uvm_fault.c revision 1.148 1 1.130 uebayasi /* $NetBSD: uvm_fault.c,v 1.148 2010/02/01 16:08:27 uebayasi Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg *
5 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 1.1 mrg * All rights reserved.
7 1.1 mrg *
8 1.1 mrg * Redistribution and use in source and binary forms, with or without
9 1.1 mrg * modification, are permitted provided that the following conditions
10 1.1 mrg * are met:
11 1.1 mrg * 1. Redistributions of source code must retain the above copyright
12 1.1 mrg * notice, this list of conditions and the following disclaimer.
13 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 mrg * notice, this list of conditions and the following disclaimer in the
15 1.1 mrg * documentation and/or other materials provided with the distribution.
16 1.1 mrg * 3. All advertising materials mentioning features or use of this software
17 1.1 mrg * must display the following acknowledgement:
18 1.1 mrg * This product includes software developed by Charles D. Cranor and
19 1.1 mrg * Washington University.
20 1.1 mrg * 4. The name of the author may not be used to endorse or promote products
21 1.1 mrg * derived from this software without specific prior written permission.
22 1.1 mrg *
23 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 1.1 mrg * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 1.1 mrg * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 1.1 mrg * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 1.1 mrg * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 1.1 mrg * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.4 mrg *
34 1.4 mrg * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 1.1 mrg */
36 1.1 mrg
37 1.1 mrg /*
38 1.1 mrg * uvm_fault.c: fault handler
39 1.1 mrg */
40 1.71 lukem
41 1.71 lukem #include <sys/cdefs.h>
42 1.130 uebayasi __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.148 2010/02/01 16:08:27 uebayasi Exp $");
43 1.71 lukem
44 1.71 lukem #include "opt_uvmhist.h"
45 1.1 mrg
46 1.1 mrg #include <sys/param.h>
47 1.1 mrg #include <sys/systm.h>
48 1.1 mrg #include <sys/kernel.h>
49 1.1 mrg #include <sys/proc.h>
50 1.1 mrg #include <sys/malloc.h>
51 1.1 mrg #include <sys/mman.h>
52 1.1 mrg
53 1.1 mrg #include <uvm/uvm.h>
54 1.1 mrg
55 1.1 mrg /*
56 1.1 mrg *
57 1.1 mrg * a word on page faults:
58 1.1 mrg *
59 1.1 mrg * types of page faults we handle:
60 1.1 mrg *
61 1.1 mrg * CASE 1: upper layer faults CASE 2: lower layer faults
62 1.1 mrg *
63 1.1 mrg * CASE 1A CASE 1B CASE 2A CASE 2B
64 1.1 mrg * read/write1 write>1 read/write +-cow_write/zero
65 1.63 chs * | | | |
66 1.1 mrg * +--|--+ +--|--+ +-----+ + | + | +-----+
67 1.127 uebayasi * amap | V | | ---------> new | | | | ^ |
68 1.1 mrg * +-----+ +-----+ +-----+ + | + | +--|--+
69 1.1 mrg * | | |
70 1.1 mrg * +-----+ +-----+ +--|--+ | +--|--+
71 1.127 uebayasi * uobj | d/c | | d/c | | V | +----+ |
72 1.1 mrg * +-----+ +-----+ +-----+ +-----+
73 1.1 mrg *
74 1.1 mrg * d/c = don't care
75 1.63 chs *
76 1.1 mrg * case [0]: layerless fault
77 1.1 mrg * no amap or uobj is present. this is an error.
78 1.1 mrg *
79 1.1 mrg * case [1]: upper layer fault [anon active]
80 1.1 mrg * 1A: [read] or [write with anon->an_ref == 1]
81 1.127 uebayasi * I/O takes place in upper level anon and uobj is not touched.
82 1.1 mrg * 1B: [write with anon->an_ref > 1]
83 1.1 mrg * new anon is alloc'd and data is copied off ["COW"]
84 1.1 mrg *
85 1.1 mrg * case [2]: lower layer fault [uobj]
86 1.1 mrg * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 1.1 mrg * I/O takes place directly in object.
88 1.1 mrg * 2B: [write to copy_on_write] or [read on NULL uobj]
89 1.63 chs * data is "promoted" from uobj to a new anon.
90 1.1 mrg * if uobj is null, then we zero fill.
91 1.1 mrg *
92 1.1 mrg * we follow the standard UVM locking protocol ordering:
93 1.1 mrg *
94 1.63 chs * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 1.1 mrg * we hold a PG_BUSY page if we unlock for I/O
96 1.1 mrg *
97 1.1 mrg *
98 1.1 mrg * the code is structured as follows:
99 1.63 chs *
100 1.1 mrg * - init the "IN" params in the ufi structure
101 1.1 mrg * ReFault:
102 1.1 mrg * - do lookups [locks maps], check protection, handle needs_copy
103 1.1 mrg * - check for case 0 fault (error)
104 1.1 mrg * - establish "range" of fault
105 1.1 mrg * - if we have an amap lock it and extract the anons
106 1.1 mrg * - if sequential advice deactivate pages behind us
107 1.1 mrg * - at the same time check pmap for unmapped areas and anon for pages
108 1.1 mrg * that we could map in (and do map it if found)
109 1.1 mrg * - check object for resident pages that we could map in
110 1.1 mrg * - if (case 2) goto Case2
111 1.1 mrg * - >>> handle case 1
112 1.1 mrg * - ensure source anon is resident in RAM
113 1.1 mrg * - if case 1B alloc new anon and copy from source
114 1.1 mrg * - map the correct page in
115 1.1 mrg * Case2:
116 1.1 mrg * - >>> handle case 2
117 1.1 mrg * - ensure source page is resident (if uobj)
118 1.1 mrg * - if case 2B alloc new anon and copy from source (could be zero
119 1.1 mrg * fill if uobj == NULL)
120 1.1 mrg * - map the correct page in
121 1.1 mrg * - done!
122 1.1 mrg *
123 1.1 mrg * note on paging:
124 1.1 mrg * if we have to do I/O we place a PG_BUSY page in the correct object,
125 1.1 mrg * unlock everything, and do the I/O. when I/O is done we must reverify
126 1.1 mrg * the state of the world before assuming that our data structures are
127 1.1 mrg * valid. [because mappings could change while the map is unlocked]
128 1.1 mrg *
129 1.1 mrg * alternative 1: unbusy the page in question and restart the page fault
130 1.1 mrg * from the top (ReFault). this is easy but does not take advantage
131 1.63 chs * of the information that we already have from our previous lookup,
132 1.1 mrg * although it is possible that the "hints" in the vm_map will help here.
133 1.1 mrg *
134 1.1 mrg * alternative 2: the system already keeps track of a "version" number of
135 1.1 mrg * a map. [i.e. every time you write-lock a map (e.g. to change a
136 1.1 mrg * mapping) you bump the version number up by one...] so, we can save
137 1.1 mrg * the version number of the map before we release the lock and start I/O.
138 1.1 mrg * then when I/O is done we can relock and check the version numbers
139 1.1 mrg * to see if anything changed. this might save us some over 1 because
140 1.1 mrg * we don't have to unbusy the page and may be less compares(?).
141 1.1 mrg *
142 1.1 mrg * alternative 3: put in backpointers or a way to "hold" part of a map
143 1.1 mrg * in place while I/O is in progress. this could be complex to
144 1.1 mrg * implement (especially with structures like amap that can be referenced
145 1.1 mrg * by multiple map entries, and figuring out what should wait could be
146 1.1 mrg * complex as well...).
147 1.1 mrg *
148 1.125 ad * we use alternative 2. given that we are multi-threaded now we may want
149 1.125 ad * to reconsider the choice.
150 1.1 mrg */
151 1.1 mrg
152 1.1 mrg /*
153 1.1 mrg * local data structures
154 1.1 mrg */
155 1.1 mrg
156 1.1 mrg struct uvm_advice {
157 1.7 mrg int advice;
158 1.7 mrg int nback;
159 1.7 mrg int nforw;
160 1.1 mrg };
161 1.1 mrg
162 1.1 mrg /*
163 1.1 mrg * page range array:
164 1.63 chs * note: index in array must match "advice" value
165 1.1 mrg * XXX: borrowed numbers from freebsd. do they work well for us?
166 1.1 mrg */
167 1.1 mrg
168 1.95 thorpej static const struct uvm_advice uvmadvice[] = {
169 1.7 mrg { MADV_NORMAL, 3, 4 },
170 1.7 mrg { MADV_RANDOM, 0, 0 },
171 1.7 mrg { MADV_SEQUENTIAL, 8, 7},
172 1.1 mrg };
173 1.1 mrg
174 1.69 chs #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175 1.1 mrg
176 1.1 mrg /*
177 1.1 mrg * private prototypes
178 1.1 mrg */
179 1.1 mrg
180 1.1 mrg /*
181 1.1 mrg * inline functions
182 1.1 mrg */
183 1.1 mrg
184 1.1 mrg /*
185 1.1 mrg * uvmfault_anonflush: try and deactivate pages in specified anons
186 1.1 mrg *
187 1.1 mrg * => does not have to deactivate page if it is busy
188 1.1 mrg */
189 1.1 mrg
190 1.103 perry static inline void
191 1.95 thorpej uvmfault_anonflush(struct vm_anon **anons, int n)
192 1.1 mrg {
193 1.7 mrg int lcv;
194 1.7 mrg struct vm_page *pg;
195 1.63 chs
196 1.7 mrg for (lcv = 0 ; lcv < n ; lcv++) {
197 1.7 mrg if (anons[lcv] == NULL)
198 1.7 mrg continue;
199 1.122 ad mutex_enter(&anons[lcv]->an_lock);
200 1.94 yamt pg = anons[lcv]->an_page;
201 1.117 yamt if (pg && (pg->flags & PG_BUSY) == 0) {
202 1.122 ad mutex_enter(&uvm_pageqlock);
203 1.7 mrg if (pg->wire_count == 0) {
204 1.7 mrg uvm_pagedeactivate(pg);
205 1.7 mrg }
206 1.122 ad mutex_exit(&uvm_pageqlock);
207 1.7 mrg }
208 1.122 ad mutex_exit(&anons[lcv]->an_lock);
209 1.7 mrg }
210 1.1 mrg }
211 1.1 mrg
212 1.1 mrg /*
213 1.1 mrg * normal functions
214 1.1 mrg */
215 1.1 mrg
216 1.1 mrg /*
217 1.1 mrg * uvmfault_amapcopy: clear "needs_copy" in a map.
218 1.1 mrg *
219 1.1 mrg * => called with VM data structures unlocked (usually, see below)
220 1.1 mrg * => we get a write lock on the maps and clear needs_copy for a VA
221 1.1 mrg * => if we are out of RAM we sleep (waiting for more)
222 1.1 mrg */
223 1.1 mrg
224 1.7 mrg static void
225 1.95 thorpej uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 1.1 mrg {
227 1.69 chs for (;;) {
228 1.1 mrg
229 1.7 mrg /*
230 1.7 mrg * no mapping? give up.
231 1.7 mrg */
232 1.1 mrg
233 1.119 thorpej if (uvmfault_lookup(ufi, true) == false)
234 1.7 mrg return;
235 1.1 mrg
236 1.7 mrg /*
237 1.7 mrg * copy if needed.
238 1.7 mrg */
239 1.1 mrg
240 1.7 mrg if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 1.108 yamt amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 1.13 chuck ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243 1.1 mrg
244 1.7 mrg /*
245 1.7 mrg * didn't work? must be out of RAM. unlock and sleep.
246 1.7 mrg */
247 1.7 mrg
248 1.7 mrg if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 1.119 thorpej uvmfault_unlockmaps(ufi, true);
250 1.7 mrg uvm_wait("fltamapcopy");
251 1.7 mrg continue;
252 1.7 mrg }
253 1.7 mrg
254 1.7 mrg /*
255 1.7 mrg * got it! unlock and return.
256 1.7 mrg */
257 1.63 chs
258 1.119 thorpej uvmfault_unlockmaps(ufi, true);
259 1.7 mrg return;
260 1.7 mrg }
261 1.7 mrg /*NOTREACHED*/
262 1.1 mrg }
263 1.1 mrg
264 1.1 mrg /*
265 1.1 mrg * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 1.1 mrg * page in that anon.
267 1.1 mrg *
268 1.1 mrg * => maps, amap, and anon locked by caller.
269 1.57 chs * => if we fail (result != 0) we unlock everything.
270 1.1 mrg * => if we are successful, we return with everything still locked.
271 1.1 mrg * => we don't move the page on the queues [gets moved later]
272 1.1 mrg * => if we allocate a new page [we_own], it gets put on the queues.
273 1.1 mrg * either way, the result is that the page is on the queues at return time
274 1.1 mrg * => for pages which are on loan from a uvm_object (and thus are not
275 1.1 mrg * owned by the anon): if successful, we return with the owning object
276 1.1 mrg * locked. the caller must unlock this object when it unlocks everything
277 1.1 mrg * else.
278 1.1 mrg */
279 1.1 mrg
280 1.47 chs int
281 1.95 thorpej uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 1.95 thorpej struct vm_anon *anon)
283 1.7 mrg {
284 1.118 thorpej bool we_own; /* we own anon's page? */
285 1.118 thorpej bool locked; /* did we relock? */
286 1.7 mrg struct vm_page *pg;
287 1.58 chs int error;
288 1.7 mrg UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289 1.7 mrg
290 1.122 ad KASSERT(mutex_owned(&anon->an_lock));
291 1.53 thorpej
292 1.58 chs error = 0;
293 1.9 chuck uvmexp.fltanget++;
294 1.9 chuck /* bump rusage counters */
295 1.94 yamt if (anon->an_page)
296 1.124 ad curlwp->l_ru.ru_minflt++;
297 1.9 chuck else
298 1.124 ad curlwp->l_ru.ru_majflt++;
299 1.7 mrg
300 1.63 chs /*
301 1.7 mrg * loop until we get it, or fail.
302 1.7 mrg */
303 1.7 mrg
304 1.69 chs for (;;) {
305 1.119 thorpej we_own = false; /* true if we set PG_BUSY on a page */
306 1.94 yamt pg = anon->an_page;
307 1.1 mrg
308 1.7 mrg /*
309 1.7 mrg * if there is a resident page and it is loaned, then anon
310 1.7 mrg * may not own it. call out to uvm_anon_lockpage() to ensure
311 1.7 mrg * the real owner of the page has been identified and locked.
312 1.7 mrg */
313 1.7 mrg
314 1.7 mrg if (pg && pg->loan_count)
315 1.13 chuck pg = uvm_anon_lockloanpg(anon);
316 1.7 mrg
317 1.7 mrg /*
318 1.7 mrg * page there? make sure it is not busy/released.
319 1.7 mrg */
320 1.7 mrg
321 1.7 mrg if (pg) {
322 1.7 mrg
323 1.7 mrg /*
324 1.7 mrg * at this point, if the page has a uobject [meaning
325 1.7 mrg * we have it on loan], then that uobject is locked
326 1.7 mrg * by us! if the page is busy, we drop all the
327 1.7 mrg * locks (including uobject) and try again.
328 1.7 mrg */
329 1.7 mrg
330 1.69 chs if ((pg->flags & PG_BUSY) == 0) {
331 1.7 mrg UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 1.57 chs return (0);
333 1.7 mrg }
334 1.7 mrg pg->flags |= PG_WANTED;
335 1.7 mrg uvmexp.fltpgwait++;
336 1.7 mrg
337 1.7 mrg /*
338 1.7 mrg * the last unlock must be an atomic unlock+wait on
339 1.7 mrg * the owner of page
340 1.7 mrg */
341 1.69 chs
342 1.7 mrg if (pg->uobject) { /* owner is uobject ? */
343 1.7 mrg uvmfault_unlockall(ufi, amap, NULL, anon);
344 1.7 mrg UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 1.7 mrg 0,0,0);
346 1.7 mrg UVM_UNLOCK_AND_WAIT(pg,
347 1.7 mrg &pg->uobject->vmobjlock,
348 1.119 thorpej false, "anonget1",0);
349 1.7 mrg } else {
350 1.7 mrg /* anon owns page */
351 1.7 mrg uvmfault_unlockall(ufi, amap, NULL, NULL);
352 1.7 mrg UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 1.7 mrg 0,0,0);
354 1.7 mrg UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 1.7 mrg "anonget2",0);
356 1.7 mrg }
357 1.7 mrg } else {
358 1.101 yamt #if defined(VMSWAP)
359 1.63 chs
360 1.7 mrg /*
361 1.7 mrg * no page, we must try and bring it in.
362 1.7 mrg */
363 1.69 chs
364 1.28 chs pg = uvm_pagealloc(NULL, 0, anon, 0);
365 1.7 mrg if (pg == NULL) { /* out of RAM. */
366 1.7 mrg uvmfault_unlockall(ufi, amap, NULL, anon);
367 1.7 mrg uvmexp.fltnoram++;
368 1.7 mrg UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 1.7 mrg 0,0,0);
370 1.93 yamt if (!uvm_reclaimable()) {
371 1.93 yamt return ENOMEM;
372 1.93 yamt }
373 1.7 mrg uvm_wait("flt_noram1");
374 1.7 mrg } else {
375 1.7 mrg /* we set the PG_BUSY bit */
376 1.119 thorpej we_own = true;
377 1.7 mrg uvmfault_unlockall(ufi, amap, NULL, anon);
378 1.7 mrg
379 1.7 mrg /*
380 1.7 mrg * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 1.7 mrg * page into the uvm_swap_get function with
382 1.18 chuck * all data structures unlocked. note that
383 1.18 chuck * it is ok to read an_swslot here because
384 1.18 chuck * we hold PG_BUSY on the page.
385 1.7 mrg */
386 1.7 mrg uvmexp.pageins++;
387 1.58 chs error = uvm_swap_get(pg, anon->an_swslot,
388 1.7 mrg PGO_SYNCIO);
389 1.7 mrg
390 1.7 mrg /*
391 1.7 mrg * we clean up after the i/o below in the
392 1.7 mrg * "we_own" case
393 1.7 mrg */
394 1.7 mrg }
395 1.101 yamt #else /* defined(VMSWAP) */
396 1.101 yamt panic("%s: no page", __func__);
397 1.101 yamt #endif /* defined(VMSWAP) */
398 1.7 mrg }
399 1.7 mrg
400 1.7 mrg /*
401 1.7 mrg * now relock and try again
402 1.7 mrg */
403 1.7 mrg
404 1.7 mrg locked = uvmfault_relock(ufi);
405 1.47 chs if (locked && amap != NULL) {
406 1.19 chuck amap_lock(amap);
407 1.7 mrg }
408 1.7 mrg if (locked || we_own)
409 1.122 ad mutex_enter(&anon->an_lock);
410 1.7 mrg
411 1.7 mrg /*
412 1.7 mrg * if we own the page (i.e. we set PG_BUSY), then we need
413 1.7 mrg * to clean up after the I/O. there are three cases to
414 1.7 mrg * consider:
415 1.7 mrg * [1] page released during I/O: free anon and ReFault.
416 1.63 chs * [2] I/O not OK. free the page and cause the fault
417 1.7 mrg * to fail.
418 1.7 mrg * [3] I/O OK! activate the page and sync with the
419 1.7 mrg * non-we_own case (i.e. drop anon lock if not locked).
420 1.7 mrg */
421 1.63 chs
422 1.7 mrg if (we_own) {
423 1.101 yamt #if defined(VMSWAP)
424 1.7 mrg if (pg->flags & PG_WANTED) {
425 1.63 chs wakeup(pg);
426 1.7 mrg }
427 1.58 chs if (error) {
428 1.1 mrg
429 1.47 chs /*
430 1.47 chs * remove the swap slot from the anon
431 1.47 chs * and mark the anon as having no real slot.
432 1.47 chs * don't free the swap slot, thus preventing
433 1.47 chs * it from being used again.
434 1.47 chs */
435 1.69 chs
436 1.84 pk if (anon->an_swslot > 0)
437 1.84 pk uvm_swap_markbad(anon->an_swslot, 1);
438 1.47 chs anon->an_swslot = SWSLOT_BAD;
439 1.47 chs
440 1.88 yamt if ((pg->flags & PG_RELEASED) != 0)
441 1.88 yamt goto released;
442 1.88 yamt
443 1.47 chs /*
444 1.7 mrg * note: page was never !PG_BUSY, so it
445 1.7 mrg * can't be mapped and thus no need to
446 1.7 mrg * pmap_page_protect it...
447 1.7 mrg */
448 1.69 chs
449 1.122 ad mutex_enter(&uvm_pageqlock);
450 1.7 mrg uvm_pagefree(pg);
451 1.122 ad mutex_exit(&uvm_pageqlock);
452 1.7 mrg
453 1.7 mrg if (locked)
454 1.7 mrg uvmfault_unlockall(ufi, amap, NULL,
455 1.7 mrg anon);
456 1.7 mrg else
457 1.122 ad mutex_exit(&anon->an_lock);
458 1.7 mrg UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 1.58 chs return error;
460 1.7 mrg }
461 1.63 chs
462 1.88 yamt if ((pg->flags & PG_RELEASED) != 0) {
463 1.88 yamt released:
464 1.88 yamt KASSERT(anon->an_ref == 0);
465 1.88 yamt
466 1.88 yamt /*
467 1.88 yamt * released while we unlocked amap.
468 1.88 yamt */
469 1.88 yamt
470 1.88 yamt if (locked)
471 1.88 yamt uvmfault_unlockall(ufi, amap, NULL,
472 1.88 yamt NULL);
473 1.88 yamt
474 1.88 yamt uvm_anon_release(anon);
475 1.88 yamt
476 1.88 yamt if (error) {
477 1.88 yamt UVMHIST_LOG(maphist,
478 1.88 yamt "<- ERROR/RELEASED", 0,0,0,0);
479 1.88 yamt return error;
480 1.88 yamt }
481 1.88 yamt
482 1.88 yamt UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 1.88 yamt return ERESTART;
484 1.88 yamt }
485 1.88 yamt
486 1.7 mrg /*
487 1.69 chs * we've successfully read the page, activate it.
488 1.7 mrg */
489 1.69 chs
490 1.122 ad mutex_enter(&uvm_pageqlock);
491 1.7 mrg uvm_pageactivate(pg);
492 1.122 ad mutex_exit(&uvm_pageqlock);
493 1.69 chs pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 1.69 chs UVM_PAGE_OWN(pg, NULL);
495 1.7 mrg if (!locked)
496 1.122 ad mutex_exit(&anon->an_lock);
497 1.101 yamt #else /* defined(VMSWAP) */
498 1.101 yamt panic("%s: we_own", __func__);
499 1.101 yamt #endif /* defined(VMSWAP) */
500 1.7 mrg }
501 1.7 mrg
502 1.7 mrg /*
503 1.7 mrg * we were not able to relock. restart fault.
504 1.7 mrg */
505 1.7 mrg
506 1.7 mrg if (!locked) {
507 1.7 mrg UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 1.57 chs return (ERESTART);
509 1.7 mrg }
510 1.7 mrg
511 1.7 mrg /*
512 1.7 mrg * verify no one has touched the amap and moved the anon on us.
513 1.7 mrg */
514 1.1 mrg
515 1.47 chs if (ufi != NULL &&
516 1.63 chs amap_lookup(&ufi->entry->aref,
517 1.47 chs ufi->orig_rvaddr - ufi->entry->start) != anon) {
518 1.63 chs
519 1.7 mrg uvmfault_unlockall(ufi, amap, NULL, anon);
520 1.7 mrg UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 1.57 chs return (ERESTART);
522 1.7 mrg }
523 1.63 chs
524 1.7 mrg /*
525 1.63 chs * try it again!
526 1.7 mrg */
527 1.1 mrg
528 1.7 mrg uvmexp.fltanretry++;
529 1.7 mrg continue;
530 1.69 chs }
531 1.7 mrg /*NOTREACHED*/
532 1.1 mrg }
533 1.1 mrg
534 1.1 mrg /*
535 1.106 yamt * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 1.106 yamt *
537 1.106 yamt * 1. allocate an anon and a page.
538 1.106 yamt * 2. fill its contents.
539 1.106 yamt * 3. put it into amap.
540 1.106 yamt *
541 1.106 yamt * => if we fail (result != 0) we unlock everything.
542 1.106 yamt * => on success, return a new locked anon via 'nanon'.
543 1.106 yamt * (*nanon)->an_page will be a resident, locked, dirty page.
544 1.106 yamt */
545 1.106 yamt
546 1.106 yamt static int
547 1.106 yamt uvmfault_promote(struct uvm_faultinfo *ufi,
548 1.106 yamt struct vm_anon *oanon,
549 1.106 yamt struct vm_page *uobjpage,
550 1.106 yamt struct vm_anon **nanon, /* OUT: allocated anon */
551 1.106 yamt struct vm_anon **spare)
552 1.106 yamt {
553 1.106 yamt struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 1.106 yamt struct uvm_object *uobj;
555 1.106 yamt struct vm_anon *anon;
556 1.106 yamt struct vm_page *pg;
557 1.106 yamt struct vm_page *opg;
558 1.106 yamt int error;
559 1.106 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560 1.106 yamt
561 1.106 yamt if (oanon) {
562 1.106 yamt /* anon COW */
563 1.106 yamt opg = oanon->an_page;
564 1.106 yamt KASSERT(opg != NULL);
565 1.106 yamt KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 1.106 yamt } else if (uobjpage != PGO_DONTCARE) {
567 1.106 yamt /* object-backed COW */
568 1.106 yamt opg = uobjpage;
569 1.106 yamt } else {
570 1.106 yamt /* ZFOD */
571 1.106 yamt opg = NULL;
572 1.106 yamt }
573 1.106 yamt if (opg != NULL) {
574 1.106 yamt uobj = opg->uobject;
575 1.106 yamt } else {
576 1.106 yamt uobj = NULL;
577 1.106 yamt }
578 1.106 yamt
579 1.106 yamt KASSERT(amap != NULL);
580 1.106 yamt KASSERT(uobjpage != NULL);
581 1.106 yamt KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 1.120 ad KASSERT(mutex_owned(&amap->am_l));
583 1.122 ad KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 1.122 ad KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 1.122 ad #if 0
586 1.122 ad KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 1.122 ad #endif
588 1.106 yamt
589 1.106 yamt if (*spare != NULL) {
590 1.106 yamt anon = *spare;
591 1.106 yamt *spare = NULL;
592 1.122 ad mutex_enter(&anon->an_lock);
593 1.106 yamt } else if (ufi->map != kernel_map) {
594 1.106 yamt anon = uvm_analloc();
595 1.106 yamt } else {
596 1.106 yamt UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597 1.106 yamt
598 1.106 yamt /*
599 1.106 yamt * we can't allocate anons with kernel_map locked.
600 1.106 yamt */
601 1.106 yamt
602 1.106 yamt uvm_page_unbusy(&uobjpage, 1);
603 1.106 yamt uvmfault_unlockall(ufi, amap, uobj, oanon);
604 1.106 yamt
605 1.106 yamt *spare = uvm_analloc();
606 1.106 yamt if (*spare == NULL) {
607 1.106 yamt goto nomem;
608 1.106 yamt }
609 1.122 ad mutex_exit(&(*spare)->an_lock);
610 1.106 yamt error = ERESTART;
611 1.106 yamt goto done;
612 1.106 yamt }
613 1.106 yamt if (anon) {
614 1.106 yamt
615 1.106 yamt /*
616 1.106 yamt * The new anon is locked.
617 1.106 yamt *
618 1.106 yamt * if opg == NULL, we want a zero'd, dirty page,
619 1.106 yamt * so have uvm_pagealloc() do that for us.
620 1.106 yamt */
621 1.106 yamt
622 1.106 yamt pg = uvm_pagealloc(NULL, 0, anon,
623 1.106 yamt (opg == NULL) ? UVM_PGA_ZERO : 0);
624 1.106 yamt } else {
625 1.106 yamt pg = NULL;
626 1.106 yamt }
627 1.106 yamt
628 1.106 yamt /*
629 1.106 yamt * out of memory resources?
630 1.106 yamt */
631 1.106 yamt
632 1.106 yamt if (pg == NULL) {
633 1.106 yamt /* save anon for the next try. */
634 1.106 yamt if (anon != NULL) {
635 1.122 ad mutex_exit(&anon->an_lock);
636 1.106 yamt *spare = anon;
637 1.106 yamt }
638 1.106 yamt
639 1.106 yamt /* unlock and fail ... */
640 1.106 yamt uvm_page_unbusy(&uobjpage, 1);
641 1.106 yamt uvmfault_unlockall(ufi, amap, uobj, oanon);
642 1.106 yamt nomem:
643 1.106 yamt if (!uvm_reclaimable()) {
644 1.106 yamt UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 1.106 yamt uvmexp.fltnoanon++;
646 1.106 yamt error = ENOMEM;
647 1.106 yamt goto done;
648 1.106 yamt }
649 1.106 yamt
650 1.106 yamt UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 1.106 yamt uvmexp.fltnoram++;
652 1.106 yamt uvm_wait("flt_noram5");
653 1.106 yamt error = ERESTART;
654 1.106 yamt goto done;
655 1.106 yamt }
656 1.106 yamt
657 1.106 yamt /* copy page [pg now dirty] */
658 1.106 yamt if (opg) {
659 1.106 yamt uvm_pagecopy(opg, pg);
660 1.106 yamt }
661 1.106 yamt
662 1.106 yamt amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 1.106 yamt oanon != NULL);
664 1.106 yamt
665 1.106 yamt *nanon = anon;
666 1.106 yamt error = 0;
667 1.106 yamt done:
668 1.106 yamt return error;
669 1.106 yamt }
670 1.106 yamt
671 1.106 yamt
672 1.106 yamt /*
673 1.1 mrg * F A U L T - m a i n e n t r y p o i n t
674 1.1 mrg */
675 1.1 mrg
676 1.1 mrg /*
677 1.1 mrg * uvm_fault: page fault handler
678 1.1 mrg *
679 1.1 mrg * => called from MD code to resolve a page fault
680 1.63 chs * => VM data structures usually should be unlocked. however, it is
681 1.1 mrg * possible to call here with the main map locked if the caller
682 1.1 mrg * gets a write lock, sets it recusive, and then calls us (c.f.
683 1.1 mrg * uvm_map_pageable). this should be avoided because it keeps
684 1.1 mrg * the map locked off during I/O.
685 1.66 thorpej * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 1.1 mrg */
687 1.1 mrg
688 1.24 mycroft #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 1.24 mycroft ~VM_PROT_WRITE : VM_PROT_ALL)
690 1.24 mycroft
691 1.110 drochner /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 1.130 uebayasi #define UVM_FAULT_WIRE (1 << 0)
693 1.130 uebayasi #define UVM_FAULT_MAXPROT (1 << 1)
694 1.110 drochner
695 1.140 uebayasi struct uvm_faultctx {
696 1.140 uebayasi vm_prot_t access_type;
697 1.140 uebayasi vm_prot_t enter_prot;
698 1.146 uebayasi bool wire_mapping;
699 1.140 uebayasi bool narrow;
700 1.146 uebayasi bool wire_paging;
701 1.140 uebayasi bool maxprot;
702 1.140 uebayasi bool cow_now;
703 1.140 uebayasi int npages;
704 1.140 uebayasi int centeridx;
705 1.140 uebayasi vaddr_t startva;
706 1.140 uebayasi struct vm_anon *anon_spare;
707 1.140 uebayasi };
708 1.140 uebayasi
709 1.144 uebayasi static int uvm_fault_check(
710 1.144 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
711 1.144 uebayasi struct vm_anon ***, struct vm_page ***);
712 1.144 uebayasi typedef int uvm_fault_upper_subfunc_t(
713 1.144 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
714 1.144 uebayasi struct vm_anon **, struct vm_page **);
715 1.144 uebayasi static uvm_fault_upper_subfunc_t uvm_fault_upper_lookup;
716 1.144 uebayasi typedef int uvm_fault_lower_subfunc_t(
717 1.144 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
718 1.144 uebayasi struct vm_page **);
719 1.144 uebayasi static uvm_fault_lower_subfunc_t uvm_fault_lower;
720 1.144 uebayasi static uvm_fault_lower_subfunc_t uvm_fault_lower_special;
721 1.144 uebayasi static uvm_fault_lower_subfunc_t uvm_fault_lower_generic_lookup;
722 1.144 uebayasi static uvm_fault_lower_subfunc_t uvm_fault_lower_generic;
723 1.148 uebayasi static int uvm_fault_upper(
724 1.148 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
725 1.148 uebayasi struct vm_anon **);
726 1.148 uebayasi static int uvm_fault_lower_generic1(
727 1.148 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
728 1.148 uebayasi struct vm_page *);
729 1.148 uebayasi static int uvm_fault_lower_generic2(
730 1.148 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
731 1.148 uebayasi struct vm_page *);
732 1.138 uebayasi
733 1.7 mrg int
734 1.110 drochner uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
735 1.110 drochner vm_prot_t access_type, int fault_flag)
736 1.1 mrg {
737 1.7 mrg struct uvm_faultinfo ufi;
738 1.140 uebayasi struct uvm_faultctx flt = {
739 1.140 uebayasi .access_type = access_type,
740 1.146 uebayasi
741 1.146 uebayasi /* don't look for neighborhood * pages on "wire" fault */
742 1.146 uebayasi .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
743 1.146 uebayasi
744 1.146 uebayasi /* "wire" fault causes wiring of both mapping and paging */
745 1.146 uebayasi .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
746 1.146 uebayasi .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
747 1.146 uebayasi
748 1.140 uebayasi .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
749 1.140 uebayasi };
750 1.137 uebayasi struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
751 1.141 uebayasi struct vm_page *pages_store[UVM_MAXRANGE], **pages;
752 1.140 uebayasi int error;
753 1.7 mrg UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
754 1.1 mrg
755 1.110 drochner UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
756 1.110 drochner orig_map, vaddr, access_type, fault_flag);
757 1.1 mrg
758 1.7 mrg uvmexp.faults++; /* XXX: locking? */
759 1.7 mrg
760 1.7 mrg /*
761 1.7 mrg * init the IN parameters in the ufi
762 1.7 mrg */
763 1.1 mrg
764 1.7 mrg ufi.orig_map = orig_map;
765 1.7 mrg ufi.orig_rvaddr = trunc_page(vaddr);
766 1.7 mrg ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
767 1.7 mrg
768 1.142 uebayasi error = ERESTART;
769 1.142 uebayasi while (error == ERESTART) {
770 1.143 uebayasi anons = anons_store;
771 1.143 uebayasi pages = pages_store;
772 1.1 mrg
773 1.143 uebayasi error = uvm_fault_check(&ufi, &flt, &anons, &pages);
774 1.143 uebayasi if (error != 0)
775 1.143 uebayasi continue;
776 1.141 uebayasi
777 1.143 uebayasi error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
778 1.143 uebayasi if (error != 0)
779 1.143 uebayasi continue;
780 1.138 uebayasi
781 1.144 uebayasi if (pages[flt.centeridx] == PGO_DONTCARE)
782 1.148 uebayasi error = uvm_fault_upper(&ufi, &flt, anons);
783 1.143 uebayasi else
784 1.144 uebayasi error = uvm_fault_lower(&ufi, &flt, pages);
785 1.142 uebayasi }
786 1.138 uebayasi
787 1.140 uebayasi if (flt.anon_spare != NULL) {
788 1.140 uebayasi flt.anon_spare->an_ref--;
789 1.140 uebayasi uvm_anfree(flt.anon_spare);
790 1.138 uebayasi }
791 1.138 uebayasi return error;
792 1.141 uebayasi }
793 1.138 uebayasi
794 1.144 uebayasi static int
795 1.141 uebayasi uvm_fault_check(
796 1.141 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
797 1.141 uebayasi struct vm_anon ***ranons, struct vm_page ***rpages)
798 1.141 uebayasi {
799 1.141 uebayasi struct vm_amap *amap;
800 1.141 uebayasi struct uvm_object *uobj;
801 1.137 uebayasi vm_prot_t check_prot;
802 1.137 uebayasi int nback, nforw;
803 1.137 uebayasi
804 1.7 mrg /*
805 1.7 mrg * lookup and lock the maps
806 1.7 mrg */
807 1.7 mrg
808 1.141 uebayasi if (uvmfault_lookup(ufi, false) == false) {
809 1.7 mrg UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
810 1.141 uebayasi return EFAULT;
811 1.7 mrg }
812 1.7 mrg /* locked: maps(read) */
813 1.7 mrg
814 1.61 thorpej #ifdef DIAGNOSTIC
815 1.141 uebayasi if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
816 1.61 thorpej printf("Page fault on non-pageable map:\n");
817 1.141 uebayasi printf("ufi->map = %p\n", ufi->map);
818 1.141 uebayasi printf("ufi->orig_map = %p\n", ufi->orig_map);
819 1.141 uebayasi printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
820 1.141 uebayasi panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
821 1.61 thorpej }
822 1.61 thorpej #endif
823 1.58 chs
824 1.7 mrg /*
825 1.7 mrg * check protection
826 1.7 mrg */
827 1.7 mrg
828 1.141 uebayasi check_prot = flt->maxprot ?
829 1.141 uebayasi ufi->entry->max_protection : ufi->entry->protection;
830 1.141 uebayasi if ((check_prot & flt->access_type) != flt->access_type) {
831 1.7 mrg UVMHIST_LOG(maphist,
832 1.7 mrg "<- protection failure (prot=0x%x, access=0x%x)",
833 1.141 uebayasi ufi->entry->protection, flt->access_type, 0, 0);
834 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
835 1.141 uebayasi return EACCES;
836 1.7 mrg }
837 1.7 mrg
838 1.7 mrg /*
839 1.7 mrg * "enter_prot" is the protection we want to enter the page in at.
840 1.7 mrg * for certain pages (e.g. copy-on-write pages) this protection can
841 1.141 uebayasi * be more strict than ufi->entry->protection. "wired" means either
842 1.7 mrg * the entry is wired or we are fault-wiring the pg.
843 1.7 mrg */
844 1.7 mrg
845 1.141 uebayasi flt->enter_prot = ufi->entry->protection;
846 1.146 uebayasi if (VM_MAPENT_ISWIRED(ufi->entry))
847 1.146 uebayasi flt->wire_mapping = true;
848 1.146 uebayasi
849 1.146 uebayasi if (flt->wire_mapping) {
850 1.141 uebayasi flt->access_type = flt->enter_prot; /* full access for wired */
851 1.141 uebayasi flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
852 1.73 chs } else {
853 1.141 uebayasi flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
854 1.73 chs }
855 1.7 mrg
856 1.7 mrg /*
857 1.7 mrg * handle "needs_copy" case. if we need to copy the amap we will
858 1.7 mrg * have to drop our readlock and relock it with a write lock. (we
859 1.7 mrg * need a write lock to change anything in a map entry [e.g.
860 1.7 mrg * needs_copy]).
861 1.7 mrg */
862 1.7 mrg
863 1.141 uebayasi if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
864 1.141 uebayasi if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
865 1.141 uebayasi KASSERT(!flt->maxprot);
866 1.7 mrg /* need to clear */
867 1.7 mrg UVMHIST_LOG(maphist,
868 1.7 mrg " need to clear needs_copy and refault",0,0,0,0);
869 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
870 1.141 uebayasi uvmfault_amapcopy(ufi);
871 1.7 mrg uvmexp.fltamcopy++;
872 1.141 uebayasi return ERESTART;
873 1.7 mrg
874 1.7 mrg } else {
875 1.7 mrg
876 1.7 mrg /*
877 1.7 mrg * ensure that we pmap_enter page R/O since
878 1.7 mrg * needs_copy is still true
879 1.7 mrg */
880 1.72 chs
881 1.141 uebayasi flt->enter_prot &= ~VM_PROT_WRITE;
882 1.7 mrg }
883 1.7 mrg }
884 1.7 mrg
885 1.7 mrg /*
886 1.7 mrg * identify the players
887 1.7 mrg */
888 1.7 mrg
889 1.141 uebayasi amap = ufi->entry->aref.ar_amap; /* upper layer */
890 1.141 uebayasi uobj = ufi->entry->object.uvm_obj; /* lower layer */
891 1.7 mrg
892 1.7 mrg /*
893 1.7 mrg * check for a case 0 fault. if nothing backing the entry then
894 1.7 mrg * error now.
895 1.7 mrg */
896 1.7 mrg
897 1.7 mrg if (amap == NULL && uobj == NULL) {
898 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
899 1.7 mrg UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
900 1.141 uebayasi return EFAULT;
901 1.7 mrg }
902 1.1 mrg
903 1.7 mrg /*
904 1.7 mrg * establish range of interest based on advice from mapper
905 1.7 mrg * and then clip to fit map entry. note that we only want
906 1.63 chs * to do this the first time through the fault. if we
907 1.7 mrg * ReFault we will disable this by setting "narrow" to true.
908 1.7 mrg */
909 1.1 mrg
910 1.141 uebayasi if (flt->narrow == false) {
911 1.7 mrg
912 1.7 mrg /* wide fault (!narrow) */
913 1.141 uebayasi KASSERT(uvmadvice[ufi->entry->advice].advice ==
914 1.141 uebayasi ufi->entry->advice);
915 1.141 uebayasi nback = MIN(uvmadvice[ufi->entry->advice].nback,
916 1.141 uebayasi (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
917 1.141 uebayasi flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
918 1.141 uebayasi nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
919 1.141 uebayasi ((ufi->entry->end - ufi->orig_rvaddr) >>
920 1.15 chs PAGE_SHIFT) - 1);
921 1.7 mrg /*
922 1.7 mrg * note: "-1" because we don't want to count the
923 1.7 mrg * faulting page as forw
924 1.7 mrg */
925 1.141 uebayasi flt->npages = nback + nforw + 1;
926 1.141 uebayasi flt->centeridx = nback;
927 1.7 mrg
928 1.141 uebayasi flt->narrow = true; /* ensure only once per-fault */
929 1.7 mrg
930 1.7 mrg } else {
931 1.63 chs
932 1.7 mrg /* narrow fault! */
933 1.7 mrg nback = nforw = 0;
934 1.141 uebayasi flt->startva = ufi->orig_rvaddr;
935 1.141 uebayasi flt->npages = 1;
936 1.141 uebayasi flt->centeridx = 0;
937 1.1 mrg
938 1.7 mrg }
939 1.131 uebayasi /* offset from entry's start to pgs' start */
940 1.141 uebayasi const voff_t eoff = flt->startva - ufi->entry->start;
941 1.1 mrg
942 1.7 mrg /* locked: maps(read) */
943 1.13 chuck UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
944 1.141 uebayasi flt->narrow, nback, nforw, flt->startva);
945 1.141 uebayasi UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
946 1.16 chs amap, uobj, 0);
947 1.1 mrg
948 1.7 mrg /*
949 1.7 mrg * if we've got an amap, lock it and extract current anons.
950 1.7 mrg */
951 1.7 mrg
952 1.7 mrg if (amap) {
953 1.19 chuck amap_lock(amap);
954 1.141 uebayasi amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
955 1.7 mrg } else {
956 1.141 uebayasi *ranons = NULL; /* to be safe */
957 1.7 mrg }
958 1.7 mrg
959 1.7 mrg /* locked: maps(read), amap(if there) */
960 1.120 ad KASSERT(amap == NULL || mutex_owned(&amap->am_l));
961 1.7 mrg
962 1.7 mrg /*
963 1.7 mrg * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
964 1.7 mrg * now and then forget about them (for the rest of the fault).
965 1.7 mrg */
966 1.7 mrg
967 1.141 uebayasi if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
968 1.7 mrg
969 1.7 mrg UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
970 1.7 mrg 0,0,0,0);
971 1.7 mrg /* flush back-page anons? */
972 1.63 chs if (amap)
973 1.141 uebayasi uvmfault_anonflush(*ranons, nback);
974 1.7 mrg
975 1.7 mrg /* flush object? */
976 1.7 mrg if (uobj) {
977 1.137 uebayasi voff_t uoff;
978 1.137 uebayasi
979 1.141 uebayasi uoff = ufi->entry->offset + eoff;
980 1.122 ad mutex_enter(&uobj->vmobjlock);
981 1.90 yamt (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
982 1.15 chs (nback << PAGE_SHIFT), PGO_DEACTIVATE);
983 1.7 mrg }
984 1.7 mrg
985 1.7 mrg /* now forget about the backpages */
986 1.7 mrg if (amap)
987 1.141 uebayasi *ranons += nback;
988 1.141 uebayasi #if 0
989 1.141 uebayasi /* XXXUEBS */
990 1.141 uebayasi if (uobj)
991 1.141 uebayasi *rpages += nback;
992 1.141 uebayasi #endif
993 1.141 uebayasi flt->startva += (nback << PAGE_SHIFT);
994 1.141 uebayasi flt->npages -= nback;
995 1.141 uebayasi flt->centeridx = 0;
996 1.7 mrg }
997 1.137 uebayasi /*
998 1.137 uebayasi * => startva is fixed
999 1.137 uebayasi * => npages is fixed
1000 1.137 uebayasi */
1001 1.137 uebayasi
1002 1.141 uebayasi return 0;
1003 1.141 uebayasi }
1004 1.141 uebayasi
1005 1.144 uebayasi static int
1006 1.141 uebayasi uvm_fault_upper_lookup(
1007 1.141 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1008 1.141 uebayasi struct vm_anon **anons, struct vm_page **pages)
1009 1.141 uebayasi {
1010 1.141 uebayasi struct vm_amap *amap = ufi->entry->aref.ar_amap;
1011 1.137 uebayasi int lcv;
1012 1.137 uebayasi vaddr_t currva;
1013 1.144 uebayasi bool shadowed;
1014 1.7 mrg
1015 1.7 mrg /* locked: maps(read), amap(if there) */
1016 1.120 ad KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1017 1.1 mrg
1018 1.7 mrg /*
1019 1.7 mrg * map in the backpages and frontpages we found in the amap in hopes
1020 1.7 mrg * of preventing future faults. we also init the pages[] array as
1021 1.7 mrg * we go.
1022 1.7 mrg */
1023 1.7 mrg
1024 1.141 uebayasi currva = flt->startva;
1025 1.144 uebayasi shadowed = false;
1026 1.141 uebayasi for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1027 1.137 uebayasi struct vm_anon *anon;
1028 1.7 mrg
1029 1.7 mrg /*
1030 1.7 mrg * dont play with VAs that are already mapped
1031 1.13 chuck * except for center)
1032 1.7 mrg */
1033 1.141 uebayasi if (lcv != flt->centeridx &&
1034 1.141 uebayasi pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1035 1.52 chs pages[lcv] = PGO_DONTCARE;
1036 1.52 chs continue;
1037 1.7 mrg }
1038 1.7 mrg
1039 1.7 mrg /*
1040 1.7 mrg * unmapped or center page. check if any anon at this level.
1041 1.7 mrg */
1042 1.7 mrg if (amap == NULL || anons[lcv] == NULL) {
1043 1.7 mrg pages[lcv] = NULL;
1044 1.7 mrg continue;
1045 1.7 mrg }
1046 1.7 mrg
1047 1.7 mrg /*
1048 1.7 mrg * check for present page and map if possible. re-activate it.
1049 1.7 mrg */
1050 1.7 mrg
1051 1.7 mrg pages[lcv] = PGO_DONTCARE;
1052 1.141 uebayasi if (lcv == flt->centeridx) { /* save center for later! */
1053 1.144 uebayasi shadowed = true;
1054 1.7 mrg continue;
1055 1.7 mrg }
1056 1.7 mrg anon = anons[lcv];
1057 1.122 ad mutex_enter(&anon->an_lock);
1058 1.52 chs
1059 1.145 uebayasi /* ignore loaned and busy pages */
1060 1.145 uebayasi if (anon->an_page == NULL || anon->an_page->loan_count != 0 ||
1061 1.145 uebayasi (anon->an_page->flags & PG_BUSY) != 0)
1062 1.145 uebayasi goto uvm_fault_upper_lookup_enter_done;
1063 1.145 uebayasi
1064 1.145 uebayasi mutex_enter(&uvm_pageqlock);
1065 1.145 uebayasi uvm_pageenqueue(anon->an_page);
1066 1.145 uebayasi mutex_exit(&uvm_pageqlock);
1067 1.145 uebayasi UVMHIST_LOG(maphist,
1068 1.145 uebayasi " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1069 1.145 uebayasi ufi->orig_map->pmap, currva, anon->an_page, 0);
1070 1.145 uebayasi uvmexp.fltnamap++;
1071 1.145 uebayasi
1072 1.145 uebayasi /*
1073 1.145 uebayasi * Since this isn't the page that's actually faulting,
1074 1.145 uebayasi * ignore pmap_enter() failures; it's not critical
1075 1.145 uebayasi * that we enter these right now.
1076 1.145 uebayasi */
1077 1.145 uebayasi
1078 1.145 uebayasi (void) pmap_enter(ufi->orig_map->pmap, currva,
1079 1.145 uebayasi VM_PAGE_TO_PHYS(anon->an_page),
1080 1.145 uebayasi (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1081 1.145 uebayasi flt->enter_prot,
1082 1.145 uebayasi PMAP_CANFAIL |
1083 1.145 uebayasi (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
1084 1.52 chs
1085 1.145 uebayasi uvm_fault_upper_lookup_enter_done:
1086 1.141 uebayasi pmap_update(ufi->orig_map->pmap);
1087 1.122 ad mutex_exit(&anon->an_lock);
1088 1.7 mrg }
1089 1.7 mrg
1090 1.7 mrg /* locked: maps(read), amap(if there) */
1091 1.120 ad KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1092 1.119 thorpej /* (shadowed == true) if there is an anon at the faulting address */
1093 1.144 uebayasi UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1094 1.144 uebayasi (uobj && shadowed != false),0,0);
1095 1.1 mrg
1096 1.7 mrg /*
1097 1.7 mrg * note that if we are really short of RAM we could sleep in the above
1098 1.7 mrg * call to pmap_enter with everything locked. bad?
1099 1.46 thorpej *
1100 1.46 thorpej * XXX Actually, that is bad; pmap_enter() should just fail in that
1101 1.46 thorpej * XXX case. --thorpej
1102 1.7 mrg */
1103 1.141 uebayasi
1104 1.141 uebayasi return 0;
1105 1.138 uebayasi }
1106 1.63 chs
1107 1.138 uebayasi static int
1108 1.138 uebayasi uvm_fault_lower(
1109 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1110 1.144 uebayasi struct vm_page **pages)
1111 1.138 uebayasi {
1112 1.141 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1113 1.138 uebayasi int error;
1114 1.133 uebayasi
1115 1.7 mrg /*
1116 1.7 mrg * if the desired page is not shadowed by the amap and we have a
1117 1.7 mrg * backing object, then we check to see if the backing object would
1118 1.7 mrg * prefer to handle the fault itself (rather than letting us do it
1119 1.7 mrg * with the usual pgo_get hook). the backing object signals this by
1120 1.7 mrg * providing a pgo_fault routine.
1121 1.7 mrg */
1122 1.1 mrg
1123 1.133 uebayasi if (uobj && uobj->pgops->pgo_fault != NULL) {
1124 1.144 uebayasi error = uvm_fault_lower_special(ufi, flt, pages);
1125 1.138 uebayasi } else {
1126 1.144 uebayasi error = uvm_fault_lower_generic(ufi, flt, pages);
1127 1.138 uebayasi }
1128 1.138 uebayasi return error;
1129 1.138 uebayasi }
1130 1.138 uebayasi
1131 1.138 uebayasi static int
1132 1.138 uebayasi uvm_fault_lower_special(
1133 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1134 1.144 uebayasi struct vm_page **pages)
1135 1.138 uebayasi {
1136 1.141 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1137 1.138 uebayasi int error;
1138 1.138 uebayasi
1139 1.143 uebayasi mutex_enter(&uobj->vmobjlock);
1140 1.143 uebayasi /* locked: maps(read), amap (if there), uobj */
1141 1.143 uebayasi error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1142 1.143 uebayasi flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1143 1.52 chs
1144 1.143 uebayasi /* locked: nothing, pgo_fault has unlocked everything */
1145 1.7 mrg
1146 1.143 uebayasi if (error == ERESTART)
1147 1.143 uebayasi error = ERESTART; /* try again! */
1148 1.143 uebayasi /*
1149 1.143 uebayasi * object fault routine responsible for pmap_update().
1150 1.143 uebayasi */
1151 1.7 mrg
1152 1.143 uebayasi return error;
1153 1.138 uebayasi }
1154 1.138 uebayasi
1155 1.138 uebayasi static int
1156 1.138 uebayasi uvm_fault_lower_generic(
1157 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1158 1.144 uebayasi struct vm_page **pages)
1159 1.138 uebayasi {
1160 1.141 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1161 1.137 uebayasi
1162 1.7 mrg /*
1163 1.7 mrg * now, if the desired page is not shadowed by the amap and we have
1164 1.7 mrg * a backing object that does not have a special fault routine, then
1165 1.7 mrg * we ask (with pgo_get) the object for resident pages that we care
1166 1.7 mrg * about and attempt to map them in. we do not let pgo_get block
1167 1.7 mrg * (PGO_LOCKED).
1168 1.7 mrg */
1169 1.7 mrg
1170 1.135 uebayasi if (uobj == NULL) {
1171 1.135 uebayasi /* zero fill; don't care neighbor pages */
1172 1.141 uebayasi pages[flt->centeridx] = NULL;
1173 1.138 uebayasi } else {
1174 1.144 uebayasi uvm_fault_lower_generic_lookup(ufi, flt, pages);
1175 1.141 uebayasi }
1176 1.148 uebayasi return uvm_fault_lower_generic1(ufi, flt, pages[flt->centeridx]);
1177 1.138 uebayasi }
1178 1.138 uebayasi
1179 1.141 uebayasi static int
1180 1.138 uebayasi uvm_fault_lower_generic_lookup(
1181 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1182 1.144 uebayasi struct vm_page **pages)
1183 1.138 uebayasi {
1184 1.141 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1185 1.138 uebayasi int lcv, gotpages;
1186 1.138 uebayasi vaddr_t currva;
1187 1.135 uebayasi
1188 1.136 uebayasi mutex_enter(&uobj->vmobjlock);
1189 1.136 uebayasi /* locked (!shadowed): maps(read), amap (if there), uobj */
1190 1.136 uebayasi /*
1191 1.136 uebayasi * the following call to pgo_get does _not_ change locking state
1192 1.136 uebayasi */
1193 1.7 mrg
1194 1.136 uebayasi uvmexp.fltlget++;
1195 1.140 uebayasi gotpages = flt->npages;
1196 1.143 uebayasi (void) uobj->pgops->pgo_get(uobj,
1197 1.143 uebayasi ufi->entry->offset + flt->startva - ufi->entry->start,
1198 1.143 uebayasi pages, &gotpages, flt->centeridx,
1199 1.143 uebayasi flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1200 1.1 mrg
1201 1.136 uebayasi /*
1202 1.136 uebayasi * check for pages to map, if we got any
1203 1.136 uebayasi */
1204 1.7 mrg
1205 1.141 uebayasi if (gotpages == 0) {
1206 1.141 uebayasi pages[flt->centeridx] = NULL;
1207 1.141 uebayasi return 0;
1208 1.141 uebayasi }
1209 1.134 uebayasi
1210 1.140 uebayasi currva = flt->startva;
1211 1.143 uebayasi for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1212 1.136 uebayasi struct vm_page *curpg;
1213 1.136 uebayasi bool readonly;
1214 1.86 yamt
1215 1.136 uebayasi curpg = pages[lcv];
1216 1.136 uebayasi if (curpg == NULL || curpg == PGO_DONTCARE) {
1217 1.136 uebayasi continue;
1218 1.136 uebayasi }
1219 1.136 uebayasi KASSERT(curpg->uobject == uobj);
1220 1.1 mrg
1221 1.136 uebayasi /*
1222 1.143 uebayasi * if center page is resident and not PG_BUSY|PG_RELEASED
1223 1.143 uebayasi * then pgo_get made it PG_BUSY for us and gave us a handle
1224 1.143 uebayasi * to it. remember this page as "uobjpage." (for later use).
1225 1.136 uebayasi */
1226 1.63 chs
1227 1.140 uebayasi if (lcv == flt->centeridx) {
1228 1.136 uebayasi UVMHIST_LOG(maphist, " got uobjpage "
1229 1.136 uebayasi "(0x%x) with locked get",
1230 1.141 uebayasi curpg, 0,0,0);
1231 1.136 uebayasi continue;
1232 1.136 uebayasi }
1233 1.63 chs
1234 1.136 uebayasi /*
1235 1.143 uebayasi * calling pgo_get with PGO_LOCKED returns us pages which
1236 1.143 uebayasi * are neither busy nor released, so we don't need to check
1237 1.143 uebayasi * for this. we can just directly enter the pages.
1238 1.136 uebayasi */
1239 1.7 mrg
1240 1.136 uebayasi mutex_enter(&uvm_pageqlock);
1241 1.136 uebayasi uvm_pageenqueue(curpg);
1242 1.136 uebayasi mutex_exit(&uvm_pageqlock);
1243 1.136 uebayasi UVMHIST_LOG(maphist,
1244 1.136 uebayasi " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1245 1.138 uebayasi ufi->orig_map->pmap, currva, curpg, 0);
1246 1.136 uebayasi uvmexp.fltnomap++;
1247 1.136 uebayasi
1248 1.136 uebayasi /*
1249 1.143 uebayasi * Since this page isn't the page that's actually faulting,
1250 1.143 uebayasi * ignore pmap_enter() failures; it's not critical that we
1251 1.136 uebayasi * enter these right now.
1252 1.136 uebayasi */
1253 1.136 uebayasi KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1254 1.136 uebayasi KASSERT((curpg->flags & PG_RELEASED) == 0);
1255 1.136 uebayasi KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1256 1.136 uebayasi (curpg->flags & PG_CLEAN) != 0);
1257 1.136 uebayasi readonly = (curpg->flags & PG_RDONLY)
1258 1.136 uebayasi || (curpg->loan_count > 0)
1259 1.136 uebayasi || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1260 1.136 uebayasi
1261 1.138 uebayasi (void) pmap_enter(ufi->orig_map->pmap, currva,
1262 1.136 uebayasi VM_PAGE_TO_PHYS(curpg),
1263 1.143 uebayasi readonly ? flt->enter_prot & ~VM_PROT_WRITE :
1264 1.140 uebayasi flt->enter_prot & MASK(ufi->entry),
1265 1.146 uebayasi PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1266 1.136 uebayasi
1267 1.136 uebayasi /*
1268 1.143 uebayasi * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1269 1.143 uebayasi * held the lock the whole time we've had the handle.
1270 1.136 uebayasi */
1271 1.136 uebayasi KASSERT((curpg->flags & PG_WANTED) == 0);
1272 1.136 uebayasi KASSERT((curpg->flags & PG_RELEASED) == 0);
1273 1.52 chs
1274 1.136 uebayasi curpg->flags &= ~(PG_BUSY);
1275 1.136 uebayasi UVM_PAGE_OWN(curpg, NULL);
1276 1.136 uebayasi }
1277 1.138 uebayasi pmap_update(ufi->orig_map->pmap);
1278 1.141 uebayasi return 0;
1279 1.138 uebayasi }
1280 1.134 uebayasi
1281 1.138 uebayasi static int
1282 1.138 uebayasi uvm_fault_lower_generic1(
1283 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1284 1.148 uebayasi struct vm_page *uobjpage)
1285 1.138 uebayasi {
1286 1.147 uebayasi #ifdef DIAGNOSTIC
1287 1.141 uebayasi struct vm_amap *amap = ufi->entry->aref.ar_amap;
1288 1.141 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1289 1.147 uebayasi #endif
1290 1.7 mrg
1291 1.133 uebayasi /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1292 1.133 uebayasi KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1293 1.133 uebayasi KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1294 1.133 uebayasi KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1295 1.7 mrg
1296 1.7 mrg /*
1297 1.7 mrg * note that at this point we are done with any front or back pages.
1298 1.7 mrg * we are now going to focus on the center page (i.e. the one we've
1299 1.127 uebayasi * faulted on). if we have faulted on the upper (anon) layer
1300 1.7 mrg * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1301 1.7 mrg * not touched it yet). if we have faulted on the bottom (uobj)
1302 1.7 mrg * layer [i.e. case 2] and the page was both present and available,
1303 1.7 mrg * then we've got a pointer to it as "uobjpage" and we've already
1304 1.8 chuck * made it BUSY.
1305 1.7 mrg */
1306 1.7 mrg
1307 1.7 mrg /*
1308 1.7 mrg * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1309 1.7 mrg */
1310 1.7 mrg
1311 1.7 mrg /*
1312 1.7 mrg * redirect case 2: if we are not shadowed, go to case 2.
1313 1.7 mrg */
1314 1.7 mrg
1315 1.148 uebayasi return uvm_fault_lower_generic2(ufi, flt, uobjpage);
1316 1.138 uebayasi }
1317 1.7 mrg
1318 1.138 uebayasi static int
1319 1.148 uebayasi uvm_fault_upper_loan(
1320 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1321 1.148 uebayasi struct vm_anon *anon, struct uvm_object **ruobj);
1322 1.148 uebayasi static int
1323 1.148 uebayasi uvm_fault_upper1(
1324 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1325 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon);
1326 1.148 uebayasi static int
1327 1.148 uebayasi uvm_fault_upper_promote(
1328 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1329 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon);
1330 1.148 uebayasi static int
1331 1.148 uebayasi uvm_fault_upper_direct(
1332 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1333 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon);
1334 1.148 uebayasi static int
1335 1.148 uebayasi uvm_fault_upper_enter(
1336 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1337 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon,
1338 1.148 uebayasi struct vm_page *pg, struct vm_anon *oanon);
1339 1.148 uebayasi static int
1340 1.148 uebayasi uvm_fault_upper_done(
1341 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1342 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon,
1343 1.148 uebayasi struct vm_page *pg, struct vm_anon *oanon);
1344 1.148 uebayasi
1345 1.148 uebayasi static int
1346 1.138 uebayasi uvm_fault_upper(
1347 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1348 1.148 uebayasi struct vm_anon **anons)
1349 1.138 uebayasi {
1350 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1351 1.148 uebayasi struct vm_anon * const anon = anons[flt->centeridx];
1352 1.148 uebayasi struct uvm_object *uobj;
1353 1.138 uebayasi int error;
1354 1.137 uebayasi
1355 1.7 mrg /* locked: maps(read), amap */
1356 1.133 uebayasi KASSERT(mutex_owned(&amap->am_l));
1357 1.7 mrg
1358 1.7 mrg /*
1359 1.7 mrg * handle case 1: fault on an anon in our amap
1360 1.7 mrg */
1361 1.7 mrg
1362 1.7 mrg UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1363 1.122 ad mutex_enter(&anon->an_lock);
1364 1.7 mrg
1365 1.7 mrg /* locked: maps(read), amap, anon */
1366 1.120 ad KASSERT(mutex_owned(&amap->am_l));
1367 1.122 ad KASSERT(mutex_owned(&anon->an_lock));
1368 1.7 mrg
1369 1.7 mrg /*
1370 1.7 mrg * no matter if we have case 1A or case 1B we are going to need to
1371 1.7 mrg * have the anon's memory resident. ensure that now.
1372 1.7 mrg */
1373 1.7 mrg
1374 1.7 mrg /*
1375 1.47 chs * let uvmfault_anonget do the dirty work.
1376 1.51 thorpej * if it fails (!OK) it will unlock everything for us.
1377 1.47 chs * if it succeeds, locks are still valid and locked.
1378 1.7 mrg * also, if it is OK, then the anon's page is on the queues.
1379 1.7 mrg * if the page is on loan from a uvm_object, then anonget will
1380 1.7 mrg * lock that object for us if it does not fail.
1381 1.7 mrg */
1382 1.7 mrg
1383 1.138 uebayasi error = uvmfault_anonget(ufi, amap, anon);
1384 1.58 chs switch (error) {
1385 1.57 chs case 0:
1386 1.63 chs break;
1387 1.7 mrg
1388 1.57 chs case ERESTART:
1389 1.139 uebayasi return ERESTART;
1390 1.7 mrg
1391 1.57 chs case EAGAIN:
1392 1.128 pooka kpause("fltagain1", false, hz/2, NULL);
1393 1.139 uebayasi return ERESTART;
1394 1.51 thorpej
1395 1.51 thorpej default:
1396 1.138 uebayasi return error;
1397 1.1 mrg }
1398 1.7 mrg
1399 1.7 mrg /*
1400 1.7 mrg * uobj is non null if the page is on loan from an object (i.e. uobj)
1401 1.7 mrg */
1402 1.7 mrg
1403 1.94 yamt uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1404 1.7 mrg
1405 1.7 mrg /* locked: maps(read), amap, anon, uobj(if one) */
1406 1.120 ad KASSERT(mutex_owned(&amap->am_l));
1407 1.122 ad KASSERT(mutex_owned(&anon->an_lock));
1408 1.122 ad KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1409 1.7 mrg
1410 1.7 mrg /*
1411 1.63 chs * special handling for loaned pages
1412 1.7 mrg */
1413 1.52 chs
1414 1.94 yamt if (anon->an_page->loan_count) {
1415 1.148 uebayasi error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1416 1.148 uebayasi if (error != 0)
1417 1.148 uebayasi return error;
1418 1.148 uebayasi }
1419 1.148 uebayasi return uvm_fault_upper1(ufi, flt, uobj, anon);
1420 1.148 uebayasi }
1421 1.148 uebayasi
1422 1.148 uebayasi static int
1423 1.148 uebayasi uvm_fault_upper_loan(
1424 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1425 1.148 uebayasi struct vm_anon *anon, struct uvm_object **ruobj)
1426 1.148 uebayasi {
1427 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1428 1.148 uebayasi struct uvm_object *uobj = *ruobj;
1429 1.7 mrg
1430 1.140 uebayasi if (!flt->cow_now) {
1431 1.63 chs
1432 1.7 mrg /*
1433 1.7 mrg * for read faults on loaned pages we just cap the
1434 1.7 mrg * protection at read-only.
1435 1.7 mrg */
1436 1.7 mrg
1437 1.140 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1438 1.7 mrg
1439 1.7 mrg } else {
1440 1.7 mrg /*
1441 1.7 mrg * note that we can't allow writes into a loaned page!
1442 1.7 mrg *
1443 1.7 mrg * if we have a write fault on a loaned page in an
1444 1.7 mrg * anon then we need to look at the anon's ref count.
1445 1.7 mrg * if it is greater than one then we are going to do
1446 1.7 mrg * a normal copy-on-write fault into a new anon (this
1447 1.7 mrg * is not a problem). however, if the reference count
1448 1.7 mrg * is one (a case where we would normally allow a
1449 1.7 mrg * write directly to the page) then we need to kill
1450 1.7 mrg * the loan before we continue.
1451 1.7 mrg */
1452 1.7 mrg
1453 1.7 mrg /* >1 case is already ok */
1454 1.7 mrg if (anon->an_ref == 1) {
1455 1.137 uebayasi struct vm_page *pg;
1456 1.7 mrg
1457 1.7 mrg /* get new un-owned replacement page */
1458 1.28 chs pg = uvm_pagealloc(NULL, 0, NULL, 0);
1459 1.7 mrg if (pg == NULL) {
1460 1.138 uebayasi uvmfault_unlockall(ufi, amap, uobj,
1461 1.7 mrg anon);
1462 1.7 mrg uvm_wait("flt_noram2");
1463 1.139 uebayasi return ERESTART;
1464 1.7 mrg }
1465 1.7 mrg
1466 1.7 mrg /*
1467 1.7 mrg * copy data, kill loan, and drop uobj lock
1468 1.7 mrg * (if any)
1469 1.7 mrg */
1470 1.7 mrg /* copy old -> new */
1471 1.94 yamt uvm_pagecopy(anon->an_page, pg);
1472 1.7 mrg
1473 1.7 mrg /* force reload */
1474 1.115 yamt pmap_page_protect(anon->an_page, VM_PROT_NONE);
1475 1.122 ad mutex_enter(&uvm_pageqlock); /* KILL loan */
1476 1.78 thorpej
1477 1.94 yamt anon->an_page->uanon = NULL;
1478 1.7 mrg /* in case we owned */
1479 1.94 yamt anon->an_page->pqflags &= ~PQ_ANON;
1480 1.78 thorpej
1481 1.78 thorpej if (uobj) {
1482 1.78 thorpej /* if we were receiver of loan */
1483 1.94 yamt anon->an_page->loan_count--;
1484 1.78 thorpej } else {
1485 1.78 thorpej /*
1486 1.78 thorpej * we were the lender (A->K); need
1487 1.78 thorpej * to remove the page from pageq's.
1488 1.78 thorpej */
1489 1.94 yamt uvm_pagedequeue(anon->an_page);
1490 1.78 thorpej }
1491 1.78 thorpej
1492 1.7 mrg if (uobj) {
1493 1.122 ad mutex_exit(&uobj->vmobjlock);
1494 1.148 uebayasi *ruobj = NULL;
1495 1.7 mrg }
1496 1.7 mrg
1497 1.7 mrg /* install new page in anon */
1498 1.94 yamt anon->an_page = pg;
1499 1.7 mrg pg->uanon = anon;
1500 1.7 mrg pg->pqflags |= PQ_ANON;
1501 1.112 yamt
1502 1.112 yamt uvm_pageactivate(pg);
1503 1.122 ad mutex_exit(&uvm_pageqlock);
1504 1.112 yamt
1505 1.7 mrg pg->flags &= ~(PG_BUSY|PG_FAKE);
1506 1.7 mrg UVM_PAGE_OWN(pg, NULL);
1507 1.7 mrg
1508 1.7 mrg /* done! */
1509 1.7 mrg } /* ref == 1 */
1510 1.7 mrg } /* write fault */
1511 1.148 uebayasi
1512 1.148 uebayasi return 0;
1513 1.148 uebayasi }
1514 1.148 uebayasi
1515 1.148 uebayasi static int
1516 1.148 uebayasi uvm_fault_upper1(
1517 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1518 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon)
1519 1.148 uebayasi {
1520 1.148 uebayasi int error;
1521 1.7 mrg
1522 1.7 mrg /*
1523 1.7 mrg * if we are case 1B then we will need to allocate a new blank
1524 1.7 mrg * anon to transfer the data into. note that we have a lock
1525 1.7 mrg * on anon, so no one can busy or release the page until we are done.
1526 1.7 mrg * also note that the ref count can't drop to zero here because
1527 1.7 mrg * it is > 1 and we are only dropping one ref.
1528 1.7 mrg *
1529 1.63 chs * in the (hopefully very rare) case that we are out of RAM we
1530 1.63 chs * will unlock, wait for more RAM, and refault.
1531 1.7 mrg *
1532 1.7 mrg * if we are out of anon VM we kill the process (XXX: could wait?).
1533 1.7 mrg */
1534 1.7 mrg
1535 1.140 uebayasi if (flt->cow_now && anon->an_ref > 1) {
1536 1.148 uebayasi error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1537 1.148 uebayasi } else {
1538 1.148 uebayasi error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1539 1.148 uebayasi }
1540 1.148 uebayasi return error;
1541 1.148 uebayasi }
1542 1.148 uebayasi
1543 1.148 uebayasi static int
1544 1.148 uebayasi uvm_fault_upper_promote(
1545 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1546 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon)
1547 1.148 uebayasi {
1548 1.148 uebayasi struct vm_anon * const oanon = anon;
1549 1.148 uebayasi struct vm_page *pg;
1550 1.148 uebayasi int error;
1551 1.7 mrg
1552 1.7 mrg UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1553 1.7 mrg uvmexp.flt_acow++;
1554 1.22 chs
1555 1.138 uebayasi error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1556 1.140 uebayasi &anon, &flt->anon_spare);
1557 1.106 yamt switch (error) {
1558 1.106 yamt case 0:
1559 1.106 yamt break;
1560 1.106 yamt case ERESTART:
1561 1.139 uebayasi return ERESTART;
1562 1.106 yamt default:
1563 1.138 uebayasi return error;
1564 1.7 mrg }
1565 1.7 mrg
1566 1.106 yamt pg = anon->an_page;
1567 1.122 ad mutex_enter(&uvm_pageqlock);
1568 1.69 chs uvm_pageactivate(pg);
1569 1.122 ad mutex_exit(&uvm_pageqlock);
1570 1.105 yamt pg->flags &= ~(PG_BUSY|PG_FAKE);
1571 1.7 mrg UVM_PAGE_OWN(pg, NULL);
1572 1.7 mrg
1573 1.7 mrg /* deref: can not drop to zero here by defn! */
1574 1.7 mrg oanon->an_ref--;
1575 1.53 thorpej
1576 1.7 mrg /*
1577 1.53 thorpej * note: oanon is still locked, as is the new anon. we
1578 1.53 thorpej * need to check for this later when we unlock oanon; if
1579 1.53 thorpej * oanon != anon, we'll have to unlock anon, too.
1580 1.7 mrg */
1581 1.7 mrg
1582 1.148 uebayasi return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1583 1.148 uebayasi }
1584 1.148 uebayasi
1585 1.148 uebayasi static int
1586 1.148 uebayasi uvm_fault_upper_direct(
1587 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1588 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon)
1589 1.148 uebayasi {
1590 1.148 uebayasi struct vm_anon * const oanon = anon;
1591 1.148 uebayasi struct vm_page *pg;
1592 1.52 chs
1593 1.7 mrg uvmexp.flt_anon++;
1594 1.94 yamt pg = anon->an_page;
1595 1.7 mrg if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1596 1.140 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1597 1.7 mrg
1598 1.148 uebayasi return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1599 1.148 uebayasi }
1600 1.148 uebayasi
1601 1.148 uebayasi static int
1602 1.148 uebayasi uvm_fault_upper_enter(
1603 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1604 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1605 1.148 uebayasi struct vm_anon *oanon)
1606 1.148 uebayasi {
1607 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1608 1.7 mrg
1609 1.53 thorpej /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1610 1.120 ad KASSERT(mutex_owned(&amap->am_l));
1611 1.122 ad KASSERT(mutex_owned(&anon->an_lock));
1612 1.122 ad KASSERT(mutex_owned(&oanon->an_lock));
1613 1.7 mrg
1614 1.7 mrg /*
1615 1.69 chs * now map the page in.
1616 1.7 mrg */
1617 1.7 mrg
1618 1.7 mrg UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1619 1.138 uebayasi ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1620 1.138 uebayasi if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1621 1.146 uebayasi flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1622 1.58 chs != 0) {
1623 1.69 chs
1624 1.46 thorpej /*
1625 1.46 thorpej * No need to undo what we did; we can simply think of
1626 1.46 thorpej * this as the pmap throwing away the mapping information.
1627 1.46 thorpej *
1628 1.46 thorpej * We do, however, have to go through the ReFault path,
1629 1.46 thorpej * as the map may change while we're asleep.
1630 1.46 thorpej */
1631 1.69 chs
1632 1.53 thorpej if (anon != oanon)
1633 1.122 ad mutex_exit(&anon->an_lock);
1634 1.138 uebayasi uvmfault_unlockall(ufi, amap, uobj, oanon);
1635 1.92 yamt if (!uvm_reclaimable()) {
1636 1.46 thorpej UVMHIST_LOG(maphist,
1637 1.46 thorpej "<- failed. out of VM",0,0,0,0);
1638 1.46 thorpej /* XXX instrumentation */
1639 1.148 uebayasi return ENOMEM;
1640 1.46 thorpej }
1641 1.46 thorpej /* XXX instrumentation */
1642 1.46 thorpej uvm_wait("flt_pmfail1");
1643 1.139 uebayasi return ERESTART;
1644 1.46 thorpej }
1645 1.7 mrg
1646 1.148 uebayasi return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1647 1.148 uebayasi }
1648 1.148 uebayasi
1649 1.148 uebayasi static int
1650 1.148 uebayasi uvm_fault_upper_done(
1651 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1652 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon,
1653 1.148 uebayasi struct vm_page *pg, struct vm_anon *oanon)
1654 1.148 uebayasi {
1655 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1656 1.148 uebayasi
1657 1.7 mrg /*
1658 1.46 thorpej * ... update the page queues.
1659 1.7 mrg */
1660 1.7 mrg
1661 1.122 ad mutex_enter(&uvm_pageqlock);
1662 1.146 uebayasi if (flt->wire_paging) {
1663 1.8 chuck uvm_pagewire(pg);
1664 1.29 chs
1665 1.29 chs /*
1666 1.29 chs * since the now-wired page cannot be paged out,
1667 1.29 chs * release its swap resources for others to use.
1668 1.29 chs * since an anon with no swap cannot be PG_CLEAN,
1669 1.29 chs * clear its clean flag now.
1670 1.29 chs */
1671 1.29 chs
1672 1.29 chs pg->flags &= ~(PG_CLEAN);
1673 1.22 chs uvm_anon_dropswap(anon);
1674 1.7 mrg } else {
1675 1.7 mrg uvm_pageactivate(pg);
1676 1.7 mrg }
1677 1.122 ad mutex_exit(&uvm_pageqlock);
1678 1.7 mrg
1679 1.7 mrg /*
1680 1.7 mrg * done case 1! finish up by unlocking everything and returning success
1681 1.7 mrg */
1682 1.1 mrg
1683 1.53 thorpej if (anon != oanon)
1684 1.122 ad mutex_exit(&anon->an_lock);
1685 1.138 uebayasi uvmfault_unlockall(ufi, amap, uobj, oanon);
1686 1.138 uebayasi pmap_update(ufi->orig_map->pmap);
1687 1.139 uebayasi return 0;
1688 1.138 uebayasi }
1689 1.1 mrg
1690 1.138 uebayasi static int
1691 1.148 uebayasi uvm_fault_lower_generic_io(
1692 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1693 1.148 uebayasi struct vm_page **ruobjpage);
1694 1.148 uebayasi static int
1695 1.148 uebayasi uvm_fault_lower_generic_uobjpage(
1696 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1697 1.148 uebayasi struct vm_page *uobjpage, bool promote);
1698 1.148 uebayasi static int
1699 1.148 uebayasi uvm_fault_lower_generic_direct(
1700 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1701 1.148 uebayasi struct vm_page *uobjpage);
1702 1.148 uebayasi static int
1703 1.148 uebayasi uvm_fault_lower_generic_promote(
1704 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1705 1.148 uebayasi struct vm_page *uobjpage);
1706 1.148 uebayasi static int
1707 1.148 uebayasi uvm_fault_lower_generic_enter(
1708 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1709 1.148 uebayasi struct uvm_object *uobj,
1710 1.148 uebayasi struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage);
1711 1.148 uebayasi static int
1712 1.148 uebayasi uvm_fault_lower_generic_done(
1713 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1714 1.148 uebayasi struct uvm_object *uobj,
1715 1.148 uebayasi struct vm_anon *anon, struct vm_page *pg);
1716 1.148 uebayasi
1717 1.148 uebayasi static int
1718 1.138 uebayasi uvm_fault_lower_generic2(
1719 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1720 1.148 uebayasi struct vm_page *uobjpage)
1721 1.138 uebayasi {
1722 1.148 uebayasi #ifdef DIAGNOSTIC
1723 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1724 1.148 uebayasi #endif
1725 1.148 uebayasi struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1726 1.137 uebayasi bool promote;
1727 1.138 uebayasi int error;
1728 1.137 uebayasi
1729 1.7 mrg /*
1730 1.7 mrg * handle case 2: faulting on backing object or zero fill
1731 1.7 mrg */
1732 1.7 mrg
1733 1.7 mrg /*
1734 1.7 mrg * locked:
1735 1.7 mrg * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1736 1.7 mrg */
1737 1.120 ad KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1738 1.122 ad KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1739 1.120 ad KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1740 1.7 mrg
1741 1.7 mrg /*
1742 1.7 mrg * note that uobjpage can not be PGO_DONTCARE at this point. we now
1743 1.7 mrg * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1744 1.7 mrg * have a backing object, check and see if we are going to promote
1745 1.7 mrg * the data up to an anon during the fault.
1746 1.7 mrg */
1747 1.7 mrg
1748 1.7 mrg if (uobj == NULL) {
1749 1.63 chs uobjpage = PGO_DONTCARE;
1750 1.119 thorpej promote = true; /* always need anon here */
1751 1.7 mrg } else {
1752 1.52 chs KASSERT(uobjpage != PGO_DONTCARE);
1753 1.140 uebayasi promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1754 1.7 mrg }
1755 1.7 mrg UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1756 1.46 thorpej promote, (uobj == NULL), 0,0);
1757 1.1 mrg
1758 1.7 mrg /*
1759 1.9 chuck * if uobjpage is not null then we do not need to do I/O to get the
1760 1.9 chuck * uobjpage.
1761 1.9 chuck *
1762 1.63 chs * if uobjpage is null, then we need to unlock and ask the pager to
1763 1.7 mrg * get the data for us. once we have the data, we need to reverify
1764 1.7 mrg * the state the world. we are currently not holding any resources.
1765 1.7 mrg */
1766 1.1 mrg
1767 1.9 chuck if (uobjpage) {
1768 1.9 chuck /* update rusage counters */
1769 1.124 ad curlwp->l_ru.ru_minflt++;
1770 1.9 chuck } else {
1771 1.148 uebayasi error = uvm_fault_lower_generic_io(ufi, flt, &uobjpage);
1772 1.148 uebayasi if (error != 0)
1773 1.148 uebayasi return error;
1774 1.148 uebayasi }
1775 1.148 uebayasi return uvm_fault_lower_generic_uobjpage(ufi, flt, uobjpage, promote);
1776 1.148 uebayasi }
1777 1.148 uebayasi
1778 1.148 uebayasi static int
1779 1.148 uebayasi uvm_fault_lower_generic_io(
1780 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1781 1.148 uebayasi struct vm_page **ruobjpage)
1782 1.148 uebayasi {
1783 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1784 1.148 uebayasi struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1785 1.148 uebayasi struct vm_page *uobjpage;
1786 1.137 uebayasi bool locked;
1787 1.137 uebayasi int gotpages;
1788 1.148 uebayasi int error;
1789 1.137 uebayasi voff_t uoff;
1790 1.137 uebayasi
1791 1.9 chuck /* update rusage counters */
1792 1.124 ad curlwp->l_ru.ru_majflt++;
1793 1.63 chs
1794 1.7 mrg /* locked: maps(read), amap(if there), uobj */
1795 1.138 uebayasi uvmfault_unlockall(ufi, amap, NULL, NULL);
1796 1.7 mrg /* locked: uobj */
1797 1.7 mrg
1798 1.7 mrg uvmexp.fltget++;
1799 1.7 mrg gotpages = 1;
1800 1.138 uebayasi uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1801 1.58 chs error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1802 1.140 uebayasi 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1803 1.52 chs PGO_SYNCIO);
1804 1.58 chs /* locked: uobjpage(if no error) */
1805 1.120 ad KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1806 1.52 chs
1807 1.7 mrg /*
1808 1.7 mrg * recover from I/O
1809 1.7 mrg */
1810 1.1 mrg
1811 1.58 chs if (error) {
1812 1.58 chs if (error == EAGAIN) {
1813 1.46 thorpej UVMHIST_LOG(maphist,
1814 1.46 thorpej " pgo_get says TRY AGAIN!",0,0,0,0);
1815 1.128 pooka kpause("fltagain2", false, hz/2, NULL);
1816 1.139 uebayasi return ERESTART;
1817 1.7 mrg }
1818 1.1 mrg
1819 1.139 uebayasi #if 0
1820 1.139 uebayasi KASSERT(error != ERESTART);
1821 1.139 uebayasi #else
1822 1.139 uebayasi /* XXXUEBS don't re-fault? */
1823 1.139 uebayasi if (error == ERESTART)
1824 1.139 uebayasi error = EIO;
1825 1.139 uebayasi #endif
1826 1.139 uebayasi
1827 1.7 mrg UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1828 1.58 chs error, 0,0,0);
1829 1.138 uebayasi return error;
1830 1.7 mrg }
1831 1.7 mrg
1832 1.7 mrg /* locked: uobjpage */
1833 1.7 mrg
1834 1.122 ad mutex_enter(&uvm_pageqlock);
1835 1.69 chs uvm_pageactivate(uobjpage);
1836 1.122 ad mutex_exit(&uvm_pageqlock);
1837 1.69 chs
1838 1.7 mrg /*
1839 1.7 mrg * re-verify the state of the world by first trying to relock
1840 1.7 mrg * the maps. always relock the object.
1841 1.7 mrg */
1842 1.7 mrg
1843 1.138 uebayasi locked = uvmfault_relock(ufi);
1844 1.7 mrg if (locked && amap)
1845 1.19 chuck amap_lock(amap);
1846 1.148 uebayasi KASSERT(uobj == uobjpage->uobject);
1847 1.122 ad mutex_enter(&uobj->vmobjlock);
1848 1.63 chs
1849 1.7 mrg /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1850 1.7 mrg /* locked(!locked): uobj, uobjpage */
1851 1.7 mrg
1852 1.7 mrg /*
1853 1.7 mrg * verify that the page has not be released and re-verify
1854 1.7 mrg * that amap slot is still free. if there is a problem,
1855 1.7 mrg * we unlock and clean up.
1856 1.7 mrg */
1857 1.7 mrg
1858 1.7 mrg if ((uobjpage->flags & PG_RELEASED) != 0 ||
1859 1.63 chs (locked && amap &&
1860 1.138 uebayasi amap_lookup(&ufi->entry->aref,
1861 1.138 uebayasi ufi->orig_rvaddr - ufi->entry->start))) {
1862 1.63 chs if (locked)
1863 1.138 uebayasi uvmfault_unlockall(ufi, amap, NULL, NULL);
1864 1.119 thorpej locked = false;
1865 1.7 mrg }
1866 1.7 mrg
1867 1.7 mrg /*
1868 1.7 mrg * didn't get the lock? release the page and retry.
1869 1.7 mrg */
1870 1.7 mrg
1871 1.119 thorpej if (locked == false) {
1872 1.7 mrg UVMHIST_LOG(maphist,
1873 1.63 chs " wasn't able to relock after fault: retry",
1874 1.7 mrg 0,0,0,0);
1875 1.7 mrg if (uobjpage->flags & PG_WANTED)
1876 1.44 thorpej wakeup(uobjpage);
1877 1.7 mrg if (uobjpage->flags & PG_RELEASED) {
1878 1.7 mrg uvmexp.fltpgrele++;
1879 1.69 chs uvm_pagefree(uobjpage);
1880 1.139 uebayasi return ERESTART;
1881 1.7 mrg }
1882 1.7 mrg uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1883 1.7 mrg UVM_PAGE_OWN(uobjpage, NULL);
1884 1.122 ad mutex_exit(&uobj->vmobjlock);
1885 1.139 uebayasi return ERESTART;
1886 1.7 mrg }
1887 1.7 mrg
1888 1.7 mrg /*
1889 1.69 chs * we have the data in uobjpage which is busy and
1890 1.69 chs * not released. we are holding object lock (so the page
1891 1.7 mrg * can't be released on us).
1892 1.7 mrg */
1893 1.7 mrg
1894 1.7 mrg /* locked: maps(read), amap(if !null), uobj, uobjpage */
1895 1.148 uebayasi
1896 1.148 uebayasi *ruobjpage = uobjpage;
1897 1.148 uebayasi return 0;
1898 1.148 uebayasi }
1899 1.148 uebayasi
1900 1.148 uebayasi int
1901 1.148 uebayasi uvm_fault_lower_generic_uobjpage(
1902 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1903 1.148 uebayasi struct vm_page *uobjpage, bool promote)
1904 1.148 uebayasi {
1905 1.148 uebayasi #ifdef DIAGNOSTIC
1906 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1907 1.148 uebayasi struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1908 1.148 uebayasi #endif
1909 1.148 uebayasi int error;
1910 1.1 mrg
1911 1.1 mrg /*
1912 1.7 mrg * locked:
1913 1.7 mrg * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1914 1.1 mrg */
1915 1.120 ad KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1916 1.122 ad KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1917 1.120 ad KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1918 1.1 mrg
1919 1.7 mrg /*
1920 1.7 mrg * notes:
1921 1.7 mrg * - at this point uobjpage can not be NULL
1922 1.7 mrg * - at this point uobjpage can not be PG_RELEASED (since we checked
1923 1.7 mrg * for it above)
1924 1.7 mrg * - at this point uobjpage could be PG_WANTED (handle later)
1925 1.7 mrg */
1926 1.63 chs
1927 1.107 yamt KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1928 1.97 yamt KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1929 1.96 yamt (uobjpage->flags & PG_CLEAN) != 0);
1930 1.148 uebayasi
1931 1.119 thorpej if (promote == false) {
1932 1.148 uebayasi error = uvm_fault_lower_generic_direct(ufi, flt, uobjpage);
1933 1.148 uebayasi } else {
1934 1.148 uebayasi error = uvm_fault_lower_generic_promote(ufi, flt, uobjpage);
1935 1.148 uebayasi }
1936 1.148 uebayasi return error;
1937 1.148 uebayasi }
1938 1.148 uebayasi
1939 1.148 uebayasi int
1940 1.148 uebayasi uvm_fault_lower_generic_direct(
1941 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1942 1.148 uebayasi struct vm_page *uobjpage)
1943 1.148 uebayasi {
1944 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1945 1.148 uebayasi struct uvm_object * const uobj = ufi->entry->object.uvm_obj;
1946 1.148 uebayasi struct vm_page *pg;
1947 1.1 mrg
1948 1.7 mrg /*
1949 1.7 mrg * we are not promoting. if the mapping is COW ensure that we
1950 1.7 mrg * don't give more access than we should (e.g. when doing a read
1951 1.7 mrg * fault on a COPYONWRITE mapping we want to map the COW page in
1952 1.7 mrg * R/O even though the entry protection could be R/W).
1953 1.7 mrg *
1954 1.7 mrg * set "pg" to the page we want to map in (uobjpage, usually)
1955 1.7 mrg */
1956 1.7 mrg
1957 1.7 mrg uvmexp.flt_obj++;
1958 1.138 uebayasi if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1959 1.98 yamt UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1960 1.140 uebayasi flt->enter_prot &= ~VM_PROT_WRITE;
1961 1.7 mrg pg = uobjpage; /* map in the actual object */
1962 1.7 mrg
1963 1.111 yamt KASSERT(uobjpage != PGO_DONTCARE);
1964 1.7 mrg
1965 1.7 mrg /*
1966 1.7 mrg * we are faulting directly on the page. be careful
1967 1.7 mrg * about writing to loaned pages...
1968 1.7 mrg */
1969 1.69 chs
1970 1.7 mrg if (uobjpage->loan_count) {
1971 1.140 uebayasi if (!flt->cow_now) {
1972 1.7 mrg /* read fault: cap the protection at readonly */
1973 1.7 mrg /* cap! */
1974 1.140 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1975 1.7 mrg } else {
1976 1.7 mrg /* write fault: must break the loan here */
1977 1.7 mrg
1978 1.82 yamt pg = uvm_loanbreak(uobjpage);
1979 1.7 mrg if (pg == NULL) {
1980 1.69 chs
1981 1.7 mrg /*
1982 1.7 mrg * drop ownership of page, it can't
1983 1.7 mrg * be released
1984 1.46 thorpej */
1985 1.69 chs
1986 1.7 mrg if (uobjpage->flags & PG_WANTED)
1987 1.44 thorpej wakeup(uobjpage);
1988 1.7 mrg uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1989 1.7 mrg UVM_PAGE_OWN(uobjpage, NULL);
1990 1.7 mrg
1991 1.138 uebayasi uvmfault_unlockall(ufi, amap, uobj,
1992 1.7 mrg NULL);
1993 1.7 mrg UVMHIST_LOG(maphist,
1994 1.20 mrg " out of RAM breaking loan, waiting",
1995 1.20 mrg 0,0,0,0);
1996 1.7 mrg uvmexp.fltnoram++;
1997 1.7 mrg uvm_wait("flt_noram4");
1998 1.139 uebayasi return ERESTART;
1999 1.7 mrg }
2000 1.7 mrg uobjpage = pg;
2001 1.69 chs }
2002 1.69 chs }
2003 1.148 uebayasi
2004 1.148 uebayasi return uvm_fault_lower_generic_enter(ufi, flt, uobj, NULL, pg, uobjpage);
2005 1.148 uebayasi }
2006 1.148 uebayasi
2007 1.148 uebayasi int
2008 1.148 uebayasi uvm_fault_lower_generic_promote(
2009 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2010 1.148 uebayasi struct vm_page *uobjpage)
2011 1.148 uebayasi {
2012 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2013 1.148 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
2014 1.148 uebayasi struct vm_anon *anon;
2015 1.148 uebayasi struct vm_page *pg;
2016 1.148 uebayasi int error;
2017 1.63 chs
2018 1.7 mrg /*
2019 1.7 mrg * if we are going to promote the data to an anon we
2020 1.7 mrg * allocate a blank anon here and plug it into our amap.
2021 1.7 mrg */
2022 1.1 mrg #if DIAGNOSTIC
2023 1.7 mrg if (amap == NULL)
2024 1.7 mrg panic("uvm_fault: want to promote data, but no anon");
2025 1.1 mrg #endif
2026 1.138 uebayasi error = uvmfault_promote(ufi, NULL, uobjpage,
2027 1.140 uebayasi &anon, &flt->anon_spare);
2028 1.106 yamt switch (error) {
2029 1.106 yamt case 0:
2030 1.106 yamt break;
2031 1.106 yamt case ERESTART:
2032 1.139 uebayasi return ERESTART;
2033 1.106 yamt default:
2034 1.138 uebayasi return error;
2035 1.105 yamt }
2036 1.105 yamt
2037 1.106 yamt pg = anon->an_page;
2038 1.1 mrg
2039 1.7 mrg /*
2040 1.7 mrg * fill in the data
2041 1.7 mrg */
2042 1.7 mrg
2043 1.7 mrg if (uobjpage != PGO_DONTCARE) {
2044 1.7 mrg uvmexp.flt_prcopy++;
2045 1.7 mrg
2046 1.7 mrg /*
2047 1.7 mrg * promote to shared amap? make sure all sharing
2048 1.7 mrg * procs see it
2049 1.7 mrg */
2050 1.69 chs
2051 1.19 chuck if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2052 1.45 chs pmap_page_protect(uobjpage, VM_PROT_NONE);
2053 1.62 thorpej /*
2054 1.62 thorpej * XXX: PAGE MIGHT BE WIRED!
2055 1.62 thorpej */
2056 1.7 mrg }
2057 1.63 chs
2058 1.7 mrg /*
2059 1.7 mrg * dispose of uobjpage. it can't be PG_RELEASED
2060 1.52 chs * since we still hold the object lock.
2061 1.52 chs * drop handle to uobj as well.
2062 1.7 mrg */
2063 1.7 mrg
2064 1.7 mrg if (uobjpage->flags & PG_WANTED)
2065 1.7 mrg /* still have the obj lock */
2066 1.44 thorpej wakeup(uobjpage);
2067 1.7 mrg uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2068 1.7 mrg UVM_PAGE_OWN(uobjpage, NULL);
2069 1.122 ad mutex_exit(&uobj->vmobjlock);
2070 1.7 mrg uobj = NULL;
2071 1.52 chs
2072 1.7 mrg UVMHIST_LOG(maphist,
2073 1.7 mrg " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2074 1.7 mrg uobjpage, anon, pg, 0);
2075 1.7 mrg
2076 1.7 mrg } else {
2077 1.7 mrg uvmexp.flt_przero++;
2078 1.69 chs
2079 1.48 thorpej /*
2080 1.106 yamt * Page is zero'd and marked dirty by
2081 1.106 yamt * uvmfault_promote().
2082 1.48 thorpej */
2083 1.69 chs
2084 1.7 mrg UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2085 1.7 mrg anon, pg, 0, 0);
2086 1.7 mrg }
2087 1.148 uebayasi
2088 1.148 uebayasi return uvm_fault_lower_generic_enter(ufi, flt, uobj, anon, pg, uobjpage);
2089 1.148 uebayasi }
2090 1.148 uebayasi
2091 1.148 uebayasi int
2092 1.148 uebayasi uvm_fault_lower_generic_enter(
2093 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2094 1.148 uebayasi struct uvm_object *uobj,
2095 1.148 uebayasi struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2096 1.148 uebayasi {
2097 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2098 1.148 uebayasi int error;
2099 1.7 mrg
2100 1.7 mrg /*
2101 1.7 mrg * locked:
2102 1.53 thorpej * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2103 1.53 thorpej * anon(if !null), pg(if anon)
2104 1.7 mrg *
2105 1.7 mrg * note: pg is either the uobjpage or the new page in the new anon
2106 1.7 mrg */
2107 1.120 ad KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2108 1.122 ad KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2109 1.120 ad KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2110 1.122 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2111 1.120 ad KASSERT((pg->flags & PG_BUSY) != 0);
2112 1.7 mrg
2113 1.7 mrg /*
2114 1.7 mrg * all resources are present. we can now map it in and free our
2115 1.7 mrg * resources.
2116 1.7 mrg */
2117 1.7 mrg
2118 1.7 mrg UVMHIST_LOG(maphist,
2119 1.7 mrg " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2120 1.138 uebayasi ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
2121 1.140 uebayasi KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2122 1.75 chs (pg->flags & PG_RDONLY) == 0);
2123 1.138 uebayasi if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2124 1.140 uebayasi pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2125 1.146 uebayasi flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2126 1.52 chs
2127 1.46 thorpej /*
2128 1.46 thorpej * No need to undo what we did; we can simply think of
2129 1.46 thorpej * this as the pmap throwing away the mapping information.
2130 1.46 thorpej *
2131 1.46 thorpej * We do, however, have to go through the ReFault path,
2132 1.46 thorpej * as the map may change while we're asleep.
2133 1.46 thorpej */
2134 1.52 chs
2135 1.46 thorpej if (pg->flags & PG_WANTED)
2136 1.69 chs wakeup(pg);
2137 1.46 thorpej
2138 1.63 chs /*
2139 1.46 thorpej * note that pg can't be PG_RELEASED since we did not drop
2140 1.46 thorpej * the object lock since the last time we checked.
2141 1.46 thorpej */
2142 1.111 yamt KASSERT((pg->flags & PG_RELEASED) == 0);
2143 1.63 chs
2144 1.46 thorpej pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2145 1.46 thorpej UVM_PAGE_OWN(pg, NULL);
2146 1.138 uebayasi uvmfault_unlockall(ufi, amap, uobj, anon);
2147 1.92 yamt if (!uvm_reclaimable()) {
2148 1.46 thorpej UVMHIST_LOG(maphist,
2149 1.46 thorpej "<- failed. out of VM",0,0,0,0);
2150 1.46 thorpej /* XXX instrumentation */
2151 1.106 yamt error = ENOMEM;
2152 1.138 uebayasi return error;
2153 1.46 thorpej }
2154 1.46 thorpej /* XXX instrumentation */
2155 1.46 thorpej uvm_wait("flt_pmfail2");
2156 1.139 uebayasi return ERESTART;
2157 1.46 thorpej }
2158 1.1 mrg
2159 1.148 uebayasi return uvm_fault_lower_generic_done(ufi, flt, uobj, anon, pg);
2160 1.148 uebayasi }
2161 1.148 uebayasi
2162 1.148 uebayasi int
2163 1.148 uebayasi uvm_fault_lower_generic_done(
2164 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2165 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2166 1.148 uebayasi {
2167 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2168 1.148 uebayasi
2169 1.122 ad mutex_enter(&uvm_pageqlock);
2170 1.146 uebayasi if (flt->wire_paging) {
2171 1.8 chuck uvm_pagewire(pg);
2172 1.22 chs if (pg->pqflags & PQ_AOBJ) {
2173 1.29 chs
2174 1.29 chs /*
2175 1.29 chs * since the now-wired page cannot be paged out,
2176 1.29 chs * release its swap resources for others to use.
2177 1.29 chs * since an aobj page with no swap cannot be PG_CLEAN,
2178 1.29 chs * clear its clean flag now.
2179 1.29 chs */
2180 1.29 chs
2181 1.113 christos KASSERT(uobj != NULL);
2182 1.29 chs pg->flags &= ~(PG_CLEAN);
2183 1.22 chs uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2184 1.22 chs }
2185 1.7 mrg } else {
2186 1.7 mrg uvm_pageactivate(pg);
2187 1.7 mrg }
2188 1.122 ad mutex_exit(&uvm_pageqlock);
2189 1.7 mrg if (pg->flags & PG_WANTED)
2190 1.69 chs wakeup(pg);
2191 1.7 mrg
2192 1.63 chs /*
2193 1.63 chs * note that pg can't be PG_RELEASED since we did not drop the object
2194 1.7 mrg * lock since the last time we checked.
2195 1.7 mrg */
2196 1.111 yamt KASSERT((pg->flags & PG_RELEASED) == 0);
2197 1.63 chs
2198 1.7 mrg pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2199 1.7 mrg UVM_PAGE_OWN(pg, NULL);
2200 1.138 uebayasi uvmfault_unlockall(ufi, amap, uobj, anon);
2201 1.138 uebayasi pmap_update(ufi->orig_map->pmap);
2202 1.7 mrg UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2203 1.139 uebayasi return 0;
2204 1.1 mrg }
2205 1.1 mrg
2206 1.110 drochner
2207 1.1 mrg /*
2208 1.1 mrg * uvm_fault_wire: wire down a range of virtual addresses in a map.
2209 1.1 mrg *
2210 1.36 thorpej * => map may be read-locked by caller, but MUST NOT be write-locked.
2211 1.36 thorpej * => if map is read-locked, any operations which may cause map to
2212 1.36 thorpej * be write-locked in uvm_fault() must be taken care of by
2213 1.36 thorpej * the caller. See uvm_map_pageable().
2214 1.1 mrg */
2215 1.1 mrg
2216 1.7 mrg int
2217 1.95 thorpej uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2218 1.130 uebayasi vm_prot_t access_type, int maxprot)
2219 1.7 mrg {
2220 1.12 eeh vaddr_t va;
2221 1.58 chs int error;
2222 1.7 mrg
2223 1.7 mrg /*
2224 1.47 chs * now fault it in a page at a time. if the fault fails then we have
2225 1.63 chs * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2226 1.47 chs * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2227 1.7 mrg */
2228 1.1 mrg
2229 1.65 chs /*
2230 1.65 chs * XXX work around overflowing a vaddr_t. this prevents us from
2231 1.65 chs * wiring the last page in the address space, though.
2232 1.65 chs */
2233 1.65 chs if (start > end) {
2234 1.65 chs return EFAULT;
2235 1.65 chs }
2236 1.65 chs
2237 1.7 mrg for (va = start ; va < end ; va += PAGE_SIZE) {
2238 1.110 drochner error = uvm_fault_internal(map, va, access_type,
2239 1.130 uebayasi (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2240 1.58 chs if (error) {
2241 1.7 mrg if (va != start) {
2242 1.31 thorpej uvm_fault_unwire(map, start, va);
2243 1.7 mrg }
2244 1.58 chs return error;
2245 1.7 mrg }
2246 1.7 mrg }
2247 1.58 chs return 0;
2248 1.1 mrg }
2249 1.1 mrg
2250 1.1 mrg /*
2251 1.1 mrg * uvm_fault_unwire(): unwire range of virtual space.
2252 1.1 mrg */
2253 1.1 mrg
2254 1.7 mrg void
2255 1.95 thorpej uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2256 1.36 thorpej {
2257 1.36 thorpej vm_map_lock_read(map);
2258 1.36 thorpej uvm_fault_unwire_locked(map, start, end);
2259 1.36 thorpej vm_map_unlock_read(map);
2260 1.36 thorpej }
2261 1.36 thorpej
2262 1.36 thorpej /*
2263 1.36 thorpej * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2264 1.36 thorpej *
2265 1.36 thorpej * => map must be at least read-locked.
2266 1.36 thorpej */
2267 1.36 thorpej
2268 1.36 thorpej void
2269 1.95 thorpej uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2270 1.7 mrg {
2271 1.64 chs struct vm_map_entry *entry;
2272 1.31 thorpej pmap_t pmap = vm_map_pmap(map);
2273 1.42 thorpej vaddr_t va;
2274 1.12 eeh paddr_t pa;
2275 1.42 thorpej struct vm_page *pg;
2276 1.31 thorpej
2277 1.52 chs KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2278 1.7 mrg
2279 1.7 mrg /*
2280 1.7 mrg * we assume that the area we are unwiring has actually been wired
2281 1.7 mrg * in the first place. this means that we should be able to extract
2282 1.7 mrg * the PAs from the pmap. we also lock out the page daemon so that
2283 1.7 mrg * we can call uvm_pageunwire.
2284 1.7 mrg */
2285 1.37 thorpej
2286 1.122 ad mutex_enter(&uvm_pageqlock);
2287 1.7 mrg
2288 1.37 thorpej /*
2289 1.37 thorpej * find the beginning map entry for the region.
2290 1.37 thorpej */
2291 1.74 chs
2292 1.56 chs KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2293 1.119 thorpej if (uvm_map_lookup_entry(map, start, &entry) == false)
2294 1.37 thorpej panic("uvm_fault_unwire_locked: address not in map");
2295 1.37 thorpej
2296 1.69 chs for (va = start; va < end; va += PAGE_SIZE) {
2297 1.119 thorpej if (pmap_extract(pmap, va, &pa) == false)
2298 1.74 chs continue;
2299 1.42 thorpej
2300 1.42 thorpej /*
2301 1.74 chs * find the map entry for the current address.
2302 1.42 thorpej */
2303 1.56 chs
2304 1.56 chs KASSERT(va >= entry->start);
2305 1.74 chs while (va >= entry->end) {
2306 1.56 chs KASSERT(entry->next != &map->header &&
2307 1.56 chs entry->next->start <= entry->end);
2308 1.42 thorpej entry = entry->next;
2309 1.42 thorpej }
2310 1.37 thorpej
2311 1.42 thorpej /*
2312 1.42 thorpej * if the entry is no longer wired, tell the pmap.
2313 1.42 thorpej */
2314 1.74 chs
2315 1.42 thorpej if (VM_MAPENT_ISWIRED(entry) == 0)
2316 1.42 thorpej pmap_unwire(pmap, va);
2317 1.42 thorpej
2318 1.42 thorpej pg = PHYS_TO_VM_PAGE(pa);
2319 1.42 thorpej if (pg)
2320 1.42 thorpej uvm_pageunwire(pg);
2321 1.7 mrg }
2322 1.1 mrg
2323 1.122 ad mutex_exit(&uvm_pageqlock);
2324 1.1 mrg }
2325