Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.99.4.2
      1 /*	$NetBSD: uvm_aobj.c,v 1.99.4.2 2009/05/04 08:14:39 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.99.4.2 2009/05/04 08:14:39 yamt Exp $");
     47 
     48 #include "opt_uvmhist.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/proc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/kmem.h>
     55 #include <sys/pool.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     61  * to keeping the list of resident pages, it also keeps a list of
     62  * allocated swap blocks.  depending on the size of the aobj this list
     63  * of allocated swap blocks is either stored in an array (small objects)
     64  * or in a hash table (large objects).
     65  */
     66 
     67 /*
     68  * local structures
     69  */
     70 
     71 /*
     72  * for hash tables, we break the address space of the aobj into blocks
     73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     74  * be a power of two.
     75  */
     76 
     77 #define UAO_SWHASH_CLUSTER_SHIFT 4
     78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     79 
     80 /* get the "tag" for this page index */
     81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     83 
     84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
     85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     86 
     87 /* given an ELT and a page index, find the swap slot */
     88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
     90 
     91 /* given an ELT, return its pageidx base */
     92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     94 
     95 /*
     96  * the swhash hash function
     97  */
     98 
     99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
    100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
    101 			    & (AOBJ)->u_swhashmask)])
    102 
    103 /*
    104  * the swhash threshhold determines if we will use an array or a
    105  * hash table to store the list of allocated swap blocks.
    106  */
    107 
    108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    109 #define UAO_USES_SWHASH(AOBJ) \
    110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    111 
    112 /*
    113  * the number of buckets in a swhash, with an upper bound
    114  */
    115 
    116 #define UAO_SWHASH_MAXBUCKETS 256
    117 #define UAO_SWHASH_BUCKETS(AOBJ) \
    118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    119 	     UAO_SWHASH_MAXBUCKETS))
    120 
    121 /*
    122  * uao_swhash_elt: when a hash table is being used, this structure defines
    123  * the format of an entry in the bucket list.
    124  */
    125 
    126 struct uao_swhash_elt {
    127 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    128 	voff_t tag;				/* our 'tag' */
    129 	int count;				/* our number of active slots */
    130 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    131 };
    132 
    133 /*
    134  * uao_swhash: the swap hash table structure
    135  */
    136 
    137 LIST_HEAD(uao_swhash, uao_swhash_elt);
    138 
    139 /*
    140  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    141  * NOTE: Pages for this pool must not come from a pageable kernel map!
    142  */
    143 static POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
    144     "uaoeltpl", NULL, IPL_VM);
    145 
    146 static struct pool_cache uvm_aobj_cache;
    147 
    148 /*
    149  * uvm_aobj: the actual anon-backed uvm_object
    150  *
    151  * => the uvm_object is at the top of the structure, this allows
    152  *   (struct uvm_aobj *) == (struct uvm_object *)
    153  * => only one of u_swslots and u_swhash is used in any given aobj
    154  */
    155 
    156 struct uvm_aobj {
    157 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    158 	pgoff_t u_pages;	 /* number of pages in entire object */
    159 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    160 	int *u_swslots;		 /* array of offset->swapslot mappings */
    161 				 /*
    162 				  * hashtable of offset->swapslot mappings
    163 				  * (u_swhash is an array of bucket heads)
    164 				  */
    165 	struct uao_swhash *u_swhash;
    166 	u_long u_swhashmask;		/* mask for hashtable */
    167 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    168 };
    169 
    170 /*
    171  * local functions
    172  */
    173 
    174 static void	uao_free(struct uvm_aobj *);
    175 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    176 		    int *, int, vm_prot_t, int, int);
    177 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    178 
    179 static void uao_detach_locked(struct uvm_object *);
    180 static void uao_reference_locked(struct uvm_object *);
    181 
    182 #if defined(VMSWAP)
    183 static struct uao_swhash_elt *uao_find_swhash_elt
    184     (struct uvm_aobj *, int, bool);
    185 
    186 static bool uao_pagein(struct uvm_aobj *, int, int);
    187 static bool uao_pagein_page(struct uvm_aobj *, int);
    188 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
    189 #endif /* defined(VMSWAP) */
    190 
    191 /*
    192  * aobj_pager
    193  *
    194  * note that some functions (e.g. put) are handled elsewhere
    195  */
    196 
    197 const struct uvm_pagerops aobj_pager = {
    198 	.pgo_reference = uao_reference,
    199 	.pgo_detach = uao_detach,
    200 	.pgo_get = uao_get,
    201 	.pgo_put = uao_put,
    202 };
    203 
    204 /*
    205  * uao_list: global list of active aobjs, locked by uao_list_lock
    206  */
    207 
    208 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    209 static kmutex_t uao_list_lock;
    210 
    211 /*
    212  * functions
    213  */
    214 
    215 /*
    216  * hash table/array related functions
    217  */
    218 
    219 #if defined(VMSWAP)
    220 
    221 /*
    222  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    223  * offset.
    224  *
    225  * => the object should be locked by the caller
    226  */
    227 
    228 static struct uao_swhash_elt *
    229 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    230 {
    231 	struct uao_swhash *swhash;
    232 	struct uao_swhash_elt *elt;
    233 	voff_t page_tag;
    234 
    235 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    236 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    237 
    238 	/*
    239 	 * now search the bucket for the requested tag
    240 	 */
    241 
    242 	LIST_FOREACH(elt, swhash, list) {
    243 		if (elt->tag == page_tag) {
    244 			return elt;
    245 		}
    246 	}
    247 	if (!create) {
    248 		return NULL;
    249 	}
    250 
    251 	/*
    252 	 * allocate a new entry for the bucket and init/insert it in
    253 	 */
    254 
    255 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    256 	if (elt == NULL) {
    257 		return NULL;
    258 	}
    259 	LIST_INSERT_HEAD(swhash, elt, list);
    260 	elt->tag = page_tag;
    261 	elt->count = 0;
    262 	memset(elt->slots, 0, sizeof(elt->slots));
    263 	return elt;
    264 }
    265 
    266 /*
    267  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    268  *
    269  * => object must be locked by caller
    270  */
    271 
    272 int
    273 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    274 {
    275 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    276 	struct uao_swhash_elt *elt;
    277 
    278 	/*
    279 	 * if noswap flag is set, then we never return a slot
    280 	 */
    281 
    282 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    283 		return(0);
    284 
    285 	/*
    286 	 * if hashing, look in hash table.
    287 	 */
    288 
    289 	if (UAO_USES_SWHASH(aobj)) {
    290 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    291 		if (elt)
    292 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    293 		else
    294 			return(0);
    295 	}
    296 
    297 	/*
    298 	 * otherwise, look in the array
    299 	 */
    300 
    301 	return(aobj->u_swslots[pageidx]);
    302 }
    303 
    304 /*
    305  * uao_set_swslot: set the swap slot for a page in an aobj.
    306  *
    307  * => setting a slot to zero frees the slot
    308  * => object must be locked by caller
    309  * => we return the old slot number, or -1 if we failed to allocate
    310  *    memory to record the new slot number
    311  */
    312 
    313 int
    314 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    315 {
    316 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    317 	struct uao_swhash_elt *elt;
    318 	int oldslot;
    319 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    320 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    321 	    aobj, pageidx, slot, 0);
    322 
    323 	/*
    324 	 * if noswap flag is set, then we can't set a non-zero slot.
    325 	 */
    326 
    327 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    328 		if (slot == 0)
    329 			return(0);
    330 
    331 		printf("uao_set_swslot: uobj = %p\n", uobj);
    332 		panic("uao_set_swslot: NOSWAP object");
    333 	}
    334 
    335 	/*
    336 	 * are we using a hash table?  if so, add it in the hash.
    337 	 */
    338 
    339 	if (UAO_USES_SWHASH(aobj)) {
    340 
    341 		/*
    342 		 * Avoid allocating an entry just to free it again if
    343 		 * the page had not swap slot in the first place, and
    344 		 * we are freeing.
    345 		 */
    346 
    347 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    348 		if (elt == NULL) {
    349 			return slot ? -1 : 0;
    350 		}
    351 
    352 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    353 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    354 
    355 		/*
    356 		 * now adjust the elt's reference counter and free it if we've
    357 		 * dropped it to zero.
    358 		 */
    359 
    360 		if (slot) {
    361 			if (oldslot == 0)
    362 				elt->count++;
    363 		} else {
    364 			if (oldslot)
    365 				elt->count--;
    366 
    367 			if (elt->count == 0) {
    368 				LIST_REMOVE(elt, list);
    369 				pool_put(&uao_swhash_elt_pool, elt);
    370 			}
    371 		}
    372 	} else {
    373 		/* we are using an array */
    374 		oldslot = aobj->u_swslots[pageidx];
    375 		aobj->u_swslots[pageidx] = slot;
    376 	}
    377 	return (oldslot);
    378 }
    379 
    380 #endif /* defined(VMSWAP) */
    381 
    382 /*
    383  * end of hash/array functions
    384  */
    385 
    386 /*
    387  * uao_free: free all resources held by an aobj, and then free the aobj
    388  *
    389  * => the aobj should be dead
    390  */
    391 
    392 static void
    393 uao_free(struct uvm_aobj *aobj)
    394 {
    395 	int swpgonlydelta = 0;
    396 
    397 
    398 #if defined(VMSWAP)
    399 	uao_dropswap_range1(aobj, 0, 0);
    400 #endif /* defined(VMSWAP) */
    401 
    402 	mutex_exit(&aobj->u_obj.vmobjlock);
    403 
    404 #if defined(VMSWAP)
    405 	if (UAO_USES_SWHASH(aobj)) {
    406 
    407 		/*
    408 		 * free the hash table itself.
    409 		 */
    410 
    411 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    412 	} else {
    413 
    414 		/*
    415 		 * free the array itsself.
    416 		 */
    417 
    418 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    419 	}
    420 #endif /* defined(VMSWAP) */
    421 
    422 	/*
    423 	 * finally free the aobj itself
    424 	 */
    425 
    426 	UVM_OBJ_DESTROY(&aobj->u_obj);
    427 	pool_cache_put(&uvm_aobj_cache, aobj);
    428 
    429 	/*
    430 	 * adjust the counter of pages only in swap for all
    431 	 * the swap slots we've freed.
    432 	 */
    433 
    434 	if (swpgonlydelta > 0) {
    435 		mutex_enter(&uvm_swap_data_lock);
    436 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    437 		uvmexp.swpgonly -= swpgonlydelta;
    438 		mutex_exit(&uvm_swap_data_lock);
    439 	}
    440 }
    441 
    442 /*
    443  * pager functions
    444  */
    445 
    446 /*
    447  * uao_create: create an aobj of the given size and return its uvm_object.
    448  *
    449  * => for normal use, flags are always zero
    450  * => for the kernel object, the flags are:
    451  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    452  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    453  */
    454 
    455 struct uvm_object *
    456 uao_create(vsize_t size, int flags)
    457 {
    458 	static struct uvm_aobj kernel_object_store;
    459 	static int kobj_alloced = 0;
    460 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    461 	struct uvm_aobj *aobj;
    462 	int refs;
    463 
    464 	/*
    465 	 * malloc a new aobj unless we are asked for the kernel object
    466 	 */
    467 
    468 	if (flags & UAO_FLAG_KERNOBJ) {
    469 		KASSERT(!kobj_alloced);
    470 		aobj = &kernel_object_store;
    471 		aobj->u_pages = pages;
    472 		aobj->u_flags = UAO_FLAG_NOSWAP;
    473 		refs = UVM_OBJ_KERN;
    474 		kobj_alloced = UAO_FLAG_KERNOBJ;
    475 	} else if (flags & UAO_FLAG_KERNSWAP) {
    476 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    477 		aobj = &kernel_object_store;
    478 		kobj_alloced = UAO_FLAG_KERNSWAP;
    479 		refs = 0xdeadbeaf; /* XXX: gcc */
    480 	} else {
    481 		aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
    482 		aobj->u_pages = pages;
    483 		aobj->u_flags = 0;
    484 		refs = 1;
    485 	}
    486 
    487 	/*
    488  	 * allocate hash/array if necessary
    489  	 *
    490  	 * note: in the KERNSWAP case no need to worry about locking since
    491  	 * we are still booting we should be the only thread around.
    492  	 */
    493 
    494 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    495 #if defined(VMSWAP)
    496 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    497 
    498 		/* allocate hash table or array depending on object size */
    499 		if (UAO_USES_SWHASH(aobj)) {
    500 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    501 			    HASH_LIST, kernswap ? false : true,
    502 			    &aobj->u_swhashmask);
    503 			if (aobj->u_swhash == NULL)
    504 				panic("uao_create: hashinit swhash failed");
    505 		} else {
    506 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    507 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    508 			if (aobj->u_swslots == NULL)
    509 				panic("uao_create: malloc swslots failed");
    510 		}
    511 #endif /* defined(VMSWAP) */
    512 
    513 		if (flags) {
    514 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    515 			return(&aobj->u_obj);
    516 		}
    517 	}
    518 
    519 	/*
    520  	 * init aobj fields
    521  	 */
    522 
    523 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
    524 
    525 	/*
    526  	 * now that aobj is ready, add it to the global list
    527  	 */
    528 
    529 	mutex_enter(&uao_list_lock);
    530 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    531 	mutex_exit(&uao_list_lock);
    532 	return(&aobj->u_obj);
    533 }
    534 
    535 
    536 
    537 /*
    538  * uao_init: set up aobj pager subsystem
    539  *
    540  * => called at boot time from uvm_pager_init()
    541  */
    542 
    543 void
    544 uao_init(void)
    545 {
    546 	static int uao_initialized;
    547 
    548 	if (uao_initialized)
    549 		return;
    550 	uao_initialized = true;
    551 	LIST_INIT(&uao_list);
    552 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    553 	pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
    554 	    0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
    555 }
    556 
    557 /*
    558  * uao_reference: add a ref to an aobj
    559  *
    560  * => aobj must be unlocked
    561  * => just lock it and call the locked version
    562  */
    563 
    564 void
    565 uao_reference(struct uvm_object *uobj)
    566 {
    567 
    568 	/*
    569  	 * kernel_object already has plenty of references, leave it alone.
    570  	 */
    571 
    572 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    573 		return;
    574 
    575 	mutex_enter(&uobj->vmobjlock);
    576 	uao_reference_locked(uobj);
    577 	mutex_exit(&uobj->vmobjlock);
    578 }
    579 
    580 /*
    581  * uao_reference_locked: add a ref to an aobj that is already locked
    582  *
    583  * => aobj must be locked
    584  * this needs to be separate from the normal routine
    585  * since sometimes we need to add a reference to an aobj when
    586  * it's already locked.
    587  */
    588 
    589 static void
    590 uao_reference_locked(struct uvm_object *uobj)
    591 {
    592 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    593 
    594 	/*
    595  	 * kernel_object already has plenty of references, leave it alone.
    596  	 */
    597 
    598 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    599 		return;
    600 
    601 	uobj->uo_refs++;
    602 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    603 		    uobj, uobj->uo_refs,0,0);
    604 }
    605 
    606 /*
    607  * uao_detach: drop a reference to an aobj
    608  *
    609  * => aobj must be unlocked
    610  * => just lock it and call the locked version
    611  */
    612 
    613 void
    614 uao_detach(struct uvm_object *uobj)
    615 {
    616 
    617 	/*
    618  	 * detaching from kernel_object is a noop.
    619  	 */
    620 
    621 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    622 		return;
    623 
    624 	mutex_enter(&uobj->vmobjlock);
    625 	uao_detach_locked(uobj);
    626 }
    627 
    628 /*
    629  * uao_detach_locked: drop a reference to an aobj
    630  *
    631  * => aobj must be locked, and is unlocked (or freed) upon return.
    632  * this needs to be separate from the normal routine
    633  * since sometimes we need to detach from an aobj when
    634  * it's already locked.
    635  */
    636 
    637 static void
    638 uao_detach_locked(struct uvm_object *uobj)
    639 {
    640 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    641 	struct vm_page *pg;
    642 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    643 
    644 	/*
    645  	 * detaching from kernel_object is a noop.
    646  	 */
    647 
    648 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    649 		mutex_exit(&uobj->vmobjlock);
    650 		return;
    651 	}
    652 
    653 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    654 	uobj->uo_refs--;
    655 	if (uobj->uo_refs) {
    656 		mutex_exit(&uobj->vmobjlock);
    657 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    658 		return;
    659 	}
    660 
    661 	/*
    662  	 * remove the aobj from the global list.
    663  	 */
    664 
    665 	mutex_enter(&uao_list_lock);
    666 	LIST_REMOVE(aobj, u_list);
    667 	mutex_exit(&uao_list_lock);
    668 
    669 	/*
    670  	 * free all the pages left in the aobj.  for each page,
    671 	 * when the page is no longer busy (and thus after any disk i/o that
    672 	 * it's involved in is complete), release any swap resources and
    673 	 * free the page itself.
    674  	 */
    675 
    676 	mutex_enter(&uvm_pageqlock);
    677 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    678 		pmap_page_protect(pg, VM_PROT_NONE);
    679 		if (pg->flags & PG_BUSY) {
    680 			pg->flags |= PG_WANTED;
    681 			mutex_exit(&uvm_pageqlock);
    682 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
    683 			    "uao_det", 0);
    684 			mutex_enter(&uobj->vmobjlock);
    685 			mutex_enter(&uvm_pageqlock);
    686 			continue;
    687 		}
    688 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    689 		uvm_pagefree(pg);
    690 	}
    691 	mutex_exit(&uvm_pageqlock);
    692 
    693 	/*
    694  	 * finally, free the aobj itself.
    695  	 */
    696 
    697 	uao_free(aobj);
    698 }
    699 
    700 /*
    701  * uao_put: flush pages out of a uvm object
    702  *
    703  * => object should be locked by caller.  we may _unlock_ the object
    704  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    705  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    706  *	XXXJRT a page, we simply just deactivate it.  Should probably
    707  *	XXXJRT handle this better, in the future (although "flushing"
    708  *	XXXJRT anonymous memory isn't terribly important).
    709  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    710  *	or block.
    711  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    712  *	for flushing.
    713  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    714  *	that new pages are inserted on the tail end of the list.  thus,
    715  *	we can make a complete pass through the object in one go by starting
    716  *	at the head and working towards the tail (new pages are put in
    717  *	front of us).
    718  * => NOTE: we are allowed to lock the page queues, so the caller
    719  *	must not be holding the lock on them [e.g. pagedaemon had
    720  *	better not call us with the queues locked]
    721  * => we return 0 unless we encountered some sort of I/O error
    722  *	XXXJRT currently never happens, as we never directly initiate
    723  *	XXXJRT I/O
    724  *
    725  * note on page traversal:
    726  *	we can traverse the pages in an object either by going down the
    727  *	linked list in "uobj->memq", or we can go over the address range
    728  *	by page doing hash table lookups for each address.  depending
    729  *	on how many pages are in the object it may be cheaper to do one
    730  *	or the other.  we set "by_list" to true if we are using memq.
    731  *	if the cost of a hash lookup was equal to the cost of the list
    732  *	traversal we could compare the number of pages in the start->stop
    733  *	range to the total number of pages in the object.  however, it
    734  *	seems that a hash table lookup is more expensive than the linked
    735  *	list traversal, so we multiply the number of pages in the
    736  *	start->stop range by a penalty which we define below.
    737  */
    738 
    739 static int
    740 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    741 {
    742 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    743 	struct vm_page *pg, *nextpg, curmp, endmp;
    744 	bool by_list;
    745 	voff_t curoff;
    746 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    747 
    748 	KASSERT(mutex_owned(&uobj->vmobjlock));
    749 
    750 	curoff = 0;
    751 	if (flags & PGO_ALLPAGES) {
    752 		start = 0;
    753 		stop = aobj->u_pages << PAGE_SHIFT;
    754 		by_list = true;		/* always go by the list */
    755 	} else {
    756 		start = trunc_page(start);
    757 		if (stop == 0) {
    758 			stop = aobj->u_pages << PAGE_SHIFT;
    759 		} else {
    760 			stop = round_page(stop);
    761 		}
    762 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    763 			printf("uao_flush: strange, got an out of range "
    764 			    "flush (fixed)\n");
    765 			stop = aobj->u_pages << PAGE_SHIFT;
    766 		}
    767 		by_list = (uobj->uo_npages <=
    768 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    769 	}
    770 	UVMHIST_LOG(maphist,
    771 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    772 	    start, stop, by_list, flags);
    773 
    774 	/*
    775 	 * Don't need to do any work here if we're not freeing
    776 	 * or deactivating pages.
    777 	 */
    778 
    779 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    780 		mutex_exit(&uobj->vmobjlock);
    781 		return 0;
    782 	}
    783 
    784 	/*
    785 	 * Initialize the marker pages.  See the comment in
    786 	 * genfs_putpages() also.
    787 	 */
    788 
    789 	curmp.uobject = uobj;
    790 	curmp.offset = (voff_t)-1;
    791 	curmp.flags = PG_BUSY;
    792 	endmp.uobject = uobj;
    793 	endmp.offset = (voff_t)-1;
    794 	endmp.flags = PG_BUSY;
    795 
    796 	/*
    797 	 * now do it.  note: we must update nextpg in the body of loop or we
    798 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    799 	 * because we may free "pg" before doing the next loop.
    800 	 */
    801 
    802 	if (by_list) {
    803 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    804 		nextpg = TAILQ_FIRST(&uobj->memq);
    805 		uvm_lwp_hold(curlwp);
    806 	} else {
    807 		curoff = start;
    808 		nextpg = NULL;	/* Quell compiler warning */
    809 	}
    810 
    811 	/* locked: uobj */
    812 	for (;;) {
    813 		if (by_list) {
    814 			pg = nextpg;
    815 			if (pg == &endmp)
    816 				break;
    817 			nextpg = TAILQ_NEXT(pg, listq.queue);
    818 			if (pg->offset < start || pg->offset >= stop)
    819 				continue;
    820 		} else {
    821 			if (curoff < stop) {
    822 				pg = uvm_pagelookup(uobj, curoff);
    823 				curoff += PAGE_SIZE;
    824 			} else
    825 				break;
    826 			if (pg == NULL)
    827 				continue;
    828 		}
    829 
    830 		/*
    831 		 * wait and try again if the page is busy.
    832 		 */
    833 
    834 		if (pg->flags & PG_BUSY) {
    835 			if (by_list) {
    836 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    837 			}
    838 			pg->flags |= PG_WANTED;
    839 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    840 			    "uao_put", 0);
    841 			mutex_enter(&uobj->vmobjlock);
    842 			if (by_list) {
    843 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    844 				TAILQ_REMOVE(&uobj->memq, &curmp,
    845 				    listq.queue);
    846 			} else
    847 				curoff -= PAGE_SIZE;
    848 			continue;
    849 		}
    850 
    851 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    852 
    853 		/*
    854 		 * XXX In these first 3 cases, we always just
    855 		 * XXX deactivate the page.  We may want to
    856 		 * XXX handle the different cases more specifically
    857 		 * XXX in the future.
    858 		 */
    859 
    860 		case PGO_CLEANIT|PGO_FREE:
    861 		case PGO_CLEANIT|PGO_DEACTIVATE:
    862 		case PGO_DEACTIVATE:
    863  deactivate_it:
    864 			mutex_enter(&uvm_pageqlock);
    865 			/* skip the page if it's wired */
    866 			if (pg->wire_count == 0) {
    867 				uvm_pagedeactivate(pg);
    868 			}
    869 			mutex_exit(&uvm_pageqlock);
    870 			break;
    871 
    872 		case PGO_FREE:
    873 			/*
    874 			 * If there are multiple references to
    875 			 * the object, just deactivate the page.
    876 			 */
    877 
    878 			if (uobj->uo_refs > 1)
    879 				goto deactivate_it;
    880 
    881 			/*
    882 			 * free the swap slot and the page.
    883 			 */
    884 
    885 			pmap_page_protect(pg, VM_PROT_NONE);
    886 
    887 			/*
    888 			 * freeing swapslot here is not strictly necessary.
    889 			 * however, leaving it here doesn't save much
    890 			 * because we need to update swap accounting anyway.
    891 			 */
    892 
    893 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    894 			mutex_enter(&uvm_pageqlock);
    895 			uvm_pagefree(pg);
    896 			mutex_exit(&uvm_pageqlock);
    897 			break;
    898 
    899 		default:
    900 			panic("%s: impossible", __func__);
    901 		}
    902 	}
    903 	if (by_list) {
    904 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    905 		uvm_lwp_rele(curlwp);
    906 	}
    907 	mutex_exit(&uobj->vmobjlock);
    908 	return 0;
    909 }
    910 
    911 /*
    912  * uao_get: fetch me a page
    913  *
    914  * we have three cases:
    915  * 1: page is resident     -> just return the page.
    916  * 2: page is zero-fill    -> allocate a new page and zero it.
    917  * 3: page is swapped out  -> fetch the page from swap.
    918  *
    919  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    920  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    921  * then we will need to return EBUSY.
    922  *
    923  * => prefer map unlocked (not required)
    924  * => object must be locked!  we will _unlock_ it before starting any I/O.
    925  * => flags: PGO_ALLPAGES: get all of the pages
    926  *           PGO_LOCKED: fault data structures are locked
    927  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    928  * => NOTE: caller must check for released pages!!
    929  */
    930 
    931 static int
    932 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    933     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    934 {
    935 #if defined(VMSWAP)
    936 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    937 #endif /* defined(VMSWAP) */
    938 	voff_t current_offset;
    939 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    940 	int lcv, gotpages, maxpages, swslot, pageidx;
    941 	bool done;
    942 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    943 
    944 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    945 		    (struct uvm_aobj *)uobj, offset, flags,0);
    946 
    947 	/*
    948  	 * get number of pages
    949  	 */
    950 
    951 	maxpages = *npagesp;
    952 
    953 	/*
    954  	 * step 1: handled the case where fault data structures are locked.
    955  	 */
    956 
    957 	if (flags & PGO_LOCKED) {
    958 
    959 		/*
    960  		 * step 1a: get pages that are already resident.   only do
    961 		 * this if the data structures are locked (i.e. the first
    962 		 * time through).
    963  		 */
    964 
    965 		done = true;	/* be optimistic */
    966 		gotpages = 0;	/* # of pages we got so far */
    967 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    968 		    lcv++, current_offset += PAGE_SIZE) {
    969 			/* do we care about this page?  if not, skip it */
    970 			if (pps[lcv] == PGO_DONTCARE)
    971 				continue;
    972 			ptmp = uvm_pagelookup(uobj, current_offset);
    973 
    974 			/*
    975  			 * if page is new, attempt to allocate the page,
    976 			 * zero-fill'd.
    977  			 */
    978 
    979 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
    980 			    current_offset >> PAGE_SHIFT) == 0) {
    981 				ptmp = uvm_pagealloc(uobj, current_offset,
    982 				    NULL, UVM_PGA_ZERO);
    983 				if (ptmp) {
    984 					/* new page */
    985 					ptmp->flags &= ~(PG_FAKE);
    986 					ptmp->pqflags |= PQ_AOBJ;
    987 					goto gotpage;
    988 				}
    989 			}
    990 
    991 			/*
    992 			 * to be useful must get a non-busy page
    993 			 */
    994 
    995 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    996 				if (lcv == centeridx ||
    997 				    (flags & PGO_ALLPAGES) != 0)
    998 					/* need to do a wait or I/O! */
    999 					done = false;
   1000 					continue;
   1001 			}
   1002 
   1003 			/*
   1004 			 * useful page: busy/lock it and plug it in our
   1005 			 * result array
   1006 			 */
   1007 
   1008 			/* caller must un-busy this page */
   1009 			ptmp->flags |= PG_BUSY;
   1010 			UVM_PAGE_OWN(ptmp, "uao_get1");
   1011 gotpage:
   1012 			pps[lcv] = ptmp;
   1013 			gotpages++;
   1014 		}
   1015 
   1016 		/*
   1017  		 * step 1b: now we've either done everything needed or we
   1018 		 * to unlock and do some waiting or I/O.
   1019  		 */
   1020 
   1021 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1022 		*npagesp = gotpages;
   1023 		if (done)
   1024 			return 0;
   1025 		else
   1026 			return EBUSY;
   1027 	}
   1028 
   1029 	/*
   1030  	 * step 2: get non-resident or busy pages.
   1031  	 * object is locked.   data structures are unlocked.
   1032  	 */
   1033 
   1034 	if ((flags & PGO_SYNCIO) == 0) {
   1035 		goto done;
   1036 	}
   1037 
   1038 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1039 	    lcv++, current_offset += PAGE_SIZE) {
   1040 
   1041 		/*
   1042 		 * - skip over pages we've already gotten or don't want
   1043 		 * - skip over pages we don't _have_ to get
   1044 		 */
   1045 
   1046 		if (pps[lcv] != NULL ||
   1047 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1048 			continue;
   1049 
   1050 		pageidx = current_offset >> PAGE_SHIFT;
   1051 
   1052 		/*
   1053  		 * we have yet to locate the current page (pps[lcv]).   we
   1054 		 * first look for a page that is already at the current offset.
   1055 		 * if we find a page, we check to see if it is busy or
   1056 		 * released.  if that is the case, then we sleep on the page
   1057 		 * until it is no longer busy or released and repeat the lookup.
   1058 		 * if the page we found is neither busy nor released, then we
   1059 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1060 		 * 'break's the following while loop and indicates we are
   1061 		 * ready to move on to the next page in the "lcv" loop above.
   1062  		 *
   1063  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1064 		 * then it means that we allocated a new busy/fake/clean page
   1065 		 * ptmp in the object and we need to do I/O to fill in the data.
   1066  		 */
   1067 
   1068 		/* top of "pps" while loop */
   1069 		while (pps[lcv] == NULL) {
   1070 			/* look for a resident page */
   1071 			ptmp = uvm_pagelookup(uobj, current_offset);
   1072 
   1073 			/* not resident?   allocate one now (if we can) */
   1074 			if (ptmp == NULL) {
   1075 
   1076 				ptmp = uvm_pagealloc(uobj, current_offset,
   1077 				    NULL, 0);
   1078 
   1079 				/* out of RAM? */
   1080 				if (ptmp == NULL) {
   1081 					mutex_exit(&uobj->vmobjlock);
   1082 					UVMHIST_LOG(pdhist,
   1083 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1084 					uvm_wait("uao_getpage");
   1085 					mutex_enter(&uobj->vmobjlock);
   1086 					continue;
   1087 				}
   1088 
   1089 				/*
   1090 				 * safe with PQ's unlocked: because we just
   1091 				 * alloc'd the page
   1092 				 */
   1093 
   1094 				ptmp->pqflags |= PQ_AOBJ;
   1095 
   1096 				/*
   1097 				 * got new page ready for I/O.  break pps while
   1098 				 * loop.  pps[lcv] is still NULL.
   1099 				 */
   1100 
   1101 				break;
   1102 			}
   1103 
   1104 			/* page is there, see if we need to wait on it */
   1105 			if ((ptmp->flags & PG_BUSY) != 0) {
   1106 				ptmp->flags |= PG_WANTED;
   1107 				UVMHIST_LOG(pdhist,
   1108 				    "sleeping, ptmp->flags 0x%x\n",
   1109 				    ptmp->flags,0,0,0);
   1110 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1111 				    false, "uao_get", 0);
   1112 				mutex_enter(&uobj->vmobjlock);
   1113 				continue;
   1114 			}
   1115 
   1116 			/*
   1117  			 * if we get here then the page has become resident and
   1118 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1119 			 * own it) and set pps[lcv] (so that we exit the while
   1120 			 * loop).
   1121  			 */
   1122 
   1123 			/* we own it, caller must un-busy */
   1124 			ptmp->flags |= PG_BUSY;
   1125 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1126 			pps[lcv] = ptmp;
   1127 		}
   1128 
   1129 		/*
   1130  		 * if we own the valid page at the correct offset, pps[lcv] will
   1131  		 * point to it.   nothing more to do except go to the next page.
   1132  		 */
   1133 
   1134 		if (pps[lcv])
   1135 			continue;			/* next lcv */
   1136 
   1137 		/*
   1138  		 * we have a "fake/busy/clean" page that we just allocated.
   1139  		 * do the needed "i/o", either reading from swap or zeroing.
   1140  		 */
   1141 
   1142 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1143 
   1144 		/*
   1145  		 * just zero the page if there's nothing in swap.
   1146  		 */
   1147 
   1148 		if (swslot == 0) {
   1149 
   1150 			/*
   1151 			 * page hasn't existed before, just zero it.
   1152 			 */
   1153 
   1154 			uvm_pagezero(ptmp);
   1155 		} else {
   1156 #if defined(VMSWAP)
   1157 			int error;
   1158 
   1159 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1160 			     swslot, 0,0,0);
   1161 
   1162 			/*
   1163 			 * page in the swapped-out page.
   1164 			 * unlock object for i/o, relock when done.
   1165 			 */
   1166 
   1167 			mutex_exit(&uobj->vmobjlock);
   1168 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1169 			mutex_enter(&uobj->vmobjlock);
   1170 
   1171 			/*
   1172 			 * I/O done.  check for errors.
   1173 			 */
   1174 
   1175 			if (error != 0) {
   1176 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1177 				    error,0,0,0);
   1178 				if (ptmp->flags & PG_WANTED)
   1179 					wakeup(ptmp);
   1180 
   1181 				/*
   1182 				 * remove the swap slot from the aobj
   1183 				 * and mark the aobj as having no real slot.
   1184 				 * don't free the swap slot, thus preventing
   1185 				 * it from being used again.
   1186 				 */
   1187 
   1188 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1189 							SWSLOT_BAD);
   1190 				if (swslot > 0) {
   1191 					uvm_swap_markbad(swslot, 1);
   1192 				}
   1193 
   1194 				mutex_enter(&uvm_pageqlock);
   1195 				uvm_pagefree(ptmp);
   1196 				mutex_exit(&uvm_pageqlock);
   1197 				mutex_exit(&uobj->vmobjlock);
   1198 				return error;
   1199 			}
   1200 #else /* defined(VMSWAP) */
   1201 			panic("%s: pagein", __func__);
   1202 #endif /* defined(VMSWAP) */
   1203 		}
   1204 
   1205 		if ((access_type & VM_PROT_WRITE) == 0) {
   1206 			ptmp->flags |= PG_CLEAN;
   1207 			pmap_clear_modify(ptmp);
   1208 		}
   1209 
   1210 		/*
   1211  		 * we got the page!   clear the fake flag (indicates valid
   1212 		 * data now in page) and plug into our result array.   note
   1213 		 * that page is still busy.
   1214  		 *
   1215  		 * it is the callers job to:
   1216  		 * => check if the page is released
   1217  		 * => unbusy the page
   1218  		 * => activate the page
   1219  		 */
   1220 
   1221 		ptmp->flags &= ~PG_FAKE;
   1222 		pps[lcv] = ptmp;
   1223 	}
   1224 
   1225 	/*
   1226  	 * finally, unlock object and return.
   1227  	 */
   1228 
   1229 done:
   1230 	mutex_exit(&uobj->vmobjlock);
   1231 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1232 	return 0;
   1233 }
   1234 
   1235 #if defined(VMSWAP)
   1236 
   1237 /*
   1238  * uao_dropswap:  release any swap resources from this aobj page.
   1239  *
   1240  * => aobj must be locked or have a reference count of 0.
   1241  */
   1242 
   1243 void
   1244 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1245 {
   1246 	int slot;
   1247 
   1248 	slot = uao_set_swslot(uobj, pageidx, 0);
   1249 	if (slot) {
   1250 		uvm_swap_free(slot, 1);
   1251 	}
   1252 }
   1253 
   1254 /*
   1255  * page in every page in every aobj that is paged-out to a range of swslots.
   1256  *
   1257  * => nothing should be locked.
   1258  * => returns true if pagein was aborted due to lack of memory.
   1259  */
   1260 
   1261 bool
   1262 uao_swap_off(int startslot, int endslot)
   1263 {
   1264 	struct uvm_aobj *aobj, *nextaobj;
   1265 	bool rv;
   1266 
   1267 	/*
   1268 	 * walk the list of all aobjs.
   1269 	 */
   1270 
   1271 restart:
   1272 	mutex_enter(&uao_list_lock);
   1273 	for (aobj = LIST_FIRST(&uao_list);
   1274 	     aobj != NULL;
   1275 	     aobj = nextaobj) {
   1276 
   1277 		/*
   1278 		 * try to get the object lock, start all over if we fail.
   1279 		 * most of the time we'll get the aobj lock,
   1280 		 * so this should be a rare case.
   1281 		 */
   1282 
   1283 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
   1284 			mutex_exit(&uao_list_lock);
   1285 			/* XXX Better than yielding but inadequate. */
   1286 			kpause("livelock", false, 1, NULL);
   1287 			goto restart;
   1288 		}
   1289 
   1290 		/*
   1291 		 * add a ref to the aobj so it doesn't disappear
   1292 		 * while we're working.
   1293 		 */
   1294 
   1295 		uao_reference_locked(&aobj->u_obj);
   1296 
   1297 		/*
   1298 		 * now it's safe to unlock the uao list.
   1299 		 */
   1300 
   1301 		mutex_exit(&uao_list_lock);
   1302 
   1303 		/*
   1304 		 * page in any pages in the swslot range.
   1305 		 * if there's an error, abort and return the error.
   1306 		 */
   1307 
   1308 		rv = uao_pagein(aobj, startslot, endslot);
   1309 		if (rv) {
   1310 			uao_detach_locked(&aobj->u_obj);
   1311 			return rv;
   1312 		}
   1313 
   1314 		/*
   1315 		 * we're done with this aobj.
   1316 		 * relock the list and drop our ref on the aobj.
   1317 		 */
   1318 
   1319 		mutex_enter(&uao_list_lock);
   1320 		nextaobj = LIST_NEXT(aobj, u_list);
   1321 		uao_detach_locked(&aobj->u_obj);
   1322 	}
   1323 
   1324 	/*
   1325 	 * done with traversal, unlock the list
   1326 	 */
   1327 	mutex_exit(&uao_list_lock);
   1328 	return false;
   1329 }
   1330 
   1331 
   1332 /*
   1333  * page in any pages from aobj in the given range.
   1334  *
   1335  * => aobj must be locked and is returned locked.
   1336  * => returns true if pagein was aborted due to lack of memory.
   1337  */
   1338 static bool
   1339 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1340 {
   1341 	bool rv;
   1342 
   1343 	if (UAO_USES_SWHASH(aobj)) {
   1344 		struct uao_swhash_elt *elt;
   1345 		int buck;
   1346 
   1347 restart:
   1348 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1349 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1350 			     elt != NULL;
   1351 			     elt = LIST_NEXT(elt, list)) {
   1352 				int i;
   1353 
   1354 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1355 					int slot = elt->slots[i];
   1356 
   1357 					/*
   1358 					 * if the slot isn't in range, skip it.
   1359 					 */
   1360 
   1361 					if (slot < startslot ||
   1362 					    slot >= endslot) {
   1363 						continue;
   1364 					}
   1365 
   1366 					/*
   1367 					 * process the page,
   1368 					 * the start over on this object
   1369 					 * since the swhash elt
   1370 					 * may have been freed.
   1371 					 */
   1372 
   1373 					rv = uao_pagein_page(aobj,
   1374 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1375 					if (rv) {
   1376 						return rv;
   1377 					}
   1378 					goto restart;
   1379 				}
   1380 			}
   1381 		}
   1382 	} else {
   1383 		int i;
   1384 
   1385 		for (i = 0; i < aobj->u_pages; i++) {
   1386 			int slot = aobj->u_swslots[i];
   1387 
   1388 			/*
   1389 			 * if the slot isn't in range, skip it
   1390 			 */
   1391 
   1392 			if (slot < startslot || slot >= endslot) {
   1393 				continue;
   1394 			}
   1395 
   1396 			/*
   1397 			 * process the page.
   1398 			 */
   1399 
   1400 			rv = uao_pagein_page(aobj, i);
   1401 			if (rv) {
   1402 				return rv;
   1403 			}
   1404 		}
   1405 	}
   1406 
   1407 	return false;
   1408 }
   1409 
   1410 /*
   1411  * page in a page from an aobj.  used for swap_off.
   1412  * returns true if pagein was aborted due to lack of memory.
   1413  *
   1414  * => aobj must be locked and is returned locked.
   1415  */
   1416 
   1417 static bool
   1418 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1419 {
   1420 	struct vm_page *pg;
   1421 	int rv, npages;
   1422 
   1423 	pg = NULL;
   1424 	npages = 1;
   1425 	/* locked: aobj */
   1426 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1427 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
   1428 	/* unlocked: aobj */
   1429 
   1430 	/*
   1431 	 * relock and finish up.
   1432 	 */
   1433 
   1434 	mutex_enter(&aobj->u_obj.vmobjlock);
   1435 	switch (rv) {
   1436 	case 0:
   1437 		break;
   1438 
   1439 	case EIO:
   1440 	case ERESTART:
   1441 
   1442 		/*
   1443 		 * nothing more to do on errors.
   1444 		 * ERESTART can only mean that the anon was freed,
   1445 		 * so again there's nothing to do.
   1446 		 */
   1447 
   1448 		return false;
   1449 
   1450 	default:
   1451 		return true;
   1452 	}
   1453 
   1454 	/*
   1455 	 * ok, we've got the page now.
   1456 	 * mark it as dirty, clear its swslot and un-busy it.
   1457 	 */
   1458 	uao_dropswap(&aobj->u_obj, pageidx);
   1459 
   1460 	/*
   1461 	 * make sure it's on a page queue.
   1462 	 */
   1463 	mutex_enter(&uvm_pageqlock);
   1464 	if (pg->wire_count == 0)
   1465 		uvm_pageenqueue(pg);
   1466 	mutex_exit(&uvm_pageqlock);
   1467 
   1468 	if (pg->flags & PG_WANTED) {
   1469 		wakeup(pg);
   1470 	}
   1471 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1472 	UVM_PAGE_OWN(pg, NULL);
   1473 
   1474 	return false;
   1475 }
   1476 
   1477 /*
   1478  * uao_dropswap_range: drop swapslots in the range.
   1479  *
   1480  * => aobj must be locked and is returned locked.
   1481  * => start is inclusive.  end is exclusive.
   1482  */
   1483 
   1484 void
   1485 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1486 {
   1487 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1488 
   1489 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1490 
   1491 	uao_dropswap_range1(aobj, start, end);
   1492 }
   1493 
   1494 static void
   1495 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
   1496 {
   1497 	int swpgonlydelta = 0;
   1498 
   1499 	if (end == 0) {
   1500 		end = INT64_MAX;
   1501 	}
   1502 
   1503 	if (UAO_USES_SWHASH(aobj)) {
   1504 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1505 		voff_t taghi;
   1506 		voff_t taglo;
   1507 
   1508 		taglo = UAO_SWHASH_ELT_TAG(start);
   1509 		taghi = UAO_SWHASH_ELT_TAG(end);
   1510 
   1511 		for (i = 0; i < hashbuckets; i++) {
   1512 			struct uao_swhash_elt *elt, *next;
   1513 
   1514 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1515 			     elt != NULL;
   1516 			     elt = next) {
   1517 				int startidx, endidx;
   1518 				int j;
   1519 
   1520 				next = LIST_NEXT(elt, list);
   1521 
   1522 				if (elt->tag < taglo || taghi < elt->tag) {
   1523 					continue;
   1524 				}
   1525 
   1526 				if (elt->tag == taglo) {
   1527 					startidx =
   1528 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1529 				} else {
   1530 					startidx = 0;
   1531 				}
   1532 
   1533 				if (elt->tag == taghi) {
   1534 					endidx =
   1535 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1536 				} else {
   1537 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1538 				}
   1539 
   1540 				for (j = startidx; j < endidx; j++) {
   1541 					int slot = elt->slots[j];
   1542 
   1543 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1544 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1545 					    + j) << PAGE_SHIFT) == NULL);
   1546 					if (slot > 0) {
   1547 						uvm_swap_free(slot, 1);
   1548 						swpgonlydelta++;
   1549 						KASSERT(elt->count > 0);
   1550 						elt->slots[j] = 0;
   1551 						elt->count--;
   1552 					}
   1553 				}
   1554 
   1555 				if (elt->count == 0) {
   1556 					LIST_REMOVE(elt, list);
   1557 					pool_put(&uao_swhash_elt_pool, elt);
   1558 				}
   1559 			}
   1560 		}
   1561 	} else {
   1562 		int i;
   1563 
   1564 		if (aobj->u_pages < end) {
   1565 			end = aobj->u_pages;
   1566 		}
   1567 		for (i = start; i < end; i++) {
   1568 			int slot = aobj->u_swslots[i];
   1569 
   1570 			if (slot > 0) {
   1571 				uvm_swap_free(slot, 1);
   1572 				swpgonlydelta++;
   1573 			}
   1574 		}
   1575 	}
   1576 
   1577 	/*
   1578 	 * adjust the counter of pages only in swap for all
   1579 	 * the swap slots we've freed.
   1580 	 */
   1581 
   1582 	if (swpgonlydelta > 0) {
   1583 		mutex_enter(&uvm_swap_data_lock);
   1584 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1585 		uvmexp.swpgonly -= swpgonlydelta;
   1586 		mutex_exit(&uvm_swap_data_lock);
   1587 	}
   1588 }
   1589 
   1590 #endif /* defined(VMSWAP) */
   1591