uvm_aobj.c revision 1.97 1 /* $NetBSD: uvm_aobj.c,v 1.97 2008/01/18 10:48:23 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.97 2008/01/18 10:48:23 yamt Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121
122 /*
123 * uao_swhash_elt: when a hash table is being used, this structure defines
124 * the format of an entry in the bucket list.
125 */
126
127 struct uao_swhash_elt {
128 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
129 voff_t tag; /* our 'tag' */
130 int count; /* our number of active slots */
131 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
132 };
133
134 /*
135 * uao_swhash: the swap hash table structure
136 */
137
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139
140 /*
141 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145 "uaoeltpl", NULL, IPL_VM);
146
147 /*
148 * uvm_aobj: the actual anon-backed uvm_object
149 *
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
153 */
154
155 struct uvm_aobj {
156 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages; /* number of pages in entire object */
158 int u_flags; /* the flags (see uvm_aobj.h) */
159 int *u_swslots; /* array of offset->swapslot mappings */
160 /*
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
163 */
164 struct uao_swhash *u_swhash;
165 u_long u_swhashmask; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
167 };
168
169 /*
170 * uvm_aobj_pool: pool of uvm_aobj structures
171 */
172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
173 &pool_allocator_nointr, IPL_NONE);
174
175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
176
177 /*
178 * local functions
179 */
180
181 static void uao_free(struct uvm_aobj *);
182 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
183 int *, int, vm_prot_t, int, int);
184 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
185
186 #if defined(VMSWAP)
187 static struct uao_swhash_elt *uao_find_swhash_elt
188 (struct uvm_aobj *, int, bool);
189
190 static bool uao_pagein(struct uvm_aobj *, int, int);
191 static bool uao_pagein_page(struct uvm_aobj *, int);
192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
193 #endif /* defined(VMSWAP) */
194
195 /*
196 * aobj_pager
197 *
198 * note that some functions (e.g. put) are handled elsewhere
199 */
200
201 const struct uvm_pagerops aobj_pager = {
202 .pgo_reference = uao_reference,
203 .pgo_detach = uao_detach,
204 .pgo_get = uao_get,
205 .pgo_put = uao_put,
206 };
207
208 /*
209 * uao_list: global list of active aobjs, locked by uao_list_lock
210 */
211
212 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
213 static kmutex_t uao_list_lock;
214
215 /*
216 * functions
217 */
218
219 /*
220 * hash table/array related functions
221 */
222
223 #if defined(VMSWAP)
224
225 /*
226 * uao_find_swhash_elt: find (or create) a hash table entry for a page
227 * offset.
228 *
229 * => the object should be locked by the caller
230 */
231
232 static struct uao_swhash_elt *
233 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
234 {
235 struct uao_swhash *swhash;
236 struct uao_swhash_elt *elt;
237 voff_t page_tag;
238
239 swhash = UAO_SWHASH_HASH(aobj, pageidx);
240 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
241
242 /*
243 * now search the bucket for the requested tag
244 */
245
246 LIST_FOREACH(elt, swhash, list) {
247 if (elt->tag == page_tag) {
248 return elt;
249 }
250 }
251 if (!create) {
252 return NULL;
253 }
254
255 /*
256 * allocate a new entry for the bucket and init/insert it in
257 */
258
259 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
260 if (elt == NULL) {
261 return NULL;
262 }
263 LIST_INSERT_HEAD(swhash, elt, list);
264 elt->tag = page_tag;
265 elt->count = 0;
266 memset(elt->slots, 0, sizeof(elt->slots));
267 return elt;
268 }
269
270 /*
271 * uao_find_swslot: find the swap slot number for an aobj/pageidx
272 *
273 * => object must be locked by caller
274 */
275
276 int
277 uao_find_swslot(struct uvm_object *uobj, int pageidx)
278 {
279 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
280 struct uao_swhash_elt *elt;
281
282 /*
283 * if noswap flag is set, then we never return a slot
284 */
285
286 if (aobj->u_flags & UAO_FLAG_NOSWAP)
287 return(0);
288
289 /*
290 * if hashing, look in hash table.
291 */
292
293 if (UAO_USES_SWHASH(aobj)) {
294 elt = uao_find_swhash_elt(aobj, pageidx, false);
295 if (elt)
296 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
297 else
298 return(0);
299 }
300
301 /*
302 * otherwise, look in the array
303 */
304
305 return(aobj->u_swslots[pageidx]);
306 }
307
308 /*
309 * uao_set_swslot: set the swap slot for a page in an aobj.
310 *
311 * => setting a slot to zero frees the slot
312 * => object must be locked by caller
313 * => we return the old slot number, or -1 if we failed to allocate
314 * memory to record the new slot number
315 */
316
317 int
318 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
319 {
320 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
321 struct uao_swhash_elt *elt;
322 int oldslot;
323 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
324 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
325 aobj, pageidx, slot, 0);
326
327 /*
328 * if noswap flag is set, then we can't set a non-zero slot.
329 */
330
331 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
332 if (slot == 0)
333 return(0);
334
335 printf("uao_set_swslot: uobj = %p\n", uobj);
336 panic("uao_set_swslot: NOSWAP object");
337 }
338
339 /*
340 * are we using a hash table? if so, add it in the hash.
341 */
342
343 if (UAO_USES_SWHASH(aobj)) {
344
345 /*
346 * Avoid allocating an entry just to free it again if
347 * the page had not swap slot in the first place, and
348 * we are freeing.
349 */
350
351 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
352 if (elt == NULL) {
353 return slot ? -1 : 0;
354 }
355
356 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
357 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
358
359 /*
360 * now adjust the elt's reference counter and free it if we've
361 * dropped it to zero.
362 */
363
364 if (slot) {
365 if (oldslot == 0)
366 elt->count++;
367 } else {
368 if (oldslot)
369 elt->count--;
370
371 if (elt->count == 0) {
372 LIST_REMOVE(elt, list);
373 pool_put(&uao_swhash_elt_pool, elt);
374 }
375 }
376 } else {
377 /* we are using an array */
378 oldslot = aobj->u_swslots[pageidx];
379 aobj->u_swslots[pageidx] = slot;
380 }
381 return (oldslot);
382 }
383
384 #endif /* defined(VMSWAP) */
385
386 /*
387 * end of hash/array functions
388 */
389
390 /*
391 * uao_free: free all resources held by an aobj, and then free the aobj
392 *
393 * => the aobj should be dead
394 */
395
396 static void
397 uao_free(struct uvm_aobj *aobj)
398 {
399 int swpgonlydelta = 0;
400
401
402 #if defined(VMSWAP)
403 uao_dropswap_range1(aobj, 0, 0);
404 #endif /* defined(VMSWAP) */
405
406 mutex_exit(&aobj->u_obj.vmobjlock);
407
408 #if defined(VMSWAP)
409 if (UAO_USES_SWHASH(aobj)) {
410
411 /*
412 * free the hash table itself.
413 */
414
415 free(aobj->u_swhash, M_UVMAOBJ);
416 } else {
417
418 /*
419 * free the array itsself.
420 */
421
422 free(aobj->u_swslots, M_UVMAOBJ);
423 }
424 #endif /* defined(VMSWAP) */
425
426 /*
427 * finally free the aobj itself
428 */
429
430 UVM_OBJ_DESTROY(&aobj->u_obj);
431 pool_put(&uvm_aobj_pool, aobj);
432
433 /*
434 * adjust the counter of pages only in swap for all
435 * the swap slots we've freed.
436 */
437
438 if (swpgonlydelta > 0) {
439 mutex_enter(&uvm_swap_data_lock);
440 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
441 uvmexp.swpgonly -= swpgonlydelta;
442 mutex_exit(&uvm_swap_data_lock);
443 }
444 }
445
446 /*
447 * pager functions
448 */
449
450 /*
451 * uao_create: create an aobj of the given size and return its uvm_object.
452 *
453 * => for normal use, flags are always zero
454 * => for the kernel object, the flags are:
455 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
456 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
457 */
458
459 struct uvm_object *
460 uao_create(vsize_t size, int flags)
461 {
462 static struct uvm_aobj kernel_object_store;
463 static int kobj_alloced = 0;
464 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
465 struct uvm_aobj *aobj;
466 int refs;
467
468 /*
469 * malloc a new aobj unless we are asked for the kernel object
470 */
471
472 if (flags & UAO_FLAG_KERNOBJ) {
473 KASSERT(!kobj_alloced);
474 aobj = &kernel_object_store;
475 aobj->u_pages = pages;
476 aobj->u_flags = UAO_FLAG_NOSWAP;
477 refs = UVM_OBJ_KERN;
478 kobj_alloced = UAO_FLAG_KERNOBJ;
479 } else if (flags & UAO_FLAG_KERNSWAP) {
480 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
481 aobj = &kernel_object_store;
482 kobj_alloced = UAO_FLAG_KERNSWAP;
483 refs = 0xdeadbeaf; /* XXX: gcc */
484 } else {
485 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
486 aobj->u_pages = pages;
487 aobj->u_flags = 0;
488 refs = 1;
489 }
490
491 /*
492 * allocate hash/array if necessary
493 *
494 * note: in the KERNSWAP case no need to worry about locking since
495 * we are still booting we should be the only thread around.
496 */
497
498 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
499 #if defined(VMSWAP)
500 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
501 M_NOWAIT : M_WAITOK;
502
503 /* allocate hash table or array depending on object size */
504 if (UAO_USES_SWHASH(aobj)) {
505 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
506 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
507 if (aobj->u_swhash == NULL)
508 panic("uao_create: hashinit swhash failed");
509 } else {
510 aobj->u_swslots = malloc(pages * sizeof(int),
511 M_UVMAOBJ, mflags);
512 if (aobj->u_swslots == NULL)
513 panic("uao_create: malloc swslots failed");
514 memset(aobj->u_swslots, 0, pages * sizeof(int));
515 }
516 #endif /* defined(VMSWAP) */
517
518 if (flags) {
519 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
520 return(&aobj->u_obj);
521 }
522 }
523
524 /*
525 * init aobj fields
526 */
527
528 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
529
530 /*
531 * now that aobj is ready, add it to the global list
532 */
533
534 mutex_enter(&uao_list_lock);
535 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
536 mutex_exit(&uao_list_lock);
537 return(&aobj->u_obj);
538 }
539
540
541
542 /*
543 * uao_init: set up aobj pager subsystem
544 *
545 * => called at boot time from uvm_pager_init()
546 */
547
548 void
549 uao_init(void)
550 {
551 static int uao_initialized;
552
553 if (uao_initialized)
554 return;
555 uao_initialized = true;
556 LIST_INIT(&uao_list);
557 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
558 }
559
560 /*
561 * uao_reference: add a ref to an aobj
562 *
563 * => aobj must be unlocked
564 * => just lock it and call the locked version
565 */
566
567 void
568 uao_reference(struct uvm_object *uobj)
569 {
570 mutex_enter(&uobj->vmobjlock);
571 uao_reference_locked(uobj);
572 mutex_exit(&uobj->vmobjlock);
573 }
574
575 /*
576 * uao_reference_locked: add a ref to an aobj that is already locked
577 *
578 * => aobj must be locked
579 * this needs to be separate from the normal routine
580 * since sometimes we need to add a reference to an aobj when
581 * it's already locked.
582 */
583
584 void
585 uao_reference_locked(struct uvm_object *uobj)
586 {
587 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
588
589 /*
590 * kernel_object already has plenty of references, leave it alone.
591 */
592
593 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
594 return;
595
596 uobj->uo_refs++;
597 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
598 uobj, uobj->uo_refs,0,0);
599 }
600
601 /*
602 * uao_detach: drop a reference to an aobj
603 *
604 * => aobj must be unlocked
605 * => just lock it and call the locked version
606 */
607
608 void
609 uao_detach(struct uvm_object *uobj)
610 {
611 mutex_enter(&uobj->vmobjlock);
612 uao_detach_locked(uobj);
613 }
614
615 /*
616 * uao_detach_locked: drop a reference to an aobj
617 *
618 * => aobj must be locked, and is unlocked (or freed) upon return.
619 * this needs to be separate from the normal routine
620 * since sometimes we need to detach from an aobj when
621 * it's already locked.
622 */
623
624 void
625 uao_detach_locked(struct uvm_object *uobj)
626 {
627 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
628 struct vm_page *pg;
629 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
630
631 /*
632 * detaching from kernel_object is a noop.
633 */
634
635 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
636 mutex_exit(&uobj->vmobjlock);
637 return;
638 }
639
640 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
641 uobj->uo_refs--;
642 if (uobj->uo_refs) {
643 mutex_exit(&uobj->vmobjlock);
644 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
645 return;
646 }
647
648 /*
649 * remove the aobj from the global list.
650 */
651
652 mutex_enter(&uao_list_lock);
653 LIST_REMOVE(aobj, u_list);
654 mutex_exit(&uao_list_lock);
655
656 /*
657 * free all the pages left in the aobj. for each page,
658 * when the page is no longer busy (and thus after any disk i/o that
659 * it's involved in is complete), release any swap resources and
660 * free the page itself.
661 */
662
663 mutex_enter(&uvm_pageqlock);
664 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
665 pmap_page_protect(pg, VM_PROT_NONE);
666 if (pg->flags & PG_BUSY) {
667 pg->flags |= PG_WANTED;
668 mutex_exit(&uvm_pageqlock);
669 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
670 "uao_det", 0);
671 mutex_enter(&uobj->vmobjlock);
672 mutex_enter(&uvm_pageqlock);
673 continue;
674 }
675 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
676 uvm_pagefree(pg);
677 }
678 mutex_exit(&uvm_pageqlock);
679
680 /*
681 * finally, free the aobj itself.
682 */
683
684 uao_free(aobj);
685 }
686
687 /*
688 * uao_put: flush pages out of a uvm object
689 *
690 * => object should be locked by caller. we may _unlock_ the object
691 * if (and only if) we need to clean a page (PGO_CLEANIT).
692 * XXXJRT Currently, however, we don't. In the case of cleaning
693 * XXXJRT a page, we simply just deactivate it. Should probably
694 * XXXJRT handle this better, in the future (although "flushing"
695 * XXXJRT anonymous memory isn't terribly important).
696 * => if PGO_CLEANIT is not set, then we will neither unlock the object
697 * or block.
698 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
699 * for flushing.
700 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
701 * that new pages are inserted on the tail end of the list. thus,
702 * we can make a complete pass through the object in one go by starting
703 * at the head and working towards the tail (new pages are put in
704 * front of us).
705 * => NOTE: we are allowed to lock the page queues, so the caller
706 * must not be holding the lock on them [e.g. pagedaemon had
707 * better not call us with the queues locked]
708 * => we return 0 unless we encountered some sort of I/O error
709 * XXXJRT currently never happens, as we never directly initiate
710 * XXXJRT I/O
711 *
712 * note on page traversal:
713 * we can traverse the pages in an object either by going down the
714 * linked list in "uobj->memq", or we can go over the address range
715 * by page doing hash table lookups for each address. depending
716 * on how many pages are in the object it may be cheaper to do one
717 * or the other. we set "by_list" to true if we are using memq.
718 * if the cost of a hash lookup was equal to the cost of the list
719 * traversal we could compare the number of pages in the start->stop
720 * range to the total number of pages in the object. however, it
721 * seems that a hash table lookup is more expensive than the linked
722 * list traversal, so we multiply the number of pages in the
723 * start->stop range by a penalty which we define below.
724 */
725
726 static int
727 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
728 {
729 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
730 struct vm_page *pg, *nextpg, curmp, endmp;
731 bool by_list;
732 voff_t curoff;
733 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
734
735 KASSERT(mutex_owned(&uobj->vmobjlock));
736
737 curoff = 0;
738 if (flags & PGO_ALLPAGES) {
739 start = 0;
740 stop = aobj->u_pages << PAGE_SHIFT;
741 by_list = true; /* always go by the list */
742 } else {
743 start = trunc_page(start);
744 if (stop == 0) {
745 stop = aobj->u_pages << PAGE_SHIFT;
746 } else {
747 stop = round_page(stop);
748 }
749 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
750 printf("uao_flush: strange, got an out of range "
751 "flush (fixed)\n");
752 stop = aobj->u_pages << PAGE_SHIFT;
753 }
754 by_list = (uobj->uo_npages <=
755 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
756 }
757 UVMHIST_LOG(maphist,
758 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
759 start, stop, by_list, flags);
760
761 /*
762 * Don't need to do any work here if we're not freeing
763 * or deactivating pages.
764 */
765
766 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
767 mutex_exit(&uobj->vmobjlock);
768 return 0;
769 }
770
771 /*
772 * Initialize the marker pages. See the comment in
773 * genfs_putpages() also.
774 */
775
776 curmp.uobject = uobj;
777 curmp.offset = (voff_t)-1;
778 curmp.flags = PG_BUSY;
779 endmp.uobject = uobj;
780 endmp.offset = (voff_t)-1;
781 endmp.flags = PG_BUSY;
782
783 /*
784 * now do it. note: we must update nextpg in the body of loop or we
785 * will get stuck. we need to use nextpg if we'll traverse the list
786 * because we may free "pg" before doing the next loop.
787 */
788
789 if (by_list) {
790 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
791 nextpg = TAILQ_FIRST(&uobj->memq);
792 uvm_lwp_hold(curlwp);
793 } else {
794 curoff = start;
795 nextpg = NULL; /* Quell compiler warning */
796 }
797
798 mutex_enter(&uvm_pageqlock);
799
800 /* locked: both page queues and uobj */
801 for (;;) {
802 if (by_list) {
803 pg = nextpg;
804 if (pg == &endmp)
805 break;
806 nextpg = TAILQ_NEXT(pg, listq);
807 if (pg->offset < start || pg->offset >= stop)
808 continue;
809 } else {
810 if (curoff < stop) {
811 pg = uvm_pagelookup(uobj, curoff);
812 curoff += PAGE_SIZE;
813 } else
814 break;
815 if (pg == NULL)
816 continue;
817 }
818 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
819
820 /*
821 * XXX In these first 3 cases, we always just
822 * XXX deactivate the page. We may want to
823 * XXX handle the different cases more specifically
824 * XXX in the future.
825 */
826
827 case PGO_CLEANIT|PGO_FREE:
828 case PGO_CLEANIT|PGO_DEACTIVATE:
829 case PGO_DEACTIVATE:
830 deactivate_it:
831 /* skip the page if it's wired */
832 if (pg->wire_count != 0)
833 continue;
834
835 /* ...and deactivate the page. */
836 uvm_pagedeactivate(pg);
837 continue;
838
839 case PGO_FREE:
840
841 /*
842 * If there are multiple references to
843 * the object, just deactivate the page.
844 */
845
846 if (uobj->uo_refs > 1)
847 goto deactivate_it;
848
849 /*
850 * wait and try again if the page is busy.
851 * otherwise free the swap slot and the page.
852 */
853
854 pmap_page_protect(pg, VM_PROT_NONE);
855 if (pg->flags & PG_BUSY) {
856 if (by_list) {
857 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
858 }
859 pg->flags |= PG_WANTED;
860 mutex_exit(&uvm_pageqlock);
861 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
862 "uao_put", 0);
863 mutex_enter(&uobj->vmobjlock);
864 mutex_enter(&uvm_pageqlock);
865 if (by_list) {
866 nextpg = TAILQ_NEXT(&curmp, listq);
867 TAILQ_REMOVE(&uobj->memq, &curmp,
868 listq);
869 } else
870 curoff -= PAGE_SIZE;
871 continue;
872 }
873
874 /*
875 * freeing swapslot here is not strictly necessary.
876 * however, leaving it here doesn't save much
877 * because we need to update swap accounting anyway.
878 */
879
880 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
881 uvm_pagefree(pg);
882 continue;
883 }
884 }
885 mutex_exit(&uvm_pageqlock);
886 if (by_list) {
887 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
888 uvm_lwp_rele(curlwp);
889 }
890 mutex_exit(&uobj->vmobjlock);
891 return 0;
892 }
893
894 /*
895 * uao_get: fetch me a page
896 *
897 * we have three cases:
898 * 1: page is resident -> just return the page.
899 * 2: page is zero-fill -> allocate a new page and zero it.
900 * 3: page is swapped out -> fetch the page from swap.
901 *
902 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
903 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
904 * then we will need to return EBUSY.
905 *
906 * => prefer map unlocked (not required)
907 * => object must be locked! we will _unlock_ it before starting any I/O.
908 * => flags: PGO_ALLPAGES: get all of the pages
909 * PGO_LOCKED: fault data structures are locked
910 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
911 * => NOTE: caller must check for released pages!!
912 */
913
914 static int
915 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
916 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
917 {
918 #if defined(VMSWAP)
919 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
920 #endif /* defined(VMSWAP) */
921 voff_t current_offset;
922 struct vm_page *ptmp = NULL; /* Quell compiler warning */
923 int lcv, gotpages, maxpages, swslot, pageidx;
924 bool done;
925 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
926
927 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
928 (struct uvm_aobj *)uobj, offset, flags,0);
929
930 /*
931 * get number of pages
932 */
933
934 maxpages = *npagesp;
935
936 /*
937 * step 1: handled the case where fault data structures are locked.
938 */
939
940 if (flags & PGO_LOCKED) {
941
942 /*
943 * step 1a: get pages that are already resident. only do
944 * this if the data structures are locked (i.e. the first
945 * time through).
946 */
947
948 done = true; /* be optimistic */
949 gotpages = 0; /* # of pages we got so far */
950 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
951 lcv++, current_offset += PAGE_SIZE) {
952 /* do we care about this page? if not, skip it */
953 if (pps[lcv] == PGO_DONTCARE)
954 continue;
955 ptmp = uvm_pagelookup(uobj, current_offset);
956
957 /*
958 * if page is new, attempt to allocate the page,
959 * zero-fill'd.
960 */
961
962 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
963 current_offset >> PAGE_SHIFT) == 0) {
964 ptmp = uvm_pagealloc(uobj, current_offset,
965 NULL, UVM_PGA_ZERO);
966 if (ptmp) {
967 /* new page */
968 ptmp->flags &= ~(PG_FAKE);
969 ptmp->pqflags |= PQ_AOBJ;
970 goto gotpage;
971 }
972 }
973
974 /*
975 * to be useful must get a non-busy page
976 */
977
978 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
979 if (lcv == centeridx ||
980 (flags & PGO_ALLPAGES) != 0)
981 /* need to do a wait or I/O! */
982 done = false;
983 continue;
984 }
985
986 /*
987 * useful page: busy/lock it and plug it in our
988 * result array
989 */
990
991 /* caller must un-busy this page */
992 ptmp->flags |= PG_BUSY;
993 UVM_PAGE_OWN(ptmp, "uao_get1");
994 gotpage:
995 pps[lcv] = ptmp;
996 gotpages++;
997 }
998
999 /*
1000 * step 1b: now we've either done everything needed or we
1001 * to unlock and do some waiting or I/O.
1002 */
1003
1004 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1005 *npagesp = gotpages;
1006 if (done)
1007 return 0;
1008 else
1009 return EBUSY;
1010 }
1011
1012 /*
1013 * step 2: get non-resident or busy pages.
1014 * object is locked. data structures are unlocked.
1015 */
1016
1017 if ((flags & PGO_SYNCIO) == 0) {
1018 goto done;
1019 }
1020
1021 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1022 lcv++, current_offset += PAGE_SIZE) {
1023
1024 /*
1025 * - skip over pages we've already gotten or don't want
1026 * - skip over pages we don't _have_ to get
1027 */
1028
1029 if (pps[lcv] != NULL ||
1030 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1031 continue;
1032
1033 pageidx = current_offset >> PAGE_SHIFT;
1034
1035 /*
1036 * we have yet to locate the current page (pps[lcv]). we
1037 * first look for a page that is already at the current offset.
1038 * if we find a page, we check to see if it is busy or
1039 * released. if that is the case, then we sleep on the page
1040 * until it is no longer busy or released and repeat the lookup.
1041 * if the page we found is neither busy nor released, then we
1042 * busy it (so we own it) and plug it into pps[lcv]. this
1043 * 'break's the following while loop and indicates we are
1044 * ready to move on to the next page in the "lcv" loop above.
1045 *
1046 * if we exit the while loop with pps[lcv] still set to NULL,
1047 * then it means that we allocated a new busy/fake/clean page
1048 * ptmp in the object and we need to do I/O to fill in the data.
1049 */
1050
1051 /* top of "pps" while loop */
1052 while (pps[lcv] == NULL) {
1053 /* look for a resident page */
1054 ptmp = uvm_pagelookup(uobj, current_offset);
1055
1056 /* not resident? allocate one now (if we can) */
1057 if (ptmp == NULL) {
1058
1059 ptmp = uvm_pagealloc(uobj, current_offset,
1060 NULL, 0);
1061
1062 /* out of RAM? */
1063 if (ptmp == NULL) {
1064 mutex_exit(&uobj->vmobjlock);
1065 UVMHIST_LOG(pdhist,
1066 "sleeping, ptmp == NULL\n",0,0,0,0);
1067 uvm_wait("uao_getpage");
1068 mutex_enter(&uobj->vmobjlock);
1069 continue;
1070 }
1071
1072 /*
1073 * safe with PQ's unlocked: because we just
1074 * alloc'd the page
1075 */
1076
1077 ptmp->pqflags |= PQ_AOBJ;
1078
1079 /*
1080 * got new page ready for I/O. break pps while
1081 * loop. pps[lcv] is still NULL.
1082 */
1083
1084 break;
1085 }
1086
1087 /* page is there, see if we need to wait on it */
1088 if ((ptmp->flags & PG_BUSY) != 0) {
1089 ptmp->flags |= PG_WANTED;
1090 UVMHIST_LOG(pdhist,
1091 "sleeping, ptmp->flags 0x%x\n",
1092 ptmp->flags,0,0,0);
1093 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1094 false, "uao_get", 0);
1095 mutex_enter(&uobj->vmobjlock);
1096 continue;
1097 }
1098
1099 /*
1100 * if we get here then the page has become resident and
1101 * unbusy between steps 1 and 2. we busy it now (so we
1102 * own it) and set pps[lcv] (so that we exit the while
1103 * loop).
1104 */
1105
1106 /* we own it, caller must un-busy */
1107 ptmp->flags |= PG_BUSY;
1108 UVM_PAGE_OWN(ptmp, "uao_get2");
1109 pps[lcv] = ptmp;
1110 }
1111
1112 /*
1113 * if we own the valid page at the correct offset, pps[lcv] will
1114 * point to it. nothing more to do except go to the next page.
1115 */
1116
1117 if (pps[lcv])
1118 continue; /* next lcv */
1119
1120 /*
1121 * we have a "fake/busy/clean" page that we just allocated.
1122 * do the needed "i/o", either reading from swap or zeroing.
1123 */
1124
1125 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1126
1127 /*
1128 * just zero the page if there's nothing in swap.
1129 */
1130
1131 if (swslot == 0) {
1132
1133 /*
1134 * page hasn't existed before, just zero it.
1135 */
1136
1137 uvm_pagezero(ptmp);
1138 } else {
1139 #if defined(VMSWAP)
1140 int error;
1141
1142 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1143 swslot, 0,0,0);
1144
1145 /*
1146 * page in the swapped-out page.
1147 * unlock object for i/o, relock when done.
1148 */
1149
1150 mutex_exit(&uobj->vmobjlock);
1151 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1152 mutex_enter(&uobj->vmobjlock);
1153
1154 /*
1155 * I/O done. check for errors.
1156 */
1157
1158 if (error != 0) {
1159 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1160 error,0,0,0);
1161 if (ptmp->flags & PG_WANTED)
1162 wakeup(ptmp);
1163
1164 /*
1165 * remove the swap slot from the aobj
1166 * and mark the aobj as having no real slot.
1167 * don't free the swap slot, thus preventing
1168 * it from being used again.
1169 */
1170
1171 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1172 SWSLOT_BAD);
1173 if (swslot > 0) {
1174 uvm_swap_markbad(swslot, 1);
1175 }
1176
1177 mutex_enter(&uvm_pageqlock);
1178 uvm_pagefree(ptmp);
1179 mutex_exit(&uvm_pageqlock);
1180 mutex_exit(&uobj->vmobjlock);
1181 return error;
1182 }
1183 #else /* defined(VMSWAP) */
1184 panic("%s: pagein", __func__);
1185 #endif /* defined(VMSWAP) */
1186 }
1187
1188 if ((access_type & VM_PROT_WRITE) == 0) {
1189 ptmp->flags |= PG_CLEAN;
1190 pmap_clear_modify(ptmp);
1191 }
1192
1193 /*
1194 * we got the page! clear the fake flag (indicates valid
1195 * data now in page) and plug into our result array. note
1196 * that page is still busy.
1197 *
1198 * it is the callers job to:
1199 * => check if the page is released
1200 * => unbusy the page
1201 * => activate the page
1202 */
1203
1204 ptmp->flags &= ~PG_FAKE;
1205 pps[lcv] = ptmp;
1206 }
1207
1208 /*
1209 * finally, unlock object and return.
1210 */
1211
1212 done:
1213 mutex_exit(&uobj->vmobjlock);
1214 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1215 return 0;
1216 }
1217
1218 #if defined(VMSWAP)
1219
1220 /*
1221 * uao_dropswap: release any swap resources from this aobj page.
1222 *
1223 * => aobj must be locked or have a reference count of 0.
1224 */
1225
1226 void
1227 uao_dropswap(struct uvm_object *uobj, int pageidx)
1228 {
1229 int slot;
1230
1231 slot = uao_set_swslot(uobj, pageidx, 0);
1232 if (slot) {
1233 uvm_swap_free(slot, 1);
1234 }
1235 }
1236
1237 /*
1238 * page in every page in every aobj that is paged-out to a range of swslots.
1239 *
1240 * => nothing should be locked.
1241 * => returns true if pagein was aborted due to lack of memory.
1242 */
1243
1244 bool
1245 uao_swap_off(int startslot, int endslot)
1246 {
1247 struct uvm_aobj *aobj, *nextaobj;
1248 bool rv;
1249
1250 /*
1251 * walk the list of all aobjs.
1252 */
1253
1254 restart:
1255 mutex_enter(&uao_list_lock);
1256 for (aobj = LIST_FIRST(&uao_list);
1257 aobj != NULL;
1258 aobj = nextaobj) {
1259
1260 /*
1261 * try to get the object lock, start all over if we fail.
1262 * most of the time we'll get the aobj lock,
1263 * so this should be a rare case.
1264 */
1265
1266 if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1267 mutex_exit(&uao_list_lock);
1268 /* XXX Better than yielding but inadequate. */
1269 kpause("livelock", false, 1, NULL);
1270 goto restart;
1271 }
1272
1273 /*
1274 * add a ref to the aobj so it doesn't disappear
1275 * while we're working.
1276 */
1277
1278 uao_reference_locked(&aobj->u_obj);
1279
1280 /*
1281 * now it's safe to unlock the uao list.
1282 */
1283
1284 mutex_exit(&uao_list_lock);
1285
1286 /*
1287 * page in any pages in the swslot range.
1288 * if there's an error, abort and return the error.
1289 */
1290
1291 rv = uao_pagein(aobj, startslot, endslot);
1292 if (rv) {
1293 uao_detach_locked(&aobj->u_obj);
1294 return rv;
1295 }
1296
1297 /*
1298 * we're done with this aobj.
1299 * relock the list and drop our ref on the aobj.
1300 */
1301
1302 mutex_enter(&uao_list_lock);
1303 nextaobj = LIST_NEXT(aobj, u_list);
1304 uao_detach_locked(&aobj->u_obj);
1305 }
1306
1307 /*
1308 * done with traversal, unlock the list
1309 */
1310 mutex_exit(&uao_list_lock);
1311 return false;
1312 }
1313
1314
1315 /*
1316 * page in any pages from aobj in the given range.
1317 *
1318 * => aobj must be locked and is returned locked.
1319 * => returns true if pagein was aborted due to lack of memory.
1320 */
1321 static bool
1322 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1323 {
1324 bool rv;
1325
1326 if (UAO_USES_SWHASH(aobj)) {
1327 struct uao_swhash_elt *elt;
1328 int buck;
1329
1330 restart:
1331 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1332 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1333 elt != NULL;
1334 elt = LIST_NEXT(elt, list)) {
1335 int i;
1336
1337 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1338 int slot = elt->slots[i];
1339
1340 /*
1341 * if the slot isn't in range, skip it.
1342 */
1343
1344 if (slot < startslot ||
1345 slot >= endslot) {
1346 continue;
1347 }
1348
1349 /*
1350 * process the page,
1351 * the start over on this object
1352 * since the swhash elt
1353 * may have been freed.
1354 */
1355
1356 rv = uao_pagein_page(aobj,
1357 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1358 if (rv) {
1359 return rv;
1360 }
1361 goto restart;
1362 }
1363 }
1364 }
1365 } else {
1366 int i;
1367
1368 for (i = 0; i < aobj->u_pages; i++) {
1369 int slot = aobj->u_swslots[i];
1370
1371 /*
1372 * if the slot isn't in range, skip it
1373 */
1374
1375 if (slot < startslot || slot >= endslot) {
1376 continue;
1377 }
1378
1379 /*
1380 * process the page.
1381 */
1382
1383 rv = uao_pagein_page(aobj, i);
1384 if (rv) {
1385 return rv;
1386 }
1387 }
1388 }
1389
1390 return false;
1391 }
1392
1393 /*
1394 * page in a page from an aobj. used for swap_off.
1395 * returns true if pagein was aborted due to lack of memory.
1396 *
1397 * => aobj must be locked and is returned locked.
1398 */
1399
1400 static bool
1401 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1402 {
1403 struct vm_page *pg;
1404 int rv, npages;
1405
1406 pg = NULL;
1407 npages = 1;
1408 /* locked: aobj */
1409 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1410 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1411 /* unlocked: aobj */
1412
1413 /*
1414 * relock and finish up.
1415 */
1416
1417 mutex_enter(&aobj->u_obj.vmobjlock);
1418 switch (rv) {
1419 case 0:
1420 break;
1421
1422 case EIO:
1423 case ERESTART:
1424
1425 /*
1426 * nothing more to do on errors.
1427 * ERESTART can only mean that the anon was freed,
1428 * so again there's nothing to do.
1429 */
1430
1431 return false;
1432
1433 default:
1434 return true;
1435 }
1436
1437 /*
1438 * ok, we've got the page now.
1439 * mark it as dirty, clear its swslot and un-busy it.
1440 */
1441 uao_dropswap(&aobj->u_obj, pageidx);
1442
1443 /*
1444 * make sure it's on a page queue.
1445 */
1446 mutex_enter(&uvm_pageqlock);
1447 if (pg->wire_count == 0)
1448 uvm_pageenqueue(pg);
1449 mutex_exit(&uvm_pageqlock);
1450
1451 if (pg->flags & PG_WANTED) {
1452 wakeup(pg);
1453 }
1454 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1455 UVM_PAGE_OWN(pg, NULL);
1456
1457 return false;
1458 }
1459
1460 /*
1461 * uao_dropswap_range: drop swapslots in the range.
1462 *
1463 * => aobj must be locked and is returned locked.
1464 * => start is inclusive. end is exclusive.
1465 */
1466
1467 void
1468 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1469 {
1470 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1471
1472 KASSERT(mutex_owned(&uobj->vmobjlock));
1473
1474 uao_dropswap_range1(aobj, start, end);
1475 }
1476
1477 static void
1478 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1479 {
1480 int swpgonlydelta = 0;
1481
1482 if (end == 0) {
1483 end = INT64_MAX;
1484 }
1485
1486 if (UAO_USES_SWHASH(aobj)) {
1487 int i, hashbuckets = aobj->u_swhashmask + 1;
1488 voff_t taghi;
1489 voff_t taglo;
1490
1491 taglo = UAO_SWHASH_ELT_TAG(start);
1492 taghi = UAO_SWHASH_ELT_TAG(end);
1493
1494 for (i = 0; i < hashbuckets; i++) {
1495 struct uao_swhash_elt *elt, *next;
1496
1497 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1498 elt != NULL;
1499 elt = next) {
1500 int startidx, endidx;
1501 int j;
1502
1503 next = LIST_NEXT(elt, list);
1504
1505 if (elt->tag < taglo || taghi < elt->tag) {
1506 continue;
1507 }
1508
1509 if (elt->tag == taglo) {
1510 startidx =
1511 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1512 } else {
1513 startidx = 0;
1514 }
1515
1516 if (elt->tag == taghi) {
1517 endidx =
1518 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1519 } else {
1520 endidx = UAO_SWHASH_CLUSTER_SIZE;
1521 }
1522
1523 for (j = startidx; j < endidx; j++) {
1524 int slot = elt->slots[j];
1525
1526 KASSERT(uvm_pagelookup(&aobj->u_obj,
1527 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1528 + j) << PAGE_SHIFT) == NULL);
1529 if (slot > 0) {
1530 uvm_swap_free(slot, 1);
1531 swpgonlydelta++;
1532 KASSERT(elt->count > 0);
1533 elt->slots[j] = 0;
1534 elt->count--;
1535 }
1536 }
1537
1538 if (elt->count == 0) {
1539 LIST_REMOVE(elt, list);
1540 pool_put(&uao_swhash_elt_pool, elt);
1541 }
1542 }
1543 }
1544 } else {
1545 int i;
1546
1547 if (aobj->u_pages < end) {
1548 end = aobj->u_pages;
1549 }
1550 for (i = start; i < end; i++) {
1551 int slot = aobj->u_swslots[i];
1552
1553 if (slot > 0) {
1554 uvm_swap_free(slot, 1);
1555 swpgonlydelta++;
1556 }
1557 }
1558 }
1559
1560 /*
1561 * adjust the counter of pages only in swap for all
1562 * the swap slots we've freed.
1563 */
1564
1565 if (swpgonlydelta > 0) {
1566 mutex_enter(&uvm_swap_data_lock);
1567 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1568 uvmexp.swpgonly -= swpgonlydelta;
1569 mutex_exit(&uvm_swap_data_lock);
1570 }
1571 }
1572
1573 #endif /* defined(VMSWAP) */
1574