uvm_aobj.c revision 1.99 1 /* $NetBSD: uvm_aobj.c,v 1.99 2008/02/27 14:23:33 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.99 2008/02/27 14:23:33 ad Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121
122 /*
123 * uao_swhash_elt: when a hash table is being used, this structure defines
124 * the format of an entry in the bucket list.
125 */
126
127 struct uao_swhash_elt {
128 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
129 voff_t tag; /* our 'tag' */
130 int count; /* our number of active slots */
131 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
132 };
133
134 /*
135 * uao_swhash: the swap hash table structure
136 */
137
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139
140 /*
141 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145 "uaoeltpl", NULL, IPL_VM);
146
147 /*
148 * uvm_aobj: the actual anon-backed uvm_object
149 *
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
153 */
154
155 struct uvm_aobj {
156 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages; /* number of pages in entire object */
158 int u_flags; /* the flags (see uvm_aobj.h) */
159 int *u_swslots; /* array of offset->swapslot mappings */
160 /*
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
163 */
164 struct uao_swhash *u_swhash;
165 u_long u_swhashmask; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
167 };
168
169 /*
170 * uvm_aobj_pool: pool of uvm_aobj structures
171 */
172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
173 &pool_allocator_nointr, IPL_NONE);
174
175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
176
177 /*
178 * local functions
179 */
180
181 static void uao_free(struct uvm_aobj *);
182 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
183 int *, int, vm_prot_t, int, int);
184 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
185
186 #if defined(VMSWAP)
187 static struct uao_swhash_elt *uao_find_swhash_elt
188 (struct uvm_aobj *, int, bool);
189
190 static bool uao_pagein(struct uvm_aobj *, int, int);
191 static bool uao_pagein_page(struct uvm_aobj *, int);
192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
193 #endif /* defined(VMSWAP) */
194
195 /*
196 * aobj_pager
197 *
198 * note that some functions (e.g. put) are handled elsewhere
199 */
200
201 const struct uvm_pagerops aobj_pager = {
202 .pgo_reference = uao_reference,
203 .pgo_detach = uao_detach,
204 .pgo_get = uao_get,
205 .pgo_put = uao_put,
206 };
207
208 /*
209 * uao_list: global list of active aobjs, locked by uao_list_lock
210 */
211
212 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
213 static kmutex_t uao_list_lock;
214
215 /*
216 * functions
217 */
218
219 /*
220 * hash table/array related functions
221 */
222
223 #if defined(VMSWAP)
224
225 /*
226 * uao_find_swhash_elt: find (or create) a hash table entry for a page
227 * offset.
228 *
229 * => the object should be locked by the caller
230 */
231
232 static struct uao_swhash_elt *
233 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
234 {
235 struct uao_swhash *swhash;
236 struct uao_swhash_elt *elt;
237 voff_t page_tag;
238
239 swhash = UAO_SWHASH_HASH(aobj, pageidx);
240 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
241
242 /*
243 * now search the bucket for the requested tag
244 */
245
246 LIST_FOREACH(elt, swhash, list) {
247 if (elt->tag == page_tag) {
248 return elt;
249 }
250 }
251 if (!create) {
252 return NULL;
253 }
254
255 /*
256 * allocate a new entry for the bucket and init/insert it in
257 */
258
259 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
260 if (elt == NULL) {
261 return NULL;
262 }
263 LIST_INSERT_HEAD(swhash, elt, list);
264 elt->tag = page_tag;
265 elt->count = 0;
266 memset(elt->slots, 0, sizeof(elt->slots));
267 return elt;
268 }
269
270 /*
271 * uao_find_swslot: find the swap slot number for an aobj/pageidx
272 *
273 * => object must be locked by caller
274 */
275
276 int
277 uao_find_swslot(struct uvm_object *uobj, int pageidx)
278 {
279 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
280 struct uao_swhash_elt *elt;
281
282 /*
283 * if noswap flag is set, then we never return a slot
284 */
285
286 if (aobj->u_flags & UAO_FLAG_NOSWAP)
287 return(0);
288
289 /*
290 * if hashing, look in hash table.
291 */
292
293 if (UAO_USES_SWHASH(aobj)) {
294 elt = uao_find_swhash_elt(aobj, pageidx, false);
295 if (elt)
296 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
297 else
298 return(0);
299 }
300
301 /*
302 * otherwise, look in the array
303 */
304
305 return(aobj->u_swslots[pageidx]);
306 }
307
308 /*
309 * uao_set_swslot: set the swap slot for a page in an aobj.
310 *
311 * => setting a slot to zero frees the slot
312 * => object must be locked by caller
313 * => we return the old slot number, or -1 if we failed to allocate
314 * memory to record the new slot number
315 */
316
317 int
318 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
319 {
320 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
321 struct uao_swhash_elt *elt;
322 int oldslot;
323 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
324 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
325 aobj, pageidx, slot, 0);
326
327 /*
328 * if noswap flag is set, then we can't set a non-zero slot.
329 */
330
331 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
332 if (slot == 0)
333 return(0);
334
335 printf("uao_set_swslot: uobj = %p\n", uobj);
336 panic("uao_set_swslot: NOSWAP object");
337 }
338
339 /*
340 * are we using a hash table? if so, add it in the hash.
341 */
342
343 if (UAO_USES_SWHASH(aobj)) {
344
345 /*
346 * Avoid allocating an entry just to free it again if
347 * the page had not swap slot in the first place, and
348 * we are freeing.
349 */
350
351 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
352 if (elt == NULL) {
353 return slot ? -1 : 0;
354 }
355
356 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
357 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
358
359 /*
360 * now adjust the elt's reference counter and free it if we've
361 * dropped it to zero.
362 */
363
364 if (slot) {
365 if (oldslot == 0)
366 elt->count++;
367 } else {
368 if (oldslot)
369 elt->count--;
370
371 if (elt->count == 0) {
372 LIST_REMOVE(elt, list);
373 pool_put(&uao_swhash_elt_pool, elt);
374 }
375 }
376 } else {
377 /* we are using an array */
378 oldslot = aobj->u_swslots[pageidx];
379 aobj->u_swslots[pageidx] = slot;
380 }
381 return (oldslot);
382 }
383
384 #endif /* defined(VMSWAP) */
385
386 /*
387 * end of hash/array functions
388 */
389
390 /*
391 * uao_free: free all resources held by an aobj, and then free the aobj
392 *
393 * => the aobj should be dead
394 */
395
396 static void
397 uao_free(struct uvm_aobj *aobj)
398 {
399 int swpgonlydelta = 0;
400
401
402 #if defined(VMSWAP)
403 uao_dropswap_range1(aobj, 0, 0);
404 #endif /* defined(VMSWAP) */
405
406 mutex_exit(&aobj->u_obj.vmobjlock);
407
408 #if defined(VMSWAP)
409 if (UAO_USES_SWHASH(aobj)) {
410
411 /*
412 * free the hash table itself.
413 */
414
415 free(aobj->u_swhash, M_UVMAOBJ);
416 } else {
417
418 /*
419 * free the array itsself.
420 */
421
422 free(aobj->u_swslots, M_UVMAOBJ);
423 }
424 #endif /* defined(VMSWAP) */
425
426 /*
427 * finally free the aobj itself
428 */
429
430 UVM_OBJ_DESTROY(&aobj->u_obj);
431 pool_put(&uvm_aobj_pool, aobj);
432
433 /*
434 * adjust the counter of pages only in swap for all
435 * the swap slots we've freed.
436 */
437
438 if (swpgonlydelta > 0) {
439 mutex_enter(&uvm_swap_data_lock);
440 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
441 uvmexp.swpgonly -= swpgonlydelta;
442 mutex_exit(&uvm_swap_data_lock);
443 }
444 }
445
446 /*
447 * pager functions
448 */
449
450 /*
451 * uao_create: create an aobj of the given size and return its uvm_object.
452 *
453 * => for normal use, flags are always zero
454 * => for the kernel object, the flags are:
455 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
456 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
457 */
458
459 struct uvm_object *
460 uao_create(vsize_t size, int flags)
461 {
462 static struct uvm_aobj kernel_object_store;
463 static int kobj_alloced = 0;
464 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
465 struct uvm_aobj *aobj;
466 int refs;
467
468 /*
469 * malloc a new aobj unless we are asked for the kernel object
470 */
471
472 if (flags & UAO_FLAG_KERNOBJ) {
473 KASSERT(!kobj_alloced);
474 aobj = &kernel_object_store;
475 aobj->u_pages = pages;
476 aobj->u_flags = UAO_FLAG_NOSWAP;
477 refs = UVM_OBJ_KERN;
478 kobj_alloced = UAO_FLAG_KERNOBJ;
479 } else if (flags & UAO_FLAG_KERNSWAP) {
480 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
481 aobj = &kernel_object_store;
482 kobj_alloced = UAO_FLAG_KERNSWAP;
483 refs = 0xdeadbeaf; /* XXX: gcc */
484 } else {
485 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
486 aobj->u_pages = pages;
487 aobj->u_flags = 0;
488 refs = 1;
489 }
490
491 /*
492 * allocate hash/array if necessary
493 *
494 * note: in the KERNSWAP case no need to worry about locking since
495 * we are still booting we should be the only thread around.
496 */
497
498 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
499 #if defined(VMSWAP)
500 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
501 M_NOWAIT : M_WAITOK;
502
503 /* allocate hash table or array depending on object size */
504 if (UAO_USES_SWHASH(aobj)) {
505 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
506 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
507 if (aobj->u_swhash == NULL)
508 panic("uao_create: hashinit swhash failed");
509 } else {
510 aobj->u_swslots = malloc(pages * sizeof(int),
511 M_UVMAOBJ, mflags);
512 if (aobj->u_swslots == NULL)
513 panic("uao_create: malloc swslots failed");
514 memset(aobj->u_swslots, 0, pages * sizeof(int));
515 }
516 #endif /* defined(VMSWAP) */
517
518 if (flags) {
519 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
520 return(&aobj->u_obj);
521 }
522 }
523
524 /*
525 * init aobj fields
526 */
527
528 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
529
530 /*
531 * now that aobj is ready, add it to the global list
532 */
533
534 mutex_enter(&uao_list_lock);
535 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
536 mutex_exit(&uao_list_lock);
537 return(&aobj->u_obj);
538 }
539
540
541
542 /*
543 * uao_init: set up aobj pager subsystem
544 *
545 * => called at boot time from uvm_pager_init()
546 */
547
548 void
549 uao_init(void)
550 {
551 static int uao_initialized;
552
553 if (uao_initialized)
554 return;
555 uao_initialized = true;
556 LIST_INIT(&uao_list);
557 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
558 }
559
560 /*
561 * uao_reference: add a ref to an aobj
562 *
563 * => aobj must be unlocked
564 * => just lock it and call the locked version
565 */
566
567 void
568 uao_reference(struct uvm_object *uobj)
569 {
570 mutex_enter(&uobj->vmobjlock);
571 uao_reference_locked(uobj);
572 mutex_exit(&uobj->vmobjlock);
573 }
574
575 /*
576 * uao_reference_locked: add a ref to an aobj that is already locked
577 *
578 * => aobj must be locked
579 * this needs to be separate from the normal routine
580 * since sometimes we need to add a reference to an aobj when
581 * it's already locked.
582 */
583
584 void
585 uao_reference_locked(struct uvm_object *uobj)
586 {
587 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
588
589 /*
590 * kernel_object already has plenty of references, leave it alone.
591 */
592
593 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
594 return;
595
596 uobj->uo_refs++;
597 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
598 uobj, uobj->uo_refs,0,0);
599 }
600
601 /*
602 * uao_detach: drop a reference to an aobj
603 *
604 * => aobj must be unlocked
605 * => just lock it and call the locked version
606 */
607
608 void
609 uao_detach(struct uvm_object *uobj)
610 {
611 mutex_enter(&uobj->vmobjlock);
612 uao_detach_locked(uobj);
613 }
614
615 /*
616 * uao_detach_locked: drop a reference to an aobj
617 *
618 * => aobj must be locked, and is unlocked (or freed) upon return.
619 * this needs to be separate from the normal routine
620 * since sometimes we need to detach from an aobj when
621 * it's already locked.
622 */
623
624 void
625 uao_detach_locked(struct uvm_object *uobj)
626 {
627 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
628 struct vm_page *pg;
629 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
630
631 /*
632 * detaching from kernel_object is a noop.
633 */
634
635 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
636 mutex_exit(&uobj->vmobjlock);
637 return;
638 }
639
640 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
641 uobj->uo_refs--;
642 if (uobj->uo_refs) {
643 mutex_exit(&uobj->vmobjlock);
644 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
645 return;
646 }
647
648 /*
649 * remove the aobj from the global list.
650 */
651
652 mutex_enter(&uao_list_lock);
653 LIST_REMOVE(aobj, u_list);
654 mutex_exit(&uao_list_lock);
655
656 /*
657 * free all the pages left in the aobj. for each page,
658 * when the page is no longer busy (and thus after any disk i/o that
659 * it's involved in is complete), release any swap resources and
660 * free the page itself.
661 */
662
663 mutex_enter(&uvm_pageqlock);
664 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
665 pmap_page_protect(pg, VM_PROT_NONE);
666 if (pg->flags & PG_BUSY) {
667 pg->flags |= PG_WANTED;
668 mutex_exit(&uvm_pageqlock);
669 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
670 "uao_det", 0);
671 mutex_enter(&uobj->vmobjlock);
672 mutex_enter(&uvm_pageqlock);
673 continue;
674 }
675 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
676 uvm_pagefree(pg);
677 }
678 mutex_exit(&uvm_pageqlock);
679
680 /*
681 * finally, free the aobj itself.
682 */
683
684 uao_free(aobj);
685 }
686
687 /*
688 * uao_put: flush pages out of a uvm object
689 *
690 * => object should be locked by caller. we may _unlock_ the object
691 * if (and only if) we need to clean a page (PGO_CLEANIT).
692 * XXXJRT Currently, however, we don't. In the case of cleaning
693 * XXXJRT a page, we simply just deactivate it. Should probably
694 * XXXJRT handle this better, in the future (although "flushing"
695 * XXXJRT anonymous memory isn't terribly important).
696 * => if PGO_CLEANIT is not set, then we will neither unlock the object
697 * or block.
698 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
699 * for flushing.
700 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
701 * that new pages are inserted on the tail end of the list. thus,
702 * we can make a complete pass through the object in one go by starting
703 * at the head and working towards the tail (new pages are put in
704 * front of us).
705 * => NOTE: we are allowed to lock the page queues, so the caller
706 * must not be holding the lock on them [e.g. pagedaemon had
707 * better not call us with the queues locked]
708 * => we return 0 unless we encountered some sort of I/O error
709 * XXXJRT currently never happens, as we never directly initiate
710 * XXXJRT I/O
711 *
712 * note on page traversal:
713 * we can traverse the pages in an object either by going down the
714 * linked list in "uobj->memq", or we can go over the address range
715 * by page doing hash table lookups for each address. depending
716 * on how many pages are in the object it may be cheaper to do one
717 * or the other. we set "by_list" to true if we are using memq.
718 * if the cost of a hash lookup was equal to the cost of the list
719 * traversal we could compare the number of pages in the start->stop
720 * range to the total number of pages in the object. however, it
721 * seems that a hash table lookup is more expensive than the linked
722 * list traversal, so we multiply the number of pages in the
723 * start->stop range by a penalty which we define below.
724 */
725
726 static int
727 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
728 {
729 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
730 struct vm_page *pg, *nextpg, curmp, endmp;
731 bool by_list;
732 voff_t curoff;
733 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
734
735 KASSERT(mutex_owned(&uobj->vmobjlock));
736
737 curoff = 0;
738 if (flags & PGO_ALLPAGES) {
739 start = 0;
740 stop = aobj->u_pages << PAGE_SHIFT;
741 by_list = true; /* always go by the list */
742 } else {
743 start = trunc_page(start);
744 if (stop == 0) {
745 stop = aobj->u_pages << PAGE_SHIFT;
746 } else {
747 stop = round_page(stop);
748 }
749 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
750 printf("uao_flush: strange, got an out of range "
751 "flush (fixed)\n");
752 stop = aobj->u_pages << PAGE_SHIFT;
753 }
754 by_list = (uobj->uo_npages <=
755 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
756 }
757 UVMHIST_LOG(maphist,
758 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
759 start, stop, by_list, flags);
760
761 /*
762 * Don't need to do any work here if we're not freeing
763 * or deactivating pages.
764 */
765
766 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
767 mutex_exit(&uobj->vmobjlock);
768 return 0;
769 }
770
771 /*
772 * Initialize the marker pages. See the comment in
773 * genfs_putpages() also.
774 */
775
776 curmp.uobject = uobj;
777 curmp.offset = (voff_t)-1;
778 curmp.flags = PG_BUSY;
779 endmp.uobject = uobj;
780 endmp.offset = (voff_t)-1;
781 endmp.flags = PG_BUSY;
782
783 /*
784 * now do it. note: we must update nextpg in the body of loop or we
785 * will get stuck. we need to use nextpg if we'll traverse the list
786 * because we may free "pg" before doing the next loop.
787 */
788
789 if (by_list) {
790 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
791 nextpg = TAILQ_FIRST(&uobj->memq);
792 uvm_lwp_hold(curlwp);
793 } else {
794 curoff = start;
795 nextpg = NULL; /* Quell compiler warning */
796 }
797
798 /* locked: uobj */
799 for (;;) {
800 if (by_list) {
801 pg = nextpg;
802 if (pg == &endmp)
803 break;
804 nextpg = TAILQ_NEXT(pg, listq);
805 if (pg->offset < start || pg->offset >= stop)
806 continue;
807 } else {
808 if (curoff < stop) {
809 pg = uvm_pagelookup(uobj, curoff);
810 curoff += PAGE_SIZE;
811 } else
812 break;
813 if (pg == NULL)
814 continue;
815 }
816
817 /*
818 * wait and try again if the page is busy.
819 */
820
821 if (pg->flags & PG_BUSY) {
822 if (by_list) {
823 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
824 }
825 pg->flags |= PG_WANTED;
826 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
827 "uao_put", 0);
828 mutex_enter(&uobj->vmobjlock);
829 if (by_list) {
830 nextpg = TAILQ_NEXT(&curmp, listq);
831 TAILQ_REMOVE(&uobj->memq, &curmp,
832 listq);
833 } else
834 curoff -= PAGE_SIZE;
835 continue;
836 }
837
838 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
839
840 /*
841 * XXX In these first 3 cases, we always just
842 * XXX deactivate the page. We may want to
843 * XXX handle the different cases more specifically
844 * XXX in the future.
845 */
846
847 case PGO_CLEANIT|PGO_FREE:
848 case PGO_CLEANIT|PGO_DEACTIVATE:
849 case PGO_DEACTIVATE:
850 deactivate_it:
851 mutex_enter(&uvm_pageqlock);
852 /* skip the page if it's wired */
853 if (pg->wire_count == 0) {
854 uvm_pagedeactivate(pg);
855 }
856 mutex_exit(&uvm_pageqlock);
857 break;
858
859 case PGO_FREE:
860 /*
861 * If there are multiple references to
862 * the object, just deactivate the page.
863 */
864
865 if (uobj->uo_refs > 1)
866 goto deactivate_it;
867
868 /*
869 * free the swap slot and the page.
870 */
871
872 pmap_page_protect(pg, VM_PROT_NONE);
873
874 /*
875 * freeing swapslot here is not strictly necessary.
876 * however, leaving it here doesn't save much
877 * because we need to update swap accounting anyway.
878 */
879
880 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
881 mutex_enter(&uvm_pageqlock);
882 uvm_pagefree(pg);
883 mutex_exit(&uvm_pageqlock);
884 break;
885
886 default:
887 panic("%s: impossible", __func__);
888 }
889 }
890 if (by_list) {
891 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
892 uvm_lwp_rele(curlwp);
893 }
894 mutex_exit(&uobj->vmobjlock);
895 return 0;
896 }
897
898 /*
899 * uao_get: fetch me a page
900 *
901 * we have three cases:
902 * 1: page is resident -> just return the page.
903 * 2: page is zero-fill -> allocate a new page and zero it.
904 * 3: page is swapped out -> fetch the page from swap.
905 *
906 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
907 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
908 * then we will need to return EBUSY.
909 *
910 * => prefer map unlocked (not required)
911 * => object must be locked! we will _unlock_ it before starting any I/O.
912 * => flags: PGO_ALLPAGES: get all of the pages
913 * PGO_LOCKED: fault data structures are locked
914 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
915 * => NOTE: caller must check for released pages!!
916 */
917
918 static int
919 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
920 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
921 {
922 #if defined(VMSWAP)
923 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
924 #endif /* defined(VMSWAP) */
925 voff_t current_offset;
926 struct vm_page *ptmp = NULL; /* Quell compiler warning */
927 int lcv, gotpages, maxpages, swslot, pageidx;
928 bool done;
929 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
930
931 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
932 (struct uvm_aobj *)uobj, offset, flags,0);
933
934 /*
935 * get number of pages
936 */
937
938 maxpages = *npagesp;
939
940 /*
941 * step 1: handled the case where fault data structures are locked.
942 */
943
944 if (flags & PGO_LOCKED) {
945
946 /*
947 * step 1a: get pages that are already resident. only do
948 * this if the data structures are locked (i.e. the first
949 * time through).
950 */
951
952 done = true; /* be optimistic */
953 gotpages = 0; /* # of pages we got so far */
954 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
955 lcv++, current_offset += PAGE_SIZE) {
956 /* do we care about this page? if not, skip it */
957 if (pps[lcv] == PGO_DONTCARE)
958 continue;
959 ptmp = uvm_pagelookup(uobj, current_offset);
960
961 /*
962 * if page is new, attempt to allocate the page,
963 * zero-fill'd.
964 */
965
966 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
967 current_offset >> PAGE_SHIFT) == 0) {
968 ptmp = uvm_pagealloc(uobj, current_offset,
969 NULL, UVM_PGA_ZERO);
970 if (ptmp) {
971 /* new page */
972 ptmp->flags &= ~(PG_FAKE);
973 ptmp->pqflags |= PQ_AOBJ;
974 goto gotpage;
975 }
976 }
977
978 /*
979 * to be useful must get a non-busy page
980 */
981
982 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
983 if (lcv == centeridx ||
984 (flags & PGO_ALLPAGES) != 0)
985 /* need to do a wait or I/O! */
986 done = false;
987 continue;
988 }
989
990 /*
991 * useful page: busy/lock it and plug it in our
992 * result array
993 */
994
995 /* caller must un-busy this page */
996 ptmp->flags |= PG_BUSY;
997 UVM_PAGE_OWN(ptmp, "uao_get1");
998 gotpage:
999 pps[lcv] = ptmp;
1000 gotpages++;
1001 }
1002
1003 /*
1004 * step 1b: now we've either done everything needed or we
1005 * to unlock and do some waiting or I/O.
1006 */
1007
1008 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1009 *npagesp = gotpages;
1010 if (done)
1011 return 0;
1012 else
1013 return EBUSY;
1014 }
1015
1016 /*
1017 * step 2: get non-resident or busy pages.
1018 * object is locked. data structures are unlocked.
1019 */
1020
1021 if ((flags & PGO_SYNCIO) == 0) {
1022 goto done;
1023 }
1024
1025 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1026 lcv++, current_offset += PAGE_SIZE) {
1027
1028 /*
1029 * - skip over pages we've already gotten or don't want
1030 * - skip over pages we don't _have_ to get
1031 */
1032
1033 if (pps[lcv] != NULL ||
1034 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1035 continue;
1036
1037 pageidx = current_offset >> PAGE_SHIFT;
1038
1039 /*
1040 * we have yet to locate the current page (pps[lcv]). we
1041 * first look for a page that is already at the current offset.
1042 * if we find a page, we check to see if it is busy or
1043 * released. if that is the case, then we sleep on the page
1044 * until it is no longer busy or released and repeat the lookup.
1045 * if the page we found is neither busy nor released, then we
1046 * busy it (so we own it) and plug it into pps[lcv]. this
1047 * 'break's the following while loop and indicates we are
1048 * ready to move on to the next page in the "lcv" loop above.
1049 *
1050 * if we exit the while loop with pps[lcv] still set to NULL,
1051 * then it means that we allocated a new busy/fake/clean page
1052 * ptmp in the object and we need to do I/O to fill in the data.
1053 */
1054
1055 /* top of "pps" while loop */
1056 while (pps[lcv] == NULL) {
1057 /* look for a resident page */
1058 ptmp = uvm_pagelookup(uobj, current_offset);
1059
1060 /* not resident? allocate one now (if we can) */
1061 if (ptmp == NULL) {
1062
1063 ptmp = uvm_pagealloc(uobj, current_offset,
1064 NULL, 0);
1065
1066 /* out of RAM? */
1067 if (ptmp == NULL) {
1068 mutex_exit(&uobj->vmobjlock);
1069 UVMHIST_LOG(pdhist,
1070 "sleeping, ptmp == NULL\n",0,0,0,0);
1071 uvm_wait("uao_getpage");
1072 mutex_enter(&uobj->vmobjlock);
1073 continue;
1074 }
1075
1076 /*
1077 * safe with PQ's unlocked: because we just
1078 * alloc'd the page
1079 */
1080
1081 ptmp->pqflags |= PQ_AOBJ;
1082
1083 /*
1084 * got new page ready for I/O. break pps while
1085 * loop. pps[lcv] is still NULL.
1086 */
1087
1088 break;
1089 }
1090
1091 /* page is there, see if we need to wait on it */
1092 if ((ptmp->flags & PG_BUSY) != 0) {
1093 ptmp->flags |= PG_WANTED;
1094 UVMHIST_LOG(pdhist,
1095 "sleeping, ptmp->flags 0x%x\n",
1096 ptmp->flags,0,0,0);
1097 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1098 false, "uao_get", 0);
1099 mutex_enter(&uobj->vmobjlock);
1100 continue;
1101 }
1102
1103 /*
1104 * if we get here then the page has become resident and
1105 * unbusy between steps 1 and 2. we busy it now (so we
1106 * own it) and set pps[lcv] (so that we exit the while
1107 * loop).
1108 */
1109
1110 /* we own it, caller must un-busy */
1111 ptmp->flags |= PG_BUSY;
1112 UVM_PAGE_OWN(ptmp, "uao_get2");
1113 pps[lcv] = ptmp;
1114 }
1115
1116 /*
1117 * if we own the valid page at the correct offset, pps[lcv] will
1118 * point to it. nothing more to do except go to the next page.
1119 */
1120
1121 if (pps[lcv])
1122 continue; /* next lcv */
1123
1124 /*
1125 * we have a "fake/busy/clean" page that we just allocated.
1126 * do the needed "i/o", either reading from swap or zeroing.
1127 */
1128
1129 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1130
1131 /*
1132 * just zero the page if there's nothing in swap.
1133 */
1134
1135 if (swslot == 0) {
1136
1137 /*
1138 * page hasn't existed before, just zero it.
1139 */
1140
1141 uvm_pagezero(ptmp);
1142 } else {
1143 #if defined(VMSWAP)
1144 int error;
1145
1146 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1147 swslot, 0,0,0);
1148
1149 /*
1150 * page in the swapped-out page.
1151 * unlock object for i/o, relock when done.
1152 */
1153
1154 mutex_exit(&uobj->vmobjlock);
1155 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1156 mutex_enter(&uobj->vmobjlock);
1157
1158 /*
1159 * I/O done. check for errors.
1160 */
1161
1162 if (error != 0) {
1163 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1164 error,0,0,0);
1165 if (ptmp->flags & PG_WANTED)
1166 wakeup(ptmp);
1167
1168 /*
1169 * remove the swap slot from the aobj
1170 * and mark the aobj as having no real slot.
1171 * don't free the swap slot, thus preventing
1172 * it from being used again.
1173 */
1174
1175 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1176 SWSLOT_BAD);
1177 if (swslot > 0) {
1178 uvm_swap_markbad(swslot, 1);
1179 }
1180
1181 mutex_enter(&uvm_pageqlock);
1182 uvm_pagefree(ptmp);
1183 mutex_exit(&uvm_pageqlock);
1184 mutex_exit(&uobj->vmobjlock);
1185 return error;
1186 }
1187 #else /* defined(VMSWAP) */
1188 panic("%s: pagein", __func__);
1189 #endif /* defined(VMSWAP) */
1190 }
1191
1192 if ((access_type & VM_PROT_WRITE) == 0) {
1193 ptmp->flags |= PG_CLEAN;
1194 pmap_clear_modify(ptmp);
1195 }
1196
1197 /*
1198 * we got the page! clear the fake flag (indicates valid
1199 * data now in page) and plug into our result array. note
1200 * that page is still busy.
1201 *
1202 * it is the callers job to:
1203 * => check if the page is released
1204 * => unbusy the page
1205 * => activate the page
1206 */
1207
1208 ptmp->flags &= ~PG_FAKE;
1209 pps[lcv] = ptmp;
1210 }
1211
1212 /*
1213 * finally, unlock object and return.
1214 */
1215
1216 done:
1217 mutex_exit(&uobj->vmobjlock);
1218 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1219 return 0;
1220 }
1221
1222 #if defined(VMSWAP)
1223
1224 /*
1225 * uao_dropswap: release any swap resources from this aobj page.
1226 *
1227 * => aobj must be locked or have a reference count of 0.
1228 */
1229
1230 void
1231 uao_dropswap(struct uvm_object *uobj, int pageidx)
1232 {
1233 int slot;
1234
1235 slot = uao_set_swslot(uobj, pageidx, 0);
1236 if (slot) {
1237 uvm_swap_free(slot, 1);
1238 }
1239 }
1240
1241 /*
1242 * page in every page in every aobj that is paged-out to a range of swslots.
1243 *
1244 * => nothing should be locked.
1245 * => returns true if pagein was aborted due to lack of memory.
1246 */
1247
1248 bool
1249 uao_swap_off(int startslot, int endslot)
1250 {
1251 struct uvm_aobj *aobj, *nextaobj;
1252 bool rv;
1253
1254 /*
1255 * walk the list of all aobjs.
1256 */
1257
1258 restart:
1259 mutex_enter(&uao_list_lock);
1260 for (aobj = LIST_FIRST(&uao_list);
1261 aobj != NULL;
1262 aobj = nextaobj) {
1263
1264 /*
1265 * try to get the object lock, start all over if we fail.
1266 * most of the time we'll get the aobj lock,
1267 * so this should be a rare case.
1268 */
1269
1270 if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1271 mutex_exit(&uao_list_lock);
1272 /* XXX Better than yielding but inadequate. */
1273 kpause("livelock", false, 1, NULL);
1274 goto restart;
1275 }
1276
1277 /*
1278 * add a ref to the aobj so it doesn't disappear
1279 * while we're working.
1280 */
1281
1282 uao_reference_locked(&aobj->u_obj);
1283
1284 /*
1285 * now it's safe to unlock the uao list.
1286 */
1287
1288 mutex_exit(&uao_list_lock);
1289
1290 /*
1291 * page in any pages in the swslot range.
1292 * if there's an error, abort and return the error.
1293 */
1294
1295 rv = uao_pagein(aobj, startslot, endslot);
1296 if (rv) {
1297 uao_detach_locked(&aobj->u_obj);
1298 return rv;
1299 }
1300
1301 /*
1302 * we're done with this aobj.
1303 * relock the list and drop our ref on the aobj.
1304 */
1305
1306 mutex_enter(&uao_list_lock);
1307 nextaobj = LIST_NEXT(aobj, u_list);
1308 uao_detach_locked(&aobj->u_obj);
1309 }
1310
1311 /*
1312 * done with traversal, unlock the list
1313 */
1314 mutex_exit(&uao_list_lock);
1315 return false;
1316 }
1317
1318
1319 /*
1320 * page in any pages from aobj in the given range.
1321 *
1322 * => aobj must be locked and is returned locked.
1323 * => returns true if pagein was aborted due to lack of memory.
1324 */
1325 static bool
1326 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1327 {
1328 bool rv;
1329
1330 if (UAO_USES_SWHASH(aobj)) {
1331 struct uao_swhash_elt *elt;
1332 int buck;
1333
1334 restart:
1335 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1336 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1337 elt != NULL;
1338 elt = LIST_NEXT(elt, list)) {
1339 int i;
1340
1341 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1342 int slot = elt->slots[i];
1343
1344 /*
1345 * if the slot isn't in range, skip it.
1346 */
1347
1348 if (slot < startslot ||
1349 slot >= endslot) {
1350 continue;
1351 }
1352
1353 /*
1354 * process the page,
1355 * the start over on this object
1356 * since the swhash elt
1357 * may have been freed.
1358 */
1359
1360 rv = uao_pagein_page(aobj,
1361 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1362 if (rv) {
1363 return rv;
1364 }
1365 goto restart;
1366 }
1367 }
1368 }
1369 } else {
1370 int i;
1371
1372 for (i = 0; i < aobj->u_pages; i++) {
1373 int slot = aobj->u_swslots[i];
1374
1375 /*
1376 * if the slot isn't in range, skip it
1377 */
1378
1379 if (slot < startslot || slot >= endslot) {
1380 continue;
1381 }
1382
1383 /*
1384 * process the page.
1385 */
1386
1387 rv = uao_pagein_page(aobj, i);
1388 if (rv) {
1389 return rv;
1390 }
1391 }
1392 }
1393
1394 return false;
1395 }
1396
1397 /*
1398 * page in a page from an aobj. used for swap_off.
1399 * returns true if pagein was aborted due to lack of memory.
1400 *
1401 * => aobj must be locked and is returned locked.
1402 */
1403
1404 static bool
1405 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1406 {
1407 struct vm_page *pg;
1408 int rv, npages;
1409
1410 pg = NULL;
1411 npages = 1;
1412 /* locked: aobj */
1413 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1414 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1415 /* unlocked: aobj */
1416
1417 /*
1418 * relock and finish up.
1419 */
1420
1421 mutex_enter(&aobj->u_obj.vmobjlock);
1422 switch (rv) {
1423 case 0:
1424 break;
1425
1426 case EIO:
1427 case ERESTART:
1428
1429 /*
1430 * nothing more to do on errors.
1431 * ERESTART can only mean that the anon was freed,
1432 * so again there's nothing to do.
1433 */
1434
1435 return false;
1436
1437 default:
1438 return true;
1439 }
1440
1441 /*
1442 * ok, we've got the page now.
1443 * mark it as dirty, clear its swslot and un-busy it.
1444 */
1445 uao_dropswap(&aobj->u_obj, pageidx);
1446
1447 /*
1448 * make sure it's on a page queue.
1449 */
1450 mutex_enter(&uvm_pageqlock);
1451 if (pg->wire_count == 0)
1452 uvm_pageenqueue(pg);
1453 mutex_exit(&uvm_pageqlock);
1454
1455 if (pg->flags & PG_WANTED) {
1456 wakeup(pg);
1457 }
1458 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1459 UVM_PAGE_OWN(pg, NULL);
1460
1461 return false;
1462 }
1463
1464 /*
1465 * uao_dropswap_range: drop swapslots in the range.
1466 *
1467 * => aobj must be locked and is returned locked.
1468 * => start is inclusive. end is exclusive.
1469 */
1470
1471 void
1472 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1473 {
1474 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1475
1476 KASSERT(mutex_owned(&uobj->vmobjlock));
1477
1478 uao_dropswap_range1(aobj, start, end);
1479 }
1480
1481 static void
1482 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1483 {
1484 int swpgonlydelta = 0;
1485
1486 if (end == 0) {
1487 end = INT64_MAX;
1488 }
1489
1490 if (UAO_USES_SWHASH(aobj)) {
1491 int i, hashbuckets = aobj->u_swhashmask + 1;
1492 voff_t taghi;
1493 voff_t taglo;
1494
1495 taglo = UAO_SWHASH_ELT_TAG(start);
1496 taghi = UAO_SWHASH_ELT_TAG(end);
1497
1498 for (i = 0; i < hashbuckets; i++) {
1499 struct uao_swhash_elt *elt, *next;
1500
1501 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1502 elt != NULL;
1503 elt = next) {
1504 int startidx, endidx;
1505 int j;
1506
1507 next = LIST_NEXT(elt, list);
1508
1509 if (elt->tag < taglo || taghi < elt->tag) {
1510 continue;
1511 }
1512
1513 if (elt->tag == taglo) {
1514 startidx =
1515 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1516 } else {
1517 startidx = 0;
1518 }
1519
1520 if (elt->tag == taghi) {
1521 endidx =
1522 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1523 } else {
1524 endidx = UAO_SWHASH_CLUSTER_SIZE;
1525 }
1526
1527 for (j = startidx; j < endidx; j++) {
1528 int slot = elt->slots[j];
1529
1530 KASSERT(uvm_pagelookup(&aobj->u_obj,
1531 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1532 + j) << PAGE_SHIFT) == NULL);
1533 if (slot > 0) {
1534 uvm_swap_free(slot, 1);
1535 swpgonlydelta++;
1536 KASSERT(elt->count > 0);
1537 elt->slots[j] = 0;
1538 elt->count--;
1539 }
1540 }
1541
1542 if (elt->count == 0) {
1543 LIST_REMOVE(elt, list);
1544 pool_put(&uao_swhash_elt_pool, elt);
1545 }
1546 }
1547 }
1548 } else {
1549 int i;
1550
1551 if (aobj->u_pages < end) {
1552 end = aobj->u_pages;
1553 }
1554 for (i = start; i < end; i++) {
1555 int slot = aobj->u_swslots[i];
1556
1557 if (slot > 0) {
1558 uvm_swap_free(slot, 1);
1559 swpgonlydelta++;
1560 }
1561 }
1562 }
1563
1564 /*
1565 * adjust the counter of pages only in swap for all
1566 * the swap slots we've freed.
1567 */
1568
1569 if (swpgonlydelta > 0) {
1570 mutex_enter(&uvm_swap_data_lock);
1571 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1572 uvmexp.swpgonly -= swpgonlydelta;
1573 mutex_exit(&uvm_swap_data_lock);
1574 }
1575 }
1576
1577 #endif /* defined(VMSWAP) */
1578