 }
1558 }
1559 }
1560
1561 /*
1562 * adjust the counter of pages only in swap for all
1563 * the swap slots we've freed.
1564 */
1565
1566 if (swpgonlydelta > 0) {
1567 mutex_enter(&uvm_swap_data_lock);
1568 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1569 uvmexp.swpgonly -= swpgonlydelta;
1570 mutex_exit(&uvm_swap_data_lock);
1571 }
1572 }
1573
1574 #endif /* defined(VMSWAP) */
1575