Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.96
      1 /*	$NetBSD: uvm_aobj.c,v 1.96 2008/01/02 11:49:15 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.96 2008/01/02 11:49:15 ad Exp $");
     47 
     48 #include "opt_uvmhist.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/proc.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/pool.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     61  * to keeping the list of resident pages, it also keeps a list of
     62  * allocated swap blocks.  depending on the size of the aobj this list
     63  * of allocated swap blocks is either stored in an array (small objects)
     64  * or in a hash table (large objects).
     65  */
     66 
     67 /*
     68  * local structures
     69  */
     70 
     71 /*
     72  * for hash tables, we break the address space of the aobj into blocks
     73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     74  * be a power of two.
     75  */
     76 
     77 #define UAO_SWHASH_CLUSTER_SHIFT 4
     78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     79 
     80 /* get the "tag" for this page index */
     81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     83 
     84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
     85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     86 
     87 /* given an ELT and a page index, find the swap slot */
     88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
     90 
     91 /* given an ELT, return its pageidx base */
     92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     94 
     95 /*
     96  * the swhash hash function
     97  */
     98 
     99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
    100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
    101 			    & (AOBJ)->u_swhashmask)])
    102 
    103 /*
    104  * the swhash threshhold determines if we will use an array or a
    105  * hash table to store the list of allocated swap blocks.
    106  */
    107 
    108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    109 #define UAO_USES_SWHASH(AOBJ) \
    110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    111 
    112 /*
    113  * the number of buckets in a swhash, with an upper bound
    114  */
    115 
    116 #define UAO_SWHASH_MAXBUCKETS 256
    117 #define UAO_SWHASH_BUCKETS(AOBJ) \
    118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    119 	     UAO_SWHASH_MAXBUCKETS))
    120 
    121 
    122 /*
    123  * uao_swhash_elt: when a hash table is being used, this structure defines
    124  * the format of an entry in the bucket list.
    125  */
    126 
    127 struct uao_swhash_elt {
    128 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    129 	voff_t tag;				/* our 'tag' */
    130 	int count;				/* our number of active slots */
    131 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    132 };
    133 
    134 /*
    135  * uao_swhash: the swap hash table structure
    136  */
    137 
    138 LIST_HEAD(uao_swhash, uao_swhash_elt);
    139 
    140 /*
    141  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    142  * NOTE: Pages for this pool must not come from a pageable kernel map!
    143  */
    144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
    145     "uaoeltpl", NULL, IPL_VM);
    146 
    147 /*
    148  * uvm_aobj: the actual anon-backed uvm_object
    149  *
    150  * => the uvm_object is at the top of the structure, this allows
    151  *   (struct uvm_aobj *) == (struct uvm_object *)
    152  * => only one of u_swslots and u_swhash is used in any given aobj
    153  */
    154 
    155 struct uvm_aobj {
    156 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    157 	pgoff_t u_pages;	 /* number of pages in entire object */
    158 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    159 	int *u_swslots;		 /* array of offset->swapslot mappings */
    160 				 /*
    161 				  * hashtable of offset->swapslot mappings
    162 				  * (u_swhash is an array of bucket heads)
    163 				  */
    164 	struct uao_swhash *u_swhash;
    165 	u_long u_swhashmask;		/* mask for hashtable */
    166 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    167 };
    168 
    169 /*
    170  * uvm_aobj_pool: pool of uvm_aobj structures
    171  */
    172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
    173     &pool_allocator_nointr, IPL_NONE);
    174 
    175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
    176 
    177 /*
    178  * local functions
    179  */
    180 
    181 static void	uao_free(struct uvm_aobj *);
    182 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    183 		    int *, int, vm_prot_t, int, int);
    184 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    185 
    186 #if defined(VMSWAP)
    187 static struct uao_swhash_elt *uao_find_swhash_elt
    188     (struct uvm_aobj *, int, bool);
    189 
    190 static bool uao_pagein(struct uvm_aobj *, int, int);
    191 static bool uao_pagein_page(struct uvm_aobj *, int);
    192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
    193 #endif /* defined(VMSWAP) */
    194 
    195 /*
    196  * aobj_pager
    197  *
    198  * note that some functions (e.g. put) are handled elsewhere
    199  */
    200 
    201 const struct uvm_pagerops aobj_pager = {
    202 	.pgo_reference = uao_reference,
    203 	.pgo_detach = uao_detach,
    204 	.pgo_get = uao_get,
    205 	.pgo_put = uao_put,
    206 };
    207 
    208 /*
    209  * uao_list: global list of active aobjs, locked by uao_list_lock
    210  */
    211 
    212 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    213 static kmutex_t uao_list_lock;
    214 
    215 /*
    216  * functions
    217  */
    218 
    219 /*
    220  * hash table/array related functions
    221  */
    222 
    223 #if defined(VMSWAP)
    224 
    225 /*
    226  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    227  * offset.
    228  *
    229  * => the object should be locked by the caller
    230  */
    231 
    232 static struct uao_swhash_elt *
    233 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    234 {
    235 	struct uao_swhash *swhash;
    236 	struct uao_swhash_elt *elt;
    237 	voff_t page_tag;
    238 
    239 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    240 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    241 
    242 	/*
    243 	 * now search the bucket for the requested tag
    244 	 */
    245 
    246 	LIST_FOREACH(elt, swhash, list) {
    247 		if (elt->tag == page_tag) {
    248 			return elt;
    249 		}
    250 	}
    251 	if (!create) {
    252 		return NULL;
    253 	}
    254 
    255 	/*
    256 	 * allocate a new entry for the bucket and init/insert it in
    257 	 */
    258 
    259 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    260 	if (elt == NULL) {
    261 		return NULL;
    262 	}
    263 	LIST_INSERT_HEAD(swhash, elt, list);
    264 	elt->tag = page_tag;
    265 	elt->count = 0;
    266 	memset(elt->slots, 0, sizeof(elt->slots));
    267 	return elt;
    268 }
    269 
    270 /*
    271  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    272  *
    273  * => object must be locked by caller
    274  */
    275 
    276 int
    277 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    278 {
    279 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    280 	struct uao_swhash_elt *elt;
    281 
    282 	/*
    283 	 * if noswap flag is set, then we never return a slot
    284 	 */
    285 
    286 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    287 		return(0);
    288 
    289 	/*
    290 	 * if hashing, look in hash table.
    291 	 */
    292 
    293 	if (UAO_USES_SWHASH(aobj)) {
    294 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    295 		if (elt)
    296 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    297 		else
    298 			return(0);
    299 	}
    300 
    301 	/*
    302 	 * otherwise, look in the array
    303 	 */
    304 
    305 	return(aobj->u_swslots[pageidx]);
    306 }
    307 
    308 /*
    309  * uao_set_swslot: set the swap slot for a page in an aobj.
    310  *
    311  * => setting a slot to zero frees the slot
    312  * => object must be locked by caller
    313  * => we return the old slot number, or -1 if we failed to allocate
    314  *    memory to record the new slot number
    315  */
    316 
    317 int
    318 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    319 {
    320 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    321 	struct uao_swhash_elt *elt;
    322 	int oldslot;
    323 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    324 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    325 	    aobj, pageidx, slot, 0);
    326 
    327 	/*
    328 	 * if noswap flag is set, then we can't set a non-zero slot.
    329 	 */
    330 
    331 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    332 		if (slot == 0)
    333 			return(0);
    334 
    335 		printf("uao_set_swslot: uobj = %p\n", uobj);
    336 		panic("uao_set_swslot: NOSWAP object");
    337 	}
    338 
    339 	/*
    340 	 * are we using a hash table?  if so, add it in the hash.
    341 	 */
    342 
    343 	if (UAO_USES_SWHASH(aobj)) {
    344 
    345 		/*
    346 		 * Avoid allocating an entry just to free it again if
    347 		 * the page had not swap slot in the first place, and
    348 		 * we are freeing.
    349 		 */
    350 
    351 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    352 		if (elt == NULL) {
    353 			return slot ? -1 : 0;
    354 		}
    355 
    356 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    357 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    358 
    359 		/*
    360 		 * now adjust the elt's reference counter and free it if we've
    361 		 * dropped it to zero.
    362 		 */
    363 
    364 		if (slot) {
    365 			if (oldslot == 0)
    366 				elt->count++;
    367 		} else {
    368 			if (oldslot)
    369 				elt->count--;
    370 
    371 			if (elt->count == 0) {
    372 				LIST_REMOVE(elt, list);
    373 				pool_put(&uao_swhash_elt_pool, elt);
    374 			}
    375 		}
    376 	} else {
    377 		/* we are using an array */
    378 		oldslot = aobj->u_swslots[pageidx];
    379 		aobj->u_swslots[pageidx] = slot;
    380 	}
    381 	return (oldslot);
    382 }
    383 
    384 #endif /* defined(VMSWAP) */
    385 
    386 /*
    387  * end of hash/array functions
    388  */
    389 
    390 /*
    391  * uao_free: free all resources held by an aobj, and then free the aobj
    392  *
    393  * => the aobj should be dead
    394  */
    395 
    396 static void
    397 uao_free(struct uvm_aobj *aobj)
    398 {
    399 	int swpgonlydelta = 0;
    400 
    401 
    402 #if defined(VMSWAP)
    403 	uao_dropswap_range1(aobj, 0, 0);
    404 #endif /* defined(VMSWAP) */
    405 
    406 	mutex_exit(&aobj->u_obj.vmobjlock);
    407 
    408 #if defined(VMSWAP)
    409 	if (UAO_USES_SWHASH(aobj)) {
    410 
    411 		/*
    412 		 * free the hash table itself.
    413 		 */
    414 
    415 		free(aobj->u_swhash, M_UVMAOBJ);
    416 	} else {
    417 
    418 		/*
    419 		 * free the array itsself.
    420 		 */
    421 
    422 		free(aobj->u_swslots, M_UVMAOBJ);
    423 	}
    424 #endif /* defined(VMSWAP) */
    425 
    426 	/*
    427 	 * finally free the aobj itself
    428 	 */
    429 
    430 	UVM_OBJ_DESTROY(&aobj->u_obj);
    431 	pool_put(&uvm_aobj_pool, aobj);
    432 
    433 	/*
    434 	 * adjust the counter of pages only in swap for all
    435 	 * the swap slots we've freed.
    436 	 */
    437 
    438 	if (swpgonlydelta > 0) {
    439 		mutex_enter(&uvm_swap_data_lock);
    440 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    441 		uvmexp.swpgonly -= swpgonlydelta;
    442 		mutex_exit(&uvm_swap_data_lock);
    443 	}
    444 }
    445 
    446 /*
    447  * pager functions
    448  */
    449 
    450 /*
    451  * uao_create: create an aobj of the given size and return its uvm_object.
    452  *
    453  * => for normal use, flags are always zero
    454  * => for the kernel object, the flags are:
    455  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    456  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    457  */
    458 
    459 struct uvm_object *
    460 uao_create(vsize_t size, int flags)
    461 {
    462 	static struct uvm_aobj kernel_object_store;
    463 	static int kobj_alloced = 0;
    464 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    465 	struct uvm_aobj *aobj;
    466 	int refs;
    467 
    468 	/*
    469 	 * malloc a new aobj unless we are asked for the kernel object
    470 	 */
    471 
    472 	if (flags & UAO_FLAG_KERNOBJ) {
    473 		KASSERT(!kobj_alloced);
    474 		aobj = &kernel_object_store;
    475 		aobj->u_pages = pages;
    476 		aobj->u_flags = UAO_FLAG_NOSWAP;
    477 		refs = UVM_OBJ_KERN;
    478 		kobj_alloced = UAO_FLAG_KERNOBJ;
    479 	} else if (flags & UAO_FLAG_KERNSWAP) {
    480 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    481 		aobj = &kernel_object_store;
    482 		kobj_alloced = UAO_FLAG_KERNSWAP;
    483 		refs = 0xdeadbeaf; /* XXX: gcc */
    484 	} else {
    485 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
    486 		aobj->u_pages = pages;
    487 		aobj->u_flags = 0;
    488 		refs = 1;
    489 	}
    490 
    491 	/*
    492  	 * allocate hash/array if necessary
    493  	 *
    494  	 * note: in the KERNSWAP case no need to worry about locking since
    495  	 * we are still booting we should be the only thread around.
    496  	 */
    497 
    498 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    499 #if defined(VMSWAP)
    500 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
    501 		    M_NOWAIT : M_WAITOK;
    502 
    503 		/* allocate hash table or array depending on object size */
    504 		if (UAO_USES_SWHASH(aobj)) {
    505 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    506 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
    507 			if (aobj->u_swhash == NULL)
    508 				panic("uao_create: hashinit swhash failed");
    509 		} else {
    510 			aobj->u_swslots = malloc(pages * sizeof(int),
    511 			    M_UVMAOBJ, mflags);
    512 			if (aobj->u_swslots == NULL)
    513 				panic("uao_create: malloc swslots failed");
    514 			memset(aobj->u_swslots, 0, pages * sizeof(int));
    515 		}
    516 #endif /* defined(VMSWAP) */
    517 
    518 		if (flags) {
    519 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    520 			return(&aobj->u_obj);
    521 		}
    522 	}
    523 
    524 	/*
    525  	 * init aobj fields
    526  	 */
    527 
    528 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
    529 
    530 	/*
    531  	 * now that aobj is ready, add it to the global list
    532  	 */
    533 
    534 	mutex_enter(&uao_list_lock);
    535 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    536 	mutex_exit(&uao_list_lock);
    537 	return(&aobj->u_obj);
    538 }
    539 
    540 
    541 
    542 /*
    543  * uao_init: set up aobj pager subsystem
    544  *
    545  * => called at boot time from uvm_pager_init()
    546  */
    547 
    548 void
    549 uao_init(void)
    550 {
    551 	static int uao_initialized;
    552 
    553 	if (uao_initialized)
    554 		return;
    555 	uao_initialized = true;
    556 	LIST_INIT(&uao_list);
    557 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    558 }
    559 
    560 /*
    561  * uao_reference: add a ref to an aobj
    562  *
    563  * => aobj must be unlocked
    564  * => just lock it and call the locked version
    565  */
    566 
    567 void
    568 uao_reference(struct uvm_object *uobj)
    569 {
    570 	mutex_enter(&uobj->vmobjlock);
    571 	uao_reference_locked(uobj);
    572 	mutex_exit(&uobj->vmobjlock);
    573 }
    574 
    575 /*
    576  * uao_reference_locked: add a ref to an aobj that is already locked
    577  *
    578  * => aobj must be locked
    579  * this needs to be separate from the normal routine
    580  * since sometimes we need to add a reference to an aobj when
    581  * it's already locked.
    582  */
    583 
    584 void
    585 uao_reference_locked(struct uvm_object *uobj)
    586 {
    587 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    588 
    589 	/*
    590  	 * kernel_object already has plenty of references, leave it alone.
    591  	 */
    592 
    593 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    594 		return;
    595 
    596 	uobj->uo_refs++;
    597 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    598 		    uobj, uobj->uo_refs,0,0);
    599 }
    600 
    601 /*
    602  * uao_detach: drop a reference to an aobj
    603  *
    604  * => aobj must be unlocked
    605  * => just lock it and call the locked version
    606  */
    607 
    608 void
    609 uao_detach(struct uvm_object *uobj)
    610 {
    611 	mutex_enter(&uobj->vmobjlock);
    612 	uao_detach_locked(uobj);
    613 }
    614 
    615 /*
    616  * uao_detach_locked: drop a reference to an aobj
    617  *
    618  * => aobj must be locked, and is unlocked (or freed) upon return.
    619  * this needs to be separate from the normal routine
    620  * since sometimes we need to detach from an aobj when
    621  * it's already locked.
    622  */
    623 
    624 void
    625 uao_detach_locked(struct uvm_object *uobj)
    626 {
    627 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    628 	struct vm_page *pg;
    629 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    630 
    631 	/*
    632  	 * detaching from kernel_object is a noop.
    633  	 */
    634 
    635 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    636 		mutex_exit(&uobj->vmobjlock);
    637 		return;
    638 	}
    639 
    640 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    641 	uobj->uo_refs--;
    642 	if (uobj->uo_refs) {
    643 		mutex_exit(&uobj->vmobjlock);
    644 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    645 		return;
    646 	}
    647 
    648 	/*
    649  	 * remove the aobj from the global list.
    650  	 */
    651 
    652 	mutex_enter(&uao_list_lock);
    653 	LIST_REMOVE(aobj, u_list);
    654 	mutex_exit(&uao_list_lock);
    655 
    656 	/*
    657  	 * free all the pages left in the aobj.  for each page,
    658 	 * when the page is no longer busy (and thus after any disk i/o that
    659 	 * it's involved in is complete), release any swap resources and
    660 	 * free the page itself.
    661  	 */
    662 
    663 	mutex_enter(&uvm_pageqlock);
    664 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    665 		pmap_page_protect(pg, VM_PROT_NONE);
    666 		if (pg->flags & PG_BUSY) {
    667 			pg->flags |= PG_WANTED;
    668 			mutex_exit(&uvm_pageqlock);
    669 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
    670 			    "uao_det", 0);
    671 			mutex_enter(&uobj->vmobjlock);
    672 			mutex_enter(&uvm_pageqlock);
    673 			continue;
    674 		}
    675 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    676 		uvm_pagefree(pg);
    677 	}
    678 	mutex_exit(&uvm_pageqlock);
    679 
    680 	/*
    681  	 * finally, free the aobj itself.
    682  	 */
    683 
    684 	uao_free(aobj);
    685 }
    686 
    687 /*
    688  * uao_put: flush pages out of a uvm object
    689  *
    690  * => object should be locked by caller.  we may _unlock_ the object
    691  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    692  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    693  *	XXXJRT a page, we simply just deactivate it.  Should probably
    694  *	XXXJRT handle this better, in the future (although "flushing"
    695  *	XXXJRT anonymous memory isn't terribly important).
    696  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    697  *	or block.
    698  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    699  *	for flushing.
    700  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    701  *	that new pages are inserted on the tail end of the list.  thus,
    702  *	we can make a complete pass through the object in one go by starting
    703  *	at the head and working towards the tail (new pages are put in
    704  *	front of us).
    705  * => NOTE: we are allowed to lock the page queues, so the caller
    706  *	must not be holding the lock on them [e.g. pagedaemon had
    707  *	better not call us with the queues locked]
    708  * => we return 0 unless we encountered some sort of I/O error
    709  *	XXXJRT currently never happens, as we never directly initiate
    710  *	XXXJRT I/O
    711  *
    712  * note on page traversal:
    713  *	we can traverse the pages in an object either by going down the
    714  *	linked list in "uobj->memq", or we can go over the address range
    715  *	by page doing hash table lookups for each address.  depending
    716  *	on how many pages are in the object it may be cheaper to do one
    717  *	or the other.  we set "by_list" to true if we are using memq.
    718  *	if the cost of a hash lookup was equal to the cost of the list
    719  *	traversal we could compare the number of pages in the start->stop
    720  *	range to the total number of pages in the object.  however, it
    721  *	seems that a hash table lookup is more expensive than the linked
    722  *	list traversal, so we multiply the number of pages in the
    723  *	start->stop range by a penalty which we define below.
    724  */
    725 
    726 static int
    727 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    728 {
    729 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    730 	struct vm_page *pg, *nextpg, curmp, endmp;
    731 	bool by_list;
    732 	voff_t curoff;
    733 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    734 
    735 	KASSERT(mutex_owned(&uobj->vmobjlock));
    736 
    737 	curoff = 0;
    738 	if (flags & PGO_ALLPAGES) {
    739 		start = 0;
    740 		stop = aobj->u_pages << PAGE_SHIFT;
    741 		by_list = true;		/* always go by the list */
    742 	} else {
    743 		start = trunc_page(start);
    744 		if (stop == 0) {
    745 			stop = aobj->u_pages << PAGE_SHIFT;
    746 		} else {
    747 			stop = round_page(stop);
    748 		}
    749 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    750 			printf("uao_flush: strange, got an out of range "
    751 			    "flush (fixed)\n");
    752 			stop = aobj->u_pages << PAGE_SHIFT;
    753 		}
    754 		by_list = (uobj->uo_npages <=
    755 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    756 	}
    757 	UVMHIST_LOG(maphist,
    758 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    759 	    start, stop, by_list, flags);
    760 
    761 	/*
    762 	 * Don't need to do any work here if we're not freeing
    763 	 * or deactivating pages.
    764 	 */
    765 
    766 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    767 		mutex_exit(&uobj->vmobjlock);
    768 		return 0;
    769 	}
    770 
    771 	/*
    772 	 * Initialize the marker pages.  See the comment in
    773 	 * genfs_putpages() also.
    774 	 */
    775 
    776 	curmp.uobject = uobj;
    777 	curmp.offset = (voff_t)-1;
    778 	curmp.flags = PG_BUSY;
    779 	endmp.uobject = uobj;
    780 	endmp.offset = (voff_t)-1;
    781 	endmp.flags = PG_BUSY;
    782 
    783 	/*
    784 	 * now do it.  note: we must update nextpg in the body of loop or we
    785 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    786 	 * because we may free "pg" before doing the next loop.
    787 	 */
    788 
    789 	if (by_list) {
    790 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
    791 		nextpg = TAILQ_FIRST(&uobj->memq);
    792 		uvm_lwp_hold(curlwp);
    793 	} else {
    794 		curoff = start;
    795 		nextpg = NULL;	/* Quell compiler warning */
    796 	}
    797 
    798 	mutex_enter(&uvm_pageqlock);
    799 
    800 	/* locked: both page queues and uobj */
    801 	for (;;) {
    802 		if (by_list) {
    803 			pg = nextpg;
    804 			if (pg == &endmp)
    805 				break;
    806 			nextpg = TAILQ_NEXT(pg, listq);
    807 			if (pg->offset < start || pg->offset >= stop)
    808 				continue;
    809 		} else {
    810 			if (curoff < stop) {
    811 				pg = uvm_pagelookup(uobj, curoff);
    812 				curoff += PAGE_SIZE;
    813 			} else
    814 				break;
    815 			if (pg == NULL)
    816 				continue;
    817 		}
    818 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    819 
    820 		/*
    821 		 * XXX In these first 3 cases, we always just
    822 		 * XXX deactivate the page.  We may want to
    823 		 * XXX handle the different cases more specifically
    824 		 * XXX in the future.
    825 		 */
    826 
    827 		case PGO_CLEANIT|PGO_FREE:
    828 		case PGO_CLEANIT|PGO_DEACTIVATE:
    829 		case PGO_DEACTIVATE:
    830  deactivate_it:
    831 			/* skip the page if it's wired */
    832 			if (pg->wire_count != 0)
    833 				continue;
    834 
    835 			/* ...and deactivate the page. */
    836 			pmap_clear_reference(pg);
    837 			uvm_pagedeactivate(pg);
    838 			continue;
    839 
    840 		case PGO_FREE:
    841 
    842 			/*
    843 			 * If there are multiple references to
    844 			 * the object, just deactivate the page.
    845 			 */
    846 
    847 			if (uobj->uo_refs > 1)
    848 				goto deactivate_it;
    849 
    850 			/*
    851 			 * wait and try again if the page is busy.
    852 			 * otherwise free the swap slot and the page.
    853 			 */
    854 
    855 			pmap_page_protect(pg, VM_PROT_NONE);
    856 			if (pg->flags & PG_BUSY) {
    857 				if (by_list) {
    858 					TAILQ_INSERT_BEFORE(pg, &curmp, listq);
    859 				}
    860 				pg->flags |= PG_WANTED;
    861 				mutex_exit(&uvm_pageqlock);
    862 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    863 				    "uao_put", 0);
    864 				mutex_enter(&uobj->vmobjlock);
    865 				mutex_enter(&uvm_pageqlock);
    866 				if (by_list) {
    867 					nextpg = TAILQ_NEXT(&curmp, listq);
    868 					TAILQ_REMOVE(&uobj->memq, &curmp,
    869 					    listq);
    870 				} else
    871 					curoff -= PAGE_SIZE;
    872 				continue;
    873 			}
    874 
    875 			/*
    876 			 * freeing swapslot here is not strictly necessary.
    877 			 * however, leaving it here doesn't save much
    878 			 * because we need to update swap accounting anyway.
    879 			 */
    880 
    881 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    882 			uvm_pagefree(pg);
    883 			continue;
    884 		}
    885 	}
    886 	mutex_exit(&uvm_pageqlock);
    887 	if (by_list) {
    888 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
    889 		uvm_lwp_rele(curlwp);
    890 	}
    891 	mutex_exit(&uobj->vmobjlock);
    892 	return 0;
    893 }
    894 
    895 /*
    896  * uao_get: fetch me a page
    897  *
    898  * we have three cases:
    899  * 1: page is resident     -> just return the page.
    900  * 2: page is zero-fill    -> allocate a new page and zero it.
    901  * 3: page is swapped out  -> fetch the page from swap.
    902  *
    903  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    904  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    905  * then we will need to return EBUSY.
    906  *
    907  * => prefer map unlocked (not required)
    908  * => object must be locked!  we will _unlock_ it before starting any I/O.
    909  * => flags: PGO_ALLPAGES: get all of the pages
    910  *           PGO_LOCKED: fault data structures are locked
    911  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    912  * => NOTE: caller must check for released pages!!
    913  */
    914 
    915 static int
    916 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    917     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    918 {
    919 #if defined(VMSWAP)
    920 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    921 #endif /* defined(VMSWAP) */
    922 	voff_t current_offset;
    923 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    924 	int lcv, gotpages, maxpages, swslot, pageidx;
    925 	bool done;
    926 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    927 
    928 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    929 		    (struct uvm_aobj *)uobj, offset, flags,0);
    930 
    931 	/*
    932  	 * get number of pages
    933  	 */
    934 
    935 	maxpages = *npagesp;
    936 
    937 	/*
    938  	 * step 1: handled the case where fault data structures are locked.
    939  	 */
    940 
    941 	if (flags & PGO_LOCKED) {
    942 
    943 		/*
    944  		 * step 1a: get pages that are already resident.   only do
    945 		 * this if the data structures are locked (i.e. the first
    946 		 * time through).
    947  		 */
    948 
    949 		done = true;	/* be optimistic */
    950 		gotpages = 0;	/* # of pages we got so far */
    951 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    952 		    lcv++, current_offset += PAGE_SIZE) {
    953 			/* do we care about this page?  if not, skip it */
    954 			if (pps[lcv] == PGO_DONTCARE)
    955 				continue;
    956 			ptmp = uvm_pagelookup(uobj, current_offset);
    957 
    958 			/*
    959  			 * if page is new, attempt to allocate the page,
    960 			 * zero-fill'd.
    961  			 */
    962 
    963 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
    964 			    current_offset >> PAGE_SHIFT) == 0) {
    965 				ptmp = uvm_pagealloc(uobj, current_offset,
    966 				    NULL, UVM_PGA_ZERO);
    967 				if (ptmp) {
    968 					/* new page */
    969 					ptmp->flags &= ~(PG_FAKE);
    970 					ptmp->pqflags |= PQ_AOBJ;
    971 					goto gotpage;
    972 				}
    973 			}
    974 
    975 			/*
    976 			 * to be useful must get a non-busy page
    977 			 */
    978 
    979 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    980 				if (lcv == centeridx ||
    981 				    (flags & PGO_ALLPAGES) != 0)
    982 					/* need to do a wait or I/O! */
    983 					done = false;
    984 					continue;
    985 			}
    986 
    987 			/*
    988 			 * useful page: busy/lock it and plug it in our
    989 			 * result array
    990 			 */
    991 
    992 			/* caller must un-busy this page */
    993 			ptmp->flags |= PG_BUSY;
    994 			UVM_PAGE_OWN(ptmp, "uao_get1");
    995 gotpage:
    996 			pps[lcv] = ptmp;
    997 			gotpages++;
    998 		}
    999 
   1000 		/*
   1001  		 * step 1b: now we've either done everything needed or we
   1002 		 * to unlock and do some waiting or I/O.
   1003  		 */
   1004 
   1005 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1006 		*npagesp = gotpages;
   1007 		if (done)
   1008 			return 0;
   1009 		else
   1010 			return EBUSY;
   1011 	}
   1012 
   1013 	/*
   1014  	 * step 2: get non-resident or busy pages.
   1015  	 * object is locked.   data structures are unlocked.
   1016  	 */
   1017 
   1018 	if ((flags & PGO_SYNCIO) == 0) {
   1019 		goto done;
   1020 	}
   1021 
   1022 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1023 	    lcv++, current_offset += PAGE_SIZE) {
   1024 
   1025 		/*
   1026 		 * - skip over pages we've already gotten or don't want
   1027 		 * - skip over pages we don't _have_ to get
   1028 		 */
   1029 
   1030 		if (pps[lcv] != NULL ||
   1031 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1032 			continue;
   1033 
   1034 		pageidx = current_offset >> PAGE_SHIFT;
   1035 
   1036 		/*
   1037  		 * we have yet to locate the current page (pps[lcv]).   we
   1038 		 * first look for a page that is already at the current offset.
   1039 		 * if we find a page, we check to see if it is busy or
   1040 		 * released.  if that is the case, then we sleep on the page
   1041 		 * until it is no longer busy or released and repeat the lookup.
   1042 		 * if the page we found is neither busy nor released, then we
   1043 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1044 		 * 'break's the following while loop and indicates we are
   1045 		 * ready to move on to the next page in the "lcv" loop above.
   1046  		 *
   1047  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1048 		 * then it means that we allocated a new busy/fake/clean page
   1049 		 * ptmp in the object and we need to do I/O to fill in the data.
   1050  		 */
   1051 
   1052 		/* top of "pps" while loop */
   1053 		while (pps[lcv] == NULL) {
   1054 			/* look for a resident page */
   1055 			ptmp = uvm_pagelookup(uobj, current_offset);
   1056 
   1057 			/* not resident?   allocate one now (if we can) */
   1058 			if (ptmp == NULL) {
   1059 
   1060 				ptmp = uvm_pagealloc(uobj, current_offset,
   1061 				    NULL, 0);
   1062 
   1063 				/* out of RAM? */
   1064 				if (ptmp == NULL) {
   1065 					mutex_exit(&uobj->vmobjlock);
   1066 					UVMHIST_LOG(pdhist,
   1067 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1068 					uvm_wait("uao_getpage");
   1069 					mutex_enter(&uobj->vmobjlock);
   1070 					continue;
   1071 				}
   1072 
   1073 				/*
   1074 				 * safe with PQ's unlocked: because we just
   1075 				 * alloc'd the page
   1076 				 */
   1077 
   1078 				ptmp->pqflags |= PQ_AOBJ;
   1079 
   1080 				/*
   1081 				 * got new page ready for I/O.  break pps while
   1082 				 * loop.  pps[lcv] is still NULL.
   1083 				 */
   1084 
   1085 				break;
   1086 			}
   1087 
   1088 			/* page is there, see if we need to wait on it */
   1089 			if ((ptmp->flags & PG_BUSY) != 0) {
   1090 				ptmp->flags |= PG_WANTED;
   1091 				UVMHIST_LOG(pdhist,
   1092 				    "sleeping, ptmp->flags 0x%x\n",
   1093 				    ptmp->flags,0,0,0);
   1094 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1095 				    false, "uao_get", 0);
   1096 				mutex_enter(&uobj->vmobjlock);
   1097 				continue;
   1098 			}
   1099 
   1100 			/*
   1101  			 * if we get here then the page has become resident and
   1102 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1103 			 * own it) and set pps[lcv] (so that we exit the while
   1104 			 * loop).
   1105  			 */
   1106 
   1107 			/* we own it, caller must un-busy */
   1108 			ptmp->flags |= PG_BUSY;
   1109 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1110 			pps[lcv] = ptmp;
   1111 		}
   1112 
   1113 		/*
   1114  		 * if we own the valid page at the correct offset, pps[lcv] will
   1115  		 * point to it.   nothing more to do except go to the next page.
   1116  		 */
   1117 
   1118 		if (pps[lcv])
   1119 			continue;			/* next lcv */
   1120 
   1121 		/*
   1122  		 * we have a "fake/busy/clean" page that we just allocated.
   1123  		 * do the needed "i/o", either reading from swap or zeroing.
   1124  		 */
   1125 
   1126 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1127 
   1128 		/*
   1129  		 * just zero the page if there's nothing in swap.
   1130  		 */
   1131 
   1132 		if (swslot == 0) {
   1133 
   1134 			/*
   1135 			 * page hasn't existed before, just zero it.
   1136 			 */
   1137 
   1138 			uvm_pagezero(ptmp);
   1139 		} else {
   1140 #if defined(VMSWAP)
   1141 			int error;
   1142 
   1143 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1144 			     swslot, 0,0,0);
   1145 
   1146 			/*
   1147 			 * page in the swapped-out page.
   1148 			 * unlock object for i/o, relock when done.
   1149 			 */
   1150 
   1151 			mutex_exit(&uobj->vmobjlock);
   1152 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1153 			mutex_enter(&uobj->vmobjlock);
   1154 
   1155 			/*
   1156 			 * I/O done.  check for errors.
   1157 			 */
   1158 
   1159 			if (error != 0) {
   1160 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1161 				    error,0,0,0);
   1162 				if (ptmp->flags & PG_WANTED)
   1163 					wakeup(ptmp);
   1164 
   1165 				/*
   1166 				 * remove the swap slot from the aobj
   1167 				 * and mark the aobj as having no real slot.
   1168 				 * don't free the swap slot, thus preventing
   1169 				 * it from being used again.
   1170 				 */
   1171 
   1172 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1173 							SWSLOT_BAD);
   1174 				if (swslot > 0) {
   1175 					uvm_swap_markbad(swslot, 1);
   1176 				}
   1177 
   1178 				mutex_enter(&uvm_pageqlock);
   1179 				uvm_pagefree(ptmp);
   1180 				mutex_exit(&uvm_pageqlock);
   1181 				mutex_exit(&uobj->vmobjlock);
   1182 				return error;
   1183 			}
   1184 #else /* defined(VMSWAP) */
   1185 			panic("%s: pagein", __func__);
   1186 #endif /* defined(VMSWAP) */
   1187 		}
   1188 
   1189 		if ((access_type & VM_PROT_WRITE) == 0) {
   1190 			ptmp->flags |= PG_CLEAN;
   1191 			pmap_clear_modify(ptmp);
   1192 		}
   1193 
   1194 		/*
   1195  		 * we got the page!   clear the fake flag (indicates valid
   1196 		 * data now in page) and plug into our result array.   note
   1197 		 * that page is still busy.
   1198  		 *
   1199  		 * it is the callers job to:
   1200  		 * => check if the page is released
   1201  		 * => unbusy the page
   1202  		 * => activate the page
   1203  		 */
   1204 
   1205 		ptmp->flags &= ~PG_FAKE;
   1206 		pps[lcv] = ptmp;
   1207 	}
   1208 
   1209 	/*
   1210  	 * finally, unlock object and return.
   1211  	 */
   1212 
   1213 done:
   1214 	mutex_exit(&uobj->vmobjlock);
   1215 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1216 	return 0;
   1217 }
   1218 
   1219 #if defined(VMSWAP)
   1220 
   1221 /*
   1222  * uao_dropswap:  release any swap resources from this aobj page.
   1223  *
   1224  * => aobj must be locked or have a reference count of 0.
   1225  */
   1226 
   1227 void
   1228 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1229 {
   1230 	int slot;
   1231 
   1232 	slot = uao_set_swslot(uobj, pageidx, 0);
   1233 	if (slot) {
   1234 		uvm_swap_free(slot, 1);
   1235 	}
   1236 }
   1237 
   1238 /*
   1239  * page in every page in every aobj that is paged-out to a range of swslots.
   1240  *
   1241  * => nothing should be locked.
   1242  * => returns true if pagein was aborted due to lack of memory.
   1243  */
   1244 
   1245 bool
   1246 uao_swap_off(int startslot, int endslot)
   1247 {
   1248 	struct uvm_aobj *aobj, *nextaobj;
   1249 	bool rv;
   1250 
   1251 	/*
   1252 	 * walk the list of all aobjs.
   1253 	 */
   1254 
   1255 restart:
   1256 	mutex_enter(&uao_list_lock);
   1257 	for (aobj = LIST_FIRST(&uao_list);
   1258 	     aobj != NULL;
   1259 	     aobj = nextaobj) {
   1260 
   1261 		/*
   1262 		 * try to get the object lock, start all over if we fail.
   1263 		 * most of the time we'll get the aobj lock,
   1264 		 * so this should be a rare case.
   1265 		 */
   1266 
   1267 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
   1268 			mutex_exit(&uao_list_lock);
   1269 			/* XXX Better than yielding but inadequate. */
   1270 			kpause("livelock", false, 1, NULL);
   1271 			goto restart;
   1272 		}
   1273 
   1274 		/*
   1275 		 * add a ref to the aobj so it doesn't disappear
   1276 		 * while we're working.
   1277 		 */
   1278 
   1279 		uao_reference_locked(&aobj->u_obj);
   1280 
   1281 		/*
   1282 		 * now it's safe to unlock the uao list.
   1283 		 */
   1284 
   1285 		mutex_exit(&uao_list_lock);
   1286 
   1287 		/*
   1288 		 * page in any pages in the swslot range.
   1289 		 * if there's an error, abort and return the error.
   1290 		 */
   1291 
   1292 		rv = uao_pagein(aobj, startslot, endslot);
   1293 		if (rv) {
   1294 			uao_detach_locked(&aobj->u_obj);
   1295 			return rv;
   1296 		}
   1297 
   1298 		/*
   1299 		 * we're done with this aobj.
   1300 		 * relock the list and drop our ref on the aobj.
   1301 		 */
   1302 
   1303 		mutex_enter(&uao_list_lock);
   1304 		nextaobj = LIST_NEXT(aobj, u_list);
   1305 		uao_detach_locked(&aobj->u_obj);
   1306 	}
   1307 
   1308 	/*
   1309 	 * done with traversal, unlock the list
   1310 	 */
   1311 	mutex_exit(&uao_list_lock);
   1312 	return false;
   1313 }
   1314 
   1315 
   1316 /*
   1317  * page in any pages from aobj in the given range.
   1318  *
   1319  * => aobj must be locked and is returned locked.
   1320  * => returns true if pagein was aborted due to lack of memory.
   1321  */
   1322 static bool
   1323 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1324 {
   1325 	bool rv;
   1326 
   1327 	if (UAO_USES_SWHASH(aobj)) {
   1328 		struct uao_swhash_elt *elt;
   1329 		int buck;
   1330 
   1331 restart:
   1332 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1333 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1334 			     elt != NULL;
   1335 			     elt = LIST_NEXT(elt, list)) {
   1336 				int i;
   1337 
   1338 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1339 					int slot = elt->slots[i];
   1340 
   1341 					/*
   1342 					 * if the slot isn't in range, skip it.
   1343 					 */
   1344 
   1345 					if (slot < startslot ||
   1346 					    slot >= endslot) {
   1347 						continue;
   1348 					}
   1349 
   1350 					/*
   1351 					 * process the page,
   1352 					 * the start over on this object
   1353 					 * since the swhash elt
   1354 					 * may have been freed.
   1355 					 */
   1356 
   1357 					rv = uao_pagein_page(aobj,
   1358 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1359 					if (rv) {
   1360 						return rv;
   1361 					}
   1362 					goto restart;
   1363 				}
   1364 			}
   1365 		}
   1366 	} else {
   1367 		int i;
   1368 
   1369 		for (i = 0; i < aobj->u_pages; i++) {
   1370 			int slot = aobj->u_swslots[i];
   1371 
   1372 			/*
   1373 			 * if the slot isn't in range, skip it
   1374 			 */
   1375 
   1376 			if (slot < startslot || slot >= endslot) {
   1377 				continue;
   1378 			}
   1379 
   1380 			/*
   1381 			 * process the page.
   1382 			 */
   1383 
   1384 			rv = uao_pagein_page(aobj, i);
   1385 			if (rv) {
   1386 				return rv;
   1387 			}
   1388 		}
   1389 	}
   1390 
   1391 	return false;
   1392 }
   1393 
   1394 /*
   1395  * page in a page from an aobj.  used for swap_off.
   1396  * returns true if pagein was aborted due to lack of memory.
   1397  *
   1398  * => aobj must be locked and is returned locked.
   1399  */
   1400 
   1401 static bool
   1402 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1403 {
   1404 	struct vm_page *pg;
   1405 	int rv, npages;
   1406 
   1407 	pg = NULL;
   1408 	npages = 1;
   1409 	/* locked: aobj */
   1410 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1411 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
   1412 	/* unlocked: aobj */
   1413 
   1414 	/*
   1415 	 * relock and finish up.
   1416 	 */
   1417 
   1418 	mutex_enter(&aobj->u_obj.vmobjlock);
   1419 	switch (rv) {
   1420 	case 0:
   1421 		break;
   1422 
   1423 	case EIO:
   1424 	case ERESTART:
   1425 
   1426 		/*
   1427 		 * nothing more to do on errors.
   1428 		 * ERESTART can only mean that the anon was freed,
   1429 		 * so again there's nothing to do.
   1430 		 */
   1431 
   1432 		return false;
   1433 
   1434 	default:
   1435 		return true;
   1436 	}
   1437 
   1438 	/*
   1439 	 * ok, we've got the page now.
   1440 	 * mark it as dirty, clear its swslot and un-busy it.
   1441 	 */
   1442 	uao_dropswap(&aobj->u_obj, pageidx);
   1443 
   1444 	/*
   1445 	 * make sure it's on a page queue.
   1446 	 */
   1447 	mutex_enter(&uvm_pageqlock);
   1448 	if (pg->wire_count == 0)
   1449 		uvm_pageenqueue(pg);
   1450 	mutex_exit(&uvm_pageqlock);
   1451 
   1452 	if (pg->flags & PG_WANTED) {
   1453 		wakeup(pg);
   1454 	}
   1455 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1456 	UVM_PAGE_OWN(pg, NULL);
   1457 
   1458 	return false;
   1459 }
   1460 
   1461 /*
   1462  * uao_dropswap_range: drop swapslots in the range.
   1463  *
   1464  * => aobj must be locked and is returned locked.
   1465  * => start is inclusive.  end is exclusive.
   1466  */
   1467 
   1468 void
   1469 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1470 {
   1471 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1472 
   1473 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1474 
   1475 	uao_dropswap_range1(aobj, start, end);
   1476 }
   1477 
   1478 static void
   1479 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
   1480 {
   1481 	int swpgonlydelta = 0;
   1482 
   1483 	if (end == 0) {
   1484 		end = INT64_MAX;
   1485 	}
   1486 
   1487 	if (UAO_USES_SWHASH(aobj)) {
   1488 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1489 		voff_t taghi;
   1490 		voff_t taglo;
   1491 
   1492 		taglo = UAO_SWHASH_ELT_TAG(start);
   1493 		taghi = UAO_SWHASH_ELT_TAG(end);
   1494 
   1495 		for (i = 0; i < hashbuckets; i++) {
   1496 			struct uao_swhash_elt *elt, *next;
   1497 
   1498 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1499 			     elt != NULL;
   1500 			     elt = next) {
   1501 				int startidx, endidx;
   1502 				int j;
   1503 
   1504 				next = LIST_NEXT(elt, list);
   1505 
   1506 				if (elt->tag < taglo || taghi < elt->tag) {
   1507 					continue;
   1508 				}
   1509 
   1510 				if (elt->tag == taglo) {
   1511 					startidx =
   1512 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1513 				} else {
   1514 					startidx = 0;
   1515 				}
   1516 
   1517 				if (elt->tag == taghi) {
   1518 					endidx =
   1519 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1520 				} else {
   1521 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1522 				}
   1523 
   1524 				for (j = startidx; j < endidx; j++) {
   1525 					int slot = elt->slots[j];
   1526 
   1527 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1528 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1529 					    + j) << PAGE_SHIFT) == NULL);
   1530 					if (slot > 0) {
   1531 						uvm_swap_free(slot, 1);
   1532 						swpgonlydelta++;
   1533 						KASSERT(elt->count > 0);
   1534 						elt->slots[j] = 0;
   1535 						elt->count--;
   1536 					}
   1537 				}
   1538 
   1539 				if (elt->count == 0) {
   1540 					LIST_REMOVE(elt, list);
   1541 					pool_put(&uao_swhash_elt_pool, elt);
   1542 				}
   1543 			}
   1544 		}
   1545 	} else {
   1546 		int i;
   1547 
   1548 		if (aobj->u_pages < end) {
   1549 			end = aobj->u_pages;
   1550 		}
   1551 		for (i = start; i < end; i++) {
   1552 			int slot = aobj->u_swslots[i];
   1553 
   1554 			if (slot > 0) {
   1555 				uvm_swap_free(slot, 1);
   1556 				swpgonlydelta++;
   1557 			}
   1558 		}
   1559 	}
   1560 
   1561 	/*
   1562 	 * adjust the counter of pages only in swap for all
   1563 	 * the swap slots we've freed.
   1564 	 */
   1565 
   1566 	if (swpgonlydelta > 0) {
   1567 		mutex_enter(&uvm_swap_data_lock);
   1568 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1569 		uvmexp.swpgonly -= swpgonlydelta;
   1570 		mutex_exit(&uvm_swap_data_lock);
   1571 	}
   1572 }
   1573 
   1574 #endif /* defined(VMSWAP) */
   1575