1 1.237 andvar /* $NetBSD: uvm_fault.c,v 1.237 2024/03/15 07:09:37 andvar Exp $ */ 2 1.1 mrg 3 1.1 mrg /* 4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 1.1 mrg * All rights reserved. 6 1.1 mrg * 7 1.1 mrg * Redistribution and use in source and binary forms, with or without 8 1.1 mrg * modification, are permitted provided that the following conditions 9 1.1 mrg * are met: 10 1.1 mrg * 1. Redistributions of source code must retain the above copyright 11 1.1 mrg * notice, this list of conditions and the following disclaimer. 12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 mrg * notice, this list of conditions and the following disclaimer in the 14 1.1 mrg * documentation and/or other materials provided with the distribution. 15 1.1 mrg * 16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 1.1 mrg * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 1.1 mrg * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 1.1 mrg * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 1.1 mrg * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 1.1 mrg * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 1.4 mrg * 27 1.4 mrg * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 28 1.1 mrg */ 29 1.1 mrg 30 1.1 mrg /* 31 1.1 mrg * uvm_fault.c: fault handler 32 1.1 mrg */ 33 1.71 lukem 34 1.71 lukem #include <sys/cdefs.h> 35 1.237 andvar __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.237 2024/03/15 07:09:37 andvar Exp $"); 36 1.71 lukem 37 1.71 lukem #include "opt_uvmhist.h" 38 1.1 mrg 39 1.1 mrg #include <sys/param.h> 40 1.1 mrg #include <sys/systm.h> 41 1.210 martin #include <sys/atomic.h> 42 1.1 mrg #include <sys/kernel.h> 43 1.1 mrg #include <sys/mman.h> 44 1.1 mrg 45 1.1 mrg #include <uvm/uvm.h> 46 1.227 ad #include <uvm/uvm_pdpolicy.h> 47 1.233 riastrad #include <uvm/uvm_rndsource.h> 48 1.1 mrg 49 1.1 mrg /* 50 1.1 mrg * 51 1.1 mrg * a word on page faults: 52 1.1 mrg * 53 1.1 mrg * types of page faults we handle: 54 1.1 mrg * 55 1.1 mrg * CASE 1: upper layer faults CASE 2: lower layer faults 56 1.1 mrg * 57 1.1 mrg * CASE 1A CASE 1B CASE 2A CASE 2B 58 1.1 mrg * read/write1 write>1 read/write +-cow_write/zero 59 1.63 chs * | | | | 60 1.1 mrg * +--|--+ +--|--+ +-----+ + | + | +-----+ 61 1.127 uebayasi * amap | V | | ---------> new | | | | ^ | 62 1.1 mrg * +-----+ +-----+ +-----+ + | + | +--|--+ 63 1.1 mrg * | | | 64 1.1 mrg * +-----+ +-----+ +--|--+ | +--|--+ 65 1.127 uebayasi * uobj | d/c | | d/c | | V | +----+ | 66 1.1 mrg * +-----+ +-----+ +-----+ +-----+ 67 1.1 mrg * 68 1.1 mrg * d/c = don't care 69 1.63 chs * 70 1.1 mrg * case [0]: layerless fault 71 1.1 mrg * no amap or uobj is present. this is an error. 72 1.1 mrg * 73 1.1 mrg * case [1]: upper layer fault [anon active] 74 1.1 mrg * 1A: [read] or [write with anon->an_ref == 1] 75 1.127 uebayasi * I/O takes place in upper level anon and uobj is not touched. 76 1.1 mrg * 1B: [write with anon->an_ref > 1] 77 1.1 mrg * new anon is alloc'd and data is copied off ["COW"] 78 1.1 mrg * 79 1.1 mrg * case [2]: lower layer fault [uobj] 80 1.1 mrg * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 81 1.1 mrg * I/O takes place directly in object. 82 1.1 mrg * 2B: [write to copy_on_write] or [read on NULL uobj] 83 1.63 chs * data is "promoted" from uobj to a new anon. 84 1.1 mrg * if uobj is null, then we zero fill. 85 1.1 mrg * 86 1.1 mrg * we follow the standard UVM locking protocol ordering: 87 1.1 mrg * 88 1.63 chs * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 89 1.1 mrg * we hold a PG_BUSY page if we unlock for I/O 90 1.1 mrg * 91 1.1 mrg * 92 1.1 mrg * the code is structured as follows: 93 1.63 chs * 94 1.1 mrg * - init the "IN" params in the ufi structure 95 1.177 yamt * ReFault: (ERESTART returned to the loop in uvm_fault_internal) 96 1.1 mrg * - do lookups [locks maps], check protection, handle needs_copy 97 1.1 mrg * - check for case 0 fault (error) 98 1.1 mrg * - establish "range" of fault 99 1.1 mrg * - if we have an amap lock it and extract the anons 100 1.1 mrg * - if sequential advice deactivate pages behind us 101 1.1 mrg * - at the same time check pmap for unmapped areas and anon for pages 102 1.1 mrg * that we could map in (and do map it if found) 103 1.1 mrg * - check object for resident pages that we could map in 104 1.1 mrg * - if (case 2) goto Case2 105 1.1 mrg * - >>> handle case 1 106 1.1 mrg * - ensure source anon is resident in RAM 107 1.1 mrg * - if case 1B alloc new anon and copy from source 108 1.1 mrg * - map the correct page in 109 1.1 mrg * Case2: 110 1.1 mrg * - >>> handle case 2 111 1.1 mrg * - ensure source page is resident (if uobj) 112 1.1 mrg * - if case 2B alloc new anon and copy from source (could be zero 113 1.1 mrg * fill if uobj == NULL) 114 1.1 mrg * - map the correct page in 115 1.1 mrg * - done! 116 1.1 mrg * 117 1.1 mrg * note on paging: 118 1.1 mrg * if we have to do I/O we place a PG_BUSY page in the correct object, 119 1.1 mrg * unlock everything, and do the I/O. when I/O is done we must reverify 120 1.1 mrg * the state of the world before assuming that our data structures are 121 1.1 mrg * valid. [because mappings could change while the map is unlocked] 122 1.1 mrg * 123 1.1 mrg * alternative 1: unbusy the page in question and restart the page fault 124 1.1 mrg * from the top (ReFault). this is easy but does not take advantage 125 1.63 chs * of the information that we already have from our previous lookup, 126 1.1 mrg * although it is possible that the "hints" in the vm_map will help here. 127 1.1 mrg * 128 1.1 mrg * alternative 2: the system already keeps track of a "version" number of 129 1.1 mrg * a map. [i.e. every time you write-lock a map (e.g. to change a 130 1.1 mrg * mapping) you bump the version number up by one...] so, we can save 131 1.1 mrg * the version number of the map before we release the lock and start I/O. 132 1.1 mrg * then when I/O is done we can relock and check the version numbers 133 1.1 mrg * to see if anything changed. this might save us some over 1 because 134 1.1 mrg * we don't have to unbusy the page and may be less compares(?). 135 1.1 mrg * 136 1.1 mrg * alternative 3: put in backpointers or a way to "hold" part of a map 137 1.1 mrg * in place while I/O is in progress. this could be complex to 138 1.1 mrg * implement (especially with structures like amap that can be referenced 139 1.1 mrg * by multiple map entries, and figuring out what should wait could be 140 1.1 mrg * complex as well...). 141 1.1 mrg * 142 1.125 ad * we use alternative 2. given that we are multi-threaded now we may want 143 1.125 ad * to reconsider the choice. 144 1.1 mrg */ 145 1.1 mrg 146 1.1 mrg /* 147 1.1 mrg * local data structures 148 1.1 mrg */ 149 1.1 mrg 150 1.1 mrg struct uvm_advice { 151 1.7 mrg int advice; 152 1.7 mrg int nback; 153 1.7 mrg int nforw; 154 1.1 mrg }; 155 1.1 mrg 156 1.1 mrg /* 157 1.1 mrg * page range array: 158 1.63 chs * note: index in array must match "advice" value 159 1.1 mrg * XXX: borrowed numbers from freebsd. do they work well for us? 160 1.1 mrg */ 161 1.1 mrg 162 1.95 thorpej static const struct uvm_advice uvmadvice[] = { 163 1.186 rmind { UVM_ADV_NORMAL, 3, 4 }, 164 1.186 rmind { UVM_ADV_RANDOM, 0, 0 }, 165 1.186 rmind { UVM_ADV_SEQUENTIAL, 8, 7}, 166 1.1 mrg }; 167 1.1 mrg 168 1.69 chs #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */ 169 1.1 mrg 170 1.1 mrg /* 171 1.1 mrg * private prototypes 172 1.1 mrg */ 173 1.1 mrg 174 1.1 mrg /* 175 1.1 mrg * inline functions 176 1.1 mrg */ 177 1.1 mrg 178 1.1 mrg /* 179 1.1 mrg * uvmfault_anonflush: try and deactivate pages in specified anons 180 1.1 mrg * 181 1.1 mrg * => does not have to deactivate page if it is busy 182 1.1 mrg */ 183 1.1 mrg 184 1.103 perry static inline void 185 1.95 thorpej uvmfault_anonflush(struct vm_anon **anons, int n) 186 1.1 mrg { 187 1.7 mrg int lcv; 188 1.7 mrg struct vm_page *pg; 189 1.63 chs 190 1.163 uebayasi for (lcv = 0; lcv < n; lcv++) { 191 1.7 mrg if (anons[lcv] == NULL) 192 1.7 mrg continue; 193 1.222 ad KASSERT(rw_lock_held(anons[lcv]->an_lock)); 194 1.94 yamt pg = anons[lcv]->an_page; 195 1.117 yamt if (pg && (pg->flags & PG_BUSY) == 0) { 196 1.214 ad uvm_pagelock(pg); 197 1.212 ad uvm_pagedeactivate(pg); 198 1.214 ad uvm_pageunlock(pg); 199 1.7 mrg } 200 1.7 mrg } 201 1.1 mrg } 202 1.1 mrg 203 1.1 mrg /* 204 1.1 mrg * normal functions 205 1.1 mrg */ 206 1.1 mrg 207 1.1 mrg /* 208 1.1 mrg * uvmfault_amapcopy: clear "needs_copy" in a map. 209 1.1 mrg * 210 1.1 mrg * => called with VM data structures unlocked (usually, see below) 211 1.1 mrg * => we get a write lock on the maps and clear needs_copy for a VA 212 1.1 mrg * => if we are out of RAM we sleep (waiting for more) 213 1.1 mrg */ 214 1.1 mrg 215 1.7 mrg static void 216 1.95 thorpej uvmfault_amapcopy(struct uvm_faultinfo *ufi) 217 1.1 mrg { 218 1.69 chs for (;;) { 219 1.1 mrg 220 1.7 mrg /* 221 1.7 mrg * no mapping? give up. 222 1.7 mrg */ 223 1.1 mrg 224 1.119 thorpej if (uvmfault_lookup(ufi, true) == false) 225 1.7 mrg return; 226 1.1 mrg 227 1.7 mrg /* 228 1.7 mrg * copy if needed. 229 1.7 mrg */ 230 1.1 mrg 231 1.7 mrg if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 232 1.108 yamt amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT, 233 1.13 chuck ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 234 1.1 mrg 235 1.7 mrg /* 236 1.7 mrg * didn't work? must be out of RAM. unlock and sleep. 237 1.7 mrg */ 238 1.7 mrg 239 1.7 mrg if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 240 1.119 thorpej uvmfault_unlockmaps(ufi, true); 241 1.7 mrg uvm_wait("fltamapcopy"); 242 1.7 mrg continue; 243 1.7 mrg } 244 1.7 mrg 245 1.7 mrg /* 246 1.7 mrg * got it! unlock and return. 247 1.7 mrg */ 248 1.63 chs 249 1.119 thorpej uvmfault_unlockmaps(ufi, true); 250 1.7 mrg return; 251 1.7 mrg } 252 1.7 mrg /*NOTREACHED*/ 253 1.1 mrg } 254 1.1 mrg 255 1.1 mrg /* 256 1.1 mrg * uvmfault_anonget: get data in an anon into a non-busy, non-released 257 1.1 mrg * page in that anon. 258 1.1 mrg * 259 1.187 rmind * => Map, amap and thus anon should be locked by caller. 260 1.187 rmind * => If we fail, we unlock everything and error is returned. 261 1.187 rmind * => If we are successful, return with everything still locked. 262 1.187 rmind * => We do not move the page on the queues [gets moved later]. If we 263 1.187 rmind * allocate a new page [we_own], it gets put on the queues. Either way, 264 1.187 rmind * the result is that the page is on the queues at return time 265 1.187 rmind * => For pages which are on loan from a uvm_object (and thus are not owned 266 1.187 rmind * by the anon): if successful, return with the owning object locked. 267 1.187 rmind * The caller must unlock this object when it unlocks everything else. 268 1.1 mrg */ 269 1.1 mrg 270 1.47 chs int 271 1.95 thorpej uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 272 1.95 thorpej struct vm_anon *anon) 273 1.7 mrg { 274 1.7 mrg struct vm_page *pg; 275 1.222 ad krw_t lock_type; 276 1.237 andvar int error __unused; /* used for VMSWAP */ 277 1.187 rmind 278 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 279 1.222 ad KASSERT(rw_lock_held(anon->an_lock)); 280 1.188 rmind KASSERT(anon->an_lock == amap->am_lock); 281 1.53 thorpej 282 1.187 rmind /* Increment the counters.*/ 283 1.213 ad cpu_count(CPU_COUNT_FLTANGET, 1); 284 1.187 rmind if (anon->an_page) { 285 1.124 ad curlwp->l_ru.ru_minflt++; 286 1.187 rmind } else { 287 1.124 ad curlwp->l_ru.ru_majflt++; 288 1.187 rmind } 289 1.187 rmind error = 0; 290 1.7 mrg 291 1.63 chs /* 292 1.187 rmind * Loop until we get the anon data, or fail. 293 1.7 mrg */ 294 1.7 mrg 295 1.69 chs for (;;) { 296 1.187 rmind bool we_own, locked; 297 1.187 rmind /* 298 1.187 rmind * Note: 'we_own' will become true if we set PG_BUSY on a page. 299 1.187 rmind */ 300 1.187 rmind we_own = false; 301 1.94 yamt pg = anon->an_page; 302 1.1 mrg 303 1.7 mrg /* 304 1.187 rmind * If there is a resident page and it is loaned, then anon 305 1.187 rmind * may not own it. Call out to uvm_anon_lockloanpg() to 306 1.187 rmind * identify and lock the real owner of the page. 307 1.7 mrg */ 308 1.7 mrg 309 1.7 mrg if (pg && pg->loan_count) 310 1.13 chuck pg = uvm_anon_lockloanpg(anon); 311 1.7 mrg 312 1.7 mrg /* 313 1.187 rmind * Is page resident? Make sure it is not busy/released. 314 1.7 mrg */ 315 1.7 mrg 316 1.222 ad lock_type = rw_lock_op(anon->an_lock); 317 1.7 mrg if (pg) { 318 1.7 mrg 319 1.7 mrg /* 320 1.7 mrg * at this point, if the page has a uobject [meaning 321 1.7 mrg * we have it on loan], then that uobject is locked 322 1.7 mrg * by us! if the page is busy, we drop all the 323 1.7 mrg * locks (including uobject) and try again. 324 1.7 mrg */ 325 1.7 mrg 326 1.69 chs if ((pg->flags & PG_BUSY) == 0) { 327 1.7 mrg UVMHIST_LOG(maphist, "<- OK",0,0,0,0); 328 1.187 rmind return 0; 329 1.7 mrg } 330 1.213 ad cpu_count(CPU_COUNT_FLTPGWAIT, 1); 331 1.7 mrg 332 1.7 mrg /* 333 1.187 rmind * The last unlock must be an atomic unlock and wait 334 1.187 rmind * on the owner of page. 335 1.7 mrg */ 336 1.69 chs 337 1.187 rmind if (pg->uobject) { 338 1.187 rmind /* Owner of page is UVM object. */ 339 1.186 rmind uvmfault_unlockall(ufi, amap, NULL); 340 1.7 mrg UVMHIST_LOG(maphist, " unlock+wait on uobj",0, 341 1.7 mrg 0,0,0); 342 1.218 ad uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1"); 343 1.7 mrg } else { 344 1.187 rmind /* Owner of page is anon. */ 345 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL); 346 1.7 mrg UVMHIST_LOG(maphist, " unlock+wait on anon",0, 347 1.7 mrg 0,0,0); 348 1.218 ad uvm_pagewait(pg, anon->an_lock, "anonget2"); 349 1.7 mrg } 350 1.7 mrg } else { 351 1.101 yamt #if defined(VMSWAP) 352 1.7 mrg /* 353 1.222 ad * No page, therefore allocate one. A write lock is 354 1.222 ad * required for this. If the caller didn't supply 355 1.222 ad * one, fail now and have them retry. 356 1.7 mrg */ 357 1.69 chs 358 1.222 ad if (lock_type == RW_READER) { 359 1.222 ad return ENOLCK; 360 1.222 ad } 361 1.180 enami pg = uvm_pagealloc(NULL, 362 1.180 enami ufi != NULL ? ufi->orig_rvaddr : 0, 363 1.185 tsutsui anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0); 364 1.187 rmind if (pg == NULL) { 365 1.187 rmind /* Out of memory. Wait a little. */ 366 1.186 rmind uvmfault_unlockall(ufi, amap, NULL); 367 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1); 368 1.7 mrg UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0, 369 1.7 mrg 0,0,0); 370 1.93 yamt if (!uvm_reclaimable()) { 371 1.93 yamt return ENOMEM; 372 1.93 yamt } 373 1.7 mrg uvm_wait("flt_noram1"); 374 1.7 mrg } else { 375 1.187 rmind /* PG_BUSY bit is set. */ 376 1.119 thorpej we_own = true; 377 1.186 rmind uvmfault_unlockall(ufi, amap, NULL); 378 1.7 mrg 379 1.7 mrg /* 380 1.215 ad * Pass a PG_BUSY+PG_FAKE clean page into 381 1.187 rmind * the uvm_swap_get() function with all data 382 1.187 rmind * structures unlocked. Note that it is OK 383 1.187 rmind * to read an_swslot here, because we hold 384 1.187 rmind * PG_BUSY on the page. 385 1.7 mrg */ 386 1.213 ad cpu_count(CPU_COUNT_PAGEINS, 1); 387 1.58 chs error = uvm_swap_get(pg, anon->an_swslot, 388 1.7 mrg PGO_SYNCIO); 389 1.7 mrg 390 1.7 mrg /* 391 1.187 rmind * We clean up after the I/O below in the 392 1.187 rmind * 'we_own' case. 393 1.7 mrg */ 394 1.7 mrg } 395 1.187 rmind #else 396 1.101 yamt panic("%s: no page", __func__); 397 1.101 yamt #endif /* defined(VMSWAP) */ 398 1.7 mrg } 399 1.7 mrg 400 1.7 mrg /* 401 1.187 rmind * Re-lock the map and anon. 402 1.7 mrg */ 403 1.7 mrg 404 1.7 mrg locked = uvmfault_relock(ufi); 405 1.186 rmind if (locked || we_own) { 406 1.222 ad rw_enter(anon->an_lock, lock_type); 407 1.7 mrg } 408 1.7 mrg 409 1.7 mrg /* 410 1.187 rmind * If we own the page (i.e. we set PG_BUSY), then we need 411 1.187 rmind * to clean up after the I/O. There are three cases to 412 1.7 mrg * consider: 413 1.187 rmind * 414 1.187 rmind * 1) Page was released during I/O: free anon and ReFault. 415 1.187 rmind * 2) I/O not OK. Free the page and cause the fault to fail. 416 1.187 rmind * 3) I/O OK! Activate the page and sync with the non-we_own 417 1.187 rmind * case (i.e. drop anon lock if not locked). 418 1.7 mrg */ 419 1.63 chs 420 1.7 mrg if (we_own) { 421 1.222 ad KASSERT(lock_type == RW_WRITER); 422 1.101 yamt #if defined(VMSWAP) 423 1.58 chs if (error) { 424 1.1 mrg 425 1.47 chs /* 426 1.187 rmind * Remove the swap slot from the anon and 427 1.187 rmind * mark the anon as having no real slot. 428 1.187 rmind * Do not free the swap slot, thus preventing 429 1.47 chs * it from being used again. 430 1.47 chs */ 431 1.69 chs 432 1.187 rmind if (anon->an_swslot > 0) { 433 1.84 pk uvm_swap_markbad(anon->an_swslot, 1); 434 1.187 rmind } 435 1.47 chs anon->an_swslot = SWSLOT_BAD; 436 1.47 chs 437 1.187 rmind if ((pg->flags & PG_RELEASED) != 0) { 438 1.88 yamt goto released; 439 1.187 rmind } 440 1.88 yamt 441 1.47 chs /* 442 1.187 rmind * Note: page was never !PG_BUSY, so it 443 1.187 rmind * cannot be mapped and thus no need to 444 1.187 rmind * pmap_page_protect() it. 445 1.7 mrg */ 446 1.69 chs 447 1.7 mrg uvm_pagefree(pg); 448 1.7 mrg 449 1.187 rmind if (locked) { 450 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL); 451 1.187 rmind } 452 1.216 ad rw_exit(anon->an_lock); 453 1.7 mrg UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0); 454 1.58 chs return error; 455 1.7 mrg } 456 1.63 chs 457 1.88 yamt if ((pg->flags & PG_RELEASED) != 0) { 458 1.88 yamt released: 459 1.88 yamt KASSERT(anon->an_ref == 0); 460 1.88 yamt 461 1.88 yamt /* 462 1.187 rmind * Released while we had unlocked amap. 463 1.88 yamt */ 464 1.88 yamt 465 1.187 rmind if (locked) { 466 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL); 467 1.187 rmind } 468 1.88 yamt uvm_anon_release(anon); 469 1.88 yamt 470 1.88 yamt if (error) { 471 1.88 yamt UVMHIST_LOG(maphist, 472 1.88 yamt "<- ERROR/RELEASED", 0,0,0,0); 473 1.88 yamt return error; 474 1.88 yamt } 475 1.88 yamt 476 1.88 yamt UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0); 477 1.88 yamt return ERESTART; 478 1.88 yamt } 479 1.88 yamt 480 1.7 mrg /* 481 1.187 rmind * We have successfully read the page, activate it. 482 1.7 mrg */ 483 1.69 chs 484 1.214 ad uvm_pagelock(pg); 485 1.7 mrg uvm_pageactivate(pg); 486 1.219 ad uvm_pagewakeup(pg); 487 1.214 ad uvm_pageunlock(pg); 488 1.219 ad pg->flags &= ~(PG_BUSY|PG_FAKE); 489 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN); 490 1.219 ad UVM_PAGE_OWN(pg, NULL); 491 1.187 rmind #else 492 1.101 yamt panic("%s: we_own", __func__); 493 1.101 yamt #endif /* defined(VMSWAP) */ 494 1.7 mrg } 495 1.7 mrg 496 1.7 mrg /* 497 1.187 rmind * We were not able to re-lock the map - restart the fault. 498 1.7 mrg */ 499 1.7 mrg 500 1.7 mrg if (!locked) { 501 1.186 rmind if (we_own) { 502 1.216 ad rw_exit(anon->an_lock); 503 1.186 rmind } 504 1.7 mrg UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 505 1.187 rmind return ERESTART; 506 1.7 mrg } 507 1.7 mrg 508 1.7 mrg /* 509 1.187 rmind * Verify that no one has touched the amap and moved 510 1.187 rmind * the anon on us. 511 1.7 mrg */ 512 1.1 mrg 513 1.186 rmind if (ufi != NULL && amap_lookup(&ufi->entry->aref, 514 1.186 rmind ufi->orig_rvaddr - ufi->entry->start) != anon) { 515 1.63 chs 516 1.186 rmind uvmfault_unlockall(ufi, amap, NULL); 517 1.7 mrg UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 518 1.187 rmind return ERESTART; 519 1.7 mrg } 520 1.63 chs 521 1.7 mrg /* 522 1.187 rmind * Retry.. 523 1.7 mrg */ 524 1.1 mrg 525 1.213 ad cpu_count(CPU_COUNT_FLTANRETRY, 1); 526 1.7 mrg continue; 527 1.69 chs } 528 1.7 mrg /*NOTREACHED*/ 529 1.1 mrg } 530 1.1 mrg 531 1.1 mrg /* 532 1.106 yamt * uvmfault_promote: promote data to a new anon. used for 1B and 2B. 533 1.106 yamt * 534 1.106 yamt * 1. allocate an anon and a page. 535 1.106 yamt * 2. fill its contents. 536 1.106 yamt * 3. put it into amap. 537 1.106 yamt * 538 1.106 yamt * => if we fail (result != 0) we unlock everything. 539 1.106 yamt * => on success, return a new locked anon via 'nanon'. 540 1.106 yamt * (*nanon)->an_page will be a resident, locked, dirty page. 541 1.183 yamt * => it's caller's responsibility to put the promoted nanon->an_page to the 542 1.183 yamt * page queue. 543 1.106 yamt */ 544 1.106 yamt 545 1.106 yamt static int 546 1.106 yamt uvmfault_promote(struct uvm_faultinfo *ufi, 547 1.106 yamt struct vm_anon *oanon, 548 1.106 yamt struct vm_page *uobjpage, 549 1.106 yamt struct vm_anon **nanon, /* OUT: allocated anon */ 550 1.106 yamt struct vm_anon **spare) 551 1.106 yamt { 552 1.106 yamt struct vm_amap *amap = ufi->entry->aref.ar_amap; 553 1.106 yamt struct uvm_object *uobj; 554 1.106 yamt struct vm_anon *anon; 555 1.106 yamt struct vm_page *pg; 556 1.106 yamt struct vm_page *opg; 557 1.106 yamt int error; 558 1.106 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 559 1.106 yamt 560 1.106 yamt if (oanon) { 561 1.106 yamt /* anon COW */ 562 1.106 yamt opg = oanon->an_page; 563 1.106 yamt KASSERT(opg != NULL); 564 1.106 yamt KASSERT(opg->uobject == NULL || opg->loan_count > 0); 565 1.106 yamt } else if (uobjpage != PGO_DONTCARE) { 566 1.106 yamt /* object-backed COW */ 567 1.106 yamt opg = uobjpage; 568 1.227 ad KASSERT(rw_lock_held(opg->uobject->vmobjlock)); 569 1.106 yamt } else { 570 1.106 yamt /* ZFOD */ 571 1.106 yamt opg = NULL; 572 1.106 yamt } 573 1.106 yamt if (opg != NULL) { 574 1.106 yamt uobj = opg->uobject; 575 1.106 yamt } else { 576 1.106 yamt uobj = NULL; 577 1.106 yamt } 578 1.106 yamt 579 1.106 yamt KASSERT(amap != NULL); 580 1.106 yamt KASSERT(uobjpage != NULL); 581 1.216 ad KASSERT(rw_write_held(amap->am_lock)); 582 1.186 rmind KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock); 583 1.222 ad KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock)); 584 1.106 yamt 585 1.106 yamt if (*spare != NULL) { 586 1.106 yamt anon = *spare; 587 1.106 yamt *spare = NULL; 588 1.192 para } else { 589 1.106 yamt anon = uvm_analloc(); 590 1.106 yamt } 591 1.106 yamt if (anon) { 592 1.106 yamt 593 1.106 yamt /* 594 1.106 yamt * The new anon is locked. 595 1.106 yamt * 596 1.106 yamt * if opg == NULL, we want a zero'd, dirty page, 597 1.106 yamt * so have uvm_pagealloc() do that for us. 598 1.106 yamt */ 599 1.106 yamt 600 1.186 rmind KASSERT(anon->an_lock == NULL); 601 1.186 rmind anon->an_lock = amap->am_lock; 602 1.179 matt pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon, 603 1.179 matt UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0)); 604 1.186 rmind if (pg == NULL) { 605 1.186 rmind anon->an_lock = NULL; 606 1.186 rmind } 607 1.106 yamt } else { 608 1.106 yamt pg = NULL; 609 1.106 yamt } 610 1.106 yamt 611 1.106 yamt /* 612 1.106 yamt * out of memory resources? 613 1.106 yamt */ 614 1.106 yamt 615 1.106 yamt if (pg == NULL) { 616 1.106 yamt /* save anon for the next try. */ 617 1.106 yamt if (anon != NULL) { 618 1.106 yamt *spare = anon; 619 1.106 yamt } 620 1.106 yamt 621 1.106 yamt /* unlock and fail ... */ 622 1.186 rmind uvmfault_unlockall(ufi, amap, uobj); 623 1.106 yamt if (!uvm_reclaimable()) { 624 1.106 yamt UVMHIST_LOG(maphist, "out of VM", 0,0,0,0); 625 1.213 ad cpu_count(CPU_COUNT_FLTNOANON, 1); 626 1.106 yamt error = ENOMEM; 627 1.106 yamt goto done; 628 1.106 yamt } 629 1.106 yamt 630 1.106 yamt UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0); 631 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1); 632 1.106 yamt uvm_wait("flt_noram5"); 633 1.106 yamt error = ERESTART; 634 1.106 yamt goto done; 635 1.106 yamt } 636 1.106 yamt 637 1.234 chs /* 638 1.234 chs * copy the page [pg now dirty] 639 1.234 chs * 640 1.234 chs * Remove the pmap entry now for the old page at this address 641 1.234 chs * so that no thread can modify the new page while any thread 642 1.234 chs * might still see the old page. 643 1.234 chs */ 644 1.106 yamt if (opg) { 645 1.234 chs pmap_remove(vm_map_pmap(ufi->orig_map), ufi->orig_rvaddr, 646 1.234 chs ufi->orig_rvaddr + PAGE_SIZE); 647 1.234 chs pmap_update(vm_map_pmap(ufi->orig_map)); 648 1.106 yamt uvm_pagecopy(opg, pg); 649 1.106 yamt } 650 1.215 ad KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY); 651 1.106 yamt 652 1.106 yamt amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon, 653 1.106 yamt oanon != NULL); 654 1.106 yamt 655 1.227 ad /* 656 1.227 ad * from this point on am_lock won't be dropped until the page is 657 1.227 ad * entered, so it's safe to unbusy the page up front. 658 1.227 ad * 659 1.227 ad * uvm_fault_{upper,lower}_done will activate or enqueue the page. 660 1.227 ad */ 661 1.227 ad 662 1.227 ad pg = anon->an_page; 663 1.227 ad pg->flags &= ~(PG_BUSY|PG_FAKE); 664 1.227 ad UVM_PAGE_OWN(pg, NULL); 665 1.227 ad 666 1.106 yamt *nanon = anon; 667 1.106 yamt error = 0; 668 1.106 yamt done: 669 1.106 yamt return error; 670 1.106 yamt } 671 1.106 yamt 672 1.203 christos /* 673 1.203 christos * Update statistics after fault resolution. 674 1.203 christos * - maxrss 675 1.203 christos */ 676 1.203 christos void 677 1.203 christos uvmfault_update_stats(struct uvm_faultinfo *ufi) 678 1.203 christos { 679 1.203 christos struct vm_map *map; 680 1.204 christos struct vmspace *vm; 681 1.203 christos struct proc *p; 682 1.203 christos vsize_t res; 683 1.203 christos 684 1.203 christos map = ufi->orig_map; 685 1.203 christos 686 1.203 christos p = curproc; 687 1.203 christos KASSERT(p != NULL); 688 1.204 christos vm = p->p_vmspace; 689 1.204 christos 690 1.204 christos if (&vm->vm_map != map) 691 1.203 christos return; 692 1.203 christos 693 1.203 christos res = pmap_resident_count(map->pmap); 694 1.204 christos if (vm->vm_rssmax < res) 695 1.204 christos vm->vm_rssmax = res; 696 1.203 christos } 697 1.106 yamt 698 1.106 yamt /* 699 1.1 mrg * F A U L T - m a i n e n t r y p o i n t 700 1.1 mrg */ 701 1.1 mrg 702 1.1 mrg /* 703 1.1 mrg * uvm_fault: page fault handler 704 1.1 mrg * 705 1.1 mrg * => called from MD code to resolve a page fault 706 1.63 chs * => VM data structures usually should be unlocked. however, it is 707 1.1 mrg * possible to call here with the main map locked if the caller 708 1.229 msaitoh * gets a write lock, sets it recursive, and then calls us (c.f. 709 1.1 mrg * uvm_map_pageable). this should be avoided because it keeps 710 1.1 mrg * the map locked off during I/O. 711 1.66 thorpej * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT 712 1.1 mrg */ 713 1.1 mrg 714 1.24 mycroft #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 715 1.24 mycroft ~VM_PROT_WRITE : VM_PROT_ALL) 716 1.24 mycroft 717 1.110 drochner /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */ 718 1.130 uebayasi #define UVM_FAULT_WIRE (1 << 0) 719 1.130 uebayasi #define UVM_FAULT_MAXPROT (1 << 1) 720 1.110 drochner 721 1.140 uebayasi struct uvm_faultctx { 722 1.191 yamt 723 1.191 yamt /* 724 1.191 yamt * the following members are set up by uvm_fault_check() and 725 1.191 yamt * read-only after that. 726 1.191 yamt * 727 1.191 yamt * note that narrow is used by uvm_fault_check() to change 728 1.191 yamt * the behaviour after ERESTART. 729 1.191 yamt * 730 1.191 yamt * most of them might change after RESTART if the underlying 731 1.191 yamt * map entry has been changed behind us. an exception is 732 1.191 yamt * wire_paging, which does never change. 733 1.191 yamt */ 734 1.140 uebayasi vm_prot_t access_type; 735 1.150 uebayasi vaddr_t startva; 736 1.150 uebayasi int npages; 737 1.150 uebayasi int centeridx; 738 1.191 yamt bool narrow; /* work on a single requested page only */ 739 1.191 yamt bool wire_mapping; /* request a PMAP_WIRED mapping 740 1.191 yamt (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */ 741 1.191 yamt bool wire_paging; /* request uvm_pagewire 742 1.191 yamt (true for UVM_FAULT_WIRE) */ 743 1.191 yamt bool cow_now; /* VM_PROT_WRITE is actually requested 744 1.191 yamt (ie. should break COW and page loaning) */ 745 1.191 yamt 746 1.191 yamt /* 747 1.191 yamt * enter_prot is set up by uvm_fault_check() and clamped 748 1.191 yamt * (ie. drop the VM_PROT_WRITE bit) in various places in case 749 1.191 yamt * of !cow_now. 750 1.191 yamt */ 751 1.191 yamt vm_prot_t enter_prot; /* prot at which we want to enter pages in */ 752 1.191 yamt 753 1.191 yamt /* 754 1.191 yamt * the following member is for uvmfault_promote() and ERESTART. 755 1.191 yamt */ 756 1.150 uebayasi struct vm_anon *anon_spare; 757 1.191 yamt 758 1.191 yamt /* 759 1.230 dholland * the following is actually a uvm_fault_lower() internal. 760 1.191 yamt * it's here merely for debugging. 761 1.191 yamt * (or due to the mechanical separation of the function?) 762 1.191 yamt */ 763 1.168 uebayasi bool promote; 764 1.222 ad 765 1.222 ad /* 766 1.222 ad * type of lock to acquire on objects in both layers. 767 1.222 ad */ 768 1.222 ad krw_t lower_lock_type; 769 1.222 ad krw_t upper_lock_type; 770 1.140 uebayasi }; 771 1.140 uebayasi 772 1.163 uebayasi static inline int uvm_fault_check( 773 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 774 1.177 yamt struct vm_anon ***, bool); 775 1.163 uebayasi 776 1.163 uebayasi static int uvm_fault_upper( 777 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 778 1.163 uebayasi struct vm_anon **); 779 1.163 uebayasi static inline int uvm_fault_upper_lookup( 780 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *, 781 1.163 uebayasi struct vm_anon **, struct vm_page **); 782 1.163 uebayasi static inline void uvm_fault_upper_neighbor( 783 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *, 784 1.163 uebayasi vaddr_t, struct vm_page *, bool); 785 1.163 uebayasi static inline int uvm_fault_upper_loan( 786 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 787 1.163 uebayasi struct vm_anon *, struct uvm_object **); 788 1.163 uebayasi static inline int uvm_fault_upper_promote( 789 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 790 1.163 uebayasi struct uvm_object *, struct vm_anon *); 791 1.163 uebayasi static inline int uvm_fault_upper_direct( 792 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 793 1.163 uebayasi struct uvm_object *, struct vm_anon *); 794 1.163 uebayasi static int uvm_fault_upper_enter( 795 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *, 796 1.163 uebayasi struct uvm_object *, struct vm_anon *, 797 1.163 uebayasi struct vm_page *, struct vm_anon *); 798 1.169 uebayasi static inline void uvm_fault_upper_done( 799 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *, 800 1.177 yamt struct vm_anon *, struct vm_page *); 801 1.163 uebayasi 802 1.163 uebayasi static int uvm_fault_lower( 803 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 804 1.163 uebayasi struct vm_page **); 805 1.173 uebayasi static inline void uvm_fault_lower_lookup( 806 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *, 807 1.163 uebayasi struct vm_page **); 808 1.163 uebayasi static inline void uvm_fault_lower_neighbor( 809 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *, 810 1.215 ad vaddr_t, struct vm_page *); 811 1.163 uebayasi static inline int uvm_fault_lower_io( 812 1.222 ad struct uvm_faultinfo *, struct uvm_faultctx *, 813 1.163 uebayasi struct uvm_object **, struct vm_page **); 814 1.163 uebayasi static inline int uvm_fault_lower_direct( 815 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 816 1.163 uebayasi struct uvm_object *, struct vm_page *); 817 1.163 uebayasi static inline int uvm_fault_lower_direct_loan( 818 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 819 1.163 uebayasi struct uvm_object *, struct vm_page **, 820 1.163 uebayasi struct vm_page **); 821 1.163 uebayasi static inline int uvm_fault_lower_promote( 822 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *, 823 1.163 uebayasi struct uvm_object *, struct vm_page *); 824 1.163 uebayasi static int uvm_fault_lower_enter( 825 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *, 826 1.163 uebayasi struct uvm_object *, 827 1.183 yamt struct vm_anon *, struct vm_page *); 828 1.169 uebayasi static inline void uvm_fault_lower_done( 829 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *, 830 1.177 yamt struct uvm_object *, struct vm_page *); 831 1.138 uebayasi 832 1.7 mrg int 833 1.110 drochner uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr, 834 1.110 drochner vm_prot_t access_type, int fault_flag) 835 1.1 mrg { 836 1.7 mrg struct uvm_faultinfo ufi; 837 1.140 uebayasi struct uvm_faultctx flt = { 838 1.140 uebayasi .access_type = access_type, 839 1.146 uebayasi 840 1.146 uebayasi /* don't look for neighborhood * pages on "wire" fault */ 841 1.146 uebayasi .narrow = (fault_flag & UVM_FAULT_WIRE) != 0, 842 1.146 uebayasi 843 1.146 uebayasi /* "wire" fault causes wiring of both mapping and paging */ 844 1.146 uebayasi .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0, 845 1.146 uebayasi .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0, 846 1.222 ad 847 1.222 ad /* 848 1.222 ad * default lock type to acquire on upper & lower layer 849 1.222 ad * objects: reader. this can be upgraded at any point 850 1.222 ad * during the fault from read -> write and uvm_faultctx 851 1.222 ad * changed to match, but is never downgraded write -> read. 852 1.222 ad */ 853 1.222 ad #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */ 854 1.222 ad .upper_lock_type = RW_WRITER, 855 1.222 ad .lower_lock_type = RW_WRITER, 856 1.222 ad #else 857 1.222 ad .upper_lock_type = RW_READER, 858 1.222 ad .lower_lock_type = RW_READER, 859 1.222 ad #endif 860 1.140 uebayasi }; 861 1.177 yamt const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0; 862 1.137 uebayasi struct vm_anon *anons_store[UVM_MAXRANGE], **anons; 863 1.141 uebayasi struct vm_page *pages_store[UVM_MAXRANGE], **pages; 864 1.140 uebayasi int error; 865 1.196 tls 866 1.228 skrll UVMHIST_FUNC(__func__); 867 1.228 skrll UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)", 868 1.201 pgoyette (uintptr_t)orig_map, vaddr, access_type, fault_flag); 869 1.1 mrg 870 1.193 tls /* Don't count anything until user interaction is possible */ 871 1.213 ad kpreempt_disable(); 872 1.193 tls if (__predict_true(start_init_exec)) { 873 1.213 ad struct cpu_info *ci = curcpu(); 874 1.213 ad CPU_COUNT(CPU_COUNT_NFAULT, 1); 875 1.213 ad /* Don't flood RNG subsystem with samples. */ 876 1.213 ad if (++(ci->ci_faultrng) == 503) { 877 1.213 ad ci->ci_faultrng = 0; 878 1.233 riastrad rnd_add_uint32(&uvm_fault_rndsource, 879 1.213 ad sizeof(vaddr_t) == sizeof(uint32_t) ? 880 1.213 ad (uint32_t)vaddr : sizeof(vaddr_t) == 881 1.213 ad sizeof(uint64_t) ? 882 1.213 ad (uint32_t)vaddr : 883 1.213 ad (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]); 884 1.213 ad } 885 1.193 tls } 886 1.213 ad kpreempt_enable(); 887 1.213 ad 888 1.7 mrg /* 889 1.7 mrg * init the IN parameters in the ufi 890 1.7 mrg */ 891 1.1 mrg 892 1.7 mrg ufi.orig_map = orig_map; 893 1.7 mrg ufi.orig_rvaddr = trunc_page(vaddr); 894 1.7 mrg ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 895 1.7 mrg 896 1.142 uebayasi error = ERESTART; 897 1.183 yamt while (error == ERESTART) { /* ReFault: */ 898 1.143 uebayasi anons = anons_store; 899 1.143 uebayasi pages = pages_store; 900 1.1 mrg 901 1.177 yamt error = uvm_fault_check(&ufi, &flt, &anons, maxprot); 902 1.143 uebayasi if (error != 0) 903 1.143 uebayasi continue; 904 1.141 uebayasi 905 1.143 uebayasi error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages); 906 1.143 uebayasi if (error != 0) 907 1.143 uebayasi continue; 908 1.138 uebayasi 909 1.144 uebayasi if (pages[flt.centeridx] == PGO_DONTCARE) 910 1.148 uebayasi error = uvm_fault_upper(&ufi, &flt, anons); 911 1.167 uebayasi else { 912 1.177 yamt struct uvm_object * const uobj = 913 1.177 yamt ufi.entry->object.uvm_obj; 914 1.167 uebayasi 915 1.167 uebayasi if (uobj && uobj->pgops->pgo_fault != NULL) { 916 1.173 uebayasi /* 917 1.173 uebayasi * invoke "special" fault routine. 918 1.173 uebayasi */ 919 1.216 ad rw_enter(uobj->vmobjlock, RW_WRITER); 920 1.173 uebayasi /* locked: maps(read), amap(if there), uobj */ 921 1.173 uebayasi error = uobj->pgops->pgo_fault(&ufi, 922 1.173 uebayasi flt.startva, pages, flt.npages, 923 1.173 uebayasi flt.centeridx, flt.access_type, 924 1.173 uebayasi PGO_LOCKED|PGO_SYNCIO); 925 1.167 uebayasi 926 1.177 yamt /* 927 1.177 yamt * locked: nothing, pgo_fault has unlocked 928 1.177 yamt * everything 929 1.177 yamt */ 930 1.167 uebayasi 931 1.167 uebayasi /* 932 1.177 yamt * object fault routine responsible for 933 1.177 yamt * pmap_update(). 934 1.167 uebayasi */ 935 1.205 chs 936 1.205 chs /* 937 1.205 chs * Wake up the pagedaemon if the fault method 938 1.205 chs * failed for lack of memory but some can be 939 1.205 chs * reclaimed. 940 1.205 chs */ 941 1.205 chs if (error == ENOMEM && uvm_reclaimable()) { 942 1.205 chs uvm_wait("pgo_fault"); 943 1.205 chs error = ERESTART; 944 1.205 chs } 945 1.167 uebayasi } else { 946 1.167 uebayasi error = uvm_fault_lower(&ufi, &flt, pages); 947 1.167 uebayasi } 948 1.167 uebayasi } 949 1.142 uebayasi } 950 1.138 uebayasi 951 1.140 uebayasi if (flt.anon_spare != NULL) { 952 1.140 uebayasi flt.anon_spare->an_ref--; 953 1.186 rmind KASSERT(flt.anon_spare->an_ref == 0); 954 1.186 rmind KASSERT(flt.anon_spare->an_lock == NULL); 955 1.221 ad uvm_anfree(flt.anon_spare); 956 1.138 uebayasi } 957 1.138 uebayasi return error; 958 1.141 uebayasi } 959 1.138 uebayasi 960 1.173 uebayasi /* 961 1.173 uebayasi * uvm_fault_check: check prot, handle needs-copy, etc. 962 1.173 uebayasi * 963 1.173 uebayasi * 1. lookup entry. 964 1.173 uebayasi * 2. check protection. 965 1.173 uebayasi * 3. adjust fault condition (mainly for simulated fault). 966 1.173 uebayasi * 4. handle needs-copy (lazy amap copy). 967 1.173 uebayasi * 5. establish range of interest for neighbor fault (aka pre-fault). 968 1.173 uebayasi * 6. look up anons (if amap exists). 969 1.173 uebayasi * 7. flush pages (if MADV_SEQUENTIAL) 970 1.173 uebayasi * 971 1.173 uebayasi * => called with nothing locked. 972 1.173 uebayasi * => if we fail (result != 0) we unlock everything. 973 1.177 yamt * => initialize/adjust many members of flt. 974 1.173 uebayasi */ 975 1.173 uebayasi 976 1.144 uebayasi static int 977 1.141 uebayasi uvm_fault_check( 978 1.141 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 979 1.177 yamt struct vm_anon ***ranons, bool maxprot) 980 1.141 uebayasi { 981 1.141 uebayasi struct vm_amap *amap; 982 1.141 uebayasi struct uvm_object *uobj; 983 1.137 uebayasi vm_prot_t check_prot; 984 1.137 uebayasi int nback, nforw; 985 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 986 1.137 uebayasi 987 1.7 mrg /* 988 1.7 mrg * lookup and lock the maps 989 1.7 mrg */ 990 1.7 mrg 991 1.141 uebayasi if (uvmfault_lookup(ufi, false) == false) { 992 1.217 rin UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr, 993 1.177 yamt 0,0,0); 994 1.141 uebayasi return EFAULT; 995 1.7 mrg } 996 1.7 mrg /* locked: maps(read) */ 997 1.7 mrg 998 1.61 thorpej #ifdef DIAGNOSTIC 999 1.141 uebayasi if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) { 1000 1.61 thorpej printf("Page fault on non-pageable map:\n"); 1001 1.141 uebayasi printf("ufi->map = %p\n", ufi->map); 1002 1.141 uebayasi printf("ufi->orig_map = %p\n", ufi->orig_map); 1003 1.217 rin printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr); 1004 1.141 uebayasi panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0"); 1005 1.61 thorpej } 1006 1.61 thorpej #endif 1007 1.58 chs 1008 1.7 mrg /* 1009 1.7 mrg * check protection 1010 1.7 mrg */ 1011 1.7 mrg 1012 1.177 yamt check_prot = maxprot ? 1013 1.141 uebayasi ufi->entry->max_protection : ufi->entry->protection; 1014 1.141 uebayasi if ((check_prot & flt->access_type) != flt->access_type) { 1015 1.7 mrg UVMHIST_LOG(maphist, 1016 1.201 pgoyette "<- protection failure (prot=%#jx, access=%#jx)", 1017 1.141 uebayasi ufi->entry->protection, flt->access_type, 0, 0); 1018 1.141 uebayasi uvmfault_unlockmaps(ufi, false); 1019 1.200 christos return EFAULT; 1020 1.7 mrg } 1021 1.7 mrg 1022 1.7 mrg /* 1023 1.7 mrg * "enter_prot" is the protection we want to enter the page in at. 1024 1.7 mrg * for certain pages (e.g. copy-on-write pages) this protection can 1025 1.141 uebayasi * be more strict than ufi->entry->protection. "wired" means either 1026 1.7 mrg * the entry is wired or we are fault-wiring the pg. 1027 1.7 mrg */ 1028 1.7 mrg 1029 1.141 uebayasi flt->enter_prot = ufi->entry->protection; 1030 1.207 chs if (VM_MAPENT_ISWIRED(ufi->entry)) { 1031 1.146 uebayasi flt->wire_mapping = true; 1032 1.207 chs flt->wire_paging = true; 1033 1.207 chs flt->narrow = true; 1034 1.207 chs } 1035 1.146 uebayasi 1036 1.146 uebayasi if (flt->wire_mapping) { 1037 1.141 uebayasi flt->access_type = flt->enter_prot; /* full access for wired */ 1038 1.141 uebayasi flt->cow_now = (check_prot & VM_PROT_WRITE) != 0; 1039 1.73 chs } else { 1040 1.141 uebayasi flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0; 1041 1.73 chs } 1042 1.7 mrg 1043 1.222 ad if (flt->wire_paging) { 1044 1.222 ad /* wiring pages requires a write lock. */ 1045 1.222 ad flt->upper_lock_type = RW_WRITER; 1046 1.222 ad flt->lower_lock_type = RW_WRITER; 1047 1.222 ad } 1048 1.222 ad 1049 1.168 uebayasi flt->promote = false; 1050 1.168 uebayasi 1051 1.7 mrg /* 1052 1.7 mrg * handle "needs_copy" case. if we need to copy the amap we will 1053 1.7 mrg * have to drop our readlock and relock it with a write lock. (we 1054 1.7 mrg * need a write lock to change anything in a map entry [e.g. 1055 1.7 mrg * needs_copy]). 1056 1.7 mrg */ 1057 1.7 mrg 1058 1.141 uebayasi if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 1059 1.141 uebayasi if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) { 1060 1.177 yamt KASSERT(!maxprot); 1061 1.7 mrg /* need to clear */ 1062 1.7 mrg UVMHIST_LOG(maphist, 1063 1.7 mrg " need to clear needs_copy and refault",0,0,0,0); 1064 1.141 uebayasi uvmfault_unlockmaps(ufi, false); 1065 1.141 uebayasi uvmfault_amapcopy(ufi); 1066 1.213 ad cpu_count(CPU_COUNT_FLTAMCOPY, 1); 1067 1.141 uebayasi return ERESTART; 1068 1.7 mrg 1069 1.7 mrg } else { 1070 1.7 mrg 1071 1.7 mrg /* 1072 1.7 mrg * ensure that we pmap_enter page R/O since 1073 1.7 mrg * needs_copy is still true 1074 1.7 mrg */ 1075 1.72 chs 1076 1.141 uebayasi flt->enter_prot &= ~VM_PROT_WRITE; 1077 1.7 mrg } 1078 1.7 mrg } 1079 1.7 mrg 1080 1.7 mrg /* 1081 1.7 mrg * identify the players 1082 1.7 mrg */ 1083 1.7 mrg 1084 1.141 uebayasi amap = ufi->entry->aref.ar_amap; /* upper layer */ 1085 1.141 uebayasi uobj = ufi->entry->object.uvm_obj; /* lower layer */ 1086 1.7 mrg 1087 1.7 mrg /* 1088 1.7 mrg * check for a case 0 fault. if nothing backing the entry then 1089 1.7 mrg * error now. 1090 1.7 mrg */ 1091 1.7 mrg 1092 1.7 mrg if (amap == NULL && uobj == NULL) { 1093 1.141 uebayasi uvmfault_unlockmaps(ufi, false); 1094 1.7 mrg UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0); 1095 1.141 uebayasi return EFAULT; 1096 1.7 mrg } 1097 1.1 mrg 1098 1.7 mrg /* 1099 1.227 ad * for a case 2B fault waste no time on adjacent pages because 1100 1.227 ad * they are likely already entered. 1101 1.227 ad */ 1102 1.227 ad 1103 1.227 ad if (uobj != NULL && amap != NULL && 1104 1.227 ad (flt->access_type & VM_PROT_WRITE) != 0) { 1105 1.227 ad /* wide fault (!narrow) */ 1106 1.227 ad flt->narrow = true; 1107 1.227 ad } 1108 1.227 ad 1109 1.227 ad /* 1110 1.7 mrg * establish range of interest based on advice from mapper 1111 1.7 mrg * and then clip to fit map entry. note that we only want 1112 1.63 chs * to do this the first time through the fault. if we 1113 1.7 mrg * ReFault we will disable this by setting "narrow" to true. 1114 1.7 mrg */ 1115 1.1 mrg 1116 1.141 uebayasi if (flt->narrow == false) { 1117 1.7 mrg 1118 1.7 mrg /* wide fault (!narrow) */ 1119 1.141 uebayasi KASSERT(uvmadvice[ufi->entry->advice].advice == 1120 1.141 uebayasi ufi->entry->advice); 1121 1.141 uebayasi nback = MIN(uvmadvice[ufi->entry->advice].nback, 1122 1.177 yamt (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT); 1123 1.141 uebayasi flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT); 1124 1.7 mrg /* 1125 1.7 mrg * note: "-1" because we don't want to count the 1126 1.7 mrg * faulting page as forw 1127 1.7 mrg */ 1128 1.177 yamt nforw = MIN(uvmadvice[ufi->entry->advice].nforw, 1129 1.177 yamt ((ufi->entry->end - ufi->orig_rvaddr) >> 1130 1.177 yamt PAGE_SHIFT) - 1); 1131 1.141 uebayasi flt->npages = nback + nforw + 1; 1132 1.141 uebayasi flt->centeridx = nback; 1133 1.7 mrg 1134 1.141 uebayasi flt->narrow = true; /* ensure only once per-fault */ 1135 1.7 mrg 1136 1.7 mrg } else { 1137 1.63 chs 1138 1.7 mrg /* narrow fault! */ 1139 1.7 mrg nback = nforw = 0; 1140 1.141 uebayasi flt->startva = ufi->orig_rvaddr; 1141 1.141 uebayasi flt->npages = 1; 1142 1.141 uebayasi flt->centeridx = 0; 1143 1.1 mrg 1144 1.7 mrg } 1145 1.131 uebayasi /* offset from entry's start to pgs' start */ 1146 1.141 uebayasi const voff_t eoff = flt->startva - ufi->entry->start; 1147 1.1 mrg 1148 1.7 mrg /* locked: maps(read) */ 1149 1.201 pgoyette UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx", 1150 1.141 uebayasi flt->narrow, nback, nforw, flt->startva); 1151 1.201 pgoyette UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx", 1152 1.201 pgoyette (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0); 1153 1.1 mrg 1154 1.7 mrg /* 1155 1.222 ad * guess at the most suitable lock types to acquire. 1156 1.222 ad * if we've got an amap then lock it and extract current anons. 1157 1.7 mrg */ 1158 1.7 mrg 1159 1.7 mrg if (amap) { 1160 1.222 ad if ((amap_flags(amap) & AMAP_SHARED) == 0) { 1161 1.222 ad /* 1162 1.222 ad * the amap isn't shared. get a writer lock to 1163 1.222 ad * avoid the cost of upgrading the lock later if 1164 1.222 ad * needed. 1165 1.222 ad * 1166 1.222 ad * XXX nice for PostgreSQL, but consider threads. 1167 1.222 ad */ 1168 1.222 ad flt->upper_lock_type = RW_WRITER; 1169 1.222 ad } else if ((flt->access_type & VM_PROT_WRITE) != 0) { 1170 1.222 ad /* 1171 1.222 ad * assume we're about to COW. 1172 1.222 ad */ 1173 1.222 ad flt->upper_lock_type = RW_WRITER; 1174 1.222 ad } 1175 1.222 ad amap_lock(amap, flt->upper_lock_type); 1176 1.141 uebayasi amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages); 1177 1.7 mrg } else { 1178 1.222 ad if ((flt->access_type & VM_PROT_WRITE) != 0) { 1179 1.222 ad /* 1180 1.222 ad * we are about to dirty the object and that 1181 1.222 ad * requires a write lock. 1182 1.222 ad */ 1183 1.222 ad flt->lower_lock_type = RW_WRITER; 1184 1.222 ad } 1185 1.141 uebayasi *ranons = NULL; /* to be safe */ 1186 1.7 mrg } 1187 1.7 mrg 1188 1.7 mrg /* locked: maps(read), amap(if there) */ 1189 1.222 ad KASSERT(amap == NULL || 1190 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type); 1191 1.7 mrg 1192 1.7 mrg /* 1193 1.7 mrg * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 1194 1.7 mrg * now and then forget about them (for the rest of the fault). 1195 1.7 mrg */ 1196 1.7 mrg 1197 1.141 uebayasi if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) { 1198 1.7 mrg 1199 1.7 mrg UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages", 1200 1.7 mrg 0,0,0,0); 1201 1.7 mrg /* flush back-page anons? */ 1202 1.63 chs if (amap) 1203 1.141 uebayasi uvmfault_anonflush(*ranons, nback); 1204 1.7 mrg 1205 1.225 ad /* 1206 1.225 ad * flush object? change lock type to RW_WRITER, to avoid 1207 1.225 ad * excessive competition between read/write locks if many 1208 1.225 ad * threads doing "sequential access". 1209 1.225 ad */ 1210 1.7 mrg if (uobj) { 1211 1.137 uebayasi voff_t uoff; 1212 1.137 uebayasi 1213 1.225 ad flt->lower_lock_type = RW_WRITER; 1214 1.141 uebayasi uoff = ufi->entry->offset + eoff; 1215 1.216 ad rw_enter(uobj->vmobjlock, RW_WRITER); 1216 1.90 yamt (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff + 1217 1.15 chs (nback << PAGE_SHIFT), PGO_DEACTIVATE); 1218 1.7 mrg } 1219 1.7 mrg 1220 1.7 mrg /* now forget about the backpages */ 1221 1.7 mrg if (amap) 1222 1.141 uebayasi *ranons += nback; 1223 1.141 uebayasi flt->startva += (nback << PAGE_SHIFT); 1224 1.141 uebayasi flt->npages -= nback; 1225 1.141 uebayasi flt->centeridx = 0; 1226 1.7 mrg } 1227 1.137 uebayasi /* 1228 1.137 uebayasi * => startva is fixed 1229 1.137 uebayasi * => npages is fixed 1230 1.137 uebayasi */ 1231 1.177 yamt KASSERT(flt->startva <= ufi->orig_rvaddr); 1232 1.177 yamt KASSERT(ufi->orig_rvaddr + ufi->orig_size <= 1233 1.177 yamt flt->startva + (flt->npages << PAGE_SHIFT)); 1234 1.141 uebayasi return 0; 1235 1.141 uebayasi } 1236 1.141 uebayasi 1237 1.173 uebayasi /* 1238 1.222 ad * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer 1239 1.222 ad */ 1240 1.222 ad 1241 1.222 ad static inline int 1242 1.222 ad uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1243 1.222 ad struct vm_amap *amap, struct uvm_object *uobj) 1244 1.222 ad { 1245 1.224 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1246 1.222 ad 1247 1.222 ad KASSERT(amap != NULL); 1248 1.222 ad KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock)); 1249 1.222 ad 1250 1.222 ad /* 1251 1.222 ad * fast path. 1252 1.222 ad */ 1253 1.223 skrll 1254 1.222 ad if (__predict_true(flt->upper_lock_type == RW_WRITER)) { 1255 1.222 ad return 0; 1256 1.222 ad } 1257 1.222 ad 1258 1.222 ad /* 1259 1.222 ad * otherwise try for the upgrade. if we don't get it, unlock 1260 1.222 ad * everything, restart the fault and next time around get a writer 1261 1.222 ad * lock. 1262 1.222 ad */ 1263 1.222 ad 1264 1.222 ad flt->upper_lock_type = RW_WRITER; 1265 1.222 ad if (__predict_false(!rw_tryupgrade(amap->am_lock))) { 1266 1.222 ad uvmfault_unlockall(ufi, amap, uobj); 1267 1.222 ad cpu_count(CPU_COUNT_FLTNOUP, 1); 1268 1.222 ad UVMHIST_LOG(maphist, " !upgrade upper", 0, 0,0,0); 1269 1.222 ad return ERESTART; 1270 1.222 ad } 1271 1.222 ad cpu_count(CPU_COUNT_FLTUP, 1); 1272 1.222 ad KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock)); 1273 1.222 ad return 0; 1274 1.222 ad } 1275 1.222 ad 1276 1.222 ad /* 1277 1.173 uebayasi * uvm_fault_upper_lookup: look up existing h/w mapping and amap. 1278 1.173 uebayasi * 1279 1.173 uebayasi * iterate range of interest: 1280 1.173 uebayasi * 1. check if h/w mapping exists. if yes, we don't care 1281 1.173 uebayasi * 2. check if anon exists. if not, page is lower. 1282 1.173 uebayasi * 3. if anon exists, enter h/w mapping for neighbors. 1283 1.173 uebayasi * 1284 1.173 uebayasi * => called with amap locked (if exists). 1285 1.173 uebayasi */ 1286 1.173 uebayasi 1287 1.144 uebayasi static int 1288 1.141 uebayasi uvm_fault_upper_lookup( 1289 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1290 1.141 uebayasi struct vm_anon **anons, struct vm_page **pages) 1291 1.141 uebayasi { 1292 1.141 uebayasi struct vm_amap *amap = ufi->entry->aref.ar_amap; 1293 1.137 uebayasi int lcv; 1294 1.137 uebayasi vaddr_t currva; 1295 1.195 martin bool shadowed __unused; 1296 1.220 ad bool entered; 1297 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1298 1.7 mrg 1299 1.7 mrg /* locked: maps(read), amap(if there) */ 1300 1.222 ad KASSERT(amap == NULL || 1301 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type); 1302 1.1 mrg 1303 1.7 mrg /* 1304 1.7 mrg * map in the backpages and frontpages we found in the amap in hopes 1305 1.7 mrg * of preventing future faults. we also init the pages[] array as 1306 1.7 mrg * we go. 1307 1.7 mrg */ 1308 1.7 mrg 1309 1.141 uebayasi currva = flt->startva; 1310 1.144 uebayasi shadowed = false; 1311 1.220 ad entered = false; 1312 1.163 uebayasi for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1313 1.7 mrg /* 1314 1.7 mrg * unmapped or center page. check if any anon at this level. 1315 1.7 mrg */ 1316 1.7 mrg if (amap == NULL || anons[lcv] == NULL) { 1317 1.7 mrg pages[lcv] = NULL; 1318 1.7 mrg continue; 1319 1.7 mrg } 1320 1.7 mrg 1321 1.7 mrg /* 1322 1.222 ad * check for present page and map if possible. 1323 1.7 mrg */ 1324 1.7 mrg 1325 1.7 mrg pages[lcv] = PGO_DONTCARE; 1326 1.177 yamt if (lcv == flt->centeridx) { /* save center for later! */ 1327 1.144 uebayasi shadowed = true; 1328 1.186 rmind continue; 1329 1.186 rmind } 1330 1.186 rmind 1331 1.186 rmind struct vm_anon *anon = anons[lcv]; 1332 1.186 rmind struct vm_page *pg = anon->an_page; 1333 1.161 uebayasi 1334 1.186 rmind KASSERT(anon->an_lock == amap->am_lock); 1335 1.172 uebayasi 1336 1.220 ad /* 1337 1.220 ad * ignore loaned and busy pages. 1338 1.220 ad * don't play with VAs that are already mapped. 1339 1.220 ad */ 1340 1.220 ad 1341 1.220 ad if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 && 1342 1.220 ad !pmap_extract(ufi->orig_map->pmap, currva, NULL)) { 1343 1.186 rmind uvm_fault_upper_neighbor(ufi, flt, currva, 1344 1.186 rmind pg, anon->an_ref > 1); 1345 1.220 ad entered = true; 1346 1.7 mrg } 1347 1.151 uebayasi } 1348 1.220 ad if (entered) { 1349 1.220 ad pmap_update(ufi->orig_map->pmap); 1350 1.220 ad } 1351 1.151 uebayasi 1352 1.160 uebayasi /* locked: maps(read), amap(if there) */ 1353 1.222 ad KASSERT(amap == NULL || 1354 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type); 1355 1.160 uebayasi /* (shadowed == true) if there is an anon at the faulting address */ 1356 1.201 pgoyette UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed, 1357 1.164 mlelstv (ufi->entry->object.uvm_obj && shadowed != false),0,0); 1358 1.160 uebayasi 1359 1.151 uebayasi return 0; 1360 1.151 uebayasi } 1361 1.151 uebayasi 1362 1.173 uebayasi /* 1363 1.202 chs * uvm_fault_upper_neighbor: enter single upper neighbor page. 1364 1.173 uebayasi * 1365 1.173 uebayasi * => called with amap and anon locked. 1366 1.173 uebayasi */ 1367 1.173 uebayasi 1368 1.151 uebayasi static void 1369 1.163 uebayasi uvm_fault_upper_neighbor( 1370 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1371 1.161 uebayasi vaddr_t currva, struct vm_page *pg, bool readonly) 1372 1.151 uebayasi { 1373 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1374 1.151 uebayasi 1375 1.173 uebayasi /* locked: amap, anon */ 1376 1.173 uebayasi 1377 1.215 ad KASSERT(pg->uobject == NULL); 1378 1.215 ad KASSERT(pg->uanon != NULL); 1379 1.222 ad KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type); 1380 1.215 ad KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN); 1381 1.215 ad 1382 1.222 ad /* 1383 1.227 ad * there wasn't a direct fault on the page, so avoid the cost of 1384 1.227 ad * activating it. 1385 1.222 ad */ 1386 1.222 ad 1387 1.227 ad if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) { 1388 1.222 ad uvm_pagelock(pg); 1389 1.222 ad uvm_pageenqueue(pg); 1390 1.222 ad uvm_pageunlock(pg); 1391 1.222 ad } 1392 1.227 ad 1393 1.152 uebayasi UVMHIST_LOG(maphist, 1394 1.201 pgoyette " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx", 1395 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0); 1396 1.213 ad cpu_count(CPU_COUNT_FLTNAMAP, 1); 1397 1.152 uebayasi 1398 1.152 uebayasi /* 1399 1.161 uebayasi * Since this page isn't the page that's actually faulting, 1400 1.161 uebayasi * ignore pmap_enter() failures; it's not critical that we 1401 1.161 uebayasi * enter these right now. 1402 1.152 uebayasi */ 1403 1.152 uebayasi 1404 1.152 uebayasi (void) pmap_enter(ufi->orig_map->pmap, currva, 1405 1.161 uebayasi VM_PAGE_TO_PHYS(pg), 1406 1.161 uebayasi readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1407 1.152 uebayasi flt->enter_prot, 1408 1.154 uebayasi PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)); 1409 1.151 uebayasi } 1410 1.151 uebayasi 1411 1.173 uebayasi /* 1412 1.173 uebayasi * uvm_fault_upper: handle upper fault. 1413 1.173 uebayasi * 1414 1.173 uebayasi * 1. acquire anon lock. 1415 1.173 uebayasi * 2. get anon. let uvmfault_anonget do the dirty work. 1416 1.173 uebayasi * 3. handle loan. 1417 1.173 uebayasi * 4. dispatch direct or promote handlers. 1418 1.173 uebayasi */ 1419 1.134 uebayasi 1420 1.138 uebayasi static int 1421 1.138 uebayasi uvm_fault_upper( 1422 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1423 1.148 uebayasi struct vm_anon **anons) 1424 1.138 uebayasi { 1425 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1426 1.148 uebayasi struct vm_anon * const anon = anons[flt->centeridx]; 1427 1.148 uebayasi struct uvm_object *uobj; 1428 1.138 uebayasi int error; 1429 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1430 1.137 uebayasi 1431 1.186 rmind /* locked: maps(read), amap, anon */ 1432 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type); 1433 1.186 rmind KASSERT(anon->an_lock == amap->am_lock); 1434 1.7 mrg 1435 1.7 mrg /* 1436 1.7 mrg * handle case 1: fault on an anon in our amap 1437 1.7 mrg */ 1438 1.7 mrg 1439 1.201 pgoyette UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx", 1440 1.201 pgoyette (uintptr_t)anon, 0, 0, 0); 1441 1.7 mrg 1442 1.7 mrg /* 1443 1.7 mrg * no matter if we have case 1A or case 1B we are going to need to 1444 1.7 mrg * have the anon's memory resident. ensure that now. 1445 1.7 mrg */ 1446 1.7 mrg 1447 1.7 mrg /* 1448 1.47 chs * let uvmfault_anonget do the dirty work. 1449 1.51 thorpej * if it fails (!OK) it will unlock everything for us. 1450 1.47 chs * if it succeeds, locks are still valid and locked. 1451 1.7 mrg * also, if it is OK, then the anon's page is on the queues. 1452 1.7 mrg * if the page is on loan from a uvm_object, then anonget will 1453 1.7 mrg * lock that object for us if it does not fail. 1454 1.7 mrg */ 1455 1.222 ad retry: 1456 1.138 uebayasi error = uvmfault_anonget(ufi, amap, anon); 1457 1.58 chs switch (error) { 1458 1.57 chs case 0: 1459 1.63 chs break; 1460 1.7 mrg 1461 1.57 chs case ERESTART: 1462 1.139 uebayasi return ERESTART; 1463 1.7 mrg 1464 1.57 chs case EAGAIN: 1465 1.128 pooka kpause("fltagain1", false, hz/2, NULL); 1466 1.139 uebayasi return ERESTART; 1467 1.51 thorpej 1468 1.222 ad case ENOLCK: 1469 1.222 ad /* it needs a write lock: retry */ 1470 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL); 1471 1.222 ad if (error != 0) { 1472 1.222 ad return error; 1473 1.222 ad } 1474 1.222 ad KASSERT(rw_write_held(amap->am_lock)); 1475 1.222 ad goto retry; 1476 1.222 ad 1477 1.51 thorpej default: 1478 1.138 uebayasi return error; 1479 1.1 mrg } 1480 1.7 mrg 1481 1.7 mrg /* 1482 1.7 mrg * uobj is non null if the page is on loan from an object (i.e. uobj) 1483 1.7 mrg */ 1484 1.7 mrg 1485 1.94 yamt uobj = anon->an_page->uobject; /* locked by anonget if !NULL */ 1486 1.7 mrg 1487 1.7 mrg /* locked: maps(read), amap, anon, uobj(if one) */ 1488 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type); 1489 1.186 rmind KASSERT(anon->an_lock == amap->am_lock); 1490 1.222 ad KASSERT(uobj == NULL || 1491 1.222 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type); 1492 1.7 mrg 1493 1.7 mrg /* 1494 1.63 chs * special handling for loaned pages 1495 1.7 mrg */ 1496 1.52 chs 1497 1.94 yamt if (anon->an_page->loan_count) { 1498 1.148 uebayasi error = uvm_fault_upper_loan(ufi, flt, anon, &uobj); 1499 1.148 uebayasi if (error != 0) 1500 1.148 uebayasi return error; 1501 1.148 uebayasi } 1502 1.160 uebayasi 1503 1.160 uebayasi /* 1504 1.160 uebayasi * if we are case 1B then we will need to allocate a new blank 1505 1.160 uebayasi * anon to transfer the data into. note that we have a lock 1506 1.160 uebayasi * on anon, so no one can busy or release the page until we are done. 1507 1.160 uebayasi * also note that the ref count can't drop to zero here because 1508 1.160 uebayasi * it is > 1 and we are only dropping one ref. 1509 1.160 uebayasi * 1510 1.160 uebayasi * in the (hopefully very rare) case that we are out of RAM we 1511 1.160 uebayasi * will unlock, wait for more RAM, and refault. 1512 1.160 uebayasi * 1513 1.160 uebayasi * if we are out of anon VM we kill the process (XXX: could wait?). 1514 1.160 uebayasi */ 1515 1.160 uebayasi 1516 1.160 uebayasi if (flt->cow_now && anon->an_ref > 1) { 1517 1.168 uebayasi flt->promote = true; 1518 1.160 uebayasi error = uvm_fault_upper_promote(ufi, flt, uobj, anon); 1519 1.160 uebayasi } else { 1520 1.160 uebayasi error = uvm_fault_upper_direct(ufi, flt, uobj, anon); 1521 1.160 uebayasi } 1522 1.160 uebayasi return error; 1523 1.148 uebayasi } 1524 1.148 uebayasi 1525 1.173 uebayasi /* 1526 1.173 uebayasi * uvm_fault_upper_loan: handle loaned upper page. 1527 1.173 uebayasi * 1528 1.177 yamt * 1. if not cow'ing now, simply adjust flt->enter_prot. 1529 1.173 uebayasi * 2. if cow'ing now, and if ref count is 1, break loan. 1530 1.173 uebayasi */ 1531 1.173 uebayasi 1532 1.148 uebayasi static int 1533 1.148 uebayasi uvm_fault_upper_loan( 1534 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1535 1.148 uebayasi struct vm_anon *anon, struct uvm_object **ruobj) 1536 1.148 uebayasi { 1537 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1538 1.151 uebayasi int error = 0; 1539 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1540 1.149 uebayasi 1541 1.149 uebayasi if (!flt->cow_now) { 1542 1.7 mrg 1543 1.149 uebayasi /* 1544 1.149 uebayasi * for read faults on loaned pages we just cap the 1545 1.149 uebayasi * protection at read-only. 1546 1.149 uebayasi */ 1547 1.63 chs 1548 1.149 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1549 1.7 mrg 1550 1.149 uebayasi } else { 1551 1.149 uebayasi /* 1552 1.149 uebayasi * note that we can't allow writes into a loaned page! 1553 1.149 uebayasi * 1554 1.149 uebayasi * if we have a write fault on a loaned page in an 1555 1.149 uebayasi * anon then we need to look at the anon's ref count. 1556 1.149 uebayasi * if it is greater than one then we are going to do 1557 1.149 uebayasi * a normal copy-on-write fault into a new anon (this 1558 1.149 uebayasi * is not a problem). however, if the reference count 1559 1.149 uebayasi * is one (a case where we would normally allow a 1560 1.149 uebayasi * write directly to the page) then we need to kill 1561 1.149 uebayasi * the loan before we continue. 1562 1.149 uebayasi */ 1563 1.149 uebayasi 1564 1.149 uebayasi /* >1 case is already ok */ 1565 1.149 uebayasi if (anon->an_ref == 1) { 1566 1.222 ad /* breaking loan requires a write lock. */ 1567 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL); 1568 1.222 ad if (error != 0) { 1569 1.222 ad return error; 1570 1.222 ad } 1571 1.222 ad KASSERT(rw_write_held(amap->am_lock)); 1572 1.222 ad 1573 1.155 uebayasi error = uvm_loanbreak_anon(anon, *ruobj); 1574 1.151 uebayasi if (error != 0) { 1575 1.186 rmind uvmfault_unlockall(ufi, amap, *ruobj); 1576 1.151 uebayasi uvm_wait("flt_noram2"); 1577 1.151 uebayasi return ERESTART; 1578 1.151 uebayasi } 1579 1.206 msaitoh /* if we were a loan receiver uobj is gone */ 1580 1.155 uebayasi if (*ruobj) 1581 1.155 uebayasi *ruobj = NULL; 1582 1.151 uebayasi } 1583 1.151 uebayasi } 1584 1.151 uebayasi return error; 1585 1.151 uebayasi } 1586 1.151 uebayasi 1587 1.173 uebayasi /* 1588 1.173 uebayasi * uvm_fault_upper_promote: promote upper page. 1589 1.173 uebayasi * 1590 1.173 uebayasi * 1. call uvmfault_promote. 1591 1.173 uebayasi * 2. enqueue page. 1592 1.173 uebayasi * 3. deref. 1593 1.173 uebayasi * 4. pass page to uvm_fault_upper_enter. 1594 1.173 uebayasi */ 1595 1.173 uebayasi 1596 1.148 uebayasi static int 1597 1.148 uebayasi uvm_fault_upper_promote( 1598 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1599 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon) 1600 1.148 uebayasi { 1601 1.222 ad struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1602 1.149 uebayasi struct vm_anon * const oanon = anon; 1603 1.149 uebayasi struct vm_page *pg; 1604 1.149 uebayasi int error; 1605 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1606 1.149 uebayasi 1607 1.149 uebayasi UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0); 1608 1.149 uebayasi 1609 1.222 ad /* promoting requires a write lock. */ 1610 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL); 1611 1.222 ad if (error != 0) { 1612 1.222 ad return error; 1613 1.222 ad } 1614 1.222 ad KASSERT(rw_write_held(amap->am_lock)); 1615 1.222 ad 1616 1.236 ad cpu_count(CPU_COUNT_FLT_ACOW, 1); 1617 1.236 ad 1618 1.177 yamt error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon, 1619 1.177 yamt &flt->anon_spare); 1620 1.149 uebayasi switch (error) { 1621 1.149 uebayasi case 0: 1622 1.149 uebayasi break; 1623 1.149 uebayasi case ERESTART: 1624 1.149 uebayasi return ERESTART; 1625 1.149 uebayasi default: 1626 1.149 uebayasi return error; 1627 1.149 uebayasi } 1628 1.227 ad pg = anon->an_page; 1629 1.7 mrg 1630 1.222 ad KASSERT(anon->an_lock == oanon->an_lock); 1631 1.227 ad KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0); 1632 1.7 mrg 1633 1.149 uebayasi /* deref: can not drop to zero here by defn! */ 1634 1.183 yamt KASSERT(oanon->an_ref > 1); 1635 1.149 uebayasi oanon->an_ref--; 1636 1.53 thorpej 1637 1.149 uebayasi /* 1638 1.149 uebayasi * note: oanon is still locked, as is the new anon. we 1639 1.149 uebayasi * need to check for this later when we unlock oanon; if 1640 1.149 uebayasi * oanon != anon, we'll have to unlock anon, too. 1641 1.149 uebayasi */ 1642 1.7 mrg 1643 1.149 uebayasi return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1644 1.148 uebayasi } 1645 1.148 uebayasi 1646 1.173 uebayasi /* 1647 1.173 uebayasi * uvm_fault_upper_direct: handle direct fault. 1648 1.173 uebayasi */ 1649 1.173 uebayasi 1650 1.148 uebayasi static int 1651 1.148 uebayasi uvm_fault_upper_direct( 1652 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1653 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon) 1654 1.148 uebayasi { 1655 1.149 uebayasi struct vm_anon * const oanon = anon; 1656 1.149 uebayasi struct vm_page *pg; 1657 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1658 1.52 chs 1659 1.213 ad cpu_count(CPU_COUNT_FLT_ANON, 1); 1660 1.149 uebayasi pg = anon->an_page; 1661 1.149 uebayasi if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1662 1.149 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1663 1.7 mrg 1664 1.149 uebayasi return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1665 1.148 uebayasi } 1666 1.148 uebayasi 1667 1.173 uebayasi /* 1668 1.173 uebayasi * uvm_fault_upper_enter: enter h/w mapping of upper page. 1669 1.173 uebayasi */ 1670 1.173 uebayasi 1671 1.148 uebayasi static int 1672 1.148 uebayasi uvm_fault_upper_enter( 1673 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1674 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg, 1675 1.148 uebayasi struct vm_anon *oanon) 1676 1.148 uebayasi { 1677 1.202 chs struct pmap *pmap = ufi->orig_map->pmap; 1678 1.202 chs vaddr_t va = ufi->orig_rvaddr; 1679 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1680 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1681 1.7 mrg 1682 1.173 uebayasi /* locked: maps(read), amap, oanon, anon(if different from oanon) */ 1683 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type); 1684 1.186 rmind KASSERT(anon->an_lock == amap->am_lock); 1685 1.186 rmind KASSERT(oanon->an_lock == amap->am_lock); 1686 1.222 ad KASSERT(uobj == NULL || 1687 1.222 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type); 1688 1.215 ad KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN); 1689 1.7 mrg 1690 1.7 mrg /* 1691 1.69 chs * now map the page in. 1692 1.7 mrg */ 1693 1.7 mrg 1694 1.177 yamt UVMHIST_LOG(maphist, 1695 1.201 pgoyette " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd", 1696 1.202 chs (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote); 1697 1.202 chs if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg), 1698 1.177 yamt flt->enter_prot, flt->access_type | PMAP_CANFAIL | 1699 1.177 yamt (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 1700 1.69 chs 1701 1.46 thorpej /* 1702 1.202 chs * If pmap_enter() fails, it must not leave behind an existing 1703 1.202 chs * pmap entry. In particular, a now-stale entry for a different 1704 1.202 chs * page would leave the pmap inconsistent with the vm_map. 1705 1.202 chs * This is not to imply that pmap_enter() should remove an 1706 1.202 chs * existing mapping in such a situation (since that could create 1707 1.202 chs * different problems, eg. if the existing mapping is wired), 1708 1.202 chs * but rather that the pmap should be designed such that it 1709 1.202 chs * never needs to fail when the new mapping is replacing an 1710 1.202 chs * existing mapping and the new page has no existing mappings. 1711 1.226 ad * 1712 1.226 ad * XXX This can't be asserted safely any more because many 1713 1.226 ad * LWPs and/or many processes could simultaneously fault on 1714 1.226 ad * the same VA and some might succeed. 1715 1.202 chs */ 1716 1.202 chs 1717 1.226 ad /* KASSERT(!pmap_extract(pmap, va, NULL)); */ 1718 1.202 chs 1719 1.202 chs /* 1720 1.222 ad * ensure that the page is queued in the case that 1721 1.222 ad * we just promoted. 1722 1.222 ad */ 1723 1.222 ad 1724 1.227 ad uvm_pagelock(pg); 1725 1.227 ad uvm_pageenqueue(pg); 1726 1.227 ad uvm_pageunlock(pg); 1727 1.222 ad 1728 1.222 ad /* 1729 1.46 thorpej * No need to undo what we did; we can simply think of 1730 1.46 thorpej * this as the pmap throwing away the mapping information. 1731 1.46 thorpej * 1732 1.46 thorpej * We do, however, have to go through the ReFault path, 1733 1.46 thorpej * as the map may change while we're asleep. 1734 1.46 thorpej */ 1735 1.69 chs 1736 1.186 rmind uvmfault_unlockall(ufi, amap, uobj); 1737 1.92 yamt if (!uvm_reclaimable()) { 1738 1.46 thorpej UVMHIST_LOG(maphist, 1739 1.46 thorpej "<- failed. out of VM",0,0,0,0); 1740 1.46 thorpej /* XXX instrumentation */ 1741 1.148 uebayasi return ENOMEM; 1742 1.46 thorpej } 1743 1.46 thorpej /* XXX instrumentation */ 1744 1.46 thorpej uvm_wait("flt_pmfail1"); 1745 1.139 uebayasi return ERESTART; 1746 1.46 thorpej } 1747 1.7 mrg 1748 1.177 yamt uvm_fault_upper_done(ufi, flt, anon, pg); 1749 1.169 uebayasi 1750 1.169 uebayasi /* 1751 1.169 uebayasi * done case 1! finish up by unlocking everything and returning success 1752 1.169 uebayasi */ 1753 1.169 uebayasi 1754 1.202 chs pmap_update(pmap); 1755 1.186 rmind uvmfault_unlockall(ufi, amap, uobj); 1756 1.169 uebayasi return 0; 1757 1.148 uebayasi } 1758 1.148 uebayasi 1759 1.173 uebayasi /* 1760 1.173 uebayasi * uvm_fault_upper_done: queue upper center page. 1761 1.173 uebayasi */ 1762 1.173 uebayasi 1763 1.169 uebayasi static void 1764 1.148 uebayasi uvm_fault_upper_done( 1765 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1766 1.177 yamt struct vm_anon *anon, struct vm_page *pg) 1767 1.148 uebayasi { 1768 1.174 rmind const bool wire_paging = flt->wire_paging; 1769 1.174 rmind 1770 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1771 1.148 uebayasi 1772 1.7 mrg /* 1773 1.46 thorpej * ... update the page queues. 1774 1.7 mrg */ 1775 1.7 mrg 1776 1.174 rmind if (wire_paging) { 1777 1.227 ad uvm_pagelock(pg); 1778 1.8 chuck uvm_pagewire(pg); 1779 1.227 ad uvm_pageunlock(pg); 1780 1.29 chs 1781 1.29 chs /* 1782 1.29 chs * since the now-wired page cannot be paged out, 1783 1.29 chs * release its swap resources for others to use. 1784 1.215 ad * and since an anon with no swap cannot be clean, 1785 1.215 ad * mark it dirty now. 1786 1.29 chs */ 1787 1.29 chs 1788 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY); 1789 1.174 rmind uvm_anon_dropswap(anon); 1790 1.227 ad } else if (uvmpdpol_pageactivate_p(pg)) { 1791 1.227 ad /* 1792 1.227 ad * avoid re-activating the page unless needed, 1793 1.227 ad * to avoid false sharing on multiprocessor. 1794 1.227 ad */ 1795 1.227 ad 1796 1.227 ad uvm_pagelock(pg); 1797 1.227 ad uvm_pageactivate(pg); 1798 1.227 ad uvm_pageunlock(pg); 1799 1.174 rmind } 1800 1.138 uebayasi } 1801 1.1 mrg 1802 1.173 uebayasi /* 1803 1.222 ad * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer 1804 1.222 ad */ 1805 1.222 ad 1806 1.222 ad static inline int 1807 1.222 ad uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1808 1.222 ad struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage) 1809 1.222 ad { 1810 1.222 ad 1811 1.224 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1812 1.224 skrll 1813 1.222 ad KASSERT(uobj != NULL); 1814 1.222 ad KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock)); 1815 1.222 ad 1816 1.222 ad /* 1817 1.222 ad * fast path. 1818 1.222 ad */ 1819 1.223 skrll 1820 1.222 ad if (__predict_true(flt->lower_lock_type == RW_WRITER)) { 1821 1.222 ad return 0; 1822 1.222 ad } 1823 1.222 ad 1824 1.222 ad /* 1825 1.222 ad * otherwise try for the upgrade. if we don't get it, unlock 1826 1.222 ad * everything, restart the fault and next time around get a writer 1827 1.222 ad * lock. 1828 1.222 ad */ 1829 1.222 ad 1830 1.222 ad flt->lower_lock_type = RW_WRITER; 1831 1.222 ad if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) { 1832 1.222 ad uvmfault_unlockall(ufi, amap, uobj); 1833 1.222 ad cpu_count(CPU_COUNT_FLTNOUP, 1); 1834 1.222 ad UVMHIST_LOG(maphist, " !upgrade lower", 0, 0,0,0); 1835 1.222 ad return ERESTART; 1836 1.222 ad } 1837 1.222 ad cpu_count(CPU_COUNT_FLTUP, 1); 1838 1.222 ad KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock)); 1839 1.222 ad return 0; 1840 1.222 ad } 1841 1.222 ad 1842 1.222 ad /* 1843 1.173 uebayasi * uvm_fault_lower: handle lower fault. 1844 1.173 uebayasi * 1845 1.173 uebayasi * 1. check uobj 1846 1.173 uebayasi * 1.1. if null, ZFOD. 1847 1.235 andvar * 1.2. if not null, look up unmapped neighbor pages. 1848 1.173 uebayasi * 2. for center page, check if promote. 1849 1.173 uebayasi * 2.1. ZFOD always needs promotion. 1850 1.173 uebayasi * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode). 1851 1.173 uebayasi * 3. if uobj is not ZFOD and page is not found, do i/o. 1852 1.173 uebayasi * 4. dispatch either direct / promote fault. 1853 1.173 uebayasi */ 1854 1.173 uebayasi 1855 1.138 uebayasi static int 1856 1.173 uebayasi uvm_fault_lower( 1857 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1858 1.173 uebayasi struct vm_page **pages) 1859 1.138 uebayasi { 1860 1.198 riastrad struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap; 1861 1.173 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1862 1.173 uebayasi struct vm_page *uobjpage; 1863 1.138 uebayasi int error; 1864 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1865 1.173 uebayasi 1866 1.7 mrg /* 1867 1.173 uebayasi * now, if the desired page is not shadowed by the amap and we have 1868 1.173 uebayasi * a backing object that does not have a special fault routine, then 1869 1.173 uebayasi * we ask (with pgo_get) the object for resident pages that we care 1870 1.173 uebayasi * about and attempt to map them in. we do not let pgo_get block 1871 1.173 uebayasi * (PGO_LOCKED). 1872 1.173 uebayasi */ 1873 1.173 uebayasi 1874 1.173 uebayasi if (uobj == NULL) { 1875 1.173 uebayasi /* zero fill; don't care neighbor pages */ 1876 1.173 uebayasi uobjpage = NULL; 1877 1.173 uebayasi } else { 1878 1.173 uebayasi uvm_fault_lower_lookup(ufi, flt, pages); 1879 1.173 uebayasi uobjpage = pages[flt->centeridx]; 1880 1.173 uebayasi } 1881 1.173 uebayasi 1882 1.173 uebayasi /* 1883 1.173 uebayasi * note that at this point we are done with any front or back pages. 1884 1.173 uebayasi * we are now going to focus on the center page (i.e. the one we've 1885 1.173 uebayasi * faulted on). if we have faulted on the upper (anon) layer 1886 1.173 uebayasi * [i.e. case 1], then the anon we want is anons[centeridx] (we have 1887 1.173 uebayasi * not touched it yet). if we have faulted on the bottom (uobj) 1888 1.173 uebayasi * layer [i.e. case 2] and the page was both present and available, 1889 1.173 uebayasi * then we've got a pointer to it as "uobjpage" and we've already 1890 1.173 uebayasi * made it BUSY. 1891 1.7 mrg */ 1892 1.7 mrg 1893 1.7 mrg /* 1894 1.7 mrg * locked: 1895 1.7 mrg * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1896 1.7 mrg */ 1897 1.222 ad KASSERT(amap == NULL || 1898 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type); 1899 1.227 ad KASSERT(uobj == NULL || 1900 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type); 1901 1.7 mrg 1902 1.7 mrg /* 1903 1.7 mrg * note that uobjpage can not be PGO_DONTCARE at this point. we now 1904 1.7 mrg * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1905 1.7 mrg * have a backing object, check and see if we are going to promote 1906 1.7 mrg * the data up to an anon during the fault. 1907 1.7 mrg */ 1908 1.7 mrg 1909 1.7 mrg if (uobj == NULL) { 1910 1.63 chs uobjpage = PGO_DONTCARE; 1911 1.168 uebayasi flt->promote = true; /* always need anon here */ 1912 1.7 mrg } else { 1913 1.52 chs KASSERT(uobjpage != PGO_DONTCARE); 1914 1.168 uebayasi flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry); 1915 1.7 mrg } 1916 1.201 pgoyette UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd", 1917 1.168 uebayasi flt->promote, (uobj == NULL), 0,0); 1918 1.1 mrg 1919 1.7 mrg /* 1920 1.9 chuck * if uobjpage is not null then we do not need to do I/O to get the 1921 1.9 chuck * uobjpage. 1922 1.9 chuck * 1923 1.63 chs * if uobjpage is null, then we need to unlock and ask the pager to 1924 1.7 mrg * get the data for us. once we have the data, we need to reverify 1925 1.7 mrg * the state the world. we are currently not holding any resources. 1926 1.7 mrg */ 1927 1.1 mrg 1928 1.9 chuck if (uobjpage) { 1929 1.9 chuck /* update rusage counters */ 1930 1.124 ad curlwp->l_ru.ru_minflt++; 1931 1.9 chuck } else { 1932 1.163 uebayasi error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage); 1933 1.148 uebayasi if (error != 0) 1934 1.148 uebayasi return error; 1935 1.148 uebayasi } 1936 1.160 uebayasi 1937 1.160 uebayasi /* 1938 1.160 uebayasi * locked: 1939 1.160 uebayasi * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1940 1.160 uebayasi */ 1941 1.222 ad KASSERT(amap == NULL || 1942 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type); 1943 1.227 ad KASSERT(uobj == NULL || 1944 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type); 1945 1.160 uebayasi 1946 1.160 uebayasi /* 1947 1.160 uebayasi * notes: 1948 1.160 uebayasi * - at this point uobjpage can not be NULL 1949 1.160 uebayasi * - at this point uobjpage can not be PG_RELEASED (since we checked 1950 1.160 uebayasi * for it above) 1951 1.218 ad * - at this point uobjpage could be waited on (handle later) 1952 1.227 ad * - uobjpage can be from a different object if tmpfs (vnode vs UAO) 1953 1.160 uebayasi */ 1954 1.160 uebayasi 1955 1.177 yamt KASSERT(uobjpage != NULL); 1956 1.227 ad KASSERT(uobj == NULL || 1957 1.227 ad uobjpage->uobject->vmobjlock == uobj->vmobjlock); 1958 1.160 uebayasi KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) || 1959 1.215 ad uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN); 1960 1.160 uebayasi 1961 1.177 yamt if (!flt->promote) { 1962 1.163 uebayasi error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage); 1963 1.160 uebayasi } else { 1964 1.163 uebayasi error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage); 1965 1.160 uebayasi } 1966 1.160 uebayasi return error; 1967 1.148 uebayasi } 1968 1.148 uebayasi 1969 1.173 uebayasi /* 1970 1.173 uebayasi * uvm_fault_lower_lookup: look up on-memory uobj pages. 1971 1.173 uebayasi * 1972 1.173 uebayasi * 1. get on-memory pages. 1973 1.173 uebayasi * 2. if failed, give up (get only center page later). 1974 1.173 uebayasi * 3. if succeeded, enter h/w mapping of neighbor pages. 1975 1.173 uebayasi */ 1976 1.173 uebayasi 1977 1.173 uebayasi static void 1978 1.173 uebayasi uvm_fault_lower_lookup( 1979 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1980 1.173 uebayasi struct vm_page **pages) 1981 1.173 uebayasi { 1982 1.173 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1983 1.173 uebayasi int lcv, gotpages; 1984 1.173 uebayasi vaddr_t currva; 1985 1.227 ad bool entered; 1986 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1987 1.173 uebayasi 1988 1.222 ad rw_enter(uobj->vmobjlock, flt->lower_lock_type); 1989 1.222 ad 1990 1.222 ad /* 1991 1.222 ad * Locked: maps(read), amap(if there), uobj 1992 1.222 ad */ 1993 1.173 uebayasi 1994 1.213 ad cpu_count(CPU_COUNT_FLTLGET, 1); 1995 1.173 uebayasi gotpages = flt->npages; 1996 1.173 uebayasi (void) uobj->pgops->pgo_get(uobj, 1997 1.173 uebayasi ufi->entry->offset + flt->startva - ufi->entry->start, 1998 1.173 uebayasi pages, &gotpages, flt->centeridx, 1999 1.222 ad flt->access_type & MASK(ufi->entry), ufi->entry->advice, 2000 1.227 ad PGO_LOCKED); 2001 1.173 uebayasi 2002 1.222 ad KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type); 2003 1.186 rmind 2004 1.173 uebayasi /* 2005 1.173 uebayasi * check for pages to map, if we got any 2006 1.173 uebayasi */ 2007 1.173 uebayasi 2008 1.173 uebayasi if (gotpages == 0) { 2009 1.173 uebayasi pages[flt->centeridx] = NULL; 2010 1.173 uebayasi return; 2011 1.173 uebayasi } 2012 1.173 uebayasi 2013 1.227 ad entered = false; 2014 1.173 uebayasi currva = flt->startva; 2015 1.173 uebayasi for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 2016 1.173 uebayasi struct vm_page *curpg; 2017 1.173 uebayasi 2018 1.173 uebayasi curpg = pages[lcv]; 2019 1.173 uebayasi if (curpg == NULL || curpg == PGO_DONTCARE) { 2020 1.173 uebayasi continue; 2021 1.173 uebayasi } 2022 1.173 uebayasi 2023 1.227 ad /* 2024 1.227 ad * in the case of tmpfs, the pages might be from a different 2025 1.227 ad * uvm_object. just make sure that they have the same lock. 2026 1.227 ad */ 2027 1.227 ad 2028 1.227 ad KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock); 2029 1.227 ad KASSERT((curpg->flags & PG_BUSY) == 0); 2030 1.222 ad 2031 1.173 uebayasi /* 2032 1.227 ad * leave the centre page for later. don't screw with 2033 1.227 ad * existing mappings (needless & expensive). 2034 1.173 uebayasi */ 2035 1.173 uebayasi 2036 1.173 uebayasi if (lcv == flt->centeridx) { 2037 1.217 rin UVMHIST_LOG(maphist, " got uobjpage (%#jx) " 2038 1.201 pgoyette "with locked get", (uintptr_t)curpg, 0, 0, 0); 2039 1.227 ad } else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) { 2040 1.215 ad uvm_fault_lower_neighbor(ufi, flt, currva, curpg); 2041 1.227 ad entered = true; 2042 1.173 uebayasi } 2043 1.173 uebayasi } 2044 1.227 ad if (entered) { 2045 1.227 ad pmap_update(ufi->orig_map->pmap); 2046 1.227 ad } 2047 1.173 uebayasi } 2048 1.173 uebayasi 2049 1.173 uebayasi /* 2050 1.173 uebayasi * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page. 2051 1.173 uebayasi */ 2052 1.173 uebayasi 2053 1.173 uebayasi static void 2054 1.173 uebayasi uvm_fault_lower_neighbor( 2055 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2056 1.215 ad vaddr_t currva, struct vm_page *pg) 2057 1.173 uebayasi { 2058 1.215 ad const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0; 2059 1.182 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 2060 1.173 uebayasi 2061 1.173 uebayasi /* locked: maps(read), amap(if there), uobj */ 2062 1.173 uebayasi 2063 1.173 uebayasi /* 2064 1.173 uebayasi * calling pgo_get with PGO_LOCKED returns us pages which 2065 1.173 uebayasi * are neither busy nor released, so we don't need to check 2066 1.173 uebayasi * for this. we can just directly enter the pages. 2067 1.227 ad * 2068 1.222 ad * there wasn't a direct fault on the page, so avoid the cost of 2069 1.227 ad * activating it. 2070 1.222 ad */ 2071 1.222 ad 2072 1.227 ad if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) { 2073 1.222 ad uvm_pagelock(pg); 2074 1.222 ad uvm_pageenqueue(pg); 2075 1.222 ad uvm_pageunlock(pg); 2076 1.222 ad } 2077 1.227 ad 2078 1.173 uebayasi UVMHIST_LOG(maphist, 2079 1.201 pgoyette " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx", 2080 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0); 2081 1.213 ad cpu_count(CPU_COUNT_FLTNOMAP, 1); 2082 1.173 uebayasi 2083 1.173 uebayasi /* 2084 1.173 uebayasi * Since this page isn't the page that's actually faulting, 2085 1.173 uebayasi * ignore pmap_enter() failures; it's not critical that we 2086 1.173 uebayasi * enter these right now. 2087 1.219 ad * NOTE: page can't be waited on or PG_RELEASED because we've 2088 1.173 uebayasi * held the lock the whole time we've had the handle. 2089 1.173 uebayasi */ 2090 1.173 uebayasi KASSERT((pg->flags & PG_PAGEOUT) == 0); 2091 1.173 uebayasi KASSERT((pg->flags & PG_RELEASED) == 0); 2092 1.215 ad KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || 2093 1.215 ad uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN); 2094 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0); 2095 1.222 ad KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type); 2096 1.199 skrll 2097 1.223 skrll const vm_prot_t mapprot = 2098 1.199 skrll readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 2099 1.199 skrll flt->enter_prot & MASK(ufi->entry); 2100 1.223 skrll const u_int mapflags = 2101 1.199 skrll PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0); 2102 1.173 uebayasi (void) pmap_enter(ufi->orig_map->pmap, currva, 2103 1.199 skrll VM_PAGE_TO_PHYS(pg), mapprot, mapflags); 2104 1.173 uebayasi } 2105 1.173 uebayasi 2106 1.173 uebayasi /* 2107 1.173 uebayasi * uvm_fault_lower_io: get lower page from backing store. 2108 1.173 uebayasi * 2109 1.173 uebayasi * 1. unlock everything, because i/o will block. 2110 1.173 uebayasi * 2. call pgo_get. 2111 1.173 uebayasi * 3. if failed, recover. 2112 1.173 uebayasi * 4. if succeeded, relock everything and verify things. 2113 1.173 uebayasi */ 2114 1.173 uebayasi 2115 1.148 uebayasi static int 2116 1.163 uebayasi uvm_fault_lower_io( 2117 1.222 ad struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2118 1.156 uebayasi struct uvm_object **ruobj, struct vm_page **ruobjpage) 2119 1.148 uebayasi { 2120 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2121 1.156 uebayasi struct uvm_object *uobj = *ruobj; 2122 1.158 uebayasi struct vm_page *pg; 2123 1.149 uebayasi bool locked; 2124 1.149 uebayasi int gotpages; 2125 1.149 uebayasi int error; 2126 1.149 uebayasi voff_t uoff; 2127 1.208 chs vm_prot_t access_type; 2128 1.208 chs int advice; 2129 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 2130 1.149 uebayasi 2131 1.208 chs /* grab everything we need from the entry before we unlock */ 2132 1.208 chs uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset; 2133 1.208 chs access_type = flt->access_type & MASK(ufi->entry); 2134 1.208 chs advice = ufi->entry->advice; 2135 1.208 chs 2136 1.186 rmind /* Locked: maps(read), amap(if there), uobj */ 2137 1.222 ad KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type); 2138 1.222 ad 2139 1.222 ad /* Upgrade to a write lock if needed. */ 2140 1.222 ad error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL); 2141 1.222 ad if (error != 0) { 2142 1.222 ad return error; 2143 1.222 ad } 2144 1.186 rmind uvmfault_unlockall(ufi, amap, NULL); 2145 1.186 rmind 2146 1.236 ad /* update rusage counters */ 2147 1.236 ad curlwp->l_ru.ru_majflt++; 2148 1.236 ad 2149 1.222 ad /* Locked: uobj(write) */ 2150 1.222 ad KASSERT(rw_write_held(uobj->vmobjlock)); 2151 1.63 chs 2152 1.213 ad cpu_count(CPU_COUNT_FLTGET, 1); 2153 1.149 uebayasi gotpages = 1; 2154 1.166 mlelstv pg = NULL; 2155 1.158 uebayasi error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages, 2156 1.208 chs 0, access_type, advice, PGO_SYNCIO); 2157 1.158 uebayasi /* locked: pg(if no error) */ 2158 1.52 chs 2159 1.149 uebayasi /* 2160 1.149 uebayasi * recover from I/O 2161 1.149 uebayasi */ 2162 1.1 mrg 2163 1.149 uebayasi if (error) { 2164 1.149 uebayasi if (error == EAGAIN) { 2165 1.149 uebayasi UVMHIST_LOG(maphist, 2166 1.149 uebayasi " pgo_get says TRY AGAIN!",0,0,0,0); 2167 1.149 uebayasi kpause("fltagain2", false, hz/2, NULL); 2168 1.149 uebayasi return ERESTART; 2169 1.149 uebayasi } 2170 1.1 mrg 2171 1.139 uebayasi #if 0 2172 1.149 uebayasi KASSERT(error != ERESTART); 2173 1.139 uebayasi #else 2174 1.149 uebayasi /* XXXUEBS don't re-fault? */ 2175 1.149 uebayasi if (error == ERESTART) 2176 1.149 uebayasi error = EIO; 2177 1.139 uebayasi #endif 2178 1.139 uebayasi 2179 1.201 pgoyette UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)", 2180 1.149 uebayasi error, 0,0,0); 2181 1.149 uebayasi return error; 2182 1.149 uebayasi } 2183 1.7 mrg 2184 1.149 uebayasi /* 2185 1.149 uebayasi * re-verify the state of the world by first trying to relock 2186 1.149 uebayasi * the maps. always relock the object. 2187 1.149 uebayasi */ 2188 1.7 mrg 2189 1.149 uebayasi locked = uvmfault_relock(ufi); 2190 1.149 uebayasi if (locked && amap) 2191 1.222 ad amap_lock(amap, flt->upper_lock_type); 2192 1.156 uebayasi 2193 1.156 uebayasi /* might be changed */ 2194 1.158 uebayasi uobj = pg->uobject; 2195 1.156 uebayasi 2196 1.222 ad rw_enter(uobj->vmobjlock, flt->lower_lock_type); 2197 1.186 rmind KASSERT((pg->flags & PG_BUSY) != 0); 2198 1.222 ad KASSERT(flt->lower_lock_type == RW_WRITER); 2199 1.186 rmind 2200 1.214 ad uvm_pagelock(pg); 2201 1.186 rmind uvm_pageactivate(pg); 2202 1.214 ad uvm_pageunlock(pg); 2203 1.63 chs 2204 1.158 uebayasi /* locked(locked): maps(read), amap(if !null), uobj, pg */ 2205 1.158 uebayasi /* locked(!locked): uobj, pg */ 2206 1.7 mrg 2207 1.149 uebayasi /* 2208 1.149 uebayasi * verify that the page has not be released and re-verify 2209 1.149 uebayasi * that amap slot is still free. if there is a problem, 2210 1.149 uebayasi * we unlock and clean up. 2211 1.149 uebayasi */ 2212 1.7 mrg 2213 1.158 uebayasi if ((pg->flags & PG_RELEASED) != 0 || 2214 1.158 uebayasi (locked && amap && amap_lookup(&ufi->entry->aref, 2215 1.149 uebayasi ufi->orig_rvaddr - ufi->entry->start))) { 2216 1.149 uebayasi if (locked) 2217 1.186 rmind uvmfault_unlockall(ufi, amap, NULL); 2218 1.149 uebayasi locked = false; 2219 1.149 uebayasi } 2220 1.7 mrg 2221 1.149 uebayasi /* 2222 1.227 ad * unbusy/release the page. 2223 1.227 ad */ 2224 1.227 ad 2225 1.227 ad if ((pg->flags & PG_RELEASED) == 0) { 2226 1.227 ad pg->flags &= ~PG_BUSY; 2227 1.227 ad uvm_pagelock(pg); 2228 1.227 ad uvm_pagewakeup(pg); 2229 1.227 ad uvm_pageunlock(pg); 2230 1.227 ad UVM_PAGE_OWN(pg, NULL); 2231 1.227 ad } else { 2232 1.227 ad cpu_count(CPU_COUNT_FLTPGRELE, 1); 2233 1.227 ad uvm_pagefree(pg); 2234 1.227 ad } 2235 1.227 ad 2236 1.227 ad /* 2237 1.227 ad * didn't get the lock? retry. 2238 1.149 uebayasi */ 2239 1.7 mrg 2240 1.149 uebayasi if (locked == false) { 2241 1.149 uebayasi UVMHIST_LOG(maphist, 2242 1.149 uebayasi " wasn't able to relock after fault: retry", 2243 1.149 uebayasi 0,0,0,0); 2244 1.216 ad rw_exit(uobj->vmobjlock); 2245 1.149 uebayasi return ERESTART; 2246 1.149 uebayasi } 2247 1.7 mrg 2248 1.149 uebayasi /* 2249 1.227 ad * we have the data in pg. we are holding object lock (so the page 2250 1.149 uebayasi * can't be released on us). 2251 1.149 uebayasi */ 2252 1.7 mrg 2253 1.227 ad /* locked: maps(read), amap(if !null), uobj */ 2254 1.148 uebayasi 2255 1.156 uebayasi *ruobj = uobj; 2256 1.158 uebayasi *ruobjpage = pg; 2257 1.148 uebayasi return 0; 2258 1.148 uebayasi } 2259 1.148 uebayasi 2260 1.173 uebayasi /* 2261 1.173 uebayasi * uvm_fault_lower_direct: fault lower center page 2262 1.173 uebayasi * 2263 1.177 yamt * 1. adjust flt->enter_prot. 2264 1.173 uebayasi * 2. if page is loaned, resolve. 2265 1.173 uebayasi */ 2266 1.173 uebayasi 2267 1.148 uebayasi int 2268 1.163 uebayasi uvm_fault_lower_direct( 2269 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2270 1.156 uebayasi struct uvm_object *uobj, struct vm_page *uobjpage) 2271 1.148 uebayasi { 2272 1.149 uebayasi struct vm_page *pg; 2273 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 2274 1.149 uebayasi 2275 1.149 uebayasi /* 2276 1.149 uebayasi * we are not promoting. if the mapping is COW ensure that we 2277 1.149 uebayasi * don't give more access than we should (e.g. when doing a read 2278 1.149 uebayasi * fault on a COPYONWRITE mapping we want to map the COW page in 2279 1.149 uebayasi * R/O even though the entry protection could be R/W). 2280 1.149 uebayasi * 2281 1.149 uebayasi * set "pg" to the page we want to map in (uobjpage, usually) 2282 1.149 uebayasi */ 2283 1.1 mrg 2284 1.213 ad cpu_count(CPU_COUNT_FLT_OBJ, 1); 2285 1.149 uebayasi if (UVM_ET_ISCOPYONWRITE(ufi->entry) || 2286 1.149 uebayasi UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject)) 2287 1.149 uebayasi flt->enter_prot &= ~VM_PROT_WRITE; 2288 1.149 uebayasi pg = uobjpage; /* map in the actual object */ 2289 1.7 mrg 2290 1.149 uebayasi KASSERT(uobjpage != PGO_DONTCARE); 2291 1.7 mrg 2292 1.149 uebayasi /* 2293 1.149 uebayasi * we are faulting directly on the page. be careful 2294 1.149 uebayasi * about writing to loaned pages... 2295 1.149 uebayasi */ 2296 1.149 uebayasi 2297 1.149 uebayasi if (uobjpage->loan_count) { 2298 1.163 uebayasi uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage); 2299 1.151 uebayasi } 2300 1.151 uebayasi KASSERT(pg == uobjpage); 2301 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0); 2302 1.183 yamt return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg); 2303 1.151 uebayasi } 2304 1.151 uebayasi 2305 1.173 uebayasi /* 2306 1.173 uebayasi * uvm_fault_lower_direct_loan: resolve loaned page. 2307 1.173 uebayasi * 2308 1.177 yamt * 1. if not cow'ing, adjust flt->enter_prot. 2309 1.173 uebayasi * 2. if cow'ing, break loan. 2310 1.173 uebayasi */ 2311 1.173 uebayasi 2312 1.151 uebayasi static int 2313 1.163 uebayasi uvm_fault_lower_direct_loan( 2314 1.151 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2315 1.177 yamt struct uvm_object *uobj, struct vm_page **rpg, 2316 1.177 yamt struct vm_page **ruobjpage) 2317 1.151 uebayasi { 2318 1.152 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2319 1.152 uebayasi struct vm_page *pg; 2320 1.152 uebayasi struct vm_page *uobjpage = *ruobjpage; 2321 1.222 ad int error; 2322 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 2323 1.152 uebayasi 2324 1.152 uebayasi if (!flt->cow_now) { 2325 1.152 uebayasi /* read fault: cap the protection at readonly */ 2326 1.152 uebayasi /* cap! */ 2327 1.152 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 2328 1.152 uebayasi } else { 2329 1.222 ad /* 2330 1.222 ad * write fault: must break the loan here. to do this 2331 1.222 ad * we need a write lock on the object. 2332 1.222 ad */ 2333 1.222 ad 2334 1.222 ad error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage); 2335 1.222 ad if (error != 0) { 2336 1.222 ad return error; 2337 1.222 ad } 2338 1.222 ad KASSERT(rw_write_held(uobj->vmobjlock)); 2339 1.152 uebayasi 2340 1.152 uebayasi pg = uvm_loanbreak(uobjpage); 2341 1.152 uebayasi if (pg == NULL) { 2342 1.152 uebayasi 2343 1.186 rmind uvmfault_unlockall(ufi, amap, uobj); 2344 1.152 uebayasi UVMHIST_LOG(maphist, 2345 1.152 uebayasi " out of RAM breaking loan, waiting", 2346 1.152 uebayasi 0,0,0,0); 2347 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1); 2348 1.152 uebayasi uvm_wait("flt_noram4"); 2349 1.152 uebayasi return ERESTART; 2350 1.69 chs } 2351 1.152 uebayasi *rpg = pg; 2352 1.152 uebayasi *ruobjpage = pg; 2353 1.227 ad 2354 1.227 ad /* 2355 1.227 ad * drop ownership of page while still holding object lock, 2356 1.227 ad * which won't be dropped until the page is entered. 2357 1.227 ad */ 2358 1.227 ad 2359 1.227 ad uvm_pagelock(pg); 2360 1.227 ad uvm_pagewakeup(pg); 2361 1.227 ad uvm_pageunlock(pg); 2362 1.227 ad pg->flags &= ~PG_BUSY; 2363 1.227 ad UVM_PAGE_OWN(pg, NULL); 2364 1.152 uebayasi } 2365 1.152 uebayasi return 0; 2366 1.148 uebayasi } 2367 1.148 uebayasi 2368 1.173 uebayasi /* 2369 1.173 uebayasi * uvm_fault_lower_promote: promote lower page. 2370 1.173 uebayasi * 2371 1.173 uebayasi * 1. call uvmfault_promote. 2372 1.173 uebayasi * 2. fill in data. 2373 1.173 uebayasi * 3. if not ZFOD, dispose old page. 2374 1.173 uebayasi */ 2375 1.173 uebayasi 2376 1.148 uebayasi int 2377 1.163 uebayasi uvm_fault_lower_promote( 2378 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2379 1.156 uebayasi struct uvm_object *uobj, struct vm_page *uobjpage) 2380 1.148 uebayasi { 2381 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2382 1.149 uebayasi struct vm_anon *anon; 2383 1.149 uebayasi struct vm_page *pg; 2384 1.149 uebayasi int error; 2385 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 2386 1.63 chs 2387 1.186 rmind KASSERT(amap != NULL); 2388 1.186 rmind 2389 1.222 ad /* promoting requires a write lock. */ 2390 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj); 2391 1.222 ad if (error != 0) { 2392 1.222 ad return error; 2393 1.222 ad } 2394 1.222 ad KASSERT(rw_write_held(amap->am_lock)); 2395 1.227 ad KASSERT(uobj == NULL || 2396 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type); 2397 1.222 ad 2398 1.149 uebayasi /* 2399 1.186 rmind * If we are going to promote the data to an anon we 2400 1.149 uebayasi * allocate a blank anon here and plug it into our amap. 2401 1.149 uebayasi */ 2402 1.222 ad error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare); 2403 1.149 uebayasi switch (error) { 2404 1.149 uebayasi case 0: 2405 1.149 uebayasi break; 2406 1.149 uebayasi case ERESTART: 2407 1.149 uebayasi return ERESTART; 2408 1.149 uebayasi default: 2409 1.149 uebayasi return error; 2410 1.149 uebayasi } 2411 1.149 uebayasi 2412 1.149 uebayasi pg = anon->an_page; 2413 1.149 uebayasi 2414 1.149 uebayasi /* 2415 1.186 rmind * Fill in the data. 2416 1.149 uebayasi */ 2417 1.105 yamt 2418 1.149 uebayasi if (uobjpage != PGO_DONTCARE) { 2419 1.213 ad cpu_count(CPU_COUNT_FLT_PRCOPY, 1); 2420 1.1 mrg 2421 1.7 mrg /* 2422 1.149 uebayasi * promote to shared amap? make sure all sharing 2423 1.149 uebayasi * procs see it 2424 1.7 mrg */ 2425 1.7 mrg 2426 1.149 uebayasi if ((amap_flags(amap) & AMAP_SHARED) != 0) { 2427 1.149 uebayasi pmap_page_protect(uobjpage, VM_PROT_NONE); 2428 1.7 mrg /* 2429 1.149 uebayasi * XXX: PAGE MIGHT BE WIRED! 2430 1.7 mrg */ 2431 1.149 uebayasi } 2432 1.69 chs 2433 1.149 uebayasi UVMHIST_LOG(maphist, 2434 1.217 rin " promote uobjpage %#jx to anon/page %#jx/%#jx", 2435 1.201 pgoyette (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0); 2436 1.63 chs 2437 1.149 uebayasi } else { 2438 1.213 ad cpu_count(CPU_COUNT_FLT_PRZERO, 1); 2439 1.7 mrg 2440 1.149 uebayasi /* 2441 1.149 uebayasi * Page is zero'd and marked dirty by 2442 1.149 uebayasi * uvmfault_promote(). 2443 1.149 uebayasi */ 2444 1.52 chs 2445 1.217 rin UVMHIST_LOG(maphist," zero fill anon/page %#jx/%#jx", 2446 1.201 pgoyette (uintptr_t)anon, (uintptr_t)pg, 0, 0); 2447 1.149 uebayasi } 2448 1.148 uebayasi 2449 1.183 yamt return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg); 2450 1.148 uebayasi } 2451 1.148 uebayasi 2452 1.173 uebayasi /* 2453 1.183 yamt * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted 2454 1.183 yamt * from the lower page. 2455 1.173 uebayasi */ 2456 1.173 uebayasi 2457 1.148 uebayasi int 2458 1.163 uebayasi uvm_fault_lower_enter( 2459 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2460 1.148 uebayasi struct uvm_object *uobj, 2461 1.183 yamt struct vm_anon *anon, struct vm_page *pg) 2462 1.148 uebayasi { 2463 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2464 1.215 ad const bool readonly = uvm_pagereadonly_p(pg); 2465 1.148 uebayasi int error; 2466 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 2467 1.7 mrg 2468 1.7 mrg /* 2469 1.186 rmind * Locked: 2470 1.186 rmind * 2471 1.186 rmind * maps(read), amap(if !null), uobj(if !null), 2472 1.186 rmind * anon(if !null), pg(if anon), unlock_uobj(if !null) 2473 1.7 mrg * 2474 1.222 ad * anon must be write locked (promotion). uobj can be either. 2475 1.222 ad * 2476 1.186 rmind * Note: pg is either the uobjpage or the new page in the new anon. 2477 1.7 mrg */ 2478 1.227 ad 2479 1.222 ad KASSERT(amap == NULL || 2480 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type); 2481 1.227 ad KASSERT(uobj == NULL || 2482 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type); 2483 1.186 rmind KASSERT(anon == NULL || anon->an_lock == amap->am_lock); 2484 1.227 ad 2485 1.227 ad /* 2486 1.227 ad * note that pg can't be PG_RELEASED or PG_BUSY since we did 2487 1.227 ad * not drop the object lock since the last time we checked. 2488 1.227 ad */ 2489 1.227 ad 2490 1.227 ad KASSERT((pg->flags & PG_RELEASED) == 0); 2491 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0); 2492 1.7 mrg 2493 1.7 mrg /* 2494 1.7 mrg * all resources are present. we can now map it in and free our 2495 1.7 mrg * resources. 2496 1.7 mrg */ 2497 1.7 mrg 2498 1.7 mrg UVMHIST_LOG(maphist, 2499 1.201 pgoyette " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd", 2500 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr, 2501 1.201 pgoyette (uintptr_t)pg, flt->promote); 2502 1.215 ad KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly, 2503 1.215 ad "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u " 2504 1.215 ad "entry=%p map=%p orig_rvaddr=%p pg=%p", 2505 1.215 ad flt->promote, flt->cow_now, flt->access_type, flt->enter_prot, 2506 1.215 ad UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map, 2507 1.215 ad (void *)ufi->orig_rvaddr, pg); 2508 1.215 ad KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly); 2509 1.177 yamt if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, 2510 1.177 yamt VM_PAGE_TO_PHYS(pg), 2511 1.215 ad readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot, 2512 1.177 yamt flt->access_type | PMAP_CANFAIL | 2513 1.177 yamt (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 2514 1.52 chs 2515 1.46 thorpej /* 2516 1.46 thorpej * No need to undo what we did; we can simply think of 2517 1.46 thorpej * this as the pmap throwing away the mapping information. 2518 1.46 thorpej * 2519 1.46 thorpej * We do, however, have to go through the ReFault path, 2520 1.46 thorpej * as the map may change while we're asleep. 2521 1.46 thorpej */ 2522 1.52 chs 2523 1.183 yamt /* 2524 1.183 yamt * ensure that the page is queued in the case that 2525 1.183 yamt * we just promoted the page. 2526 1.183 yamt */ 2527 1.183 yamt 2528 1.227 ad if (anon != NULL) { 2529 1.222 ad uvm_pagelock(pg); 2530 1.222 ad uvm_pageenqueue(pg); 2531 1.222 ad uvm_pagewakeup(pg); 2532 1.222 ad uvm_pageunlock(pg); 2533 1.222 ad } 2534 1.171 uebayasi 2535 1.186 rmind uvmfault_unlockall(ufi, amap, uobj); 2536 1.92 yamt if (!uvm_reclaimable()) { 2537 1.46 thorpej UVMHIST_LOG(maphist, 2538 1.46 thorpej "<- failed. out of VM",0,0,0,0); 2539 1.46 thorpej /* XXX instrumentation */ 2540 1.106 yamt error = ENOMEM; 2541 1.138 uebayasi return error; 2542 1.46 thorpej } 2543 1.46 thorpej /* XXX instrumentation */ 2544 1.46 thorpej uvm_wait("flt_pmfail2"); 2545 1.139 uebayasi return ERESTART; 2546 1.46 thorpej } 2547 1.1 mrg 2548 1.177 yamt uvm_fault_lower_done(ufi, flt, uobj, pg); 2549 1.175 rmind pmap_update(ufi->orig_map->pmap); 2550 1.186 rmind uvmfault_unlockall(ufi, amap, uobj); 2551 1.175 rmind 2552 1.169 uebayasi UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0); 2553 1.169 uebayasi return 0; 2554 1.148 uebayasi } 2555 1.148 uebayasi 2556 1.173 uebayasi /* 2557 1.173 uebayasi * uvm_fault_lower_done: queue lower center page. 2558 1.173 uebayasi */ 2559 1.173 uebayasi 2560 1.169 uebayasi void 2561 1.163 uebayasi uvm_fault_lower_done( 2562 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2563 1.177 yamt struct uvm_object *uobj, struct vm_page *pg) 2564 1.148 uebayasi { 2565 1.174 rmind 2566 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 2567 1.148 uebayasi 2568 1.146 uebayasi if (flt->wire_paging) { 2569 1.227 ad uvm_pagelock(pg); 2570 1.8 chuck uvm_pagewire(pg); 2571 1.227 ad uvm_pageunlock(pg); 2572 1.212 ad if (pg->flags & PG_AOBJ) { 2573 1.29 chs 2574 1.29 chs /* 2575 1.29 chs * since the now-wired page cannot be paged out, 2576 1.29 chs * release its swap resources for others to use. 2577 1.215 ad * since an aobj page with no swap cannot be clean, 2578 1.215 ad * mark it dirty now. 2579 1.227 ad * 2580 1.227 ad * use pg->uobject here. if the page is from a 2581 1.227 ad * tmpfs vnode, the pages are backed by its UAO and 2582 1.227 ad * not the vnode. 2583 1.29 chs */ 2584 1.29 chs 2585 1.113 christos KASSERT(uobj != NULL); 2586 1.227 ad KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock); 2587 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY); 2588 1.227 ad uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT); 2589 1.22 chs } 2590 1.227 ad } else if (uvmpdpol_pageactivate_p(pg)) { 2591 1.227 ad /* 2592 1.227 ad * avoid re-activating the page unless needed, 2593 1.227 ad * to avoid false sharing on multiprocessor. 2594 1.227 ad */ 2595 1.227 ad 2596 1.227 ad uvm_pagelock(pg); 2597 1.7 mrg uvm_pageactivate(pg); 2598 1.227 ad uvm_pageunlock(pg); 2599 1.174 rmind } 2600 1.1 mrg } 2601 1.1 mrg 2602 1.110 drochner 2603 1.1 mrg /* 2604 1.1 mrg * uvm_fault_wire: wire down a range of virtual addresses in a map. 2605 1.1 mrg * 2606 1.36 thorpej * => map may be read-locked by caller, but MUST NOT be write-locked. 2607 1.36 thorpej * => if map is read-locked, any operations which may cause map to 2608 1.36 thorpej * be write-locked in uvm_fault() must be taken care of by 2609 1.36 thorpej * the caller. See uvm_map_pageable(). 2610 1.1 mrg */ 2611 1.1 mrg 2612 1.7 mrg int 2613 1.95 thorpej uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end, 2614 1.130 uebayasi vm_prot_t access_type, int maxprot) 2615 1.7 mrg { 2616 1.12 eeh vaddr_t va; 2617 1.58 chs int error; 2618 1.7 mrg 2619 1.7 mrg /* 2620 1.47 chs * now fault it in a page at a time. if the fault fails then we have 2621 1.63 chs * to undo what we have done. note that in uvm_fault VM_PROT_NONE 2622 1.47 chs * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 2623 1.7 mrg */ 2624 1.1 mrg 2625 1.65 chs /* 2626 1.65 chs * XXX work around overflowing a vaddr_t. this prevents us from 2627 1.65 chs * wiring the last page in the address space, though. 2628 1.65 chs */ 2629 1.65 chs if (start > end) { 2630 1.65 chs return EFAULT; 2631 1.65 chs } 2632 1.65 chs 2633 1.163 uebayasi for (va = start; va < end; va += PAGE_SIZE) { 2634 1.110 drochner error = uvm_fault_internal(map, va, access_type, 2635 1.177 yamt (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE); 2636 1.58 chs if (error) { 2637 1.7 mrg if (va != start) { 2638 1.31 thorpej uvm_fault_unwire(map, start, va); 2639 1.7 mrg } 2640 1.58 chs return error; 2641 1.7 mrg } 2642 1.7 mrg } 2643 1.58 chs return 0; 2644 1.1 mrg } 2645 1.1 mrg 2646 1.1 mrg /* 2647 1.1 mrg * uvm_fault_unwire(): unwire range of virtual space. 2648 1.1 mrg */ 2649 1.1 mrg 2650 1.7 mrg void 2651 1.95 thorpej uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end) 2652 1.36 thorpej { 2653 1.36 thorpej vm_map_lock_read(map); 2654 1.36 thorpej uvm_fault_unwire_locked(map, start, end); 2655 1.36 thorpej vm_map_unlock_read(map); 2656 1.36 thorpej } 2657 1.36 thorpej 2658 1.36 thorpej /* 2659 1.36 thorpej * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 2660 1.36 thorpej * 2661 1.36 thorpej * => map must be at least read-locked. 2662 1.36 thorpej */ 2663 1.36 thorpej 2664 1.36 thorpej void 2665 1.95 thorpej uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end) 2666 1.7 mrg { 2667 1.186 rmind struct vm_map_entry *entry, *oentry; 2668 1.31 thorpej pmap_t pmap = vm_map_pmap(map); 2669 1.42 thorpej vaddr_t va; 2670 1.12 eeh paddr_t pa; 2671 1.42 thorpej struct vm_page *pg; 2672 1.31 thorpej 2673 1.7 mrg /* 2674 1.7 mrg * we assume that the area we are unwiring has actually been wired 2675 1.7 mrg * in the first place. this means that we should be able to extract 2676 1.7 mrg * the PAs from the pmap. we also lock out the page daemon so that 2677 1.7 mrg * we can call uvm_pageunwire. 2678 1.7 mrg */ 2679 1.37 thorpej 2680 1.37 thorpej /* 2681 1.37 thorpej * find the beginning map entry for the region. 2682 1.37 thorpej */ 2683 1.74 chs 2684 1.232 riastrad KASSERT(start >= vm_map_min(map)); 2685 1.232 riastrad KASSERT(end <= vm_map_max(map)); 2686 1.119 thorpej if (uvm_map_lookup_entry(map, start, &entry) == false) 2687 1.37 thorpej panic("uvm_fault_unwire_locked: address not in map"); 2688 1.37 thorpej 2689 1.186 rmind oentry = NULL; 2690 1.69 chs for (va = start; va < end; va += PAGE_SIZE) { 2691 1.42 thorpej 2692 1.42 thorpej /* 2693 1.74 chs * find the map entry for the current address. 2694 1.42 thorpej */ 2695 1.56 chs 2696 1.56 chs KASSERT(va >= entry->start); 2697 1.74 chs while (va >= entry->end) { 2698 1.232 riastrad KASSERT(entry->next != &map->header); 2699 1.232 riastrad KASSERT(entry->next->start <= entry->end); 2700 1.42 thorpej entry = entry->next; 2701 1.42 thorpej } 2702 1.37 thorpej 2703 1.42 thorpej /* 2704 1.186 rmind * lock it. 2705 1.186 rmind */ 2706 1.186 rmind 2707 1.186 rmind if (entry != oentry) { 2708 1.186 rmind if (oentry != NULL) { 2709 1.186 rmind uvm_map_unlock_entry(oentry); 2710 1.186 rmind } 2711 1.216 ad uvm_map_lock_entry(entry, RW_WRITER); 2712 1.186 rmind oentry = entry; 2713 1.186 rmind } 2714 1.186 rmind 2715 1.186 rmind /* 2716 1.42 thorpej * if the entry is no longer wired, tell the pmap. 2717 1.42 thorpej */ 2718 1.74 chs 2719 1.207 chs if (!pmap_extract(pmap, va, &pa)) 2720 1.207 chs continue; 2721 1.207 chs 2722 1.42 thorpej if (VM_MAPENT_ISWIRED(entry) == 0) 2723 1.42 thorpej pmap_unwire(pmap, va); 2724 1.42 thorpej 2725 1.42 thorpej pg = PHYS_TO_VM_PAGE(pa); 2726 1.214 ad if (pg) { 2727 1.214 ad uvm_pagelock(pg); 2728 1.42 thorpej uvm_pageunwire(pg); 2729 1.214 ad uvm_pageunlock(pg); 2730 1.214 ad } 2731 1.7 mrg } 2732 1.1 mrg 2733 1.186 rmind if (oentry != NULL) { 2734 1.186 rmind uvm_map_unlock_entry(entry); 2735 1.186 rmind } 2736 1.1 mrg } 2737