uvm_fault.c revision 1.232 1 1.232 riastrad /* $NetBSD: uvm_fault.c,v 1.232 2023/04/09 09:00:56 riastradh Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 1.1 mrg * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 1.1 mrg * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 1.1 mrg * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 1.1 mrg * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 1.1 mrg * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 1.4 mrg *
27 1.4 mrg * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 1.1 mrg */
29 1.1 mrg
30 1.1 mrg /*
31 1.1 mrg * uvm_fault.c: fault handler
32 1.1 mrg */
33 1.71 lukem
34 1.71 lukem #include <sys/cdefs.h>
35 1.232 riastrad __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.232 2023/04/09 09:00:56 riastradh Exp $");
36 1.71 lukem
37 1.71 lukem #include "opt_uvmhist.h"
38 1.1 mrg
39 1.1 mrg #include <sys/param.h>
40 1.1 mrg #include <sys/systm.h>
41 1.210 martin #include <sys/atomic.h>
42 1.1 mrg #include <sys/kernel.h>
43 1.1 mrg #include <sys/mman.h>
44 1.1 mrg
45 1.1 mrg #include <uvm/uvm.h>
46 1.227 ad #include <uvm/uvm_pdpolicy.h>
47 1.1 mrg
48 1.1 mrg /*
49 1.1 mrg *
50 1.1 mrg * a word on page faults:
51 1.1 mrg *
52 1.1 mrg * types of page faults we handle:
53 1.1 mrg *
54 1.1 mrg * CASE 1: upper layer faults CASE 2: lower layer faults
55 1.1 mrg *
56 1.1 mrg * CASE 1A CASE 1B CASE 2A CASE 2B
57 1.1 mrg * read/write1 write>1 read/write +-cow_write/zero
58 1.63 chs * | | | |
59 1.1 mrg * +--|--+ +--|--+ +-----+ + | + | +-----+
60 1.127 uebayasi * amap | V | | ---------> new | | | | ^ |
61 1.1 mrg * +-----+ +-----+ +-----+ + | + | +--|--+
62 1.1 mrg * | | |
63 1.1 mrg * +-----+ +-----+ +--|--+ | +--|--+
64 1.127 uebayasi * uobj | d/c | | d/c | | V | +----+ |
65 1.1 mrg * +-----+ +-----+ +-----+ +-----+
66 1.1 mrg *
67 1.1 mrg * d/c = don't care
68 1.63 chs *
69 1.1 mrg * case [0]: layerless fault
70 1.1 mrg * no amap or uobj is present. this is an error.
71 1.1 mrg *
72 1.1 mrg * case [1]: upper layer fault [anon active]
73 1.1 mrg * 1A: [read] or [write with anon->an_ref == 1]
74 1.127 uebayasi * I/O takes place in upper level anon and uobj is not touched.
75 1.1 mrg * 1B: [write with anon->an_ref > 1]
76 1.1 mrg * new anon is alloc'd and data is copied off ["COW"]
77 1.1 mrg *
78 1.1 mrg * case [2]: lower layer fault [uobj]
79 1.1 mrg * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
80 1.1 mrg * I/O takes place directly in object.
81 1.1 mrg * 2B: [write to copy_on_write] or [read on NULL uobj]
82 1.63 chs * data is "promoted" from uobj to a new anon.
83 1.1 mrg * if uobj is null, then we zero fill.
84 1.1 mrg *
85 1.1 mrg * we follow the standard UVM locking protocol ordering:
86 1.1 mrg *
87 1.63 chs * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
88 1.1 mrg * we hold a PG_BUSY page if we unlock for I/O
89 1.1 mrg *
90 1.1 mrg *
91 1.1 mrg * the code is structured as follows:
92 1.63 chs *
93 1.1 mrg * - init the "IN" params in the ufi structure
94 1.177 yamt * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
95 1.1 mrg * - do lookups [locks maps], check protection, handle needs_copy
96 1.1 mrg * - check for case 0 fault (error)
97 1.1 mrg * - establish "range" of fault
98 1.1 mrg * - if we have an amap lock it and extract the anons
99 1.1 mrg * - if sequential advice deactivate pages behind us
100 1.1 mrg * - at the same time check pmap for unmapped areas and anon for pages
101 1.1 mrg * that we could map in (and do map it if found)
102 1.1 mrg * - check object for resident pages that we could map in
103 1.1 mrg * - if (case 2) goto Case2
104 1.1 mrg * - >>> handle case 1
105 1.1 mrg * - ensure source anon is resident in RAM
106 1.1 mrg * - if case 1B alloc new anon and copy from source
107 1.1 mrg * - map the correct page in
108 1.1 mrg * Case2:
109 1.1 mrg * - >>> handle case 2
110 1.1 mrg * - ensure source page is resident (if uobj)
111 1.1 mrg * - if case 2B alloc new anon and copy from source (could be zero
112 1.1 mrg * fill if uobj == NULL)
113 1.1 mrg * - map the correct page in
114 1.1 mrg * - done!
115 1.1 mrg *
116 1.1 mrg * note on paging:
117 1.1 mrg * if we have to do I/O we place a PG_BUSY page in the correct object,
118 1.1 mrg * unlock everything, and do the I/O. when I/O is done we must reverify
119 1.1 mrg * the state of the world before assuming that our data structures are
120 1.1 mrg * valid. [because mappings could change while the map is unlocked]
121 1.1 mrg *
122 1.1 mrg * alternative 1: unbusy the page in question and restart the page fault
123 1.1 mrg * from the top (ReFault). this is easy but does not take advantage
124 1.63 chs * of the information that we already have from our previous lookup,
125 1.1 mrg * although it is possible that the "hints" in the vm_map will help here.
126 1.1 mrg *
127 1.1 mrg * alternative 2: the system already keeps track of a "version" number of
128 1.1 mrg * a map. [i.e. every time you write-lock a map (e.g. to change a
129 1.1 mrg * mapping) you bump the version number up by one...] so, we can save
130 1.1 mrg * the version number of the map before we release the lock and start I/O.
131 1.1 mrg * then when I/O is done we can relock and check the version numbers
132 1.1 mrg * to see if anything changed. this might save us some over 1 because
133 1.1 mrg * we don't have to unbusy the page and may be less compares(?).
134 1.1 mrg *
135 1.1 mrg * alternative 3: put in backpointers or a way to "hold" part of a map
136 1.1 mrg * in place while I/O is in progress. this could be complex to
137 1.1 mrg * implement (especially with structures like amap that can be referenced
138 1.1 mrg * by multiple map entries, and figuring out what should wait could be
139 1.1 mrg * complex as well...).
140 1.1 mrg *
141 1.125 ad * we use alternative 2. given that we are multi-threaded now we may want
142 1.125 ad * to reconsider the choice.
143 1.1 mrg */
144 1.1 mrg
145 1.1 mrg /*
146 1.1 mrg * local data structures
147 1.1 mrg */
148 1.1 mrg
149 1.1 mrg struct uvm_advice {
150 1.7 mrg int advice;
151 1.7 mrg int nback;
152 1.7 mrg int nforw;
153 1.1 mrg };
154 1.1 mrg
155 1.1 mrg /*
156 1.1 mrg * page range array:
157 1.63 chs * note: index in array must match "advice" value
158 1.1 mrg * XXX: borrowed numbers from freebsd. do they work well for us?
159 1.1 mrg */
160 1.1 mrg
161 1.95 thorpej static const struct uvm_advice uvmadvice[] = {
162 1.186 rmind { UVM_ADV_NORMAL, 3, 4 },
163 1.186 rmind { UVM_ADV_RANDOM, 0, 0 },
164 1.186 rmind { UVM_ADV_SEQUENTIAL, 8, 7},
165 1.1 mrg };
166 1.1 mrg
167 1.69 chs #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
168 1.1 mrg
169 1.1 mrg /*
170 1.1 mrg * private prototypes
171 1.1 mrg */
172 1.1 mrg
173 1.1 mrg /*
174 1.1 mrg * inline functions
175 1.1 mrg */
176 1.1 mrg
177 1.1 mrg /*
178 1.1 mrg * uvmfault_anonflush: try and deactivate pages in specified anons
179 1.1 mrg *
180 1.1 mrg * => does not have to deactivate page if it is busy
181 1.1 mrg */
182 1.1 mrg
183 1.103 perry static inline void
184 1.95 thorpej uvmfault_anonflush(struct vm_anon **anons, int n)
185 1.1 mrg {
186 1.7 mrg int lcv;
187 1.7 mrg struct vm_page *pg;
188 1.63 chs
189 1.163 uebayasi for (lcv = 0; lcv < n; lcv++) {
190 1.7 mrg if (anons[lcv] == NULL)
191 1.7 mrg continue;
192 1.222 ad KASSERT(rw_lock_held(anons[lcv]->an_lock));
193 1.94 yamt pg = anons[lcv]->an_page;
194 1.117 yamt if (pg && (pg->flags & PG_BUSY) == 0) {
195 1.214 ad uvm_pagelock(pg);
196 1.212 ad uvm_pagedeactivate(pg);
197 1.214 ad uvm_pageunlock(pg);
198 1.7 mrg }
199 1.7 mrg }
200 1.1 mrg }
201 1.1 mrg
202 1.1 mrg /*
203 1.1 mrg * normal functions
204 1.1 mrg */
205 1.1 mrg
206 1.1 mrg /*
207 1.1 mrg * uvmfault_amapcopy: clear "needs_copy" in a map.
208 1.1 mrg *
209 1.1 mrg * => called with VM data structures unlocked (usually, see below)
210 1.1 mrg * => we get a write lock on the maps and clear needs_copy for a VA
211 1.1 mrg * => if we are out of RAM we sleep (waiting for more)
212 1.1 mrg */
213 1.1 mrg
214 1.7 mrg static void
215 1.95 thorpej uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 1.1 mrg {
217 1.69 chs for (;;) {
218 1.1 mrg
219 1.7 mrg /*
220 1.7 mrg * no mapping? give up.
221 1.7 mrg */
222 1.1 mrg
223 1.119 thorpej if (uvmfault_lookup(ufi, true) == false)
224 1.7 mrg return;
225 1.1 mrg
226 1.7 mrg /*
227 1.7 mrg * copy if needed.
228 1.7 mrg */
229 1.1 mrg
230 1.7 mrg if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 1.108 yamt amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 1.13 chuck ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233 1.1 mrg
234 1.7 mrg /*
235 1.7 mrg * didn't work? must be out of RAM. unlock and sleep.
236 1.7 mrg */
237 1.7 mrg
238 1.7 mrg if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 1.119 thorpej uvmfault_unlockmaps(ufi, true);
240 1.7 mrg uvm_wait("fltamapcopy");
241 1.7 mrg continue;
242 1.7 mrg }
243 1.7 mrg
244 1.7 mrg /*
245 1.7 mrg * got it! unlock and return.
246 1.7 mrg */
247 1.63 chs
248 1.119 thorpej uvmfault_unlockmaps(ufi, true);
249 1.7 mrg return;
250 1.7 mrg }
251 1.7 mrg /*NOTREACHED*/
252 1.1 mrg }
253 1.1 mrg
254 1.1 mrg /*
255 1.1 mrg * uvmfault_anonget: get data in an anon into a non-busy, non-released
256 1.1 mrg * page in that anon.
257 1.1 mrg *
258 1.187 rmind * => Map, amap and thus anon should be locked by caller.
259 1.187 rmind * => If we fail, we unlock everything and error is returned.
260 1.187 rmind * => If we are successful, return with everything still locked.
261 1.187 rmind * => We do not move the page on the queues [gets moved later]. If we
262 1.187 rmind * allocate a new page [we_own], it gets put on the queues. Either way,
263 1.187 rmind * the result is that the page is on the queues at return time
264 1.187 rmind * => For pages which are on loan from a uvm_object (and thus are not owned
265 1.187 rmind * by the anon): if successful, return with the owning object locked.
266 1.187 rmind * The caller must unlock this object when it unlocks everything else.
267 1.1 mrg */
268 1.1 mrg
269 1.47 chs int
270 1.95 thorpej uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
271 1.95 thorpej struct vm_anon *anon)
272 1.7 mrg {
273 1.7 mrg struct vm_page *pg;
274 1.222 ad krw_t lock_type;
275 1.58 chs int error;
276 1.187 rmind
277 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
278 1.222 ad KASSERT(rw_lock_held(anon->an_lock));
279 1.188 rmind KASSERT(anon->an_lock == amap->am_lock);
280 1.53 thorpej
281 1.187 rmind /* Increment the counters.*/
282 1.213 ad cpu_count(CPU_COUNT_FLTANGET, 1);
283 1.187 rmind if (anon->an_page) {
284 1.124 ad curlwp->l_ru.ru_minflt++;
285 1.187 rmind } else {
286 1.124 ad curlwp->l_ru.ru_majflt++;
287 1.187 rmind }
288 1.187 rmind error = 0;
289 1.7 mrg
290 1.63 chs /*
291 1.187 rmind * Loop until we get the anon data, or fail.
292 1.7 mrg */
293 1.7 mrg
294 1.69 chs for (;;) {
295 1.187 rmind bool we_own, locked;
296 1.187 rmind /*
297 1.187 rmind * Note: 'we_own' will become true if we set PG_BUSY on a page.
298 1.187 rmind */
299 1.187 rmind we_own = false;
300 1.94 yamt pg = anon->an_page;
301 1.1 mrg
302 1.7 mrg /*
303 1.187 rmind * If there is a resident page and it is loaned, then anon
304 1.187 rmind * may not own it. Call out to uvm_anon_lockloanpg() to
305 1.187 rmind * identify and lock the real owner of the page.
306 1.7 mrg */
307 1.7 mrg
308 1.7 mrg if (pg && pg->loan_count)
309 1.13 chuck pg = uvm_anon_lockloanpg(anon);
310 1.7 mrg
311 1.7 mrg /*
312 1.187 rmind * Is page resident? Make sure it is not busy/released.
313 1.7 mrg */
314 1.7 mrg
315 1.222 ad lock_type = rw_lock_op(anon->an_lock);
316 1.7 mrg if (pg) {
317 1.7 mrg
318 1.7 mrg /*
319 1.7 mrg * at this point, if the page has a uobject [meaning
320 1.7 mrg * we have it on loan], then that uobject is locked
321 1.7 mrg * by us! if the page is busy, we drop all the
322 1.7 mrg * locks (including uobject) and try again.
323 1.7 mrg */
324 1.7 mrg
325 1.69 chs if ((pg->flags & PG_BUSY) == 0) {
326 1.7 mrg UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
327 1.187 rmind return 0;
328 1.7 mrg }
329 1.213 ad cpu_count(CPU_COUNT_FLTPGWAIT, 1);
330 1.7 mrg
331 1.7 mrg /*
332 1.187 rmind * The last unlock must be an atomic unlock and wait
333 1.187 rmind * on the owner of page.
334 1.7 mrg */
335 1.69 chs
336 1.187 rmind if (pg->uobject) {
337 1.187 rmind /* Owner of page is UVM object. */
338 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
339 1.7 mrg UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
340 1.7 mrg 0,0,0);
341 1.218 ad uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1");
342 1.7 mrg } else {
343 1.187 rmind /* Owner of page is anon. */
344 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL);
345 1.7 mrg UVMHIST_LOG(maphist, " unlock+wait on anon",0,
346 1.7 mrg 0,0,0);
347 1.218 ad uvm_pagewait(pg, anon->an_lock, "anonget2");
348 1.7 mrg }
349 1.7 mrg } else {
350 1.101 yamt #if defined(VMSWAP)
351 1.7 mrg /*
352 1.222 ad * No page, therefore allocate one. A write lock is
353 1.222 ad * required for this. If the caller didn't supply
354 1.222 ad * one, fail now and have them retry.
355 1.7 mrg */
356 1.69 chs
357 1.222 ad if (lock_type == RW_READER) {
358 1.222 ad return ENOLCK;
359 1.222 ad }
360 1.180 enami pg = uvm_pagealloc(NULL,
361 1.180 enami ufi != NULL ? ufi->orig_rvaddr : 0,
362 1.185 tsutsui anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
363 1.187 rmind if (pg == NULL) {
364 1.187 rmind /* Out of memory. Wait a little. */
365 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
366 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1);
367 1.7 mrg UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
368 1.7 mrg 0,0,0);
369 1.93 yamt if (!uvm_reclaimable()) {
370 1.93 yamt return ENOMEM;
371 1.93 yamt }
372 1.7 mrg uvm_wait("flt_noram1");
373 1.7 mrg } else {
374 1.187 rmind /* PG_BUSY bit is set. */
375 1.119 thorpej we_own = true;
376 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
377 1.7 mrg
378 1.7 mrg /*
379 1.215 ad * Pass a PG_BUSY+PG_FAKE clean page into
380 1.187 rmind * the uvm_swap_get() function with all data
381 1.187 rmind * structures unlocked. Note that it is OK
382 1.187 rmind * to read an_swslot here, because we hold
383 1.187 rmind * PG_BUSY on the page.
384 1.7 mrg */
385 1.213 ad cpu_count(CPU_COUNT_PAGEINS, 1);
386 1.58 chs error = uvm_swap_get(pg, anon->an_swslot,
387 1.7 mrg PGO_SYNCIO);
388 1.7 mrg
389 1.7 mrg /*
390 1.187 rmind * We clean up after the I/O below in the
391 1.187 rmind * 'we_own' case.
392 1.7 mrg */
393 1.7 mrg }
394 1.187 rmind #else
395 1.101 yamt panic("%s: no page", __func__);
396 1.101 yamt #endif /* defined(VMSWAP) */
397 1.7 mrg }
398 1.7 mrg
399 1.7 mrg /*
400 1.187 rmind * Re-lock the map and anon.
401 1.7 mrg */
402 1.7 mrg
403 1.7 mrg locked = uvmfault_relock(ufi);
404 1.186 rmind if (locked || we_own) {
405 1.222 ad rw_enter(anon->an_lock, lock_type);
406 1.7 mrg }
407 1.7 mrg
408 1.7 mrg /*
409 1.187 rmind * If we own the page (i.e. we set PG_BUSY), then we need
410 1.187 rmind * to clean up after the I/O. There are three cases to
411 1.7 mrg * consider:
412 1.187 rmind *
413 1.187 rmind * 1) Page was released during I/O: free anon and ReFault.
414 1.187 rmind * 2) I/O not OK. Free the page and cause the fault to fail.
415 1.187 rmind * 3) I/O OK! Activate the page and sync with the non-we_own
416 1.187 rmind * case (i.e. drop anon lock if not locked).
417 1.7 mrg */
418 1.63 chs
419 1.7 mrg if (we_own) {
420 1.222 ad KASSERT(lock_type == RW_WRITER);
421 1.101 yamt #if defined(VMSWAP)
422 1.58 chs if (error) {
423 1.1 mrg
424 1.47 chs /*
425 1.187 rmind * Remove the swap slot from the anon and
426 1.187 rmind * mark the anon as having no real slot.
427 1.187 rmind * Do not free the swap slot, thus preventing
428 1.47 chs * it from being used again.
429 1.47 chs */
430 1.69 chs
431 1.187 rmind if (anon->an_swslot > 0) {
432 1.84 pk uvm_swap_markbad(anon->an_swslot, 1);
433 1.187 rmind }
434 1.47 chs anon->an_swslot = SWSLOT_BAD;
435 1.47 chs
436 1.187 rmind if ((pg->flags & PG_RELEASED) != 0) {
437 1.88 yamt goto released;
438 1.187 rmind }
439 1.88 yamt
440 1.47 chs /*
441 1.187 rmind * Note: page was never !PG_BUSY, so it
442 1.187 rmind * cannot be mapped and thus no need to
443 1.187 rmind * pmap_page_protect() it.
444 1.7 mrg */
445 1.69 chs
446 1.7 mrg uvm_pagefree(pg);
447 1.7 mrg
448 1.187 rmind if (locked) {
449 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL);
450 1.187 rmind }
451 1.216 ad rw_exit(anon->an_lock);
452 1.7 mrg UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
453 1.58 chs return error;
454 1.7 mrg }
455 1.63 chs
456 1.88 yamt if ((pg->flags & PG_RELEASED) != 0) {
457 1.88 yamt released:
458 1.88 yamt KASSERT(anon->an_ref == 0);
459 1.88 yamt
460 1.88 yamt /*
461 1.187 rmind * Released while we had unlocked amap.
462 1.88 yamt */
463 1.88 yamt
464 1.187 rmind if (locked) {
465 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL);
466 1.187 rmind }
467 1.88 yamt uvm_anon_release(anon);
468 1.88 yamt
469 1.88 yamt if (error) {
470 1.88 yamt UVMHIST_LOG(maphist,
471 1.88 yamt "<- ERROR/RELEASED", 0,0,0,0);
472 1.88 yamt return error;
473 1.88 yamt }
474 1.88 yamt
475 1.88 yamt UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
476 1.88 yamt return ERESTART;
477 1.88 yamt }
478 1.88 yamt
479 1.7 mrg /*
480 1.187 rmind * We have successfully read the page, activate it.
481 1.7 mrg */
482 1.69 chs
483 1.214 ad uvm_pagelock(pg);
484 1.7 mrg uvm_pageactivate(pg);
485 1.219 ad uvm_pagewakeup(pg);
486 1.214 ad uvm_pageunlock(pg);
487 1.219 ad pg->flags &= ~(PG_BUSY|PG_FAKE);
488 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
489 1.219 ad UVM_PAGE_OWN(pg, NULL);
490 1.187 rmind #else
491 1.101 yamt panic("%s: we_own", __func__);
492 1.101 yamt #endif /* defined(VMSWAP) */
493 1.7 mrg }
494 1.7 mrg
495 1.7 mrg /*
496 1.187 rmind * We were not able to re-lock the map - restart the fault.
497 1.7 mrg */
498 1.7 mrg
499 1.7 mrg if (!locked) {
500 1.186 rmind if (we_own) {
501 1.216 ad rw_exit(anon->an_lock);
502 1.186 rmind }
503 1.7 mrg UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
504 1.187 rmind return ERESTART;
505 1.7 mrg }
506 1.7 mrg
507 1.7 mrg /*
508 1.187 rmind * Verify that no one has touched the amap and moved
509 1.187 rmind * the anon on us.
510 1.7 mrg */
511 1.1 mrg
512 1.186 rmind if (ufi != NULL && amap_lookup(&ufi->entry->aref,
513 1.186 rmind ufi->orig_rvaddr - ufi->entry->start) != anon) {
514 1.63 chs
515 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
516 1.7 mrg UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
517 1.187 rmind return ERESTART;
518 1.7 mrg }
519 1.63 chs
520 1.7 mrg /*
521 1.187 rmind * Retry..
522 1.7 mrg */
523 1.1 mrg
524 1.213 ad cpu_count(CPU_COUNT_FLTANRETRY, 1);
525 1.7 mrg continue;
526 1.69 chs }
527 1.7 mrg /*NOTREACHED*/
528 1.1 mrg }
529 1.1 mrg
530 1.1 mrg /*
531 1.106 yamt * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
532 1.106 yamt *
533 1.106 yamt * 1. allocate an anon and a page.
534 1.106 yamt * 2. fill its contents.
535 1.106 yamt * 3. put it into amap.
536 1.106 yamt *
537 1.106 yamt * => if we fail (result != 0) we unlock everything.
538 1.106 yamt * => on success, return a new locked anon via 'nanon'.
539 1.106 yamt * (*nanon)->an_page will be a resident, locked, dirty page.
540 1.183 yamt * => it's caller's responsibility to put the promoted nanon->an_page to the
541 1.183 yamt * page queue.
542 1.106 yamt */
543 1.106 yamt
544 1.106 yamt static int
545 1.106 yamt uvmfault_promote(struct uvm_faultinfo *ufi,
546 1.106 yamt struct vm_anon *oanon,
547 1.106 yamt struct vm_page *uobjpage,
548 1.106 yamt struct vm_anon **nanon, /* OUT: allocated anon */
549 1.106 yamt struct vm_anon **spare)
550 1.106 yamt {
551 1.106 yamt struct vm_amap *amap = ufi->entry->aref.ar_amap;
552 1.106 yamt struct uvm_object *uobj;
553 1.106 yamt struct vm_anon *anon;
554 1.106 yamt struct vm_page *pg;
555 1.106 yamt struct vm_page *opg;
556 1.106 yamt int error;
557 1.106 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
558 1.106 yamt
559 1.106 yamt if (oanon) {
560 1.106 yamt /* anon COW */
561 1.106 yamt opg = oanon->an_page;
562 1.106 yamt KASSERT(opg != NULL);
563 1.106 yamt KASSERT(opg->uobject == NULL || opg->loan_count > 0);
564 1.106 yamt } else if (uobjpage != PGO_DONTCARE) {
565 1.106 yamt /* object-backed COW */
566 1.106 yamt opg = uobjpage;
567 1.227 ad KASSERT(rw_lock_held(opg->uobject->vmobjlock));
568 1.106 yamt } else {
569 1.106 yamt /* ZFOD */
570 1.106 yamt opg = NULL;
571 1.106 yamt }
572 1.106 yamt if (opg != NULL) {
573 1.106 yamt uobj = opg->uobject;
574 1.106 yamt } else {
575 1.106 yamt uobj = NULL;
576 1.106 yamt }
577 1.106 yamt
578 1.106 yamt KASSERT(amap != NULL);
579 1.106 yamt KASSERT(uobjpage != NULL);
580 1.216 ad KASSERT(rw_write_held(amap->am_lock));
581 1.186 rmind KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
582 1.222 ad KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
583 1.106 yamt
584 1.106 yamt if (*spare != NULL) {
585 1.106 yamt anon = *spare;
586 1.106 yamt *spare = NULL;
587 1.192 para } else {
588 1.106 yamt anon = uvm_analloc();
589 1.106 yamt }
590 1.106 yamt if (anon) {
591 1.106 yamt
592 1.106 yamt /*
593 1.106 yamt * The new anon is locked.
594 1.106 yamt *
595 1.106 yamt * if opg == NULL, we want a zero'd, dirty page,
596 1.106 yamt * so have uvm_pagealloc() do that for us.
597 1.106 yamt */
598 1.106 yamt
599 1.186 rmind KASSERT(anon->an_lock == NULL);
600 1.186 rmind anon->an_lock = amap->am_lock;
601 1.179 matt pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
602 1.179 matt UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
603 1.186 rmind if (pg == NULL) {
604 1.186 rmind anon->an_lock = NULL;
605 1.186 rmind }
606 1.106 yamt } else {
607 1.106 yamt pg = NULL;
608 1.106 yamt }
609 1.106 yamt
610 1.106 yamt /*
611 1.106 yamt * out of memory resources?
612 1.106 yamt */
613 1.106 yamt
614 1.106 yamt if (pg == NULL) {
615 1.106 yamt /* save anon for the next try. */
616 1.106 yamt if (anon != NULL) {
617 1.106 yamt *spare = anon;
618 1.106 yamt }
619 1.106 yamt
620 1.106 yamt /* unlock and fail ... */
621 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
622 1.106 yamt if (!uvm_reclaimable()) {
623 1.106 yamt UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
624 1.213 ad cpu_count(CPU_COUNT_FLTNOANON, 1);
625 1.106 yamt error = ENOMEM;
626 1.106 yamt goto done;
627 1.106 yamt }
628 1.106 yamt
629 1.106 yamt UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
630 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1);
631 1.106 yamt uvm_wait("flt_noram5");
632 1.106 yamt error = ERESTART;
633 1.106 yamt goto done;
634 1.106 yamt }
635 1.106 yamt
636 1.106 yamt /* copy page [pg now dirty] */
637 1.106 yamt if (opg) {
638 1.106 yamt uvm_pagecopy(opg, pg);
639 1.106 yamt }
640 1.215 ad KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
641 1.106 yamt
642 1.106 yamt amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
643 1.106 yamt oanon != NULL);
644 1.106 yamt
645 1.227 ad /*
646 1.227 ad * from this point on am_lock won't be dropped until the page is
647 1.227 ad * entered, so it's safe to unbusy the page up front.
648 1.227 ad *
649 1.227 ad * uvm_fault_{upper,lower}_done will activate or enqueue the page.
650 1.227 ad */
651 1.227 ad
652 1.227 ad pg = anon->an_page;
653 1.227 ad pg->flags &= ~(PG_BUSY|PG_FAKE);
654 1.227 ad UVM_PAGE_OWN(pg, NULL);
655 1.227 ad
656 1.106 yamt *nanon = anon;
657 1.106 yamt error = 0;
658 1.106 yamt done:
659 1.106 yamt return error;
660 1.106 yamt }
661 1.106 yamt
662 1.203 christos /*
663 1.203 christos * Update statistics after fault resolution.
664 1.203 christos * - maxrss
665 1.203 christos */
666 1.203 christos void
667 1.203 christos uvmfault_update_stats(struct uvm_faultinfo *ufi)
668 1.203 christos {
669 1.203 christos struct vm_map *map;
670 1.204 christos struct vmspace *vm;
671 1.203 christos struct proc *p;
672 1.203 christos vsize_t res;
673 1.203 christos
674 1.203 christos map = ufi->orig_map;
675 1.203 christos
676 1.203 christos p = curproc;
677 1.203 christos KASSERT(p != NULL);
678 1.204 christos vm = p->p_vmspace;
679 1.204 christos
680 1.204 christos if (&vm->vm_map != map)
681 1.203 christos return;
682 1.203 christos
683 1.203 christos res = pmap_resident_count(map->pmap);
684 1.204 christos if (vm->vm_rssmax < res)
685 1.204 christos vm->vm_rssmax = res;
686 1.203 christos }
687 1.106 yamt
688 1.106 yamt /*
689 1.1 mrg * F A U L T - m a i n e n t r y p o i n t
690 1.1 mrg */
691 1.1 mrg
692 1.1 mrg /*
693 1.1 mrg * uvm_fault: page fault handler
694 1.1 mrg *
695 1.1 mrg * => called from MD code to resolve a page fault
696 1.63 chs * => VM data structures usually should be unlocked. however, it is
697 1.1 mrg * possible to call here with the main map locked if the caller
698 1.229 msaitoh * gets a write lock, sets it recursive, and then calls us (c.f.
699 1.1 mrg * uvm_map_pageable). this should be avoided because it keeps
700 1.1 mrg * the map locked off during I/O.
701 1.66 thorpej * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
702 1.1 mrg */
703 1.1 mrg
704 1.24 mycroft #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
705 1.24 mycroft ~VM_PROT_WRITE : VM_PROT_ALL)
706 1.24 mycroft
707 1.110 drochner /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
708 1.130 uebayasi #define UVM_FAULT_WIRE (1 << 0)
709 1.130 uebayasi #define UVM_FAULT_MAXPROT (1 << 1)
710 1.110 drochner
711 1.140 uebayasi struct uvm_faultctx {
712 1.191 yamt
713 1.191 yamt /*
714 1.191 yamt * the following members are set up by uvm_fault_check() and
715 1.191 yamt * read-only after that.
716 1.191 yamt *
717 1.191 yamt * note that narrow is used by uvm_fault_check() to change
718 1.191 yamt * the behaviour after ERESTART.
719 1.191 yamt *
720 1.191 yamt * most of them might change after RESTART if the underlying
721 1.191 yamt * map entry has been changed behind us. an exception is
722 1.191 yamt * wire_paging, which does never change.
723 1.191 yamt */
724 1.140 uebayasi vm_prot_t access_type;
725 1.150 uebayasi vaddr_t startva;
726 1.150 uebayasi int npages;
727 1.150 uebayasi int centeridx;
728 1.191 yamt bool narrow; /* work on a single requested page only */
729 1.191 yamt bool wire_mapping; /* request a PMAP_WIRED mapping
730 1.191 yamt (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
731 1.191 yamt bool wire_paging; /* request uvm_pagewire
732 1.191 yamt (true for UVM_FAULT_WIRE) */
733 1.191 yamt bool cow_now; /* VM_PROT_WRITE is actually requested
734 1.191 yamt (ie. should break COW and page loaning) */
735 1.191 yamt
736 1.191 yamt /*
737 1.191 yamt * enter_prot is set up by uvm_fault_check() and clamped
738 1.191 yamt * (ie. drop the VM_PROT_WRITE bit) in various places in case
739 1.191 yamt * of !cow_now.
740 1.191 yamt */
741 1.191 yamt vm_prot_t enter_prot; /* prot at which we want to enter pages in */
742 1.191 yamt
743 1.191 yamt /*
744 1.191 yamt * the following member is for uvmfault_promote() and ERESTART.
745 1.191 yamt */
746 1.150 uebayasi struct vm_anon *anon_spare;
747 1.191 yamt
748 1.191 yamt /*
749 1.230 dholland * the following is actually a uvm_fault_lower() internal.
750 1.191 yamt * it's here merely for debugging.
751 1.191 yamt * (or due to the mechanical separation of the function?)
752 1.191 yamt */
753 1.168 uebayasi bool promote;
754 1.222 ad
755 1.222 ad /*
756 1.222 ad * type of lock to acquire on objects in both layers.
757 1.222 ad */
758 1.222 ad krw_t lower_lock_type;
759 1.222 ad krw_t upper_lock_type;
760 1.140 uebayasi };
761 1.140 uebayasi
762 1.163 uebayasi static inline int uvm_fault_check(
763 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
764 1.177 yamt struct vm_anon ***, bool);
765 1.163 uebayasi
766 1.163 uebayasi static int uvm_fault_upper(
767 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
768 1.163 uebayasi struct vm_anon **);
769 1.163 uebayasi static inline int uvm_fault_upper_lookup(
770 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
771 1.163 uebayasi struct vm_anon **, struct vm_page **);
772 1.163 uebayasi static inline void uvm_fault_upper_neighbor(
773 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
774 1.163 uebayasi vaddr_t, struct vm_page *, bool);
775 1.163 uebayasi static inline int uvm_fault_upper_loan(
776 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
777 1.163 uebayasi struct vm_anon *, struct uvm_object **);
778 1.163 uebayasi static inline int uvm_fault_upper_promote(
779 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
780 1.163 uebayasi struct uvm_object *, struct vm_anon *);
781 1.163 uebayasi static inline int uvm_fault_upper_direct(
782 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
783 1.163 uebayasi struct uvm_object *, struct vm_anon *);
784 1.163 uebayasi static int uvm_fault_upper_enter(
785 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
786 1.163 uebayasi struct uvm_object *, struct vm_anon *,
787 1.163 uebayasi struct vm_page *, struct vm_anon *);
788 1.169 uebayasi static inline void uvm_fault_upper_done(
789 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
790 1.177 yamt struct vm_anon *, struct vm_page *);
791 1.163 uebayasi
792 1.163 uebayasi static int uvm_fault_lower(
793 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
794 1.163 uebayasi struct vm_page **);
795 1.173 uebayasi static inline void uvm_fault_lower_lookup(
796 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
797 1.163 uebayasi struct vm_page **);
798 1.163 uebayasi static inline void uvm_fault_lower_neighbor(
799 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
800 1.215 ad vaddr_t, struct vm_page *);
801 1.163 uebayasi static inline int uvm_fault_lower_io(
802 1.222 ad struct uvm_faultinfo *, struct uvm_faultctx *,
803 1.163 uebayasi struct uvm_object **, struct vm_page **);
804 1.163 uebayasi static inline int uvm_fault_lower_direct(
805 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
806 1.163 uebayasi struct uvm_object *, struct vm_page *);
807 1.163 uebayasi static inline int uvm_fault_lower_direct_loan(
808 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
809 1.163 uebayasi struct uvm_object *, struct vm_page **,
810 1.163 uebayasi struct vm_page **);
811 1.163 uebayasi static inline int uvm_fault_lower_promote(
812 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
813 1.163 uebayasi struct uvm_object *, struct vm_page *);
814 1.163 uebayasi static int uvm_fault_lower_enter(
815 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
816 1.163 uebayasi struct uvm_object *,
817 1.183 yamt struct vm_anon *, struct vm_page *);
818 1.169 uebayasi static inline void uvm_fault_lower_done(
819 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
820 1.177 yamt struct uvm_object *, struct vm_page *);
821 1.138 uebayasi
822 1.7 mrg int
823 1.110 drochner uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
824 1.110 drochner vm_prot_t access_type, int fault_flag)
825 1.1 mrg {
826 1.7 mrg struct uvm_faultinfo ufi;
827 1.140 uebayasi struct uvm_faultctx flt = {
828 1.140 uebayasi .access_type = access_type,
829 1.146 uebayasi
830 1.146 uebayasi /* don't look for neighborhood * pages on "wire" fault */
831 1.146 uebayasi .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
832 1.146 uebayasi
833 1.146 uebayasi /* "wire" fault causes wiring of both mapping and paging */
834 1.146 uebayasi .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
835 1.146 uebayasi .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
836 1.222 ad
837 1.222 ad /*
838 1.222 ad * default lock type to acquire on upper & lower layer
839 1.222 ad * objects: reader. this can be upgraded at any point
840 1.222 ad * during the fault from read -> write and uvm_faultctx
841 1.222 ad * changed to match, but is never downgraded write -> read.
842 1.222 ad */
843 1.222 ad #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
844 1.222 ad .upper_lock_type = RW_WRITER,
845 1.222 ad .lower_lock_type = RW_WRITER,
846 1.222 ad #else
847 1.222 ad .upper_lock_type = RW_READER,
848 1.222 ad .lower_lock_type = RW_READER,
849 1.222 ad #endif
850 1.140 uebayasi };
851 1.177 yamt const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
852 1.137 uebayasi struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
853 1.141 uebayasi struct vm_page *pages_store[UVM_MAXRANGE], **pages;
854 1.140 uebayasi int error;
855 1.196 tls
856 1.228 skrll UVMHIST_FUNC(__func__);
857 1.228 skrll UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
858 1.201 pgoyette (uintptr_t)orig_map, vaddr, access_type, fault_flag);
859 1.1 mrg
860 1.193 tls /* Don't count anything until user interaction is possible */
861 1.213 ad kpreempt_disable();
862 1.193 tls if (__predict_true(start_init_exec)) {
863 1.213 ad struct cpu_info *ci = curcpu();
864 1.213 ad CPU_COUNT(CPU_COUNT_NFAULT, 1);
865 1.213 ad /* Don't flood RNG subsystem with samples. */
866 1.213 ad if (++(ci->ci_faultrng) == 503) {
867 1.213 ad ci->ci_faultrng = 0;
868 1.213 ad rnd_add_uint32(&curcpu()->ci_data.cpu_uvm->rs,
869 1.213 ad sizeof(vaddr_t) == sizeof(uint32_t) ?
870 1.213 ad (uint32_t)vaddr : sizeof(vaddr_t) ==
871 1.213 ad sizeof(uint64_t) ?
872 1.213 ad (uint32_t)vaddr :
873 1.213 ad (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
874 1.213 ad }
875 1.193 tls }
876 1.213 ad kpreempt_enable();
877 1.213 ad
878 1.7 mrg /*
879 1.7 mrg * init the IN parameters in the ufi
880 1.7 mrg */
881 1.1 mrg
882 1.7 mrg ufi.orig_map = orig_map;
883 1.7 mrg ufi.orig_rvaddr = trunc_page(vaddr);
884 1.7 mrg ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
885 1.7 mrg
886 1.142 uebayasi error = ERESTART;
887 1.183 yamt while (error == ERESTART) { /* ReFault: */
888 1.143 uebayasi anons = anons_store;
889 1.143 uebayasi pages = pages_store;
890 1.1 mrg
891 1.177 yamt error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
892 1.143 uebayasi if (error != 0)
893 1.143 uebayasi continue;
894 1.141 uebayasi
895 1.143 uebayasi error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
896 1.143 uebayasi if (error != 0)
897 1.143 uebayasi continue;
898 1.138 uebayasi
899 1.144 uebayasi if (pages[flt.centeridx] == PGO_DONTCARE)
900 1.148 uebayasi error = uvm_fault_upper(&ufi, &flt, anons);
901 1.167 uebayasi else {
902 1.177 yamt struct uvm_object * const uobj =
903 1.177 yamt ufi.entry->object.uvm_obj;
904 1.167 uebayasi
905 1.167 uebayasi if (uobj && uobj->pgops->pgo_fault != NULL) {
906 1.173 uebayasi /*
907 1.173 uebayasi * invoke "special" fault routine.
908 1.173 uebayasi */
909 1.216 ad rw_enter(uobj->vmobjlock, RW_WRITER);
910 1.173 uebayasi /* locked: maps(read), amap(if there), uobj */
911 1.173 uebayasi error = uobj->pgops->pgo_fault(&ufi,
912 1.173 uebayasi flt.startva, pages, flt.npages,
913 1.173 uebayasi flt.centeridx, flt.access_type,
914 1.173 uebayasi PGO_LOCKED|PGO_SYNCIO);
915 1.167 uebayasi
916 1.177 yamt /*
917 1.177 yamt * locked: nothing, pgo_fault has unlocked
918 1.177 yamt * everything
919 1.177 yamt */
920 1.167 uebayasi
921 1.167 uebayasi /*
922 1.177 yamt * object fault routine responsible for
923 1.177 yamt * pmap_update().
924 1.167 uebayasi */
925 1.205 chs
926 1.205 chs /*
927 1.205 chs * Wake up the pagedaemon if the fault method
928 1.205 chs * failed for lack of memory but some can be
929 1.205 chs * reclaimed.
930 1.205 chs */
931 1.205 chs if (error == ENOMEM && uvm_reclaimable()) {
932 1.205 chs uvm_wait("pgo_fault");
933 1.205 chs error = ERESTART;
934 1.205 chs }
935 1.167 uebayasi } else {
936 1.167 uebayasi error = uvm_fault_lower(&ufi, &flt, pages);
937 1.167 uebayasi }
938 1.167 uebayasi }
939 1.142 uebayasi }
940 1.138 uebayasi
941 1.140 uebayasi if (flt.anon_spare != NULL) {
942 1.140 uebayasi flt.anon_spare->an_ref--;
943 1.186 rmind KASSERT(flt.anon_spare->an_ref == 0);
944 1.186 rmind KASSERT(flt.anon_spare->an_lock == NULL);
945 1.221 ad uvm_anfree(flt.anon_spare);
946 1.138 uebayasi }
947 1.138 uebayasi return error;
948 1.141 uebayasi }
949 1.138 uebayasi
950 1.173 uebayasi /*
951 1.173 uebayasi * uvm_fault_check: check prot, handle needs-copy, etc.
952 1.173 uebayasi *
953 1.173 uebayasi * 1. lookup entry.
954 1.173 uebayasi * 2. check protection.
955 1.173 uebayasi * 3. adjust fault condition (mainly for simulated fault).
956 1.173 uebayasi * 4. handle needs-copy (lazy amap copy).
957 1.173 uebayasi * 5. establish range of interest for neighbor fault (aka pre-fault).
958 1.173 uebayasi * 6. look up anons (if amap exists).
959 1.173 uebayasi * 7. flush pages (if MADV_SEQUENTIAL)
960 1.173 uebayasi *
961 1.173 uebayasi * => called with nothing locked.
962 1.173 uebayasi * => if we fail (result != 0) we unlock everything.
963 1.177 yamt * => initialize/adjust many members of flt.
964 1.173 uebayasi */
965 1.173 uebayasi
966 1.144 uebayasi static int
967 1.141 uebayasi uvm_fault_check(
968 1.141 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
969 1.177 yamt struct vm_anon ***ranons, bool maxprot)
970 1.141 uebayasi {
971 1.141 uebayasi struct vm_amap *amap;
972 1.141 uebayasi struct uvm_object *uobj;
973 1.137 uebayasi vm_prot_t check_prot;
974 1.137 uebayasi int nback, nforw;
975 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
976 1.137 uebayasi
977 1.7 mrg /*
978 1.7 mrg * lookup and lock the maps
979 1.7 mrg */
980 1.7 mrg
981 1.141 uebayasi if (uvmfault_lookup(ufi, false) == false) {
982 1.217 rin UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr,
983 1.177 yamt 0,0,0);
984 1.141 uebayasi return EFAULT;
985 1.7 mrg }
986 1.7 mrg /* locked: maps(read) */
987 1.7 mrg
988 1.61 thorpej #ifdef DIAGNOSTIC
989 1.141 uebayasi if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
990 1.61 thorpej printf("Page fault on non-pageable map:\n");
991 1.141 uebayasi printf("ufi->map = %p\n", ufi->map);
992 1.141 uebayasi printf("ufi->orig_map = %p\n", ufi->orig_map);
993 1.217 rin printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr);
994 1.141 uebayasi panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
995 1.61 thorpej }
996 1.61 thorpej #endif
997 1.58 chs
998 1.7 mrg /*
999 1.7 mrg * check protection
1000 1.7 mrg */
1001 1.7 mrg
1002 1.177 yamt check_prot = maxprot ?
1003 1.141 uebayasi ufi->entry->max_protection : ufi->entry->protection;
1004 1.141 uebayasi if ((check_prot & flt->access_type) != flt->access_type) {
1005 1.7 mrg UVMHIST_LOG(maphist,
1006 1.201 pgoyette "<- protection failure (prot=%#jx, access=%#jx)",
1007 1.141 uebayasi ufi->entry->protection, flt->access_type, 0, 0);
1008 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
1009 1.200 christos return EFAULT;
1010 1.7 mrg }
1011 1.7 mrg
1012 1.7 mrg /*
1013 1.7 mrg * "enter_prot" is the protection we want to enter the page in at.
1014 1.7 mrg * for certain pages (e.g. copy-on-write pages) this protection can
1015 1.141 uebayasi * be more strict than ufi->entry->protection. "wired" means either
1016 1.7 mrg * the entry is wired or we are fault-wiring the pg.
1017 1.7 mrg */
1018 1.7 mrg
1019 1.141 uebayasi flt->enter_prot = ufi->entry->protection;
1020 1.207 chs if (VM_MAPENT_ISWIRED(ufi->entry)) {
1021 1.146 uebayasi flt->wire_mapping = true;
1022 1.207 chs flt->wire_paging = true;
1023 1.207 chs flt->narrow = true;
1024 1.207 chs }
1025 1.146 uebayasi
1026 1.146 uebayasi if (flt->wire_mapping) {
1027 1.141 uebayasi flt->access_type = flt->enter_prot; /* full access for wired */
1028 1.141 uebayasi flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1029 1.73 chs } else {
1030 1.141 uebayasi flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1031 1.73 chs }
1032 1.7 mrg
1033 1.222 ad if (flt->wire_paging) {
1034 1.222 ad /* wiring pages requires a write lock. */
1035 1.222 ad flt->upper_lock_type = RW_WRITER;
1036 1.222 ad flt->lower_lock_type = RW_WRITER;
1037 1.222 ad }
1038 1.222 ad
1039 1.168 uebayasi flt->promote = false;
1040 1.168 uebayasi
1041 1.7 mrg /*
1042 1.7 mrg * handle "needs_copy" case. if we need to copy the amap we will
1043 1.7 mrg * have to drop our readlock and relock it with a write lock. (we
1044 1.7 mrg * need a write lock to change anything in a map entry [e.g.
1045 1.7 mrg * needs_copy]).
1046 1.7 mrg */
1047 1.7 mrg
1048 1.141 uebayasi if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1049 1.141 uebayasi if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1050 1.177 yamt KASSERT(!maxprot);
1051 1.7 mrg /* need to clear */
1052 1.7 mrg UVMHIST_LOG(maphist,
1053 1.7 mrg " need to clear needs_copy and refault",0,0,0,0);
1054 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
1055 1.141 uebayasi uvmfault_amapcopy(ufi);
1056 1.213 ad cpu_count(CPU_COUNT_FLTAMCOPY, 1);
1057 1.141 uebayasi return ERESTART;
1058 1.7 mrg
1059 1.7 mrg } else {
1060 1.7 mrg
1061 1.7 mrg /*
1062 1.7 mrg * ensure that we pmap_enter page R/O since
1063 1.7 mrg * needs_copy is still true
1064 1.7 mrg */
1065 1.72 chs
1066 1.141 uebayasi flt->enter_prot &= ~VM_PROT_WRITE;
1067 1.7 mrg }
1068 1.7 mrg }
1069 1.7 mrg
1070 1.7 mrg /*
1071 1.7 mrg * identify the players
1072 1.7 mrg */
1073 1.7 mrg
1074 1.141 uebayasi amap = ufi->entry->aref.ar_amap; /* upper layer */
1075 1.141 uebayasi uobj = ufi->entry->object.uvm_obj; /* lower layer */
1076 1.7 mrg
1077 1.7 mrg /*
1078 1.7 mrg * check for a case 0 fault. if nothing backing the entry then
1079 1.7 mrg * error now.
1080 1.7 mrg */
1081 1.7 mrg
1082 1.7 mrg if (amap == NULL && uobj == NULL) {
1083 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
1084 1.7 mrg UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1085 1.141 uebayasi return EFAULT;
1086 1.7 mrg }
1087 1.1 mrg
1088 1.7 mrg /*
1089 1.227 ad * for a case 2B fault waste no time on adjacent pages because
1090 1.227 ad * they are likely already entered.
1091 1.227 ad */
1092 1.227 ad
1093 1.227 ad if (uobj != NULL && amap != NULL &&
1094 1.227 ad (flt->access_type & VM_PROT_WRITE) != 0) {
1095 1.227 ad /* wide fault (!narrow) */
1096 1.227 ad flt->narrow = true;
1097 1.227 ad }
1098 1.227 ad
1099 1.227 ad /*
1100 1.7 mrg * establish range of interest based on advice from mapper
1101 1.7 mrg * and then clip to fit map entry. note that we only want
1102 1.63 chs * to do this the first time through the fault. if we
1103 1.7 mrg * ReFault we will disable this by setting "narrow" to true.
1104 1.7 mrg */
1105 1.1 mrg
1106 1.141 uebayasi if (flt->narrow == false) {
1107 1.7 mrg
1108 1.7 mrg /* wide fault (!narrow) */
1109 1.141 uebayasi KASSERT(uvmadvice[ufi->entry->advice].advice ==
1110 1.141 uebayasi ufi->entry->advice);
1111 1.141 uebayasi nback = MIN(uvmadvice[ufi->entry->advice].nback,
1112 1.177 yamt (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1113 1.141 uebayasi flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1114 1.7 mrg /*
1115 1.7 mrg * note: "-1" because we don't want to count the
1116 1.7 mrg * faulting page as forw
1117 1.7 mrg */
1118 1.177 yamt nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1119 1.177 yamt ((ufi->entry->end - ufi->orig_rvaddr) >>
1120 1.177 yamt PAGE_SHIFT) - 1);
1121 1.141 uebayasi flt->npages = nback + nforw + 1;
1122 1.141 uebayasi flt->centeridx = nback;
1123 1.7 mrg
1124 1.141 uebayasi flt->narrow = true; /* ensure only once per-fault */
1125 1.7 mrg
1126 1.7 mrg } else {
1127 1.63 chs
1128 1.7 mrg /* narrow fault! */
1129 1.7 mrg nback = nforw = 0;
1130 1.141 uebayasi flt->startva = ufi->orig_rvaddr;
1131 1.141 uebayasi flt->npages = 1;
1132 1.141 uebayasi flt->centeridx = 0;
1133 1.1 mrg
1134 1.7 mrg }
1135 1.131 uebayasi /* offset from entry's start to pgs' start */
1136 1.141 uebayasi const voff_t eoff = flt->startva - ufi->entry->start;
1137 1.1 mrg
1138 1.7 mrg /* locked: maps(read) */
1139 1.201 pgoyette UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1140 1.141 uebayasi flt->narrow, nback, nforw, flt->startva);
1141 1.201 pgoyette UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1142 1.201 pgoyette (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1143 1.1 mrg
1144 1.7 mrg /*
1145 1.222 ad * guess at the most suitable lock types to acquire.
1146 1.222 ad * if we've got an amap then lock it and extract current anons.
1147 1.7 mrg */
1148 1.7 mrg
1149 1.7 mrg if (amap) {
1150 1.222 ad if ((amap_flags(amap) & AMAP_SHARED) == 0) {
1151 1.222 ad /*
1152 1.222 ad * the amap isn't shared. get a writer lock to
1153 1.222 ad * avoid the cost of upgrading the lock later if
1154 1.222 ad * needed.
1155 1.222 ad *
1156 1.222 ad * XXX nice for PostgreSQL, but consider threads.
1157 1.222 ad */
1158 1.222 ad flt->upper_lock_type = RW_WRITER;
1159 1.222 ad } else if ((flt->access_type & VM_PROT_WRITE) != 0) {
1160 1.222 ad /*
1161 1.222 ad * assume we're about to COW.
1162 1.222 ad */
1163 1.222 ad flt->upper_lock_type = RW_WRITER;
1164 1.222 ad }
1165 1.222 ad amap_lock(amap, flt->upper_lock_type);
1166 1.141 uebayasi amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1167 1.7 mrg } else {
1168 1.222 ad if ((flt->access_type & VM_PROT_WRITE) != 0) {
1169 1.222 ad /*
1170 1.222 ad * we are about to dirty the object and that
1171 1.222 ad * requires a write lock.
1172 1.222 ad */
1173 1.222 ad flt->lower_lock_type = RW_WRITER;
1174 1.222 ad }
1175 1.141 uebayasi *ranons = NULL; /* to be safe */
1176 1.7 mrg }
1177 1.7 mrg
1178 1.7 mrg /* locked: maps(read), amap(if there) */
1179 1.222 ad KASSERT(amap == NULL ||
1180 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1181 1.7 mrg
1182 1.7 mrg /*
1183 1.7 mrg * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1184 1.7 mrg * now and then forget about them (for the rest of the fault).
1185 1.7 mrg */
1186 1.7 mrg
1187 1.141 uebayasi if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1188 1.7 mrg
1189 1.7 mrg UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1190 1.7 mrg 0,0,0,0);
1191 1.7 mrg /* flush back-page anons? */
1192 1.63 chs if (amap)
1193 1.141 uebayasi uvmfault_anonflush(*ranons, nback);
1194 1.7 mrg
1195 1.225 ad /*
1196 1.225 ad * flush object? change lock type to RW_WRITER, to avoid
1197 1.225 ad * excessive competition between read/write locks if many
1198 1.225 ad * threads doing "sequential access".
1199 1.225 ad */
1200 1.7 mrg if (uobj) {
1201 1.137 uebayasi voff_t uoff;
1202 1.137 uebayasi
1203 1.225 ad flt->lower_lock_type = RW_WRITER;
1204 1.141 uebayasi uoff = ufi->entry->offset + eoff;
1205 1.216 ad rw_enter(uobj->vmobjlock, RW_WRITER);
1206 1.90 yamt (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1207 1.15 chs (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1208 1.7 mrg }
1209 1.7 mrg
1210 1.7 mrg /* now forget about the backpages */
1211 1.7 mrg if (amap)
1212 1.141 uebayasi *ranons += nback;
1213 1.141 uebayasi flt->startva += (nback << PAGE_SHIFT);
1214 1.141 uebayasi flt->npages -= nback;
1215 1.141 uebayasi flt->centeridx = 0;
1216 1.7 mrg }
1217 1.137 uebayasi /*
1218 1.137 uebayasi * => startva is fixed
1219 1.137 uebayasi * => npages is fixed
1220 1.137 uebayasi */
1221 1.177 yamt KASSERT(flt->startva <= ufi->orig_rvaddr);
1222 1.177 yamt KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1223 1.177 yamt flt->startva + (flt->npages << PAGE_SHIFT));
1224 1.141 uebayasi return 0;
1225 1.141 uebayasi }
1226 1.141 uebayasi
1227 1.173 uebayasi /*
1228 1.222 ad * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer
1229 1.222 ad */
1230 1.222 ad
1231 1.222 ad static inline int
1232 1.222 ad uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1233 1.222 ad struct vm_amap *amap, struct uvm_object *uobj)
1234 1.222 ad {
1235 1.224 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1236 1.222 ad
1237 1.222 ad KASSERT(amap != NULL);
1238 1.222 ad KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1239 1.222 ad
1240 1.222 ad /*
1241 1.222 ad * fast path.
1242 1.222 ad */
1243 1.223 skrll
1244 1.222 ad if (__predict_true(flt->upper_lock_type == RW_WRITER)) {
1245 1.222 ad return 0;
1246 1.222 ad }
1247 1.222 ad
1248 1.222 ad /*
1249 1.222 ad * otherwise try for the upgrade. if we don't get it, unlock
1250 1.222 ad * everything, restart the fault and next time around get a writer
1251 1.222 ad * lock.
1252 1.222 ad */
1253 1.222 ad
1254 1.222 ad flt->upper_lock_type = RW_WRITER;
1255 1.222 ad if (__predict_false(!rw_tryupgrade(amap->am_lock))) {
1256 1.222 ad uvmfault_unlockall(ufi, amap, uobj);
1257 1.222 ad cpu_count(CPU_COUNT_FLTNOUP, 1);
1258 1.222 ad UVMHIST_LOG(maphist, " !upgrade upper", 0, 0,0,0);
1259 1.222 ad return ERESTART;
1260 1.222 ad }
1261 1.222 ad cpu_count(CPU_COUNT_FLTUP, 1);
1262 1.222 ad KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1263 1.222 ad return 0;
1264 1.222 ad }
1265 1.222 ad
1266 1.222 ad /*
1267 1.173 uebayasi * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1268 1.173 uebayasi *
1269 1.173 uebayasi * iterate range of interest:
1270 1.173 uebayasi * 1. check if h/w mapping exists. if yes, we don't care
1271 1.173 uebayasi * 2. check if anon exists. if not, page is lower.
1272 1.173 uebayasi * 3. if anon exists, enter h/w mapping for neighbors.
1273 1.173 uebayasi *
1274 1.173 uebayasi * => called with amap locked (if exists).
1275 1.173 uebayasi */
1276 1.173 uebayasi
1277 1.144 uebayasi static int
1278 1.141 uebayasi uvm_fault_upper_lookup(
1279 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1280 1.141 uebayasi struct vm_anon **anons, struct vm_page **pages)
1281 1.141 uebayasi {
1282 1.141 uebayasi struct vm_amap *amap = ufi->entry->aref.ar_amap;
1283 1.137 uebayasi int lcv;
1284 1.137 uebayasi vaddr_t currva;
1285 1.195 martin bool shadowed __unused;
1286 1.220 ad bool entered;
1287 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1288 1.7 mrg
1289 1.7 mrg /* locked: maps(read), amap(if there) */
1290 1.222 ad KASSERT(amap == NULL ||
1291 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1292 1.1 mrg
1293 1.7 mrg /*
1294 1.7 mrg * map in the backpages and frontpages we found in the amap in hopes
1295 1.7 mrg * of preventing future faults. we also init the pages[] array as
1296 1.7 mrg * we go.
1297 1.7 mrg */
1298 1.7 mrg
1299 1.141 uebayasi currva = flt->startva;
1300 1.144 uebayasi shadowed = false;
1301 1.220 ad entered = false;
1302 1.163 uebayasi for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1303 1.7 mrg /*
1304 1.7 mrg * unmapped or center page. check if any anon at this level.
1305 1.7 mrg */
1306 1.7 mrg if (amap == NULL || anons[lcv] == NULL) {
1307 1.7 mrg pages[lcv] = NULL;
1308 1.7 mrg continue;
1309 1.7 mrg }
1310 1.7 mrg
1311 1.7 mrg /*
1312 1.222 ad * check for present page and map if possible.
1313 1.7 mrg */
1314 1.7 mrg
1315 1.7 mrg pages[lcv] = PGO_DONTCARE;
1316 1.177 yamt if (lcv == flt->centeridx) { /* save center for later! */
1317 1.144 uebayasi shadowed = true;
1318 1.186 rmind continue;
1319 1.186 rmind }
1320 1.186 rmind
1321 1.186 rmind struct vm_anon *anon = anons[lcv];
1322 1.186 rmind struct vm_page *pg = anon->an_page;
1323 1.161 uebayasi
1324 1.186 rmind KASSERT(anon->an_lock == amap->am_lock);
1325 1.172 uebayasi
1326 1.220 ad /*
1327 1.220 ad * ignore loaned and busy pages.
1328 1.220 ad * don't play with VAs that are already mapped.
1329 1.220 ad */
1330 1.220 ad
1331 1.220 ad if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 &&
1332 1.220 ad !pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1333 1.186 rmind uvm_fault_upper_neighbor(ufi, flt, currva,
1334 1.186 rmind pg, anon->an_ref > 1);
1335 1.220 ad entered = true;
1336 1.7 mrg }
1337 1.151 uebayasi }
1338 1.220 ad if (entered) {
1339 1.220 ad pmap_update(ufi->orig_map->pmap);
1340 1.220 ad }
1341 1.151 uebayasi
1342 1.160 uebayasi /* locked: maps(read), amap(if there) */
1343 1.222 ad KASSERT(amap == NULL ||
1344 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1345 1.160 uebayasi /* (shadowed == true) if there is an anon at the faulting address */
1346 1.201 pgoyette UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1347 1.164 mlelstv (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1348 1.160 uebayasi
1349 1.151 uebayasi return 0;
1350 1.151 uebayasi }
1351 1.151 uebayasi
1352 1.173 uebayasi /*
1353 1.202 chs * uvm_fault_upper_neighbor: enter single upper neighbor page.
1354 1.173 uebayasi *
1355 1.173 uebayasi * => called with amap and anon locked.
1356 1.173 uebayasi */
1357 1.173 uebayasi
1358 1.151 uebayasi static void
1359 1.163 uebayasi uvm_fault_upper_neighbor(
1360 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1361 1.161 uebayasi vaddr_t currva, struct vm_page *pg, bool readonly)
1362 1.151 uebayasi {
1363 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1364 1.151 uebayasi
1365 1.173 uebayasi /* locked: amap, anon */
1366 1.173 uebayasi
1367 1.215 ad KASSERT(pg->uobject == NULL);
1368 1.215 ad KASSERT(pg->uanon != NULL);
1369 1.222 ad KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type);
1370 1.215 ad KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1371 1.215 ad
1372 1.222 ad /*
1373 1.227 ad * there wasn't a direct fault on the page, so avoid the cost of
1374 1.227 ad * activating it.
1375 1.222 ad */
1376 1.222 ad
1377 1.227 ad if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
1378 1.222 ad uvm_pagelock(pg);
1379 1.222 ad uvm_pageenqueue(pg);
1380 1.222 ad uvm_pageunlock(pg);
1381 1.222 ad }
1382 1.227 ad
1383 1.152 uebayasi UVMHIST_LOG(maphist,
1384 1.201 pgoyette " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1385 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1386 1.213 ad cpu_count(CPU_COUNT_FLTNAMAP, 1);
1387 1.152 uebayasi
1388 1.152 uebayasi /*
1389 1.161 uebayasi * Since this page isn't the page that's actually faulting,
1390 1.161 uebayasi * ignore pmap_enter() failures; it's not critical that we
1391 1.161 uebayasi * enter these right now.
1392 1.152 uebayasi */
1393 1.152 uebayasi
1394 1.152 uebayasi (void) pmap_enter(ufi->orig_map->pmap, currva,
1395 1.161 uebayasi VM_PAGE_TO_PHYS(pg),
1396 1.161 uebayasi readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1397 1.152 uebayasi flt->enter_prot,
1398 1.154 uebayasi PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1399 1.151 uebayasi }
1400 1.151 uebayasi
1401 1.173 uebayasi /*
1402 1.173 uebayasi * uvm_fault_upper: handle upper fault.
1403 1.173 uebayasi *
1404 1.173 uebayasi * 1. acquire anon lock.
1405 1.173 uebayasi * 2. get anon. let uvmfault_anonget do the dirty work.
1406 1.173 uebayasi * 3. handle loan.
1407 1.173 uebayasi * 4. dispatch direct or promote handlers.
1408 1.173 uebayasi */
1409 1.134 uebayasi
1410 1.138 uebayasi static int
1411 1.138 uebayasi uvm_fault_upper(
1412 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1413 1.148 uebayasi struct vm_anon **anons)
1414 1.138 uebayasi {
1415 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1416 1.148 uebayasi struct vm_anon * const anon = anons[flt->centeridx];
1417 1.148 uebayasi struct uvm_object *uobj;
1418 1.138 uebayasi int error;
1419 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1420 1.137 uebayasi
1421 1.186 rmind /* locked: maps(read), amap, anon */
1422 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1423 1.186 rmind KASSERT(anon->an_lock == amap->am_lock);
1424 1.7 mrg
1425 1.7 mrg /*
1426 1.7 mrg * handle case 1: fault on an anon in our amap
1427 1.7 mrg */
1428 1.7 mrg
1429 1.201 pgoyette UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1430 1.201 pgoyette (uintptr_t)anon, 0, 0, 0);
1431 1.7 mrg
1432 1.7 mrg /*
1433 1.7 mrg * no matter if we have case 1A or case 1B we are going to need to
1434 1.7 mrg * have the anon's memory resident. ensure that now.
1435 1.7 mrg */
1436 1.7 mrg
1437 1.7 mrg /*
1438 1.47 chs * let uvmfault_anonget do the dirty work.
1439 1.51 thorpej * if it fails (!OK) it will unlock everything for us.
1440 1.47 chs * if it succeeds, locks are still valid and locked.
1441 1.7 mrg * also, if it is OK, then the anon's page is on the queues.
1442 1.7 mrg * if the page is on loan from a uvm_object, then anonget will
1443 1.7 mrg * lock that object for us if it does not fail.
1444 1.7 mrg */
1445 1.222 ad retry:
1446 1.138 uebayasi error = uvmfault_anonget(ufi, amap, anon);
1447 1.58 chs switch (error) {
1448 1.57 chs case 0:
1449 1.63 chs break;
1450 1.7 mrg
1451 1.57 chs case ERESTART:
1452 1.139 uebayasi return ERESTART;
1453 1.7 mrg
1454 1.57 chs case EAGAIN:
1455 1.128 pooka kpause("fltagain1", false, hz/2, NULL);
1456 1.139 uebayasi return ERESTART;
1457 1.51 thorpej
1458 1.222 ad case ENOLCK:
1459 1.222 ad /* it needs a write lock: retry */
1460 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1461 1.222 ad if (error != 0) {
1462 1.222 ad return error;
1463 1.222 ad }
1464 1.222 ad KASSERT(rw_write_held(amap->am_lock));
1465 1.222 ad goto retry;
1466 1.222 ad
1467 1.51 thorpej default:
1468 1.138 uebayasi return error;
1469 1.1 mrg }
1470 1.7 mrg
1471 1.7 mrg /*
1472 1.7 mrg * uobj is non null if the page is on loan from an object (i.e. uobj)
1473 1.7 mrg */
1474 1.7 mrg
1475 1.94 yamt uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1476 1.7 mrg
1477 1.7 mrg /* locked: maps(read), amap, anon, uobj(if one) */
1478 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1479 1.186 rmind KASSERT(anon->an_lock == amap->am_lock);
1480 1.222 ad KASSERT(uobj == NULL ||
1481 1.222 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1482 1.7 mrg
1483 1.7 mrg /*
1484 1.63 chs * special handling for loaned pages
1485 1.7 mrg */
1486 1.52 chs
1487 1.94 yamt if (anon->an_page->loan_count) {
1488 1.148 uebayasi error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1489 1.148 uebayasi if (error != 0)
1490 1.148 uebayasi return error;
1491 1.148 uebayasi }
1492 1.160 uebayasi
1493 1.160 uebayasi /*
1494 1.160 uebayasi * if we are case 1B then we will need to allocate a new blank
1495 1.160 uebayasi * anon to transfer the data into. note that we have a lock
1496 1.160 uebayasi * on anon, so no one can busy or release the page until we are done.
1497 1.160 uebayasi * also note that the ref count can't drop to zero here because
1498 1.160 uebayasi * it is > 1 and we are only dropping one ref.
1499 1.160 uebayasi *
1500 1.160 uebayasi * in the (hopefully very rare) case that we are out of RAM we
1501 1.160 uebayasi * will unlock, wait for more RAM, and refault.
1502 1.160 uebayasi *
1503 1.160 uebayasi * if we are out of anon VM we kill the process (XXX: could wait?).
1504 1.160 uebayasi */
1505 1.160 uebayasi
1506 1.160 uebayasi if (flt->cow_now && anon->an_ref > 1) {
1507 1.168 uebayasi flt->promote = true;
1508 1.160 uebayasi error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1509 1.160 uebayasi } else {
1510 1.160 uebayasi error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1511 1.160 uebayasi }
1512 1.160 uebayasi return error;
1513 1.148 uebayasi }
1514 1.148 uebayasi
1515 1.173 uebayasi /*
1516 1.173 uebayasi * uvm_fault_upper_loan: handle loaned upper page.
1517 1.173 uebayasi *
1518 1.177 yamt * 1. if not cow'ing now, simply adjust flt->enter_prot.
1519 1.173 uebayasi * 2. if cow'ing now, and if ref count is 1, break loan.
1520 1.173 uebayasi */
1521 1.173 uebayasi
1522 1.148 uebayasi static int
1523 1.148 uebayasi uvm_fault_upper_loan(
1524 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1525 1.148 uebayasi struct vm_anon *anon, struct uvm_object **ruobj)
1526 1.148 uebayasi {
1527 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1528 1.151 uebayasi int error = 0;
1529 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1530 1.149 uebayasi
1531 1.149 uebayasi if (!flt->cow_now) {
1532 1.7 mrg
1533 1.149 uebayasi /*
1534 1.149 uebayasi * for read faults on loaned pages we just cap the
1535 1.149 uebayasi * protection at read-only.
1536 1.149 uebayasi */
1537 1.63 chs
1538 1.149 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1539 1.7 mrg
1540 1.149 uebayasi } else {
1541 1.149 uebayasi /*
1542 1.149 uebayasi * note that we can't allow writes into a loaned page!
1543 1.149 uebayasi *
1544 1.149 uebayasi * if we have a write fault on a loaned page in an
1545 1.149 uebayasi * anon then we need to look at the anon's ref count.
1546 1.149 uebayasi * if it is greater than one then we are going to do
1547 1.149 uebayasi * a normal copy-on-write fault into a new anon (this
1548 1.149 uebayasi * is not a problem). however, if the reference count
1549 1.149 uebayasi * is one (a case where we would normally allow a
1550 1.149 uebayasi * write directly to the page) then we need to kill
1551 1.149 uebayasi * the loan before we continue.
1552 1.149 uebayasi */
1553 1.149 uebayasi
1554 1.149 uebayasi /* >1 case is already ok */
1555 1.149 uebayasi if (anon->an_ref == 1) {
1556 1.222 ad /* breaking loan requires a write lock. */
1557 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1558 1.222 ad if (error != 0) {
1559 1.222 ad return error;
1560 1.222 ad }
1561 1.222 ad KASSERT(rw_write_held(amap->am_lock));
1562 1.222 ad
1563 1.155 uebayasi error = uvm_loanbreak_anon(anon, *ruobj);
1564 1.151 uebayasi if (error != 0) {
1565 1.186 rmind uvmfault_unlockall(ufi, amap, *ruobj);
1566 1.151 uebayasi uvm_wait("flt_noram2");
1567 1.151 uebayasi return ERESTART;
1568 1.151 uebayasi }
1569 1.206 msaitoh /* if we were a loan receiver uobj is gone */
1570 1.155 uebayasi if (*ruobj)
1571 1.155 uebayasi *ruobj = NULL;
1572 1.151 uebayasi }
1573 1.151 uebayasi }
1574 1.151 uebayasi return error;
1575 1.151 uebayasi }
1576 1.151 uebayasi
1577 1.173 uebayasi /*
1578 1.173 uebayasi * uvm_fault_upper_promote: promote upper page.
1579 1.173 uebayasi *
1580 1.173 uebayasi * 1. call uvmfault_promote.
1581 1.173 uebayasi * 2. enqueue page.
1582 1.173 uebayasi * 3. deref.
1583 1.173 uebayasi * 4. pass page to uvm_fault_upper_enter.
1584 1.173 uebayasi */
1585 1.173 uebayasi
1586 1.148 uebayasi static int
1587 1.148 uebayasi uvm_fault_upper_promote(
1588 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1589 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon)
1590 1.148 uebayasi {
1591 1.222 ad struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1592 1.149 uebayasi struct vm_anon * const oanon = anon;
1593 1.149 uebayasi struct vm_page *pg;
1594 1.149 uebayasi int error;
1595 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1596 1.149 uebayasi
1597 1.149 uebayasi UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1598 1.213 ad cpu_count(CPU_COUNT_FLT_ACOW, 1);
1599 1.149 uebayasi
1600 1.222 ad /* promoting requires a write lock. */
1601 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1602 1.222 ad if (error != 0) {
1603 1.222 ad return error;
1604 1.222 ad }
1605 1.222 ad KASSERT(rw_write_held(amap->am_lock));
1606 1.222 ad
1607 1.177 yamt error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1608 1.177 yamt &flt->anon_spare);
1609 1.149 uebayasi switch (error) {
1610 1.149 uebayasi case 0:
1611 1.149 uebayasi break;
1612 1.149 uebayasi case ERESTART:
1613 1.149 uebayasi return ERESTART;
1614 1.149 uebayasi default:
1615 1.149 uebayasi return error;
1616 1.149 uebayasi }
1617 1.227 ad pg = anon->an_page;
1618 1.7 mrg
1619 1.222 ad KASSERT(anon->an_lock == oanon->an_lock);
1620 1.227 ad KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0);
1621 1.7 mrg
1622 1.149 uebayasi /* deref: can not drop to zero here by defn! */
1623 1.183 yamt KASSERT(oanon->an_ref > 1);
1624 1.149 uebayasi oanon->an_ref--;
1625 1.53 thorpej
1626 1.149 uebayasi /*
1627 1.149 uebayasi * note: oanon is still locked, as is the new anon. we
1628 1.149 uebayasi * need to check for this later when we unlock oanon; if
1629 1.149 uebayasi * oanon != anon, we'll have to unlock anon, too.
1630 1.149 uebayasi */
1631 1.7 mrg
1632 1.149 uebayasi return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1633 1.148 uebayasi }
1634 1.148 uebayasi
1635 1.173 uebayasi /*
1636 1.173 uebayasi * uvm_fault_upper_direct: handle direct fault.
1637 1.173 uebayasi */
1638 1.173 uebayasi
1639 1.148 uebayasi static int
1640 1.148 uebayasi uvm_fault_upper_direct(
1641 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1642 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon)
1643 1.148 uebayasi {
1644 1.149 uebayasi struct vm_anon * const oanon = anon;
1645 1.149 uebayasi struct vm_page *pg;
1646 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1647 1.52 chs
1648 1.213 ad cpu_count(CPU_COUNT_FLT_ANON, 1);
1649 1.149 uebayasi pg = anon->an_page;
1650 1.149 uebayasi if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1651 1.149 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1652 1.7 mrg
1653 1.149 uebayasi return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1654 1.148 uebayasi }
1655 1.148 uebayasi
1656 1.173 uebayasi /*
1657 1.173 uebayasi * uvm_fault_upper_enter: enter h/w mapping of upper page.
1658 1.173 uebayasi */
1659 1.173 uebayasi
1660 1.148 uebayasi static int
1661 1.148 uebayasi uvm_fault_upper_enter(
1662 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1663 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1664 1.148 uebayasi struct vm_anon *oanon)
1665 1.148 uebayasi {
1666 1.202 chs struct pmap *pmap = ufi->orig_map->pmap;
1667 1.202 chs vaddr_t va = ufi->orig_rvaddr;
1668 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1669 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1670 1.7 mrg
1671 1.173 uebayasi /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1672 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1673 1.186 rmind KASSERT(anon->an_lock == amap->am_lock);
1674 1.186 rmind KASSERT(oanon->an_lock == amap->am_lock);
1675 1.222 ad KASSERT(uobj == NULL ||
1676 1.222 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1677 1.215 ad KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1678 1.7 mrg
1679 1.7 mrg /*
1680 1.69 chs * now map the page in.
1681 1.7 mrg */
1682 1.7 mrg
1683 1.177 yamt UVMHIST_LOG(maphist,
1684 1.201 pgoyette " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1685 1.202 chs (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1686 1.202 chs if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1687 1.177 yamt flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1688 1.177 yamt (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1689 1.69 chs
1690 1.46 thorpej /*
1691 1.202 chs * If pmap_enter() fails, it must not leave behind an existing
1692 1.202 chs * pmap entry. In particular, a now-stale entry for a different
1693 1.202 chs * page would leave the pmap inconsistent with the vm_map.
1694 1.202 chs * This is not to imply that pmap_enter() should remove an
1695 1.202 chs * existing mapping in such a situation (since that could create
1696 1.202 chs * different problems, eg. if the existing mapping is wired),
1697 1.202 chs * but rather that the pmap should be designed such that it
1698 1.202 chs * never needs to fail when the new mapping is replacing an
1699 1.202 chs * existing mapping and the new page has no existing mappings.
1700 1.226 ad *
1701 1.226 ad * XXX This can't be asserted safely any more because many
1702 1.226 ad * LWPs and/or many processes could simultaneously fault on
1703 1.226 ad * the same VA and some might succeed.
1704 1.202 chs */
1705 1.202 chs
1706 1.226 ad /* KASSERT(!pmap_extract(pmap, va, NULL)); */
1707 1.202 chs
1708 1.202 chs /*
1709 1.222 ad * ensure that the page is queued in the case that
1710 1.222 ad * we just promoted.
1711 1.222 ad */
1712 1.222 ad
1713 1.227 ad uvm_pagelock(pg);
1714 1.227 ad uvm_pageenqueue(pg);
1715 1.227 ad uvm_pageunlock(pg);
1716 1.222 ad
1717 1.222 ad /*
1718 1.46 thorpej * No need to undo what we did; we can simply think of
1719 1.46 thorpej * this as the pmap throwing away the mapping information.
1720 1.46 thorpej *
1721 1.46 thorpej * We do, however, have to go through the ReFault path,
1722 1.46 thorpej * as the map may change while we're asleep.
1723 1.46 thorpej */
1724 1.69 chs
1725 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
1726 1.92 yamt if (!uvm_reclaimable()) {
1727 1.46 thorpej UVMHIST_LOG(maphist,
1728 1.46 thorpej "<- failed. out of VM",0,0,0,0);
1729 1.46 thorpej /* XXX instrumentation */
1730 1.148 uebayasi return ENOMEM;
1731 1.46 thorpej }
1732 1.46 thorpej /* XXX instrumentation */
1733 1.46 thorpej uvm_wait("flt_pmfail1");
1734 1.139 uebayasi return ERESTART;
1735 1.46 thorpej }
1736 1.7 mrg
1737 1.177 yamt uvm_fault_upper_done(ufi, flt, anon, pg);
1738 1.169 uebayasi
1739 1.169 uebayasi /*
1740 1.169 uebayasi * done case 1! finish up by unlocking everything and returning success
1741 1.169 uebayasi */
1742 1.169 uebayasi
1743 1.202 chs pmap_update(pmap);
1744 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
1745 1.169 uebayasi return 0;
1746 1.148 uebayasi }
1747 1.148 uebayasi
1748 1.173 uebayasi /*
1749 1.173 uebayasi * uvm_fault_upper_done: queue upper center page.
1750 1.173 uebayasi */
1751 1.173 uebayasi
1752 1.169 uebayasi static void
1753 1.148 uebayasi uvm_fault_upper_done(
1754 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1755 1.177 yamt struct vm_anon *anon, struct vm_page *pg)
1756 1.148 uebayasi {
1757 1.174 rmind const bool wire_paging = flt->wire_paging;
1758 1.174 rmind
1759 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1760 1.148 uebayasi
1761 1.7 mrg /*
1762 1.46 thorpej * ... update the page queues.
1763 1.7 mrg */
1764 1.7 mrg
1765 1.174 rmind if (wire_paging) {
1766 1.227 ad uvm_pagelock(pg);
1767 1.8 chuck uvm_pagewire(pg);
1768 1.227 ad uvm_pageunlock(pg);
1769 1.29 chs
1770 1.29 chs /*
1771 1.29 chs * since the now-wired page cannot be paged out,
1772 1.29 chs * release its swap resources for others to use.
1773 1.215 ad * and since an anon with no swap cannot be clean,
1774 1.215 ad * mark it dirty now.
1775 1.29 chs */
1776 1.29 chs
1777 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1778 1.174 rmind uvm_anon_dropswap(anon);
1779 1.227 ad } else if (uvmpdpol_pageactivate_p(pg)) {
1780 1.227 ad /*
1781 1.227 ad * avoid re-activating the page unless needed,
1782 1.227 ad * to avoid false sharing on multiprocessor.
1783 1.227 ad */
1784 1.227 ad
1785 1.227 ad uvm_pagelock(pg);
1786 1.227 ad uvm_pageactivate(pg);
1787 1.227 ad uvm_pageunlock(pg);
1788 1.174 rmind }
1789 1.138 uebayasi }
1790 1.1 mrg
1791 1.173 uebayasi /*
1792 1.222 ad * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer
1793 1.222 ad */
1794 1.222 ad
1795 1.222 ad static inline int
1796 1.222 ad uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1797 1.222 ad struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage)
1798 1.222 ad {
1799 1.222 ad
1800 1.224 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1801 1.224 skrll
1802 1.222 ad KASSERT(uobj != NULL);
1803 1.222 ad KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1804 1.222 ad
1805 1.222 ad /*
1806 1.222 ad * fast path.
1807 1.222 ad */
1808 1.223 skrll
1809 1.222 ad if (__predict_true(flt->lower_lock_type == RW_WRITER)) {
1810 1.222 ad return 0;
1811 1.222 ad }
1812 1.222 ad
1813 1.222 ad /*
1814 1.222 ad * otherwise try for the upgrade. if we don't get it, unlock
1815 1.222 ad * everything, restart the fault and next time around get a writer
1816 1.222 ad * lock.
1817 1.222 ad */
1818 1.222 ad
1819 1.222 ad flt->lower_lock_type = RW_WRITER;
1820 1.222 ad if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) {
1821 1.222 ad uvmfault_unlockall(ufi, amap, uobj);
1822 1.222 ad cpu_count(CPU_COUNT_FLTNOUP, 1);
1823 1.222 ad UVMHIST_LOG(maphist, " !upgrade lower", 0, 0,0,0);
1824 1.222 ad return ERESTART;
1825 1.222 ad }
1826 1.222 ad cpu_count(CPU_COUNT_FLTUP, 1);
1827 1.222 ad KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1828 1.222 ad return 0;
1829 1.222 ad }
1830 1.222 ad
1831 1.222 ad /*
1832 1.173 uebayasi * uvm_fault_lower: handle lower fault.
1833 1.173 uebayasi *
1834 1.173 uebayasi * 1. check uobj
1835 1.173 uebayasi * 1.1. if null, ZFOD.
1836 1.173 uebayasi * 1.2. if not null, look up unnmapped neighbor pages.
1837 1.173 uebayasi * 2. for center page, check if promote.
1838 1.173 uebayasi * 2.1. ZFOD always needs promotion.
1839 1.173 uebayasi * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1840 1.173 uebayasi * 3. if uobj is not ZFOD and page is not found, do i/o.
1841 1.173 uebayasi * 4. dispatch either direct / promote fault.
1842 1.173 uebayasi */
1843 1.173 uebayasi
1844 1.138 uebayasi static int
1845 1.173 uebayasi uvm_fault_lower(
1846 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1847 1.173 uebayasi struct vm_page **pages)
1848 1.138 uebayasi {
1849 1.198 riastrad struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1850 1.173 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1851 1.173 uebayasi struct vm_page *uobjpage;
1852 1.138 uebayasi int error;
1853 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1854 1.173 uebayasi
1855 1.7 mrg /*
1856 1.173 uebayasi * now, if the desired page is not shadowed by the amap and we have
1857 1.173 uebayasi * a backing object that does not have a special fault routine, then
1858 1.173 uebayasi * we ask (with pgo_get) the object for resident pages that we care
1859 1.173 uebayasi * about and attempt to map them in. we do not let pgo_get block
1860 1.173 uebayasi * (PGO_LOCKED).
1861 1.173 uebayasi */
1862 1.173 uebayasi
1863 1.173 uebayasi if (uobj == NULL) {
1864 1.173 uebayasi /* zero fill; don't care neighbor pages */
1865 1.173 uebayasi uobjpage = NULL;
1866 1.173 uebayasi } else {
1867 1.173 uebayasi uvm_fault_lower_lookup(ufi, flt, pages);
1868 1.173 uebayasi uobjpage = pages[flt->centeridx];
1869 1.173 uebayasi }
1870 1.173 uebayasi
1871 1.173 uebayasi /*
1872 1.173 uebayasi * note that at this point we are done with any front or back pages.
1873 1.173 uebayasi * we are now going to focus on the center page (i.e. the one we've
1874 1.173 uebayasi * faulted on). if we have faulted on the upper (anon) layer
1875 1.173 uebayasi * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1876 1.173 uebayasi * not touched it yet). if we have faulted on the bottom (uobj)
1877 1.173 uebayasi * layer [i.e. case 2] and the page was both present and available,
1878 1.173 uebayasi * then we've got a pointer to it as "uobjpage" and we've already
1879 1.173 uebayasi * made it BUSY.
1880 1.7 mrg */
1881 1.7 mrg
1882 1.7 mrg /*
1883 1.7 mrg * locked:
1884 1.7 mrg * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1885 1.7 mrg */
1886 1.222 ad KASSERT(amap == NULL ||
1887 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1888 1.227 ad KASSERT(uobj == NULL ||
1889 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1890 1.7 mrg
1891 1.7 mrg /*
1892 1.7 mrg * note that uobjpage can not be PGO_DONTCARE at this point. we now
1893 1.7 mrg * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1894 1.7 mrg * have a backing object, check and see if we are going to promote
1895 1.7 mrg * the data up to an anon during the fault.
1896 1.7 mrg */
1897 1.7 mrg
1898 1.7 mrg if (uobj == NULL) {
1899 1.63 chs uobjpage = PGO_DONTCARE;
1900 1.168 uebayasi flt->promote = true; /* always need anon here */
1901 1.7 mrg } else {
1902 1.52 chs KASSERT(uobjpage != PGO_DONTCARE);
1903 1.168 uebayasi flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1904 1.7 mrg }
1905 1.201 pgoyette UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1906 1.168 uebayasi flt->promote, (uobj == NULL), 0,0);
1907 1.1 mrg
1908 1.7 mrg /*
1909 1.9 chuck * if uobjpage is not null then we do not need to do I/O to get the
1910 1.9 chuck * uobjpage.
1911 1.9 chuck *
1912 1.63 chs * if uobjpage is null, then we need to unlock and ask the pager to
1913 1.7 mrg * get the data for us. once we have the data, we need to reverify
1914 1.7 mrg * the state the world. we are currently not holding any resources.
1915 1.7 mrg */
1916 1.1 mrg
1917 1.9 chuck if (uobjpage) {
1918 1.9 chuck /* update rusage counters */
1919 1.124 ad curlwp->l_ru.ru_minflt++;
1920 1.9 chuck } else {
1921 1.163 uebayasi error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1922 1.148 uebayasi if (error != 0)
1923 1.148 uebayasi return error;
1924 1.148 uebayasi }
1925 1.160 uebayasi
1926 1.160 uebayasi /*
1927 1.160 uebayasi * locked:
1928 1.160 uebayasi * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1929 1.160 uebayasi */
1930 1.222 ad KASSERT(amap == NULL ||
1931 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1932 1.227 ad KASSERT(uobj == NULL ||
1933 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1934 1.160 uebayasi
1935 1.160 uebayasi /*
1936 1.160 uebayasi * notes:
1937 1.160 uebayasi * - at this point uobjpage can not be NULL
1938 1.160 uebayasi * - at this point uobjpage can not be PG_RELEASED (since we checked
1939 1.160 uebayasi * for it above)
1940 1.218 ad * - at this point uobjpage could be waited on (handle later)
1941 1.227 ad * - uobjpage can be from a different object if tmpfs (vnode vs UAO)
1942 1.160 uebayasi */
1943 1.160 uebayasi
1944 1.177 yamt KASSERT(uobjpage != NULL);
1945 1.227 ad KASSERT(uobj == NULL ||
1946 1.227 ad uobjpage->uobject->vmobjlock == uobj->vmobjlock);
1947 1.160 uebayasi KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1948 1.215 ad uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
1949 1.160 uebayasi
1950 1.177 yamt if (!flt->promote) {
1951 1.163 uebayasi error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1952 1.160 uebayasi } else {
1953 1.163 uebayasi error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1954 1.160 uebayasi }
1955 1.160 uebayasi return error;
1956 1.148 uebayasi }
1957 1.148 uebayasi
1958 1.173 uebayasi /*
1959 1.173 uebayasi * uvm_fault_lower_lookup: look up on-memory uobj pages.
1960 1.173 uebayasi *
1961 1.173 uebayasi * 1. get on-memory pages.
1962 1.173 uebayasi * 2. if failed, give up (get only center page later).
1963 1.173 uebayasi * 3. if succeeded, enter h/w mapping of neighbor pages.
1964 1.173 uebayasi */
1965 1.173 uebayasi
1966 1.173 uebayasi static void
1967 1.173 uebayasi uvm_fault_lower_lookup(
1968 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1969 1.173 uebayasi struct vm_page **pages)
1970 1.173 uebayasi {
1971 1.173 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1972 1.173 uebayasi int lcv, gotpages;
1973 1.173 uebayasi vaddr_t currva;
1974 1.227 ad bool entered;
1975 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1976 1.173 uebayasi
1977 1.222 ad rw_enter(uobj->vmobjlock, flt->lower_lock_type);
1978 1.222 ad
1979 1.222 ad /*
1980 1.222 ad * Locked: maps(read), amap(if there), uobj
1981 1.222 ad */
1982 1.173 uebayasi
1983 1.213 ad cpu_count(CPU_COUNT_FLTLGET, 1);
1984 1.173 uebayasi gotpages = flt->npages;
1985 1.173 uebayasi (void) uobj->pgops->pgo_get(uobj,
1986 1.173 uebayasi ufi->entry->offset + flt->startva - ufi->entry->start,
1987 1.173 uebayasi pages, &gotpages, flt->centeridx,
1988 1.222 ad flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1989 1.227 ad PGO_LOCKED);
1990 1.173 uebayasi
1991 1.222 ad KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1992 1.186 rmind
1993 1.173 uebayasi /*
1994 1.173 uebayasi * check for pages to map, if we got any
1995 1.173 uebayasi */
1996 1.173 uebayasi
1997 1.173 uebayasi if (gotpages == 0) {
1998 1.173 uebayasi pages[flt->centeridx] = NULL;
1999 1.173 uebayasi return;
2000 1.173 uebayasi }
2001 1.173 uebayasi
2002 1.227 ad entered = false;
2003 1.173 uebayasi currva = flt->startva;
2004 1.173 uebayasi for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
2005 1.173 uebayasi struct vm_page *curpg;
2006 1.173 uebayasi
2007 1.173 uebayasi curpg = pages[lcv];
2008 1.173 uebayasi if (curpg == NULL || curpg == PGO_DONTCARE) {
2009 1.173 uebayasi continue;
2010 1.173 uebayasi }
2011 1.173 uebayasi
2012 1.227 ad /*
2013 1.227 ad * in the case of tmpfs, the pages might be from a different
2014 1.227 ad * uvm_object. just make sure that they have the same lock.
2015 1.227 ad */
2016 1.227 ad
2017 1.227 ad KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock);
2018 1.227 ad KASSERT((curpg->flags & PG_BUSY) == 0);
2019 1.222 ad
2020 1.173 uebayasi /*
2021 1.227 ad * leave the centre page for later. don't screw with
2022 1.227 ad * existing mappings (needless & expensive).
2023 1.173 uebayasi */
2024 1.173 uebayasi
2025 1.173 uebayasi if (lcv == flt->centeridx) {
2026 1.217 rin UVMHIST_LOG(maphist, " got uobjpage (%#jx) "
2027 1.201 pgoyette "with locked get", (uintptr_t)curpg, 0, 0, 0);
2028 1.227 ad } else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
2029 1.215 ad uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
2030 1.227 ad entered = true;
2031 1.173 uebayasi }
2032 1.173 uebayasi }
2033 1.227 ad if (entered) {
2034 1.227 ad pmap_update(ufi->orig_map->pmap);
2035 1.227 ad }
2036 1.173 uebayasi }
2037 1.173 uebayasi
2038 1.173 uebayasi /*
2039 1.173 uebayasi * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
2040 1.173 uebayasi */
2041 1.173 uebayasi
2042 1.173 uebayasi static void
2043 1.173 uebayasi uvm_fault_lower_neighbor(
2044 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2045 1.215 ad vaddr_t currva, struct vm_page *pg)
2046 1.173 uebayasi {
2047 1.215 ad const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
2048 1.182 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2049 1.173 uebayasi
2050 1.173 uebayasi /* locked: maps(read), amap(if there), uobj */
2051 1.173 uebayasi
2052 1.173 uebayasi /*
2053 1.173 uebayasi * calling pgo_get with PGO_LOCKED returns us pages which
2054 1.173 uebayasi * are neither busy nor released, so we don't need to check
2055 1.173 uebayasi * for this. we can just directly enter the pages.
2056 1.227 ad *
2057 1.222 ad * there wasn't a direct fault on the page, so avoid the cost of
2058 1.227 ad * activating it.
2059 1.222 ad */
2060 1.222 ad
2061 1.227 ad if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
2062 1.222 ad uvm_pagelock(pg);
2063 1.222 ad uvm_pageenqueue(pg);
2064 1.222 ad uvm_pageunlock(pg);
2065 1.222 ad }
2066 1.227 ad
2067 1.173 uebayasi UVMHIST_LOG(maphist,
2068 1.201 pgoyette " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
2069 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
2070 1.213 ad cpu_count(CPU_COUNT_FLTNOMAP, 1);
2071 1.173 uebayasi
2072 1.173 uebayasi /*
2073 1.173 uebayasi * Since this page isn't the page that's actually faulting,
2074 1.173 uebayasi * ignore pmap_enter() failures; it's not critical that we
2075 1.173 uebayasi * enter these right now.
2076 1.219 ad * NOTE: page can't be waited on or PG_RELEASED because we've
2077 1.173 uebayasi * held the lock the whole time we've had the handle.
2078 1.173 uebayasi */
2079 1.173 uebayasi KASSERT((pg->flags & PG_PAGEOUT) == 0);
2080 1.173 uebayasi KASSERT((pg->flags & PG_RELEASED) == 0);
2081 1.215 ad KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
2082 1.215 ad uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
2083 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0);
2084 1.222 ad KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type);
2085 1.199 skrll
2086 1.223 skrll const vm_prot_t mapprot =
2087 1.199 skrll readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
2088 1.199 skrll flt->enter_prot & MASK(ufi->entry);
2089 1.223 skrll const u_int mapflags =
2090 1.199 skrll PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
2091 1.173 uebayasi (void) pmap_enter(ufi->orig_map->pmap, currva,
2092 1.199 skrll VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
2093 1.173 uebayasi }
2094 1.173 uebayasi
2095 1.173 uebayasi /*
2096 1.173 uebayasi * uvm_fault_lower_io: get lower page from backing store.
2097 1.173 uebayasi *
2098 1.173 uebayasi * 1. unlock everything, because i/o will block.
2099 1.173 uebayasi * 2. call pgo_get.
2100 1.173 uebayasi * 3. if failed, recover.
2101 1.173 uebayasi * 4. if succeeded, relock everything and verify things.
2102 1.173 uebayasi */
2103 1.173 uebayasi
2104 1.148 uebayasi static int
2105 1.163 uebayasi uvm_fault_lower_io(
2106 1.222 ad struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2107 1.156 uebayasi struct uvm_object **ruobj, struct vm_page **ruobjpage)
2108 1.148 uebayasi {
2109 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2110 1.156 uebayasi struct uvm_object *uobj = *ruobj;
2111 1.158 uebayasi struct vm_page *pg;
2112 1.149 uebayasi bool locked;
2113 1.149 uebayasi int gotpages;
2114 1.149 uebayasi int error;
2115 1.149 uebayasi voff_t uoff;
2116 1.208 chs vm_prot_t access_type;
2117 1.208 chs int advice;
2118 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2119 1.149 uebayasi
2120 1.149 uebayasi /* update rusage counters */
2121 1.149 uebayasi curlwp->l_ru.ru_majflt++;
2122 1.137 uebayasi
2123 1.208 chs /* grab everything we need from the entry before we unlock */
2124 1.208 chs uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
2125 1.208 chs access_type = flt->access_type & MASK(ufi->entry);
2126 1.208 chs advice = ufi->entry->advice;
2127 1.208 chs
2128 1.186 rmind /* Locked: maps(read), amap(if there), uobj */
2129 1.222 ad KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2130 1.222 ad
2131 1.222 ad /* Upgrade to a write lock if needed. */
2132 1.222 ad error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL);
2133 1.222 ad if (error != 0) {
2134 1.222 ad return error;
2135 1.222 ad }
2136 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
2137 1.186 rmind
2138 1.222 ad /* Locked: uobj(write) */
2139 1.222 ad KASSERT(rw_write_held(uobj->vmobjlock));
2140 1.63 chs
2141 1.213 ad cpu_count(CPU_COUNT_FLTGET, 1);
2142 1.149 uebayasi gotpages = 1;
2143 1.166 mlelstv pg = NULL;
2144 1.158 uebayasi error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
2145 1.208 chs 0, access_type, advice, PGO_SYNCIO);
2146 1.158 uebayasi /* locked: pg(if no error) */
2147 1.52 chs
2148 1.149 uebayasi /*
2149 1.149 uebayasi * recover from I/O
2150 1.149 uebayasi */
2151 1.1 mrg
2152 1.149 uebayasi if (error) {
2153 1.149 uebayasi if (error == EAGAIN) {
2154 1.149 uebayasi UVMHIST_LOG(maphist,
2155 1.149 uebayasi " pgo_get says TRY AGAIN!",0,0,0,0);
2156 1.149 uebayasi kpause("fltagain2", false, hz/2, NULL);
2157 1.149 uebayasi return ERESTART;
2158 1.149 uebayasi }
2159 1.1 mrg
2160 1.139 uebayasi #if 0
2161 1.149 uebayasi KASSERT(error != ERESTART);
2162 1.139 uebayasi #else
2163 1.149 uebayasi /* XXXUEBS don't re-fault? */
2164 1.149 uebayasi if (error == ERESTART)
2165 1.149 uebayasi error = EIO;
2166 1.139 uebayasi #endif
2167 1.139 uebayasi
2168 1.201 pgoyette UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
2169 1.149 uebayasi error, 0,0,0);
2170 1.149 uebayasi return error;
2171 1.149 uebayasi }
2172 1.7 mrg
2173 1.149 uebayasi /*
2174 1.149 uebayasi * re-verify the state of the world by first trying to relock
2175 1.149 uebayasi * the maps. always relock the object.
2176 1.149 uebayasi */
2177 1.7 mrg
2178 1.149 uebayasi locked = uvmfault_relock(ufi);
2179 1.149 uebayasi if (locked && amap)
2180 1.222 ad amap_lock(amap, flt->upper_lock_type);
2181 1.156 uebayasi
2182 1.156 uebayasi /* might be changed */
2183 1.158 uebayasi uobj = pg->uobject;
2184 1.156 uebayasi
2185 1.222 ad rw_enter(uobj->vmobjlock, flt->lower_lock_type);
2186 1.186 rmind KASSERT((pg->flags & PG_BUSY) != 0);
2187 1.222 ad KASSERT(flt->lower_lock_type == RW_WRITER);
2188 1.186 rmind
2189 1.214 ad uvm_pagelock(pg);
2190 1.186 rmind uvm_pageactivate(pg);
2191 1.214 ad uvm_pageunlock(pg);
2192 1.63 chs
2193 1.158 uebayasi /* locked(locked): maps(read), amap(if !null), uobj, pg */
2194 1.158 uebayasi /* locked(!locked): uobj, pg */
2195 1.7 mrg
2196 1.149 uebayasi /*
2197 1.149 uebayasi * verify that the page has not be released and re-verify
2198 1.149 uebayasi * that amap slot is still free. if there is a problem,
2199 1.149 uebayasi * we unlock and clean up.
2200 1.149 uebayasi */
2201 1.7 mrg
2202 1.158 uebayasi if ((pg->flags & PG_RELEASED) != 0 ||
2203 1.158 uebayasi (locked && amap && amap_lookup(&ufi->entry->aref,
2204 1.149 uebayasi ufi->orig_rvaddr - ufi->entry->start))) {
2205 1.149 uebayasi if (locked)
2206 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
2207 1.149 uebayasi locked = false;
2208 1.149 uebayasi }
2209 1.7 mrg
2210 1.149 uebayasi /*
2211 1.227 ad * unbusy/release the page.
2212 1.227 ad */
2213 1.227 ad
2214 1.227 ad if ((pg->flags & PG_RELEASED) == 0) {
2215 1.227 ad pg->flags &= ~PG_BUSY;
2216 1.227 ad uvm_pagelock(pg);
2217 1.227 ad uvm_pagewakeup(pg);
2218 1.227 ad uvm_pageunlock(pg);
2219 1.227 ad UVM_PAGE_OWN(pg, NULL);
2220 1.227 ad } else {
2221 1.227 ad cpu_count(CPU_COUNT_FLTPGRELE, 1);
2222 1.227 ad uvm_pagefree(pg);
2223 1.227 ad }
2224 1.227 ad
2225 1.227 ad /*
2226 1.227 ad * didn't get the lock? retry.
2227 1.149 uebayasi */
2228 1.7 mrg
2229 1.149 uebayasi if (locked == false) {
2230 1.149 uebayasi UVMHIST_LOG(maphist,
2231 1.149 uebayasi " wasn't able to relock after fault: retry",
2232 1.149 uebayasi 0,0,0,0);
2233 1.216 ad rw_exit(uobj->vmobjlock);
2234 1.149 uebayasi return ERESTART;
2235 1.149 uebayasi }
2236 1.7 mrg
2237 1.149 uebayasi /*
2238 1.227 ad * we have the data in pg. we are holding object lock (so the page
2239 1.149 uebayasi * can't be released on us).
2240 1.149 uebayasi */
2241 1.7 mrg
2242 1.227 ad /* locked: maps(read), amap(if !null), uobj */
2243 1.148 uebayasi
2244 1.156 uebayasi *ruobj = uobj;
2245 1.158 uebayasi *ruobjpage = pg;
2246 1.148 uebayasi return 0;
2247 1.148 uebayasi }
2248 1.148 uebayasi
2249 1.173 uebayasi /*
2250 1.173 uebayasi * uvm_fault_lower_direct: fault lower center page
2251 1.173 uebayasi *
2252 1.177 yamt * 1. adjust flt->enter_prot.
2253 1.173 uebayasi * 2. if page is loaned, resolve.
2254 1.173 uebayasi */
2255 1.173 uebayasi
2256 1.148 uebayasi int
2257 1.163 uebayasi uvm_fault_lower_direct(
2258 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2259 1.156 uebayasi struct uvm_object *uobj, struct vm_page *uobjpage)
2260 1.148 uebayasi {
2261 1.149 uebayasi struct vm_page *pg;
2262 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2263 1.149 uebayasi
2264 1.149 uebayasi /*
2265 1.149 uebayasi * we are not promoting. if the mapping is COW ensure that we
2266 1.149 uebayasi * don't give more access than we should (e.g. when doing a read
2267 1.149 uebayasi * fault on a COPYONWRITE mapping we want to map the COW page in
2268 1.149 uebayasi * R/O even though the entry protection could be R/W).
2269 1.149 uebayasi *
2270 1.149 uebayasi * set "pg" to the page we want to map in (uobjpage, usually)
2271 1.149 uebayasi */
2272 1.1 mrg
2273 1.213 ad cpu_count(CPU_COUNT_FLT_OBJ, 1);
2274 1.149 uebayasi if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2275 1.149 uebayasi UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2276 1.149 uebayasi flt->enter_prot &= ~VM_PROT_WRITE;
2277 1.149 uebayasi pg = uobjpage; /* map in the actual object */
2278 1.7 mrg
2279 1.149 uebayasi KASSERT(uobjpage != PGO_DONTCARE);
2280 1.7 mrg
2281 1.149 uebayasi /*
2282 1.149 uebayasi * we are faulting directly on the page. be careful
2283 1.149 uebayasi * about writing to loaned pages...
2284 1.149 uebayasi */
2285 1.149 uebayasi
2286 1.149 uebayasi if (uobjpage->loan_count) {
2287 1.163 uebayasi uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2288 1.151 uebayasi }
2289 1.151 uebayasi KASSERT(pg == uobjpage);
2290 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0);
2291 1.183 yamt return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2292 1.151 uebayasi }
2293 1.151 uebayasi
2294 1.173 uebayasi /*
2295 1.173 uebayasi * uvm_fault_lower_direct_loan: resolve loaned page.
2296 1.173 uebayasi *
2297 1.177 yamt * 1. if not cow'ing, adjust flt->enter_prot.
2298 1.173 uebayasi * 2. if cow'ing, break loan.
2299 1.173 uebayasi */
2300 1.173 uebayasi
2301 1.151 uebayasi static int
2302 1.163 uebayasi uvm_fault_lower_direct_loan(
2303 1.151 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2304 1.177 yamt struct uvm_object *uobj, struct vm_page **rpg,
2305 1.177 yamt struct vm_page **ruobjpage)
2306 1.151 uebayasi {
2307 1.152 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2308 1.152 uebayasi struct vm_page *pg;
2309 1.152 uebayasi struct vm_page *uobjpage = *ruobjpage;
2310 1.222 ad int error;
2311 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2312 1.152 uebayasi
2313 1.152 uebayasi if (!flt->cow_now) {
2314 1.152 uebayasi /* read fault: cap the protection at readonly */
2315 1.152 uebayasi /* cap! */
2316 1.152 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2317 1.152 uebayasi } else {
2318 1.222 ad /*
2319 1.222 ad * write fault: must break the loan here. to do this
2320 1.222 ad * we need a write lock on the object.
2321 1.222 ad */
2322 1.222 ad
2323 1.222 ad error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage);
2324 1.222 ad if (error != 0) {
2325 1.222 ad return error;
2326 1.222 ad }
2327 1.222 ad KASSERT(rw_write_held(uobj->vmobjlock));
2328 1.152 uebayasi
2329 1.152 uebayasi pg = uvm_loanbreak(uobjpage);
2330 1.152 uebayasi if (pg == NULL) {
2331 1.152 uebayasi
2332 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
2333 1.152 uebayasi UVMHIST_LOG(maphist,
2334 1.152 uebayasi " out of RAM breaking loan, waiting",
2335 1.152 uebayasi 0,0,0,0);
2336 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1);
2337 1.152 uebayasi uvm_wait("flt_noram4");
2338 1.152 uebayasi return ERESTART;
2339 1.69 chs }
2340 1.152 uebayasi *rpg = pg;
2341 1.152 uebayasi *ruobjpage = pg;
2342 1.227 ad
2343 1.227 ad /*
2344 1.227 ad * drop ownership of page while still holding object lock,
2345 1.227 ad * which won't be dropped until the page is entered.
2346 1.227 ad */
2347 1.227 ad
2348 1.227 ad uvm_pagelock(pg);
2349 1.227 ad uvm_pagewakeup(pg);
2350 1.227 ad uvm_pageunlock(pg);
2351 1.227 ad pg->flags &= ~PG_BUSY;
2352 1.227 ad UVM_PAGE_OWN(pg, NULL);
2353 1.152 uebayasi }
2354 1.152 uebayasi return 0;
2355 1.148 uebayasi }
2356 1.148 uebayasi
2357 1.173 uebayasi /*
2358 1.173 uebayasi * uvm_fault_lower_promote: promote lower page.
2359 1.173 uebayasi *
2360 1.173 uebayasi * 1. call uvmfault_promote.
2361 1.173 uebayasi * 2. fill in data.
2362 1.173 uebayasi * 3. if not ZFOD, dispose old page.
2363 1.173 uebayasi */
2364 1.173 uebayasi
2365 1.148 uebayasi int
2366 1.163 uebayasi uvm_fault_lower_promote(
2367 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2368 1.156 uebayasi struct uvm_object *uobj, struct vm_page *uobjpage)
2369 1.148 uebayasi {
2370 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2371 1.149 uebayasi struct vm_anon *anon;
2372 1.149 uebayasi struct vm_page *pg;
2373 1.149 uebayasi int error;
2374 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2375 1.63 chs
2376 1.186 rmind KASSERT(amap != NULL);
2377 1.186 rmind
2378 1.222 ad /* promoting requires a write lock. */
2379 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj);
2380 1.222 ad if (error != 0) {
2381 1.222 ad return error;
2382 1.222 ad }
2383 1.222 ad KASSERT(rw_write_held(amap->am_lock));
2384 1.227 ad KASSERT(uobj == NULL ||
2385 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2386 1.222 ad
2387 1.149 uebayasi /*
2388 1.186 rmind * If we are going to promote the data to an anon we
2389 1.149 uebayasi * allocate a blank anon here and plug it into our amap.
2390 1.149 uebayasi */
2391 1.222 ad error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare);
2392 1.149 uebayasi switch (error) {
2393 1.149 uebayasi case 0:
2394 1.149 uebayasi break;
2395 1.149 uebayasi case ERESTART:
2396 1.149 uebayasi return ERESTART;
2397 1.149 uebayasi default:
2398 1.149 uebayasi return error;
2399 1.149 uebayasi }
2400 1.149 uebayasi
2401 1.149 uebayasi pg = anon->an_page;
2402 1.149 uebayasi
2403 1.149 uebayasi /*
2404 1.186 rmind * Fill in the data.
2405 1.149 uebayasi */
2406 1.105 yamt
2407 1.149 uebayasi if (uobjpage != PGO_DONTCARE) {
2408 1.213 ad cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
2409 1.1 mrg
2410 1.7 mrg /*
2411 1.149 uebayasi * promote to shared amap? make sure all sharing
2412 1.149 uebayasi * procs see it
2413 1.7 mrg */
2414 1.7 mrg
2415 1.149 uebayasi if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2416 1.149 uebayasi pmap_page_protect(uobjpage, VM_PROT_NONE);
2417 1.7 mrg /*
2418 1.149 uebayasi * XXX: PAGE MIGHT BE WIRED!
2419 1.7 mrg */
2420 1.149 uebayasi }
2421 1.69 chs
2422 1.149 uebayasi UVMHIST_LOG(maphist,
2423 1.217 rin " promote uobjpage %#jx to anon/page %#jx/%#jx",
2424 1.201 pgoyette (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2425 1.63 chs
2426 1.149 uebayasi } else {
2427 1.213 ad cpu_count(CPU_COUNT_FLT_PRZERO, 1);
2428 1.7 mrg
2429 1.149 uebayasi /*
2430 1.149 uebayasi * Page is zero'd and marked dirty by
2431 1.149 uebayasi * uvmfault_promote().
2432 1.149 uebayasi */
2433 1.52 chs
2434 1.217 rin UVMHIST_LOG(maphist," zero fill anon/page %#jx/%#jx",
2435 1.201 pgoyette (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2436 1.149 uebayasi }
2437 1.148 uebayasi
2438 1.183 yamt return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2439 1.148 uebayasi }
2440 1.148 uebayasi
2441 1.173 uebayasi /*
2442 1.183 yamt * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2443 1.183 yamt * from the lower page.
2444 1.173 uebayasi */
2445 1.173 uebayasi
2446 1.148 uebayasi int
2447 1.163 uebayasi uvm_fault_lower_enter(
2448 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2449 1.148 uebayasi struct uvm_object *uobj,
2450 1.183 yamt struct vm_anon *anon, struct vm_page *pg)
2451 1.148 uebayasi {
2452 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2453 1.215 ad const bool readonly = uvm_pagereadonly_p(pg);
2454 1.148 uebayasi int error;
2455 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2456 1.7 mrg
2457 1.7 mrg /*
2458 1.186 rmind * Locked:
2459 1.186 rmind *
2460 1.186 rmind * maps(read), amap(if !null), uobj(if !null),
2461 1.186 rmind * anon(if !null), pg(if anon), unlock_uobj(if !null)
2462 1.7 mrg *
2463 1.222 ad * anon must be write locked (promotion). uobj can be either.
2464 1.222 ad *
2465 1.186 rmind * Note: pg is either the uobjpage or the new page in the new anon.
2466 1.7 mrg */
2467 1.227 ad
2468 1.222 ad KASSERT(amap == NULL ||
2469 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
2470 1.227 ad KASSERT(uobj == NULL ||
2471 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2472 1.186 rmind KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2473 1.227 ad
2474 1.227 ad /*
2475 1.227 ad * note that pg can't be PG_RELEASED or PG_BUSY since we did
2476 1.227 ad * not drop the object lock since the last time we checked.
2477 1.227 ad */
2478 1.227 ad
2479 1.227 ad KASSERT((pg->flags & PG_RELEASED) == 0);
2480 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0);
2481 1.7 mrg
2482 1.7 mrg /*
2483 1.7 mrg * all resources are present. we can now map it in and free our
2484 1.7 mrg * resources.
2485 1.7 mrg */
2486 1.7 mrg
2487 1.7 mrg UVMHIST_LOG(maphist,
2488 1.201 pgoyette " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2489 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2490 1.201 pgoyette (uintptr_t)pg, flt->promote);
2491 1.215 ad KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
2492 1.215 ad "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
2493 1.215 ad "entry=%p map=%p orig_rvaddr=%p pg=%p",
2494 1.215 ad flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
2495 1.215 ad UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
2496 1.215 ad (void *)ufi->orig_rvaddr, pg);
2497 1.215 ad KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
2498 1.177 yamt if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2499 1.177 yamt VM_PAGE_TO_PHYS(pg),
2500 1.215 ad readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2501 1.177 yamt flt->access_type | PMAP_CANFAIL |
2502 1.177 yamt (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2503 1.52 chs
2504 1.46 thorpej /*
2505 1.46 thorpej * No need to undo what we did; we can simply think of
2506 1.46 thorpej * this as the pmap throwing away the mapping information.
2507 1.46 thorpej *
2508 1.46 thorpej * We do, however, have to go through the ReFault path,
2509 1.46 thorpej * as the map may change while we're asleep.
2510 1.46 thorpej */
2511 1.52 chs
2512 1.183 yamt /*
2513 1.183 yamt * ensure that the page is queued in the case that
2514 1.183 yamt * we just promoted the page.
2515 1.183 yamt */
2516 1.183 yamt
2517 1.227 ad if (anon != NULL) {
2518 1.222 ad uvm_pagelock(pg);
2519 1.222 ad uvm_pageenqueue(pg);
2520 1.222 ad uvm_pagewakeup(pg);
2521 1.222 ad uvm_pageunlock(pg);
2522 1.222 ad }
2523 1.171 uebayasi
2524 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
2525 1.92 yamt if (!uvm_reclaimable()) {
2526 1.46 thorpej UVMHIST_LOG(maphist,
2527 1.46 thorpej "<- failed. out of VM",0,0,0,0);
2528 1.46 thorpej /* XXX instrumentation */
2529 1.106 yamt error = ENOMEM;
2530 1.138 uebayasi return error;
2531 1.46 thorpej }
2532 1.46 thorpej /* XXX instrumentation */
2533 1.46 thorpej uvm_wait("flt_pmfail2");
2534 1.139 uebayasi return ERESTART;
2535 1.46 thorpej }
2536 1.1 mrg
2537 1.177 yamt uvm_fault_lower_done(ufi, flt, uobj, pg);
2538 1.175 rmind pmap_update(ufi->orig_map->pmap);
2539 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
2540 1.175 rmind
2541 1.169 uebayasi UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2542 1.169 uebayasi return 0;
2543 1.148 uebayasi }
2544 1.148 uebayasi
2545 1.173 uebayasi /*
2546 1.173 uebayasi * uvm_fault_lower_done: queue lower center page.
2547 1.173 uebayasi */
2548 1.173 uebayasi
2549 1.169 uebayasi void
2550 1.163 uebayasi uvm_fault_lower_done(
2551 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2552 1.177 yamt struct uvm_object *uobj, struct vm_page *pg)
2553 1.148 uebayasi {
2554 1.174 rmind
2555 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2556 1.148 uebayasi
2557 1.146 uebayasi if (flt->wire_paging) {
2558 1.227 ad uvm_pagelock(pg);
2559 1.8 chuck uvm_pagewire(pg);
2560 1.227 ad uvm_pageunlock(pg);
2561 1.212 ad if (pg->flags & PG_AOBJ) {
2562 1.29 chs
2563 1.29 chs /*
2564 1.29 chs * since the now-wired page cannot be paged out,
2565 1.29 chs * release its swap resources for others to use.
2566 1.215 ad * since an aobj page with no swap cannot be clean,
2567 1.215 ad * mark it dirty now.
2568 1.227 ad *
2569 1.227 ad * use pg->uobject here. if the page is from a
2570 1.227 ad * tmpfs vnode, the pages are backed by its UAO and
2571 1.227 ad * not the vnode.
2572 1.29 chs */
2573 1.29 chs
2574 1.113 christos KASSERT(uobj != NULL);
2575 1.227 ad KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
2576 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2577 1.227 ad uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
2578 1.22 chs }
2579 1.227 ad } else if (uvmpdpol_pageactivate_p(pg)) {
2580 1.227 ad /*
2581 1.227 ad * avoid re-activating the page unless needed,
2582 1.227 ad * to avoid false sharing on multiprocessor.
2583 1.227 ad */
2584 1.227 ad
2585 1.227 ad uvm_pagelock(pg);
2586 1.7 mrg uvm_pageactivate(pg);
2587 1.227 ad uvm_pageunlock(pg);
2588 1.174 rmind }
2589 1.1 mrg }
2590 1.1 mrg
2591 1.110 drochner
2592 1.1 mrg /*
2593 1.1 mrg * uvm_fault_wire: wire down a range of virtual addresses in a map.
2594 1.1 mrg *
2595 1.36 thorpej * => map may be read-locked by caller, but MUST NOT be write-locked.
2596 1.36 thorpej * => if map is read-locked, any operations which may cause map to
2597 1.36 thorpej * be write-locked in uvm_fault() must be taken care of by
2598 1.36 thorpej * the caller. See uvm_map_pageable().
2599 1.1 mrg */
2600 1.1 mrg
2601 1.7 mrg int
2602 1.95 thorpej uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2603 1.130 uebayasi vm_prot_t access_type, int maxprot)
2604 1.7 mrg {
2605 1.12 eeh vaddr_t va;
2606 1.58 chs int error;
2607 1.7 mrg
2608 1.7 mrg /*
2609 1.47 chs * now fault it in a page at a time. if the fault fails then we have
2610 1.63 chs * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2611 1.47 chs * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2612 1.7 mrg */
2613 1.1 mrg
2614 1.65 chs /*
2615 1.65 chs * XXX work around overflowing a vaddr_t. this prevents us from
2616 1.65 chs * wiring the last page in the address space, though.
2617 1.65 chs */
2618 1.65 chs if (start > end) {
2619 1.65 chs return EFAULT;
2620 1.65 chs }
2621 1.65 chs
2622 1.163 uebayasi for (va = start; va < end; va += PAGE_SIZE) {
2623 1.110 drochner error = uvm_fault_internal(map, va, access_type,
2624 1.177 yamt (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2625 1.58 chs if (error) {
2626 1.7 mrg if (va != start) {
2627 1.31 thorpej uvm_fault_unwire(map, start, va);
2628 1.7 mrg }
2629 1.58 chs return error;
2630 1.7 mrg }
2631 1.7 mrg }
2632 1.58 chs return 0;
2633 1.1 mrg }
2634 1.1 mrg
2635 1.1 mrg /*
2636 1.1 mrg * uvm_fault_unwire(): unwire range of virtual space.
2637 1.1 mrg */
2638 1.1 mrg
2639 1.7 mrg void
2640 1.95 thorpej uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2641 1.36 thorpej {
2642 1.36 thorpej vm_map_lock_read(map);
2643 1.36 thorpej uvm_fault_unwire_locked(map, start, end);
2644 1.36 thorpej vm_map_unlock_read(map);
2645 1.36 thorpej }
2646 1.36 thorpej
2647 1.36 thorpej /*
2648 1.36 thorpej * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2649 1.36 thorpej *
2650 1.36 thorpej * => map must be at least read-locked.
2651 1.36 thorpej */
2652 1.36 thorpej
2653 1.36 thorpej void
2654 1.95 thorpej uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2655 1.7 mrg {
2656 1.186 rmind struct vm_map_entry *entry, *oentry;
2657 1.31 thorpej pmap_t pmap = vm_map_pmap(map);
2658 1.42 thorpej vaddr_t va;
2659 1.12 eeh paddr_t pa;
2660 1.42 thorpej struct vm_page *pg;
2661 1.31 thorpej
2662 1.7 mrg /*
2663 1.7 mrg * we assume that the area we are unwiring has actually been wired
2664 1.7 mrg * in the first place. this means that we should be able to extract
2665 1.7 mrg * the PAs from the pmap. we also lock out the page daemon so that
2666 1.7 mrg * we can call uvm_pageunwire.
2667 1.7 mrg */
2668 1.37 thorpej
2669 1.37 thorpej /*
2670 1.37 thorpej * find the beginning map entry for the region.
2671 1.37 thorpej */
2672 1.74 chs
2673 1.232 riastrad KASSERT(start >= vm_map_min(map));
2674 1.232 riastrad KASSERT(end <= vm_map_max(map));
2675 1.119 thorpej if (uvm_map_lookup_entry(map, start, &entry) == false)
2676 1.37 thorpej panic("uvm_fault_unwire_locked: address not in map");
2677 1.37 thorpej
2678 1.186 rmind oentry = NULL;
2679 1.69 chs for (va = start; va < end; va += PAGE_SIZE) {
2680 1.42 thorpej
2681 1.42 thorpej /*
2682 1.74 chs * find the map entry for the current address.
2683 1.42 thorpej */
2684 1.56 chs
2685 1.56 chs KASSERT(va >= entry->start);
2686 1.74 chs while (va >= entry->end) {
2687 1.232 riastrad KASSERT(entry->next != &map->header);
2688 1.232 riastrad KASSERT(entry->next->start <= entry->end);
2689 1.42 thorpej entry = entry->next;
2690 1.42 thorpej }
2691 1.37 thorpej
2692 1.42 thorpej /*
2693 1.186 rmind * lock it.
2694 1.186 rmind */
2695 1.186 rmind
2696 1.186 rmind if (entry != oentry) {
2697 1.186 rmind if (oentry != NULL) {
2698 1.186 rmind uvm_map_unlock_entry(oentry);
2699 1.186 rmind }
2700 1.216 ad uvm_map_lock_entry(entry, RW_WRITER);
2701 1.186 rmind oentry = entry;
2702 1.186 rmind }
2703 1.186 rmind
2704 1.186 rmind /*
2705 1.42 thorpej * if the entry is no longer wired, tell the pmap.
2706 1.42 thorpej */
2707 1.74 chs
2708 1.207 chs if (!pmap_extract(pmap, va, &pa))
2709 1.207 chs continue;
2710 1.207 chs
2711 1.42 thorpej if (VM_MAPENT_ISWIRED(entry) == 0)
2712 1.42 thorpej pmap_unwire(pmap, va);
2713 1.42 thorpej
2714 1.42 thorpej pg = PHYS_TO_VM_PAGE(pa);
2715 1.214 ad if (pg) {
2716 1.214 ad uvm_pagelock(pg);
2717 1.42 thorpej uvm_pageunwire(pg);
2718 1.214 ad uvm_pageunlock(pg);
2719 1.214 ad }
2720 1.7 mrg }
2721 1.1 mrg
2722 1.186 rmind if (oentry != NULL) {
2723 1.186 rmind uvm_map_unlock_entry(entry);
2724 1.186 rmind }
2725 1.1 mrg }
2726