uvm_fault.c revision 1.234 1 1.234 chs /* $NetBSD: uvm_fault.c,v 1.234 2023/08/13 23:06:07 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 1.1 mrg * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 1.1 mrg * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 1.1 mrg * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 1.1 mrg * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 1.1 mrg * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 1.4 mrg *
27 1.4 mrg * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28 1.1 mrg */
29 1.1 mrg
30 1.1 mrg /*
31 1.1 mrg * uvm_fault.c: fault handler
32 1.1 mrg */
33 1.71 lukem
34 1.71 lukem #include <sys/cdefs.h>
35 1.234 chs __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.234 2023/08/13 23:06:07 chs Exp $");
36 1.71 lukem
37 1.71 lukem #include "opt_uvmhist.h"
38 1.1 mrg
39 1.1 mrg #include <sys/param.h>
40 1.1 mrg #include <sys/systm.h>
41 1.210 martin #include <sys/atomic.h>
42 1.1 mrg #include <sys/kernel.h>
43 1.1 mrg #include <sys/mman.h>
44 1.1 mrg
45 1.1 mrg #include <uvm/uvm.h>
46 1.227 ad #include <uvm/uvm_pdpolicy.h>
47 1.233 riastrad #include <uvm/uvm_rndsource.h>
48 1.1 mrg
49 1.1 mrg /*
50 1.1 mrg *
51 1.1 mrg * a word on page faults:
52 1.1 mrg *
53 1.1 mrg * types of page faults we handle:
54 1.1 mrg *
55 1.1 mrg * CASE 1: upper layer faults CASE 2: lower layer faults
56 1.1 mrg *
57 1.1 mrg * CASE 1A CASE 1B CASE 2A CASE 2B
58 1.1 mrg * read/write1 write>1 read/write +-cow_write/zero
59 1.63 chs * | | | |
60 1.1 mrg * +--|--+ +--|--+ +-----+ + | + | +-----+
61 1.127 uebayasi * amap | V | | ---------> new | | | | ^ |
62 1.1 mrg * +-----+ +-----+ +-----+ + | + | +--|--+
63 1.1 mrg * | | |
64 1.1 mrg * +-----+ +-----+ +--|--+ | +--|--+
65 1.127 uebayasi * uobj | d/c | | d/c | | V | +----+ |
66 1.1 mrg * +-----+ +-----+ +-----+ +-----+
67 1.1 mrg *
68 1.1 mrg * d/c = don't care
69 1.63 chs *
70 1.1 mrg * case [0]: layerless fault
71 1.1 mrg * no amap or uobj is present. this is an error.
72 1.1 mrg *
73 1.1 mrg * case [1]: upper layer fault [anon active]
74 1.1 mrg * 1A: [read] or [write with anon->an_ref == 1]
75 1.127 uebayasi * I/O takes place in upper level anon and uobj is not touched.
76 1.1 mrg * 1B: [write with anon->an_ref > 1]
77 1.1 mrg * new anon is alloc'd and data is copied off ["COW"]
78 1.1 mrg *
79 1.1 mrg * case [2]: lower layer fault [uobj]
80 1.1 mrg * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
81 1.1 mrg * I/O takes place directly in object.
82 1.1 mrg * 2B: [write to copy_on_write] or [read on NULL uobj]
83 1.63 chs * data is "promoted" from uobj to a new anon.
84 1.1 mrg * if uobj is null, then we zero fill.
85 1.1 mrg *
86 1.1 mrg * we follow the standard UVM locking protocol ordering:
87 1.1 mrg *
88 1.63 chs * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
89 1.1 mrg * we hold a PG_BUSY page if we unlock for I/O
90 1.1 mrg *
91 1.1 mrg *
92 1.1 mrg * the code is structured as follows:
93 1.63 chs *
94 1.1 mrg * - init the "IN" params in the ufi structure
95 1.177 yamt * ReFault: (ERESTART returned to the loop in uvm_fault_internal)
96 1.1 mrg * - do lookups [locks maps], check protection, handle needs_copy
97 1.1 mrg * - check for case 0 fault (error)
98 1.1 mrg * - establish "range" of fault
99 1.1 mrg * - if we have an amap lock it and extract the anons
100 1.1 mrg * - if sequential advice deactivate pages behind us
101 1.1 mrg * - at the same time check pmap for unmapped areas and anon for pages
102 1.1 mrg * that we could map in (and do map it if found)
103 1.1 mrg * - check object for resident pages that we could map in
104 1.1 mrg * - if (case 2) goto Case2
105 1.1 mrg * - >>> handle case 1
106 1.1 mrg * - ensure source anon is resident in RAM
107 1.1 mrg * - if case 1B alloc new anon and copy from source
108 1.1 mrg * - map the correct page in
109 1.1 mrg * Case2:
110 1.1 mrg * - >>> handle case 2
111 1.1 mrg * - ensure source page is resident (if uobj)
112 1.1 mrg * - if case 2B alloc new anon and copy from source (could be zero
113 1.1 mrg * fill if uobj == NULL)
114 1.1 mrg * - map the correct page in
115 1.1 mrg * - done!
116 1.1 mrg *
117 1.1 mrg * note on paging:
118 1.1 mrg * if we have to do I/O we place a PG_BUSY page in the correct object,
119 1.1 mrg * unlock everything, and do the I/O. when I/O is done we must reverify
120 1.1 mrg * the state of the world before assuming that our data structures are
121 1.1 mrg * valid. [because mappings could change while the map is unlocked]
122 1.1 mrg *
123 1.1 mrg * alternative 1: unbusy the page in question and restart the page fault
124 1.1 mrg * from the top (ReFault). this is easy but does not take advantage
125 1.63 chs * of the information that we already have from our previous lookup,
126 1.1 mrg * although it is possible that the "hints" in the vm_map will help here.
127 1.1 mrg *
128 1.1 mrg * alternative 2: the system already keeps track of a "version" number of
129 1.1 mrg * a map. [i.e. every time you write-lock a map (e.g. to change a
130 1.1 mrg * mapping) you bump the version number up by one...] so, we can save
131 1.1 mrg * the version number of the map before we release the lock and start I/O.
132 1.1 mrg * then when I/O is done we can relock and check the version numbers
133 1.1 mrg * to see if anything changed. this might save us some over 1 because
134 1.1 mrg * we don't have to unbusy the page and may be less compares(?).
135 1.1 mrg *
136 1.1 mrg * alternative 3: put in backpointers or a way to "hold" part of a map
137 1.1 mrg * in place while I/O is in progress. this could be complex to
138 1.1 mrg * implement (especially with structures like amap that can be referenced
139 1.1 mrg * by multiple map entries, and figuring out what should wait could be
140 1.1 mrg * complex as well...).
141 1.1 mrg *
142 1.125 ad * we use alternative 2. given that we are multi-threaded now we may want
143 1.125 ad * to reconsider the choice.
144 1.1 mrg */
145 1.1 mrg
146 1.1 mrg /*
147 1.1 mrg * local data structures
148 1.1 mrg */
149 1.1 mrg
150 1.1 mrg struct uvm_advice {
151 1.7 mrg int advice;
152 1.7 mrg int nback;
153 1.7 mrg int nforw;
154 1.1 mrg };
155 1.1 mrg
156 1.1 mrg /*
157 1.1 mrg * page range array:
158 1.63 chs * note: index in array must match "advice" value
159 1.1 mrg * XXX: borrowed numbers from freebsd. do they work well for us?
160 1.1 mrg */
161 1.1 mrg
162 1.95 thorpej static const struct uvm_advice uvmadvice[] = {
163 1.186 rmind { UVM_ADV_NORMAL, 3, 4 },
164 1.186 rmind { UVM_ADV_RANDOM, 0, 0 },
165 1.186 rmind { UVM_ADV_SEQUENTIAL, 8, 7},
166 1.1 mrg };
167 1.1 mrg
168 1.69 chs #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
169 1.1 mrg
170 1.1 mrg /*
171 1.1 mrg * private prototypes
172 1.1 mrg */
173 1.1 mrg
174 1.1 mrg /*
175 1.1 mrg * inline functions
176 1.1 mrg */
177 1.1 mrg
178 1.1 mrg /*
179 1.1 mrg * uvmfault_anonflush: try and deactivate pages in specified anons
180 1.1 mrg *
181 1.1 mrg * => does not have to deactivate page if it is busy
182 1.1 mrg */
183 1.1 mrg
184 1.103 perry static inline void
185 1.95 thorpej uvmfault_anonflush(struct vm_anon **anons, int n)
186 1.1 mrg {
187 1.7 mrg int lcv;
188 1.7 mrg struct vm_page *pg;
189 1.63 chs
190 1.163 uebayasi for (lcv = 0; lcv < n; lcv++) {
191 1.7 mrg if (anons[lcv] == NULL)
192 1.7 mrg continue;
193 1.222 ad KASSERT(rw_lock_held(anons[lcv]->an_lock));
194 1.94 yamt pg = anons[lcv]->an_page;
195 1.117 yamt if (pg && (pg->flags & PG_BUSY) == 0) {
196 1.214 ad uvm_pagelock(pg);
197 1.212 ad uvm_pagedeactivate(pg);
198 1.214 ad uvm_pageunlock(pg);
199 1.7 mrg }
200 1.7 mrg }
201 1.1 mrg }
202 1.1 mrg
203 1.1 mrg /*
204 1.1 mrg * normal functions
205 1.1 mrg */
206 1.1 mrg
207 1.1 mrg /*
208 1.1 mrg * uvmfault_amapcopy: clear "needs_copy" in a map.
209 1.1 mrg *
210 1.1 mrg * => called with VM data structures unlocked (usually, see below)
211 1.1 mrg * => we get a write lock on the maps and clear needs_copy for a VA
212 1.1 mrg * => if we are out of RAM we sleep (waiting for more)
213 1.1 mrg */
214 1.1 mrg
215 1.7 mrg static void
216 1.95 thorpej uvmfault_amapcopy(struct uvm_faultinfo *ufi)
217 1.1 mrg {
218 1.69 chs for (;;) {
219 1.1 mrg
220 1.7 mrg /*
221 1.7 mrg * no mapping? give up.
222 1.7 mrg */
223 1.1 mrg
224 1.119 thorpej if (uvmfault_lookup(ufi, true) == false)
225 1.7 mrg return;
226 1.1 mrg
227 1.7 mrg /*
228 1.7 mrg * copy if needed.
229 1.7 mrg */
230 1.1 mrg
231 1.7 mrg if (UVM_ET_ISNEEDSCOPY(ufi->entry))
232 1.108 yamt amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
233 1.13 chuck ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
234 1.1 mrg
235 1.7 mrg /*
236 1.7 mrg * didn't work? must be out of RAM. unlock and sleep.
237 1.7 mrg */
238 1.7 mrg
239 1.7 mrg if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
240 1.119 thorpej uvmfault_unlockmaps(ufi, true);
241 1.7 mrg uvm_wait("fltamapcopy");
242 1.7 mrg continue;
243 1.7 mrg }
244 1.7 mrg
245 1.7 mrg /*
246 1.7 mrg * got it! unlock and return.
247 1.7 mrg */
248 1.63 chs
249 1.119 thorpej uvmfault_unlockmaps(ufi, true);
250 1.7 mrg return;
251 1.7 mrg }
252 1.7 mrg /*NOTREACHED*/
253 1.1 mrg }
254 1.1 mrg
255 1.1 mrg /*
256 1.1 mrg * uvmfault_anonget: get data in an anon into a non-busy, non-released
257 1.1 mrg * page in that anon.
258 1.1 mrg *
259 1.187 rmind * => Map, amap and thus anon should be locked by caller.
260 1.187 rmind * => If we fail, we unlock everything and error is returned.
261 1.187 rmind * => If we are successful, return with everything still locked.
262 1.187 rmind * => We do not move the page on the queues [gets moved later]. If we
263 1.187 rmind * allocate a new page [we_own], it gets put on the queues. Either way,
264 1.187 rmind * the result is that the page is on the queues at return time
265 1.187 rmind * => For pages which are on loan from a uvm_object (and thus are not owned
266 1.187 rmind * by the anon): if successful, return with the owning object locked.
267 1.187 rmind * The caller must unlock this object when it unlocks everything else.
268 1.1 mrg */
269 1.1 mrg
270 1.47 chs int
271 1.95 thorpej uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
272 1.95 thorpej struct vm_anon *anon)
273 1.7 mrg {
274 1.7 mrg struct vm_page *pg;
275 1.222 ad krw_t lock_type;
276 1.58 chs int error;
277 1.187 rmind
278 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
279 1.222 ad KASSERT(rw_lock_held(anon->an_lock));
280 1.188 rmind KASSERT(anon->an_lock == amap->am_lock);
281 1.53 thorpej
282 1.187 rmind /* Increment the counters.*/
283 1.213 ad cpu_count(CPU_COUNT_FLTANGET, 1);
284 1.187 rmind if (anon->an_page) {
285 1.124 ad curlwp->l_ru.ru_minflt++;
286 1.187 rmind } else {
287 1.124 ad curlwp->l_ru.ru_majflt++;
288 1.187 rmind }
289 1.187 rmind error = 0;
290 1.7 mrg
291 1.63 chs /*
292 1.187 rmind * Loop until we get the anon data, or fail.
293 1.7 mrg */
294 1.7 mrg
295 1.69 chs for (;;) {
296 1.187 rmind bool we_own, locked;
297 1.187 rmind /*
298 1.187 rmind * Note: 'we_own' will become true if we set PG_BUSY on a page.
299 1.187 rmind */
300 1.187 rmind we_own = false;
301 1.94 yamt pg = anon->an_page;
302 1.1 mrg
303 1.7 mrg /*
304 1.187 rmind * If there is a resident page and it is loaned, then anon
305 1.187 rmind * may not own it. Call out to uvm_anon_lockloanpg() to
306 1.187 rmind * identify and lock the real owner of the page.
307 1.7 mrg */
308 1.7 mrg
309 1.7 mrg if (pg && pg->loan_count)
310 1.13 chuck pg = uvm_anon_lockloanpg(anon);
311 1.7 mrg
312 1.7 mrg /*
313 1.187 rmind * Is page resident? Make sure it is not busy/released.
314 1.7 mrg */
315 1.7 mrg
316 1.222 ad lock_type = rw_lock_op(anon->an_lock);
317 1.7 mrg if (pg) {
318 1.7 mrg
319 1.7 mrg /*
320 1.7 mrg * at this point, if the page has a uobject [meaning
321 1.7 mrg * we have it on loan], then that uobject is locked
322 1.7 mrg * by us! if the page is busy, we drop all the
323 1.7 mrg * locks (including uobject) and try again.
324 1.7 mrg */
325 1.7 mrg
326 1.69 chs if ((pg->flags & PG_BUSY) == 0) {
327 1.7 mrg UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
328 1.187 rmind return 0;
329 1.7 mrg }
330 1.213 ad cpu_count(CPU_COUNT_FLTPGWAIT, 1);
331 1.7 mrg
332 1.7 mrg /*
333 1.187 rmind * The last unlock must be an atomic unlock and wait
334 1.187 rmind * on the owner of page.
335 1.7 mrg */
336 1.69 chs
337 1.187 rmind if (pg->uobject) {
338 1.187 rmind /* Owner of page is UVM object. */
339 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
340 1.7 mrg UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
341 1.7 mrg 0,0,0);
342 1.218 ad uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1");
343 1.7 mrg } else {
344 1.187 rmind /* Owner of page is anon. */
345 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL);
346 1.7 mrg UVMHIST_LOG(maphist, " unlock+wait on anon",0,
347 1.7 mrg 0,0,0);
348 1.218 ad uvm_pagewait(pg, anon->an_lock, "anonget2");
349 1.7 mrg }
350 1.7 mrg } else {
351 1.101 yamt #if defined(VMSWAP)
352 1.7 mrg /*
353 1.222 ad * No page, therefore allocate one. A write lock is
354 1.222 ad * required for this. If the caller didn't supply
355 1.222 ad * one, fail now and have them retry.
356 1.7 mrg */
357 1.69 chs
358 1.222 ad if (lock_type == RW_READER) {
359 1.222 ad return ENOLCK;
360 1.222 ad }
361 1.180 enami pg = uvm_pagealloc(NULL,
362 1.180 enami ufi != NULL ? ufi->orig_rvaddr : 0,
363 1.185 tsutsui anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
364 1.187 rmind if (pg == NULL) {
365 1.187 rmind /* Out of memory. Wait a little. */
366 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
367 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1);
368 1.7 mrg UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 1.7 mrg 0,0,0);
370 1.93 yamt if (!uvm_reclaimable()) {
371 1.93 yamt return ENOMEM;
372 1.93 yamt }
373 1.7 mrg uvm_wait("flt_noram1");
374 1.7 mrg } else {
375 1.187 rmind /* PG_BUSY bit is set. */
376 1.119 thorpej we_own = true;
377 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
378 1.7 mrg
379 1.7 mrg /*
380 1.215 ad * Pass a PG_BUSY+PG_FAKE clean page into
381 1.187 rmind * the uvm_swap_get() function with all data
382 1.187 rmind * structures unlocked. Note that it is OK
383 1.187 rmind * to read an_swslot here, because we hold
384 1.187 rmind * PG_BUSY on the page.
385 1.7 mrg */
386 1.213 ad cpu_count(CPU_COUNT_PAGEINS, 1);
387 1.58 chs error = uvm_swap_get(pg, anon->an_swslot,
388 1.7 mrg PGO_SYNCIO);
389 1.7 mrg
390 1.7 mrg /*
391 1.187 rmind * We clean up after the I/O below in the
392 1.187 rmind * 'we_own' case.
393 1.7 mrg */
394 1.7 mrg }
395 1.187 rmind #else
396 1.101 yamt panic("%s: no page", __func__);
397 1.101 yamt #endif /* defined(VMSWAP) */
398 1.7 mrg }
399 1.7 mrg
400 1.7 mrg /*
401 1.187 rmind * Re-lock the map and anon.
402 1.7 mrg */
403 1.7 mrg
404 1.7 mrg locked = uvmfault_relock(ufi);
405 1.186 rmind if (locked || we_own) {
406 1.222 ad rw_enter(anon->an_lock, lock_type);
407 1.7 mrg }
408 1.7 mrg
409 1.7 mrg /*
410 1.187 rmind * If we own the page (i.e. we set PG_BUSY), then we need
411 1.187 rmind * to clean up after the I/O. There are three cases to
412 1.7 mrg * consider:
413 1.187 rmind *
414 1.187 rmind * 1) Page was released during I/O: free anon and ReFault.
415 1.187 rmind * 2) I/O not OK. Free the page and cause the fault to fail.
416 1.187 rmind * 3) I/O OK! Activate the page and sync with the non-we_own
417 1.187 rmind * case (i.e. drop anon lock if not locked).
418 1.7 mrg */
419 1.63 chs
420 1.7 mrg if (we_own) {
421 1.222 ad KASSERT(lock_type == RW_WRITER);
422 1.101 yamt #if defined(VMSWAP)
423 1.58 chs if (error) {
424 1.1 mrg
425 1.47 chs /*
426 1.187 rmind * Remove the swap slot from the anon and
427 1.187 rmind * mark the anon as having no real slot.
428 1.187 rmind * Do not free the swap slot, thus preventing
429 1.47 chs * it from being used again.
430 1.47 chs */
431 1.69 chs
432 1.187 rmind if (anon->an_swslot > 0) {
433 1.84 pk uvm_swap_markbad(anon->an_swslot, 1);
434 1.187 rmind }
435 1.47 chs anon->an_swslot = SWSLOT_BAD;
436 1.47 chs
437 1.187 rmind if ((pg->flags & PG_RELEASED) != 0) {
438 1.88 yamt goto released;
439 1.187 rmind }
440 1.88 yamt
441 1.47 chs /*
442 1.187 rmind * Note: page was never !PG_BUSY, so it
443 1.187 rmind * cannot be mapped and thus no need to
444 1.187 rmind * pmap_page_protect() it.
445 1.7 mrg */
446 1.69 chs
447 1.7 mrg uvm_pagefree(pg);
448 1.7 mrg
449 1.187 rmind if (locked) {
450 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL);
451 1.187 rmind }
452 1.216 ad rw_exit(anon->an_lock);
453 1.7 mrg UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
454 1.58 chs return error;
455 1.7 mrg }
456 1.63 chs
457 1.88 yamt if ((pg->flags & PG_RELEASED) != 0) {
458 1.88 yamt released:
459 1.88 yamt KASSERT(anon->an_ref == 0);
460 1.88 yamt
461 1.88 yamt /*
462 1.187 rmind * Released while we had unlocked amap.
463 1.88 yamt */
464 1.88 yamt
465 1.187 rmind if (locked) {
466 1.186 rmind uvmfault_unlockall(ufi, NULL, NULL);
467 1.187 rmind }
468 1.88 yamt uvm_anon_release(anon);
469 1.88 yamt
470 1.88 yamt if (error) {
471 1.88 yamt UVMHIST_LOG(maphist,
472 1.88 yamt "<- ERROR/RELEASED", 0,0,0,0);
473 1.88 yamt return error;
474 1.88 yamt }
475 1.88 yamt
476 1.88 yamt UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
477 1.88 yamt return ERESTART;
478 1.88 yamt }
479 1.88 yamt
480 1.7 mrg /*
481 1.187 rmind * We have successfully read the page, activate it.
482 1.7 mrg */
483 1.69 chs
484 1.214 ad uvm_pagelock(pg);
485 1.7 mrg uvm_pageactivate(pg);
486 1.219 ad uvm_pagewakeup(pg);
487 1.214 ad uvm_pageunlock(pg);
488 1.219 ad pg->flags &= ~(PG_BUSY|PG_FAKE);
489 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
490 1.219 ad UVM_PAGE_OWN(pg, NULL);
491 1.187 rmind #else
492 1.101 yamt panic("%s: we_own", __func__);
493 1.101 yamt #endif /* defined(VMSWAP) */
494 1.7 mrg }
495 1.7 mrg
496 1.7 mrg /*
497 1.187 rmind * We were not able to re-lock the map - restart the fault.
498 1.7 mrg */
499 1.7 mrg
500 1.7 mrg if (!locked) {
501 1.186 rmind if (we_own) {
502 1.216 ad rw_exit(anon->an_lock);
503 1.186 rmind }
504 1.7 mrg UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
505 1.187 rmind return ERESTART;
506 1.7 mrg }
507 1.7 mrg
508 1.7 mrg /*
509 1.187 rmind * Verify that no one has touched the amap and moved
510 1.187 rmind * the anon on us.
511 1.7 mrg */
512 1.1 mrg
513 1.186 rmind if (ufi != NULL && amap_lookup(&ufi->entry->aref,
514 1.186 rmind ufi->orig_rvaddr - ufi->entry->start) != anon) {
515 1.63 chs
516 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
517 1.7 mrg UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
518 1.187 rmind return ERESTART;
519 1.7 mrg }
520 1.63 chs
521 1.7 mrg /*
522 1.187 rmind * Retry..
523 1.7 mrg */
524 1.1 mrg
525 1.213 ad cpu_count(CPU_COUNT_FLTANRETRY, 1);
526 1.7 mrg continue;
527 1.69 chs }
528 1.7 mrg /*NOTREACHED*/
529 1.1 mrg }
530 1.1 mrg
531 1.1 mrg /*
532 1.106 yamt * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
533 1.106 yamt *
534 1.106 yamt * 1. allocate an anon and a page.
535 1.106 yamt * 2. fill its contents.
536 1.106 yamt * 3. put it into amap.
537 1.106 yamt *
538 1.106 yamt * => if we fail (result != 0) we unlock everything.
539 1.106 yamt * => on success, return a new locked anon via 'nanon'.
540 1.106 yamt * (*nanon)->an_page will be a resident, locked, dirty page.
541 1.183 yamt * => it's caller's responsibility to put the promoted nanon->an_page to the
542 1.183 yamt * page queue.
543 1.106 yamt */
544 1.106 yamt
545 1.106 yamt static int
546 1.106 yamt uvmfault_promote(struct uvm_faultinfo *ufi,
547 1.106 yamt struct vm_anon *oanon,
548 1.106 yamt struct vm_page *uobjpage,
549 1.106 yamt struct vm_anon **nanon, /* OUT: allocated anon */
550 1.106 yamt struct vm_anon **spare)
551 1.106 yamt {
552 1.106 yamt struct vm_amap *amap = ufi->entry->aref.ar_amap;
553 1.106 yamt struct uvm_object *uobj;
554 1.106 yamt struct vm_anon *anon;
555 1.106 yamt struct vm_page *pg;
556 1.106 yamt struct vm_page *opg;
557 1.106 yamt int error;
558 1.106 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
559 1.106 yamt
560 1.106 yamt if (oanon) {
561 1.106 yamt /* anon COW */
562 1.106 yamt opg = oanon->an_page;
563 1.106 yamt KASSERT(opg != NULL);
564 1.106 yamt KASSERT(opg->uobject == NULL || opg->loan_count > 0);
565 1.106 yamt } else if (uobjpage != PGO_DONTCARE) {
566 1.106 yamt /* object-backed COW */
567 1.106 yamt opg = uobjpage;
568 1.227 ad KASSERT(rw_lock_held(opg->uobject->vmobjlock));
569 1.106 yamt } else {
570 1.106 yamt /* ZFOD */
571 1.106 yamt opg = NULL;
572 1.106 yamt }
573 1.106 yamt if (opg != NULL) {
574 1.106 yamt uobj = opg->uobject;
575 1.106 yamt } else {
576 1.106 yamt uobj = NULL;
577 1.106 yamt }
578 1.106 yamt
579 1.106 yamt KASSERT(amap != NULL);
580 1.106 yamt KASSERT(uobjpage != NULL);
581 1.216 ad KASSERT(rw_write_held(amap->am_lock));
582 1.186 rmind KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
583 1.222 ad KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
584 1.106 yamt
585 1.106 yamt if (*spare != NULL) {
586 1.106 yamt anon = *spare;
587 1.106 yamt *spare = NULL;
588 1.192 para } else {
589 1.106 yamt anon = uvm_analloc();
590 1.106 yamt }
591 1.106 yamt if (anon) {
592 1.106 yamt
593 1.106 yamt /*
594 1.106 yamt * The new anon is locked.
595 1.106 yamt *
596 1.106 yamt * if opg == NULL, we want a zero'd, dirty page,
597 1.106 yamt * so have uvm_pagealloc() do that for us.
598 1.106 yamt */
599 1.106 yamt
600 1.186 rmind KASSERT(anon->an_lock == NULL);
601 1.186 rmind anon->an_lock = amap->am_lock;
602 1.179 matt pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
603 1.179 matt UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
604 1.186 rmind if (pg == NULL) {
605 1.186 rmind anon->an_lock = NULL;
606 1.186 rmind }
607 1.106 yamt } else {
608 1.106 yamt pg = NULL;
609 1.106 yamt }
610 1.106 yamt
611 1.106 yamt /*
612 1.106 yamt * out of memory resources?
613 1.106 yamt */
614 1.106 yamt
615 1.106 yamt if (pg == NULL) {
616 1.106 yamt /* save anon for the next try. */
617 1.106 yamt if (anon != NULL) {
618 1.106 yamt *spare = anon;
619 1.106 yamt }
620 1.106 yamt
621 1.106 yamt /* unlock and fail ... */
622 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
623 1.106 yamt if (!uvm_reclaimable()) {
624 1.106 yamt UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
625 1.213 ad cpu_count(CPU_COUNT_FLTNOANON, 1);
626 1.106 yamt error = ENOMEM;
627 1.106 yamt goto done;
628 1.106 yamt }
629 1.106 yamt
630 1.106 yamt UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
631 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1);
632 1.106 yamt uvm_wait("flt_noram5");
633 1.106 yamt error = ERESTART;
634 1.106 yamt goto done;
635 1.106 yamt }
636 1.106 yamt
637 1.234 chs /*
638 1.234 chs * copy the page [pg now dirty]
639 1.234 chs *
640 1.234 chs * Remove the pmap entry now for the old page at this address
641 1.234 chs * so that no thread can modify the new page while any thread
642 1.234 chs * might still see the old page.
643 1.234 chs */
644 1.106 yamt if (opg) {
645 1.234 chs pmap_remove(vm_map_pmap(ufi->orig_map), ufi->orig_rvaddr,
646 1.234 chs ufi->orig_rvaddr + PAGE_SIZE);
647 1.234 chs pmap_update(vm_map_pmap(ufi->orig_map));
648 1.106 yamt uvm_pagecopy(opg, pg);
649 1.106 yamt }
650 1.215 ad KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
651 1.106 yamt
652 1.106 yamt amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
653 1.106 yamt oanon != NULL);
654 1.106 yamt
655 1.227 ad /*
656 1.227 ad * from this point on am_lock won't be dropped until the page is
657 1.227 ad * entered, so it's safe to unbusy the page up front.
658 1.227 ad *
659 1.227 ad * uvm_fault_{upper,lower}_done will activate or enqueue the page.
660 1.227 ad */
661 1.227 ad
662 1.227 ad pg = anon->an_page;
663 1.227 ad pg->flags &= ~(PG_BUSY|PG_FAKE);
664 1.227 ad UVM_PAGE_OWN(pg, NULL);
665 1.227 ad
666 1.106 yamt *nanon = anon;
667 1.106 yamt error = 0;
668 1.106 yamt done:
669 1.106 yamt return error;
670 1.106 yamt }
671 1.106 yamt
672 1.203 christos /*
673 1.203 christos * Update statistics after fault resolution.
674 1.203 christos * - maxrss
675 1.203 christos */
676 1.203 christos void
677 1.203 christos uvmfault_update_stats(struct uvm_faultinfo *ufi)
678 1.203 christos {
679 1.203 christos struct vm_map *map;
680 1.204 christos struct vmspace *vm;
681 1.203 christos struct proc *p;
682 1.203 christos vsize_t res;
683 1.203 christos
684 1.203 christos map = ufi->orig_map;
685 1.203 christos
686 1.203 christos p = curproc;
687 1.203 christos KASSERT(p != NULL);
688 1.204 christos vm = p->p_vmspace;
689 1.204 christos
690 1.204 christos if (&vm->vm_map != map)
691 1.203 christos return;
692 1.203 christos
693 1.203 christos res = pmap_resident_count(map->pmap);
694 1.204 christos if (vm->vm_rssmax < res)
695 1.204 christos vm->vm_rssmax = res;
696 1.203 christos }
697 1.106 yamt
698 1.106 yamt /*
699 1.1 mrg * F A U L T - m a i n e n t r y p o i n t
700 1.1 mrg */
701 1.1 mrg
702 1.1 mrg /*
703 1.1 mrg * uvm_fault: page fault handler
704 1.1 mrg *
705 1.1 mrg * => called from MD code to resolve a page fault
706 1.63 chs * => VM data structures usually should be unlocked. however, it is
707 1.1 mrg * possible to call here with the main map locked if the caller
708 1.229 msaitoh * gets a write lock, sets it recursive, and then calls us (c.f.
709 1.1 mrg * uvm_map_pageable). this should be avoided because it keeps
710 1.1 mrg * the map locked off during I/O.
711 1.66 thorpej * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
712 1.1 mrg */
713 1.1 mrg
714 1.24 mycroft #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
715 1.24 mycroft ~VM_PROT_WRITE : VM_PROT_ALL)
716 1.24 mycroft
717 1.110 drochner /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
718 1.130 uebayasi #define UVM_FAULT_WIRE (1 << 0)
719 1.130 uebayasi #define UVM_FAULT_MAXPROT (1 << 1)
720 1.110 drochner
721 1.140 uebayasi struct uvm_faultctx {
722 1.191 yamt
723 1.191 yamt /*
724 1.191 yamt * the following members are set up by uvm_fault_check() and
725 1.191 yamt * read-only after that.
726 1.191 yamt *
727 1.191 yamt * note that narrow is used by uvm_fault_check() to change
728 1.191 yamt * the behaviour after ERESTART.
729 1.191 yamt *
730 1.191 yamt * most of them might change after RESTART if the underlying
731 1.191 yamt * map entry has been changed behind us. an exception is
732 1.191 yamt * wire_paging, which does never change.
733 1.191 yamt */
734 1.140 uebayasi vm_prot_t access_type;
735 1.150 uebayasi vaddr_t startva;
736 1.150 uebayasi int npages;
737 1.150 uebayasi int centeridx;
738 1.191 yamt bool narrow; /* work on a single requested page only */
739 1.191 yamt bool wire_mapping; /* request a PMAP_WIRED mapping
740 1.191 yamt (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
741 1.191 yamt bool wire_paging; /* request uvm_pagewire
742 1.191 yamt (true for UVM_FAULT_WIRE) */
743 1.191 yamt bool cow_now; /* VM_PROT_WRITE is actually requested
744 1.191 yamt (ie. should break COW and page loaning) */
745 1.191 yamt
746 1.191 yamt /*
747 1.191 yamt * enter_prot is set up by uvm_fault_check() and clamped
748 1.191 yamt * (ie. drop the VM_PROT_WRITE bit) in various places in case
749 1.191 yamt * of !cow_now.
750 1.191 yamt */
751 1.191 yamt vm_prot_t enter_prot; /* prot at which we want to enter pages in */
752 1.191 yamt
753 1.191 yamt /*
754 1.191 yamt * the following member is for uvmfault_promote() and ERESTART.
755 1.191 yamt */
756 1.150 uebayasi struct vm_anon *anon_spare;
757 1.191 yamt
758 1.191 yamt /*
759 1.230 dholland * the following is actually a uvm_fault_lower() internal.
760 1.191 yamt * it's here merely for debugging.
761 1.191 yamt * (or due to the mechanical separation of the function?)
762 1.191 yamt */
763 1.168 uebayasi bool promote;
764 1.222 ad
765 1.222 ad /*
766 1.222 ad * type of lock to acquire on objects in both layers.
767 1.222 ad */
768 1.222 ad krw_t lower_lock_type;
769 1.222 ad krw_t upper_lock_type;
770 1.140 uebayasi };
771 1.140 uebayasi
772 1.163 uebayasi static inline int uvm_fault_check(
773 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
774 1.177 yamt struct vm_anon ***, bool);
775 1.163 uebayasi
776 1.163 uebayasi static int uvm_fault_upper(
777 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
778 1.163 uebayasi struct vm_anon **);
779 1.163 uebayasi static inline int uvm_fault_upper_lookup(
780 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
781 1.163 uebayasi struct vm_anon **, struct vm_page **);
782 1.163 uebayasi static inline void uvm_fault_upper_neighbor(
783 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
784 1.163 uebayasi vaddr_t, struct vm_page *, bool);
785 1.163 uebayasi static inline int uvm_fault_upper_loan(
786 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
787 1.163 uebayasi struct vm_anon *, struct uvm_object **);
788 1.163 uebayasi static inline int uvm_fault_upper_promote(
789 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
790 1.163 uebayasi struct uvm_object *, struct vm_anon *);
791 1.163 uebayasi static inline int uvm_fault_upper_direct(
792 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
793 1.163 uebayasi struct uvm_object *, struct vm_anon *);
794 1.163 uebayasi static int uvm_fault_upper_enter(
795 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
796 1.163 uebayasi struct uvm_object *, struct vm_anon *,
797 1.163 uebayasi struct vm_page *, struct vm_anon *);
798 1.169 uebayasi static inline void uvm_fault_upper_done(
799 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
800 1.177 yamt struct vm_anon *, struct vm_page *);
801 1.163 uebayasi
802 1.163 uebayasi static int uvm_fault_lower(
803 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
804 1.163 uebayasi struct vm_page **);
805 1.173 uebayasi static inline void uvm_fault_lower_lookup(
806 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
807 1.163 uebayasi struct vm_page **);
808 1.163 uebayasi static inline void uvm_fault_lower_neighbor(
809 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
810 1.215 ad vaddr_t, struct vm_page *);
811 1.163 uebayasi static inline int uvm_fault_lower_io(
812 1.222 ad struct uvm_faultinfo *, struct uvm_faultctx *,
813 1.163 uebayasi struct uvm_object **, struct vm_page **);
814 1.163 uebayasi static inline int uvm_fault_lower_direct(
815 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
816 1.163 uebayasi struct uvm_object *, struct vm_page *);
817 1.163 uebayasi static inline int uvm_fault_lower_direct_loan(
818 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
819 1.163 uebayasi struct uvm_object *, struct vm_page **,
820 1.163 uebayasi struct vm_page **);
821 1.163 uebayasi static inline int uvm_fault_lower_promote(
822 1.163 uebayasi struct uvm_faultinfo *, struct uvm_faultctx *,
823 1.163 uebayasi struct uvm_object *, struct vm_page *);
824 1.163 uebayasi static int uvm_fault_lower_enter(
825 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
826 1.163 uebayasi struct uvm_object *,
827 1.183 yamt struct vm_anon *, struct vm_page *);
828 1.169 uebayasi static inline void uvm_fault_lower_done(
829 1.177 yamt struct uvm_faultinfo *, const struct uvm_faultctx *,
830 1.177 yamt struct uvm_object *, struct vm_page *);
831 1.138 uebayasi
832 1.7 mrg int
833 1.110 drochner uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
834 1.110 drochner vm_prot_t access_type, int fault_flag)
835 1.1 mrg {
836 1.7 mrg struct uvm_faultinfo ufi;
837 1.140 uebayasi struct uvm_faultctx flt = {
838 1.140 uebayasi .access_type = access_type,
839 1.146 uebayasi
840 1.146 uebayasi /* don't look for neighborhood * pages on "wire" fault */
841 1.146 uebayasi .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
842 1.146 uebayasi
843 1.146 uebayasi /* "wire" fault causes wiring of both mapping and paging */
844 1.146 uebayasi .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
845 1.146 uebayasi .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
846 1.222 ad
847 1.222 ad /*
848 1.222 ad * default lock type to acquire on upper & lower layer
849 1.222 ad * objects: reader. this can be upgraded at any point
850 1.222 ad * during the fault from read -> write and uvm_faultctx
851 1.222 ad * changed to match, but is never downgraded write -> read.
852 1.222 ad */
853 1.222 ad #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
854 1.222 ad .upper_lock_type = RW_WRITER,
855 1.222 ad .lower_lock_type = RW_WRITER,
856 1.222 ad #else
857 1.222 ad .upper_lock_type = RW_READER,
858 1.222 ad .lower_lock_type = RW_READER,
859 1.222 ad #endif
860 1.140 uebayasi };
861 1.177 yamt const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
862 1.137 uebayasi struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
863 1.141 uebayasi struct vm_page *pages_store[UVM_MAXRANGE], **pages;
864 1.140 uebayasi int error;
865 1.196 tls
866 1.228 skrll UVMHIST_FUNC(__func__);
867 1.228 skrll UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
868 1.201 pgoyette (uintptr_t)orig_map, vaddr, access_type, fault_flag);
869 1.1 mrg
870 1.193 tls /* Don't count anything until user interaction is possible */
871 1.213 ad kpreempt_disable();
872 1.193 tls if (__predict_true(start_init_exec)) {
873 1.213 ad struct cpu_info *ci = curcpu();
874 1.213 ad CPU_COUNT(CPU_COUNT_NFAULT, 1);
875 1.213 ad /* Don't flood RNG subsystem with samples. */
876 1.213 ad if (++(ci->ci_faultrng) == 503) {
877 1.213 ad ci->ci_faultrng = 0;
878 1.233 riastrad rnd_add_uint32(&uvm_fault_rndsource,
879 1.213 ad sizeof(vaddr_t) == sizeof(uint32_t) ?
880 1.213 ad (uint32_t)vaddr : sizeof(vaddr_t) ==
881 1.213 ad sizeof(uint64_t) ?
882 1.213 ad (uint32_t)vaddr :
883 1.213 ad (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
884 1.213 ad }
885 1.193 tls }
886 1.213 ad kpreempt_enable();
887 1.213 ad
888 1.7 mrg /*
889 1.7 mrg * init the IN parameters in the ufi
890 1.7 mrg */
891 1.1 mrg
892 1.7 mrg ufi.orig_map = orig_map;
893 1.7 mrg ufi.orig_rvaddr = trunc_page(vaddr);
894 1.7 mrg ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
895 1.7 mrg
896 1.142 uebayasi error = ERESTART;
897 1.183 yamt while (error == ERESTART) { /* ReFault: */
898 1.143 uebayasi anons = anons_store;
899 1.143 uebayasi pages = pages_store;
900 1.1 mrg
901 1.177 yamt error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
902 1.143 uebayasi if (error != 0)
903 1.143 uebayasi continue;
904 1.141 uebayasi
905 1.143 uebayasi error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
906 1.143 uebayasi if (error != 0)
907 1.143 uebayasi continue;
908 1.138 uebayasi
909 1.144 uebayasi if (pages[flt.centeridx] == PGO_DONTCARE)
910 1.148 uebayasi error = uvm_fault_upper(&ufi, &flt, anons);
911 1.167 uebayasi else {
912 1.177 yamt struct uvm_object * const uobj =
913 1.177 yamt ufi.entry->object.uvm_obj;
914 1.167 uebayasi
915 1.167 uebayasi if (uobj && uobj->pgops->pgo_fault != NULL) {
916 1.173 uebayasi /*
917 1.173 uebayasi * invoke "special" fault routine.
918 1.173 uebayasi */
919 1.216 ad rw_enter(uobj->vmobjlock, RW_WRITER);
920 1.173 uebayasi /* locked: maps(read), amap(if there), uobj */
921 1.173 uebayasi error = uobj->pgops->pgo_fault(&ufi,
922 1.173 uebayasi flt.startva, pages, flt.npages,
923 1.173 uebayasi flt.centeridx, flt.access_type,
924 1.173 uebayasi PGO_LOCKED|PGO_SYNCIO);
925 1.167 uebayasi
926 1.177 yamt /*
927 1.177 yamt * locked: nothing, pgo_fault has unlocked
928 1.177 yamt * everything
929 1.177 yamt */
930 1.167 uebayasi
931 1.167 uebayasi /*
932 1.177 yamt * object fault routine responsible for
933 1.177 yamt * pmap_update().
934 1.167 uebayasi */
935 1.205 chs
936 1.205 chs /*
937 1.205 chs * Wake up the pagedaemon if the fault method
938 1.205 chs * failed for lack of memory but some can be
939 1.205 chs * reclaimed.
940 1.205 chs */
941 1.205 chs if (error == ENOMEM && uvm_reclaimable()) {
942 1.205 chs uvm_wait("pgo_fault");
943 1.205 chs error = ERESTART;
944 1.205 chs }
945 1.167 uebayasi } else {
946 1.167 uebayasi error = uvm_fault_lower(&ufi, &flt, pages);
947 1.167 uebayasi }
948 1.167 uebayasi }
949 1.142 uebayasi }
950 1.138 uebayasi
951 1.140 uebayasi if (flt.anon_spare != NULL) {
952 1.140 uebayasi flt.anon_spare->an_ref--;
953 1.186 rmind KASSERT(flt.anon_spare->an_ref == 0);
954 1.186 rmind KASSERT(flt.anon_spare->an_lock == NULL);
955 1.221 ad uvm_anfree(flt.anon_spare);
956 1.138 uebayasi }
957 1.138 uebayasi return error;
958 1.141 uebayasi }
959 1.138 uebayasi
960 1.173 uebayasi /*
961 1.173 uebayasi * uvm_fault_check: check prot, handle needs-copy, etc.
962 1.173 uebayasi *
963 1.173 uebayasi * 1. lookup entry.
964 1.173 uebayasi * 2. check protection.
965 1.173 uebayasi * 3. adjust fault condition (mainly for simulated fault).
966 1.173 uebayasi * 4. handle needs-copy (lazy amap copy).
967 1.173 uebayasi * 5. establish range of interest for neighbor fault (aka pre-fault).
968 1.173 uebayasi * 6. look up anons (if amap exists).
969 1.173 uebayasi * 7. flush pages (if MADV_SEQUENTIAL)
970 1.173 uebayasi *
971 1.173 uebayasi * => called with nothing locked.
972 1.173 uebayasi * => if we fail (result != 0) we unlock everything.
973 1.177 yamt * => initialize/adjust many members of flt.
974 1.173 uebayasi */
975 1.173 uebayasi
976 1.144 uebayasi static int
977 1.141 uebayasi uvm_fault_check(
978 1.141 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
979 1.177 yamt struct vm_anon ***ranons, bool maxprot)
980 1.141 uebayasi {
981 1.141 uebayasi struct vm_amap *amap;
982 1.141 uebayasi struct uvm_object *uobj;
983 1.137 uebayasi vm_prot_t check_prot;
984 1.137 uebayasi int nback, nforw;
985 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
986 1.137 uebayasi
987 1.7 mrg /*
988 1.7 mrg * lookup and lock the maps
989 1.7 mrg */
990 1.7 mrg
991 1.141 uebayasi if (uvmfault_lookup(ufi, false) == false) {
992 1.217 rin UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr,
993 1.177 yamt 0,0,0);
994 1.141 uebayasi return EFAULT;
995 1.7 mrg }
996 1.7 mrg /* locked: maps(read) */
997 1.7 mrg
998 1.61 thorpej #ifdef DIAGNOSTIC
999 1.141 uebayasi if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
1000 1.61 thorpej printf("Page fault on non-pageable map:\n");
1001 1.141 uebayasi printf("ufi->map = %p\n", ufi->map);
1002 1.141 uebayasi printf("ufi->orig_map = %p\n", ufi->orig_map);
1003 1.217 rin printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr);
1004 1.141 uebayasi panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
1005 1.61 thorpej }
1006 1.61 thorpej #endif
1007 1.58 chs
1008 1.7 mrg /*
1009 1.7 mrg * check protection
1010 1.7 mrg */
1011 1.7 mrg
1012 1.177 yamt check_prot = maxprot ?
1013 1.141 uebayasi ufi->entry->max_protection : ufi->entry->protection;
1014 1.141 uebayasi if ((check_prot & flt->access_type) != flt->access_type) {
1015 1.7 mrg UVMHIST_LOG(maphist,
1016 1.201 pgoyette "<- protection failure (prot=%#jx, access=%#jx)",
1017 1.141 uebayasi ufi->entry->protection, flt->access_type, 0, 0);
1018 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
1019 1.200 christos return EFAULT;
1020 1.7 mrg }
1021 1.7 mrg
1022 1.7 mrg /*
1023 1.7 mrg * "enter_prot" is the protection we want to enter the page in at.
1024 1.7 mrg * for certain pages (e.g. copy-on-write pages) this protection can
1025 1.141 uebayasi * be more strict than ufi->entry->protection. "wired" means either
1026 1.7 mrg * the entry is wired or we are fault-wiring the pg.
1027 1.7 mrg */
1028 1.7 mrg
1029 1.141 uebayasi flt->enter_prot = ufi->entry->protection;
1030 1.207 chs if (VM_MAPENT_ISWIRED(ufi->entry)) {
1031 1.146 uebayasi flt->wire_mapping = true;
1032 1.207 chs flt->wire_paging = true;
1033 1.207 chs flt->narrow = true;
1034 1.207 chs }
1035 1.146 uebayasi
1036 1.146 uebayasi if (flt->wire_mapping) {
1037 1.141 uebayasi flt->access_type = flt->enter_prot; /* full access for wired */
1038 1.141 uebayasi flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1039 1.73 chs } else {
1040 1.141 uebayasi flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1041 1.73 chs }
1042 1.7 mrg
1043 1.222 ad if (flt->wire_paging) {
1044 1.222 ad /* wiring pages requires a write lock. */
1045 1.222 ad flt->upper_lock_type = RW_WRITER;
1046 1.222 ad flt->lower_lock_type = RW_WRITER;
1047 1.222 ad }
1048 1.222 ad
1049 1.168 uebayasi flt->promote = false;
1050 1.168 uebayasi
1051 1.7 mrg /*
1052 1.7 mrg * handle "needs_copy" case. if we need to copy the amap we will
1053 1.7 mrg * have to drop our readlock and relock it with a write lock. (we
1054 1.7 mrg * need a write lock to change anything in a map entry [e.g.
1055 1.7 mrg * needs_copy]).
1056 1.7 mrg */
1057 1.7 mrg
1058 1.141 uebayasi if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1059 1.141 uebayasi if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1060 1.177 yamt KASSERT(!maxprot);
1061 1.7 mrg /* need to clear */
1062 1.7 mrg UVMHIST_LOG(maphist,
1063 1.7 mrg " need to clear needs_copy and refault",0,0,0,0);
1064 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
1065 1.141 uebayasi uvmfault_amapcopy(ufi);
1066 1.213 ad cpu_count(CPU_COUNT_FLTAMCOPY, 1);
1067 1.141 uebayasi return ERESTART;
1068 1.7 mrg
1069 1.7 mrg } else {
1070 1.7 mrg
1071 1.7 mrg /*
1072 1.7 mrg * ensure that we pmap_enter page R/O since
1073 1.7 mrg * needs_copy is still true
1074 1.7 mrg */
1075 1.72 chs
1076 1.141 uebayasi flt->enter_prot &= ~VM_PROT_WRITE;
1077 1.7 mrg }
1078 1.7 mrg }
1079 1.7 mrg
1080 1.7 mrg /*
1081 1.7 mrg * identify the players
1082 1.7 mrg */
1083 1.7 mrg
1084 1.141 uebayasi amap = ufi->entry->aref.ar_amap; /* upper layer */
1085 1.141 uebayasi uobj = ufi->entry->object.uvm_obj; /* lower layer */
1086 1.7 mrg
1087 1.7 mrg /*
1088 1.7 mrg * check for a case 0 fault. if nothing backing the entry then
1089 1.7 mrg * error now.
1090 1.7 mrg */
1091 1.7 mrg
1092 1.7 mrg if (amap == NULL && uobj == NULL) {
1093 1.141 uebayasi uvmfault_unlockmaps(ufi, false);
1094 1.7 mrg UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1095 1.141 uebayasi return EFAULT;
1096 1.7 mrg }
1097 1.1 mrg
1098 1.7 mrg /*
1099 1.227 ad * for a case 2B fault waste no time on adjacent pages because
1100 1.227 ad * they are likely already entered.
1101 1.227 ad */
1102 1.227 ad
1103 1.227 ad if (uobj != NULL && amap != NULL &&
1104 1.227 ad (flt->access_type & VM_PROT_WRITE) != 0) {
1105 1.227 ad /* wide fault (!narrow) */
1106 1.227 ad flt->narrow = true;
1107 1.227 ad }
1108 1.227 ad
1109 1.227 ad /*
1110 1.7 mrg * establish range of interest based on advice from mapper
1111 1.7 mrg * and then clip to fit map entry. note that we only want
1112 1.63 chs * to do this the first time through the fault. if we
1113 1.7 mrg * ReFault we will disable this by setting "narrow" to true.
1114 1.7 mrg */
1115 1.1 mrg
1116 1.141 uebayasi if (flt->narrow == false) {
1117 1.7 mrg
1118 1.7 mrg /* wide fault (!narrow) */
1119 1.141 uebayasi KASSERT(uvmadvice[ufi->entry->advice].advice ==
1120 1.141 uebayasi ufi->entry->advice);
1121 1.141 uebayasi nback = MIN(uvmadvice[ufi->entry->advice].nback,
1122 1.177 yamt (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1123 1.141 uebayasi flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1124 1.7 mrg /*
1125 1.7 mrg * note: "-1" because we don't want to count the
1126 1.7 mrg * faulting page as forw
1127 1.7 mrg */
1128 1.177 yamt nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1129 1.177 yamt ((ufi->entry->end - ufi->orig_rvaddr) >>
1130 1.177 yamt PAGE_SHIFT) - 1);
1131 1.141 uebayasi flt->npages = nback + nforw + 1;
1132 1.141 uebayasi flt->centeridx = nback;
1133 1.7 mrg
1134 1.141 uebayasi flt->narrow = true; /* ensure only once per-fault */
1135 1.7 mrg
1136 1.7 mrg } else {
1137 1.63 chs
1138 1.7 mrg /* narrow fault! */
1139 1.7 mrg nback = nforw = 0;
1140 1.141 uebayasi flt->startva = ufi->orig_rvaddr;
1141 1.141 uebayasi flt->npages = 1;
1142 1.141 uebayasi flt->centeridx = 0;
1143 1.1 mrg
1144 1.7 mrg }
1145 1.131 uebayasi /* offset from entry's start to pgs' start */
1146 1.141 uebayasi const voff_t eoff = flt->startva - ufi->entry->start;
1147 1.1 mrg
1148 1.7 mrg /* locked: maps(read) */
1149 1.201 pgoyette UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1150 1.141 uebayasi flt->narrow, nback, nforw, flt->startva);
1151 1.201 pgoyette UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx",
1152 1.201 pgoyette (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1153 1.1 mrg
1154 1.7 mrg /*
1155 1.222 ad * guess at the most suitable lock types to acquire.
1156 1.222 ad * if we've got an amap then lock it and extract current anons.
1157 1.7 mrg */
1158 1.7 mrg
1159 1.7 mrg if (amap) {
1160 1.222 ad if ((amap_flags(amap) & AMAP_SHARED) == 0) {
1161 1.222 ad /*
1162 1.222 ad * the amap isn't shared. get a writer lock to
1163 1.222 ad * avoid the cost of upgrading the lock later if
1164 1.222 ad * needed.
1165 1.222 ad *
1166 1.222 ad * XXX nice for PostgreSQL, but consider threads.
1167 1.222 ad */
1168 1.222 ad flt->upper_lock_type = RW_WRITER;
1169 1.222 ad } else if ((flt->access_type & VM_PROT_WRITE) != 0) {
1170 1.222 ad /*
1171 1.222 ad * assume we're about to COW.
1172 1.222 ad */
1173 1.222 ad flt->upper_lock_type = RW_WRITER;
1174 1.222 ad }
1175 1.222 ad amap_lock(amap, flt->upper_lock_type);
1176 1.141 uebayasi amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1177 1.7 mrg } else {
1178 1.222 ad if ((flt->access_type & VM_PROT_WRITE) != 0) {
1179 1.222 ad /*
1180 1.222 ad * we are about to dirty the object and that
1181 1.222 ad * requires a write lock.
1182 1.222 ad */
1183 1.222 ad flt->lower_lock_type = RW_WRITER;
1184 1.222 ad }
1185 1.141 uebayasi *ranons = NULL; /* to be safe */
1186 1.7 mrg }
1187 1.7 mrg
1188 1.7 mrg /* locked: maps(read), amap(if there) */
1189 1.222 ad KASSERT(amap == NULL ||
1190 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1191 1.7 mrg
1192 1.7 mrg /*
1193 1.7 mrg * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1194 1.7 mrg * now and then forget about them (for the rest of the fault).
1195 1.7 mrg */
1196 1.7 mrg
1197 1.141 uebayasi if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1198 1.7 mrg
1199 1.7 mrg UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1200 1.7 mrg 0,0,0,0);
1201 1.7 mrg /* flush back-page anons? */
1202 1.63 chs if (amap)
1203 1.141 uebayasi uvmfault_anonflush(*ranons, nback);
1204 1.7 mrg
1205 1.225 ad /*
1206 1.225 ad * flush object? change lock type to RW_WRITER, to avoid
1207 1.225 ad * excessive competition between read/write locks if many
1208 1.225 ad * threads doing "sequential access".
1209 1.225 ad */
1210 1.7 mrg if (uobj) {
1211 1.137 uebayasi voff_t uoff;
1212 1.137 uebayasi
1213 1.225 ad flt->lower_lock_type = RW_WRITER;
1214 1.141 uebayasi uoff = ufi->entry->offset + eoff;
1215 1.216 ad rw_enter(uobj->vmobjlock, RW_WRITER);
1216 1.90 yamt (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1217 1.15 chs (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1218 1.7 mrg }
1219 1.7 mrg
1220 1.7 mrg /* now forget about the backpages */
1221 1.7 mrg if (amap)
1222 1.141 uebayasi *ranons += nback;
1223 1.141 uebayasi flt->startva += (nback << PAGE_SHIFT);
1224 1.141 uebayasi flt->npages -= nback;
1225 1.141 uebayasi flt->centeridx = 0;
1226 1.7 mrg }
1227 1.137 uebayasi /*
1228 1.137 uebayasi * => startva is fixed
1229 1.137 uebayasi * => npages is fixed
1230 1.137 uebayasi */
1231 1.177 yamt KASSERT(flt->startva <= ufi->orig_rvaddr);
1232 1.177 yamt KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1233 1.177 yamt flt->startva + (flt->npages << PAGE_SHIFT));
1234 1.141 uebayasi return 0;
1235 1.141 uebayasi }
1236 1.141 uebayasi
1237 1.173 uebayasi /*
1238 1.222 ad * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer
1239 1.222 ad */
1240 1.222 ad
1241 1.222 ad static inline int
1242 1.222 ad uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1243 1.222 ad struct vm_amap *amap, struct uvm_object *uobj)
1244 1.222 ad {
1245 1.224 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1246 1.222 ad
1247 1.222 ad KASSERT(amap != NULL);
1248 1.222 ad KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1249 1.222 ad
1250 1.222 ad /*
1251 1.222 ad * fast path.
1252 1.222 ad */
1253 1.223 skrll
1254 1.222 ad if (__predict_true(flt->upper_lock_type == RW_WRITER)) {
1255 1.222 ad return 0;
1256 1.222 ad }
1257 1.222 ad
1258 1.222 ad /*
1259 1.222 ad * otherwise try for the upgrade. if we don't get it, unlock
1260 1.222 ad * everything, restart the fault and next time around get a writer
1261 1.222 ad * lock.
1262 1.222 ad */
1263 1.222 ad
1264 1.222 ad flt->upper_lock_type = RW_WRITER;
1265 1.222 ad if (__predict_false(!rw_tryupgrade(amap->am_lock))) {
1266 1.222 ad uvmfault_unlockall(ufi, amap, uobj);
1267 1.222 ad cpu_count(CPU_COUNT_FLTNOUP, 1);
1268 1.222 ad UVMHIST_LOG(maphist, " !upgrade upper", 0, 0,0,0);
1269 1.222 ad return ERESTART;
1270 1.222 ad }
1271 1.222 ad cpu_count(CPU_COUNT_FLTUP, 1);
1272 1.222 ad KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1273 1.222 ad return 0;
1274 1.222 ad }
1275 1.222 ad
1276 1.222 ad /*
1277 1.173 uebayasi * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1278 1.173 uebayasi *
1279 1.173 uebayasi * iterate range of interest:
1280 1.173 uebayasi * 1. check if h/w mapping exists. if yes, we don't care
1281 1.173 uebayasi * 2. check if anon exists. if not, page is lower.
1282 1.173 uebayasi * 3. if anon exists, enter h/w mapping for neighbors.
1283 1.173 uebayasi *
1284 1.173 uebayasi * => called with amap locked (if exists).
1285 1.173 uebayasi */
1286 1.173 uebayasi
1287 1.144 uebayasi static int
1288 1.141 uebayasi uvm_fault_upper_lookup(
1289 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1290 1.141 uebayasi struct vm_anon **anons, struct vm_page **pages)
1291 1.141 uebayasi {
1292 1.141 uebayasi struct vm_amap *amap = ufi->entry->aref.ar_amap;
1293 1.137 uebayasi int lcv;
1294 1.137 uebayasi vaddr_t currva;
1295 1.195 martin bool shadowed __unused;
1296 1.220 ad bool entered;
1297 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1298 1.7 mrg
1299 1.7 mrg /* locked: maps(read), amap(if there) */
1300 1.222 ad KASSERT(amap == NULL ||
1301 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1302 1.1 mrg
1303 1.7 mrg /*
1304 1.7 mrg * map in the backpages and frontpages we found in the amap in hopes
1305 1.7 mrg * of preventing future faults. we also init the pages[] array as
1306 1.7 mrg * we go.
1307 1.7 mrg */
1308 1.7 mrg
1309 1.141 uebayasi currva = flt->startva;
1310 1.144 uebayasi shadowed = false;
1311 1.220 ad entered = false;
1312 1.163 uebayasi for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1313 1.7 mrg /*
1314 1.7 mrg * unmapped or center page. check if any anon at this level.
1315 1.7 mrg */
1316 1.7 mrg if (amap == NULL || anons[lcv] == NULL) {
1317 1.7 mrg pages[lcv] = NULL;
1318 1.7 mrg continue;
1319 1.7 mrg }
1320 1.7 mrg
1321 1.7 mrg /*
1322 1.222 ad * check for present page and map if possible.
1323 1.7 mrg */
1324 1.7 mrg
1325 1.7 mrg pages[lcv] = PGO_DONTCARE;
1326 1.177 yamt if (lcv == flt->centeridx) { /* save center for later! */
1327 1.144 uebayasi shadowed = true;
1328 1.186 rmind continue;
1329 1.186 rmind }
1330 1.186 rmind
1331 1.186 rmind struct vm_anon *anon = anons[lcv];
1332 1.186 rmind struct vm_page *pg = anon->an_page;
1333 1.161 uebayasi
1334 1.186 rmind KASSERT(anon->an_lock == amap->am_lock);
1335 1.172 uebayasi
1336 1.220 ad /*
1337 1.220 ad * ignore loaned and busy pages.
1338 1.220 ad * don't play with VAs that are already mapped.
1339 1.220 ad */
1340 1.220 ad
1341 1.220 ad if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 &&
1342 1.220 ad !pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1343 1.186 rmind uvm_fault_upper_neighbor(ufi, flt, currva,
1344 1.186 rmind pg, anon->an_ref > 1);
1345 1.220 ad entered = true;
1346 1.7 mrg }
1347 1.151 uebayasi }
1348 1.220 ad if (entered) {
1349 1.220 ad pmap_update(ufi->orig_map->pmap);
1350 1.220 ad }
1351 1.151 uebayasi
1352 1.160 uebayasi /* locked: maps(read), amap(if there) */
1353 1.222 ad KASSERT(amap == NULL ||
1354 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1355 1.160 uebayasi /* (shadowed == true) if there is an anon at the faulting address */
1356 1.201 pgoyette UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed,
1357 1.164 mlelstv (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1358 1.160 uebayasi
1359 1.151 uebayasi return 0;
1360 1.151 uebayasi }
1361 1.151 uebayasi
1362 1.173 uebayasi /*
1363 1.202 chs * uvm_fault_upper_neighbor: enter single upper neighbor page.
1364 1.173 uebayasi *
1365 1.173 uebayasi * => called with amap and anon locked.
1366 1.173 uebayasi */
1367 1.173 uebayasi
1368 1.151 uebayasi static void
1369 1.163 uebayasi uvm_fault_upper_neighbor(
1370 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1371 1.161 uebayasi vaddr_t currva, struct vm_page *pg, bool readonly)
1372 1.151 uebayasi {
1373 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1374 1.151 uebayasi
1375 1.173 uebayasi /* locked: amap, anon */
1376 1.173 uebayasi
1377 1.215 ad KASSERT(pg->uobject == NULL);
1378 1.215 ad KASSERT(pg->uanon != NULL);
1379 1.222 ad KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type);
1380 1.215 ad KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1381 1.215 ad
1382 1.222 ad /*
1383 1.227 ad * there wasn't a direct fault on the page, so avoid the cost of
1384 1.227 ad * activating it.
1385 1.222 ad */
1386 1.222 ad
1387 1.227 ad if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
1388 1.222 ad uvm_pagelock(pg);
1389 1.222 ad uvm_pageenqueue(pg);
1390 1.222 ad uvm_pageunlock(pg);
1391 1.222 ad }
1392 1.227 ad
1393 1.152 uebayasi UVMHIST_LOG(maphist,
1394 1.201 pgoyette " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1395 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1396 1.213 ad cpu_count(CPU_COUNT_FLTNAMAP, 1);
1397 1.152 uebayasi
1398 1.152 uebayasi /*
1399 1.161 uebayasi * Since this page isn't the page that's actually faulting,
1400 1.161 uebayasi * ignore pmap_enter() failures; it's not critical that we
1401 1.161 uebayasi * enter these right now.
1402 1.152 uebayasi */
1403 1.152 uebayasi
1404 1.152 uebayasi (void) pmap_enter(ufi->orig_map->pmap, currva,
1405 1.161 uebayasi VM_PAGE_TO_PHYS(pg),
1406 1.161 uebayasi readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1407 1.152 uebayasi flt->enter_prot,
1408 1.154 uebayasi PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1409 1.151 uebayasi }
1410 1.151 uebayasi
1411 1.173 uebayasi /*
1412 1.173 uebayasi * uvm_fault_upper: handle upper fault.
1413 1.173 uebayasi *
1414 1.173 uebayasi * 1. acquire anon lock.
1415 1.173 uebayasi * 2. get anon. let uvmfault_anonget do the dirty work.
1416 1.173 uebayasi * 3. handle loan.
1417 1.173 uebayasi * 4. dispatch direct or promote handlers.
1418 1.173 uebayasi */
1419 1.134 uebayasi
1420 1.138 uebayasi static int
1421 1.138 uebayasi uvm_fault_upper(
1422 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1423 1.148 uebayasi struct vm_anon **anons)
1424 1.138 uebayasi {
1425 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1426 1.148 uebayasi struct vm_anon * const anon = anons[flt->centeridx];
1427 1.148 uebayasi struct uvm_object *uobj;
1428 1.138 uebayasi int error;
1429 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1430 1.137 uebayasi
1431 1.186 rmind /* locked: maps(read), amap, anon */
1432 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1433 1.186 rmind KASSERT(anon->an_lock == amap->am_lock);
1434 1.7 mrg
1435 1.7 mrg /*
1436 1.7 mrg * handle case 1: fault on an anon in our amap
1437 1.7 mrg */
1438 1.7 mrg
1439 1.201 pgoyette UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx",
1440 1.201 pgoyette (uintptr_t)anon, 0, 0, 0);
1441 1.7 mrg
1442 1.7 mrg /*
1443 1.7 mrg * no matter if we have case 1A or case 1B we are going to need to
1444 1.7 mrg * have the anon's memory resident. ensure that now.
1445 1.7 mrg */
1446 1.7 mrg
1447 1.7 mrg /*
1448 1.47 chs * let uvmfault_anonget do the dirty work.
1449 1.51 thorpej * if it fails (!OK) it will unlock everything for us.
1450 1.47 chs * if it succeeds, locks are still valid and locked.
1451 1.7 mrg * also, if it is OK, then the anon's page is on the queues.
1452 1.7 mrg * if the page is on loan from a uvm_object, then anonget will
1453 1.7 mrg * lock that object for us if it does not fail.
1454 1.7 mrg */
1455 1.222 ad retry:
1456 1.138 uebayasi error = uvmfault_anonget(ufi, amap, anon);
1457 1.58 chs switch (error) {
1458 1.57 chs case 0:
1459 1.63 chs break;
1460 1.7 mrg
1461 1.57 chs case ERESTART:
1462 1.139 uebayasi return ERESTART;
1463 1.7 mrg
1464 1.57 chs case EAGAIN:
1465 1.128 pooka kpause("fltagain1", false, hz/2, NULL);
1466 1.139 uebayasi return ERESTART;
1467 1.51 thorpej
1468 1.222 ad case ENOLCK:
1469 1.222 ad /* it needs a write lock: retry */
1470 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1471 1.222 ad if (error != 0) {
1472 1.222 ad return error;
1473 1.222 ad }
1474 1.222 ad KASSERT(rw_write_held(amap->am_lock));
1475 1.222 ad goto retry;
1476 1.222 ad
1477 1.51 thorpej default:
1478 1.138 uebayasi return error;
1479 1.1 mrg }
1480 1.7 mrg
1481 1.7 mrg /*
1482 1.7 mrg * uobj is non null if the page is on loan from an object (i.e. uobj)
1483 1.7 mrg */
1484 1.7 mrg
1485 1.94 yamt uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1486 1.7 mrg
1487 1.7 mrg /* locked: maps(read), amap, anon, uobj(if one) */
1488 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1489 1.186 rmind KASSERT(anon->an_lock == amap->am_lock);
1490 1.222 ad KASSERT(uobj == NULL ||
1491 1.222 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1492 1.7 mrg
1493 1.7 mrg /*
1494 1.63 chs * special handling for loaned pages
1495 1.7 mrg */
1496 1.52 chs
1497 1.94 yamt if (anon->an_page->loan_count) {
1498 1.148 uebayasi error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1499 1.148 uebayasi if (error != 0)
1500 1.148 uebayasi return error;
1501 1.148 uebayasi }
1502 1.160 uebayasi
1503 1.160 uebayasi /*
1504 1.160 uebayasi * if we are case 1B then we will need to allocate a new blank
1505 1.160 uebayasi * anon to transfer the data into. note that we have a lock
1506 1.160 uebayasi * on anon, so no one can busy or release the page until we are done.
1507 1.160 uebayasi * also note that the ref count can't drop to zero here because
1508 1.160 uebayasi * it is > 1 and we are only dropping one ref.
1509 1.160 uebayasi *
1510 1.160 uebayasi * in the (hopefully very rare) case that we are out of RAM we
1511 1.160 uebayasi * will unlock, wait for more RAM, and refault.
1512 1.160 uebayasi *
1513 1.160 uebayasi * if we are out of anon VM we kill the process (XXX: could wait?).
1514 1.160 uebayasi */
1515 1.160 uebayasi
1516 1.160 uebayasi if (flt->cow_now && anon->an_ref > 1) {
1517 1.168 uebayasi flt->promote = true;
1518 1.160 uebayasi error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1519 1.160 uebayasi } else {
1520 1.160 uebayasi error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1521 1.160 uebayasi }
1522 1.160 uebayasi return error;
1523 1.148 uebayasi }
1524 1.148 uebayasi
1525 1.173 uebayasi /*
1526 1.173 uebayasi * uvm_fault_upper_loan: handle loaned upper page.
1527 1.173 uebayasi *
1528 1.177 yamt * 1. if not cow'ing now, simply adjust flt->enter_prot.
1529 1.173 uebayasi * 2. if cow'ing now, and if ref count is 1, break loan.
1530 1.173 uebayasi */
1531 1.173 uebayasi
1532 1.148 uebayasi static int
1533 1.148 uebayasi uvm_fault_upper_loan(
1534 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1535 1.148 uebayasi struct vm_anon *anon, struct uvm_object **ruobj)
1536 1.148 uebayasi {
1537 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1538 1.151 uebayasi int error = 0;
1539 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1540 1.149 uebayasi
1541 1.149 uebayasi if (!flt->cow_now) {
1542 1.7 mrg
1543 1.149 uebayasi /*
1544 1.149 uebayasi * for read faults on loaned pages we just cap the
1545 1.149 uebayasi * protection at read-only.
1546 1.149 uebayasi */
1547 1.63 chs
1548 1.149 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1549 1.7 mrg
1550 1.149 uebayasi } else {
1551 1.149 uebayasi /*
1552 1.149 uebayasi * note that we can't allow writes into a loaned page!
1553 1.149 uebayasi *
1554 1.149 uebayasi * if we have a write fault on a loaned page in an
1555 1.149 uebayasi * anon then we need to look at the anon's ref count.
1556 1.149 uebayasi * if it is greater than one then we are going to do
1557 1.149 uebayasi * a normal copy-on-write fault into a new anon (this
1558 1.149 uebayasi * is not a problem). however, if the reference count
1559 1.149 uebayasi * is one (a case where we would normally allow a
1560 1.149 uebayasi * write directly to the page) then we need to kill
1561 1.149 uebayasi * the loan before we continue.
1562 1.149 uebayasi */
1563 1.149 uebayasi
1564 1.149 uebayasi /* >1 case is already ok */
1565 1.149 uebayasi if (anon->an_ref == 1) {
1566 1.222 ad /* breaking loan requires a write lock. */
1567 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1568 1.222 ad if (error != 0) {
1569 1.222 ad return error;
1570 1.222 ad }
1571 1.222 ad KASSERT(rw_write_held(amap->am_lock));
1572 1.222 ad
1573 1.155 uebayasi error = uvm_loanbreak_anon(anon, *ruobj);
1574 1.151 uebayasi if (error != 0) {
1575 1.186 rmind uvmfault_unlockall(ufi, amap, *ruobj);
1576 1.151 uebayasi uvm_wait("flt_noram2");
1577 1.151 uebayasi return ERESTART;
1578 1.151 uebayasi }
1579 1.206 msaitoh /* if we were a loan receiver uobj is gone */
1580 1.155 uebayasi if (*ruobj)
1581 1.155 uebayasi *ruobj = NULL;
1582 1.151 uebayasi }
1583 1.151 uebayasi }
1584 1.151 uebayasi return error;
1585 1.151 uebayasi }
1586 1.151 uebayasi
1587 1.173 uebayasi /*
1588 1.173 uebayasi * uvm_fault_upper_promote: promote upper page.
1589 1.173 uebayasi *
1590 1.173 uebayasi * 1. call uvmfault_promote.
1591 1.173 uebayasi * 2. enqueue page.
1592 1.173 uebayasi * 3. deref.
1593 1.173 uebayasi * 4. pass page to uvm_fault_upper_enter.
1594 1.173 uebayasi */
1595 1.173 uebayasi
1596 1.148 uebayasi static int
1597 1.148 uebayasi uvm_fault_upper_promote(
1598 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1599 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon)
1600 1.148 uebayasi {
1601 1.222 ad struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1602 1.149 uebayasi struct vm_anon * const oanon = anon;
1603 1.149 uebayasi struct vm_page *pg;
1604 1.149 uebayasi int error;
1605 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1606 1.149 uebayasi
1607 1.149 uebayasi UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1608 1.213 ad cpu_count(CPU_COUNT_FLT_ACOW, 1);
1609 1.149 uebayasi
1610 1.222 ad /* promoting requires a write lock. */
1611 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1612 1.222 ad if (error != 0) {
1613 1.222 ad return error;
1614 1.222 ad }
1615 1.222 ad KASSERT(rw_write_held(amap->am_lock));
1616 1.222 ad
1617 1.177 yamt error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1618 1.177 yamt &flt->anon_spare);
1619 1.149 uebayasi switch (error) {
1620 1.149 uebayasi case 0:
1621 1.149 uebayasi break;
1622 1.149 uebayasi case ERESTART:
1623 1.149 uebayasi return ERESTART;
1624 1.149 uebayasi default:
1625 1.149 uebayasi return error;
1626 1.149 uebayasi }
1627 1.227 ad pg = anon->an_page;
1628 1.7 mrg
1629 1.222 ad KASSERT(anon->an_lock == oanon->an_lock);
1630 1.227 ad KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0);
1631 1.7 mrg
1632 1.149 uebayasi /* deref: can not drop to zero here by defn! */
1633 1.183 yamt KASSERT(oanon->an_ref > 1);
1634 1.149 uebayasi oanon->an_ref--;
1635 1.53 thorpej
1636 1.149 uebayasi /*
1637 1.149 uebayasi * note: oanon is still locked, as is the new anon. we
1638 1.149 uebayasi * need to check for this later when we unlock oanon; if
1639 1.149 uebayasi * oanon != anon, we'll have to unlock anon, too.
1640 1.149 uebayasi */
1641 1.7 mrg
1642 1.149 uebayasi return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1643 1.148 uebayasi }
1644 1.148 uebayasi
1645 1.173 uebayasi /*
1646 1.173 uebayasi * uvm_fault_upper_direct: handle direct fault.
1647 1.173 uebayasi */
1648 1.173 uebayasi
1649 1.148 uebayasi static int
1650 1.148 uebayasi uvm_fault_upper_direct(
1651 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1652 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon)
1653 1.148 uebayasi {
1654 1.149 uebayasi struct vm_anon * const oanon = anon;
1655 1.149 uebayasi struct vm_page *pg;
1656 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1657 1.52 chs
1658 1.213 ad cpu_count(CPU_COUNT_FLT_ANON, 1);
1659 1.149 uebayasi pg = anon->an_page;
1660 1.149 uebayasi if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1661 1.149 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1662 1.7 mrg
1663 1.149 uebayasi return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1664 1.148 uebayasi }
1665 1.148 uebayasi
1666 1.173 uebayasi /*
1667 1.173 uebayasi * uvm_fault_upper_enter: enter h/w mapping of upper page.
1668 1.173 uebayasi */
1669 1.173 uebayasi
1670 1.148 uebayasi static int
1671 1.148 uebayasi uvm_fault_upper_enter(
1672 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1673 1.148 uebayasi struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1674 1.148 uebayasi struct vm_anon *oanon)
1675 1.148 uebayasi {
1676 1.202 chs struct pmap *pmap = ufi->orig_map->pmap;
1677 1.202 chs vaddr_t va = ufi->orig_rvaddr;
1678 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1679 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1680 1.7 mrg
1681 1.173 uebayasi /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1682 1.222 ad KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1683 1.186 rmind KASSERT(anon->an_lock == amap->am_lock);
1684 1.186 rmind KASSERT(oanon->an_lock == amap->am_lock);
1685 1.222 ad KASSERT(uobj == NULL ||
1686 1.222 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1687 1.215 ad KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1688 1.7 mrg
1689 1.7 mrg /*
1690 1.69 chs * now map the page in.
1691 1.7 mrg */
1692 1.7 mrg
1693 1.177 yamt UVMHIST_LOG(maphist,
1694 1.201 pgoyette " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1695 1.202 chs (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1696 1.202 chs if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1697 1.177 yamt flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1698 1.177 yamt (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1699 1.69 chs
1700 1.46 thorpej /*
1701 1.202 chs * If pmap_enter() fails, it must not leave behind an existing
1702 1.202 chs * pmap entry. In particular, a now-stale entry for a different
1703 1.202 chs * page would leave the pmap inconsistent with the vm_map.
1704 1.202 chs * This is not to imply that pmap_enter() should remove an
1705 1.202 chs * existing mapping in such a situation (since that could create
1706 1.202 chs * different problems, eg. if the existing mapping is wired),
1707 1.202 chs * but rather that the pmap should be designed such that it
1708 1.202 chs * never needs to fail when the new mapping is replacing an
1709 1.202 chs * existing mapping and the new page has no existing mappings.
1710 1.226 ad *
1711 1.226 ad * XXX This can't be asserted safely any more because many
1712 1.226 ad * LWPs and/or many processes could simultaneously fault on
1713 1.226 ad * the same VA and some might succeed.
1714 1.202 chs */
1715 1.202 chs
1716 1.226 ad /* KASSERT(!pmap_extract(pmap, va, NULL)); */
1717 1.202 chs
1718 1.202 chs /*
1719 1.222 ad * ensure that the page is queued in the case that
1720 1.222 ad * we just promoted.
1721 1.222 ad */
1722 1.222 ad
1723 1.227 ad uvm_pagelock(pg);
1724 1.227 ad uvm_pageenqueue(pg);
1725 1.227 ad uvm_pageunlock(pg);
1726 1.222 ad
1727 1.222 ad /*
1728 1.46 thorpej * No need to undo what we did; we can simply think of
1729 1.46 thorpej * this as the pmap throwing away the mapping information.
1730 1.46 thorpej *
1731 1.46 thorpej * We do, however, have to go through the ReFault path,
1732 1.46 thorpej * as the map may change while we're asleep.
1733 1.46 thorpej */
1734 1.69 chs
1735 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
1736 1.92 yamt if (!uvm_reclaimable()) {
1737 1.46 thorpej UVMHIST_LOG(maphist,
1738 1.46 thorpej "<- failed. out of VM",0,0,0,0);
1739 1.46 thorpej /* XXX instrumentation */
1740 1.148 uebayasi return ENOMEM;
1741 1.46 thorpej }
1742 1.46 thorpej /* XXX instrumentation */
1743 1.46 thorpej uvm_wait("flt_pmfail1");
1744 1.139 uebayasi return ERESTART;
1745 1.46 thorpej }
1746 1.7 mrg
1747 1.177 yamt uvm_fault_upper_done(ufi, flt, anon, pg);
1748 1.169 uebayasi
1749 1.169 uebayasi /*
1750 1.169 uebayasi * done case 1! finish up by unlocking everything and returning success
1751 1.169 uebayasi */
1752 1.169 uebayasi
1753 1.202 chs pmap_update(pmap);
1754 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
1755 1.169 uebayasi return 0;
1756 1.148 uebayasi }
1757 1.148 uebayasi
1758 1.173 uebayasi /*
1759 1.173 uebayasi * uvm_fault_upper_done: queue upper center page.
1760 1.173 uebayasi */
1761 1.173 uebayasi
1762 1.169 uebayasi static void
1763 1.148 uebayasi uvm_fault_upper_done(
1764 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1765 1.177 yamt struct vm_anon *anon, struct vm_page *pg)
1766 1.148 uebayasi {
1767 1.174 rmind const bool wire_paging = flt->wire_paging;
1768 1.174 rmind
1769 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1770 1.148 uebayasi
1771 1.7 mrg /*
1772 1.46 thorpej * ... update the page queues.
1773 1.7 mrg */
1774 1.7 mrg
1775 1.174 rmind if (wire_paging) {
1776 1.227 ad uvm_pagelock(pg);
1777 1.8 chuck uvm_pagewire(pg);
1778 1.227 ad uvm_pageunlock(pg);
1779 1.29 chs
1780 1.29 chs /*
1781 1.29 chs * since the now-wired page cannot be paged out,
1782 1.29 chs * release its swap resources for others to use.
1783 1.215 ad * and since an anon with no swap cannot be clean,
1784 1.215 ad * mark it dirty now.
1785 1.29 chs */
1786 1.29 chs
1787 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1788 1.174 rmind uvm_anon_dropswap(anon);
1789 1.227 ad } else if (uvmpdpol_pageactivate_p(pg)) {
1790 1.227 ad /*
1791 1.227 ad * avoid re-activating the page unless needed,
1792 1.227 ad * to avoid false sharing on multiprocessor.
1793 1.227 ad */
1794 1.227 ad
1795 1.227 ad uvm_pagelock(pg);
1796 1.227 ad uvm_pageactivate(pg);
1797 1.227 ad uvm_pageunlock(pg);
1798 1.174 rmind }
1799 1.138 uebayasi }
1800 1.1 mrg
1801 1.173 uebayasi /*
1802 1.222 ad * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer
1803 1.222 ad */
1804 1.222 ad
1805 1.222 ad static inline int
1806 1.222 ad uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1807 1.222 ad struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage)
1808 1.222 ad {
1809 1.222 ad
1810 1.224 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1811 1.224 skrll
1812 1.222 ad KASSERT(uobj != NULL);
1813 1.222 ad KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1814 1.222 ad
1815 1.222 ad /*
1816 1.222 ad * fast path.
1817 1.222 ad */
1818 1.223 skrll
1819 1.222 ad if (__predict_true(flt->lower_lock_type == RW_WRITER)) {
1820 1.222 ad return 0;
1821 1.222 ad }
1822 1.222 ad
1823 1.222 ad /*
1824 1.222 ad * otherwise try for the upgrade. if we don't get it, unlock
1825 1.222 ad * everything, restart the fault and next time around get a writer
1826 1.222 ad * lock.
1827 1.222 ad */
1828 1.222 ad
1829 1.222 ad flt->lower_lock_type = RW_WRITER;
1830 1.222 ad if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) {
1831 1.222 ad uvmfault_unlockall(ufi, amap, uobj);
1832 1.222 ad cpu_count(CPU_COUNT_FLTNOUP, 1);
1833 1.222 ad UVMHIST_LOG(maphist, " !upgrade lower", 0, 0,0,0);
1834 1.222 ad return ERESTART;
1835 1.222 ad }
1836 1.222 ad cpu_count(CPU_COUNT_FLTUP, 1);
1837 1.222 ad KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1838 1.222 ad return 0;
1839 1.222 ad }
1840 1.222 ad
1841 1.222 ad /*
1842 1.173 uebayasi * uvm_fault_lower: handle lower fault.
1843 1.173 uebayasi *
1844 1.173 uebayasi * 1. check uobj
1845 1.173 uebayasi * 1.1. if null, ZFOD.
1846 1.173 uebayasi * 1.2. if not null, look up unnmapped neighbor pages.
1847 1.173 uebayasi * 2. for center page, check if promote.
1848 1.173 uebayasi * 2.1. ZFOD always needs promotion.
1849 1.173 uebayasi * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1850 1.173 uebayasi * 3. if uobj is not ZFOD and page is not found, do i/o.
1851 1.173 uebayasi * 4. dispatch either direct / promote fault.
1852 1.173 uebayasi */
1853 1.173 uebayasi
1854 1.138 uebayasi static int
1855 1.173 uebayasi uvm_fault_lower(
1856 1.140 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1857 1.173 uebayasi struct vm_page **pages)
1858 1.138 uebayasi {
1859 1.198 riastrad struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1860 1.173 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1861 1.173 uebayasi struct vm_page *uobjpage;
1862 1.138 uebayasi int error;
1863 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1864 1.173 uebayasi
1865 1.7 mrg /*
1866 1.173 uebayasi * now, if the desired page is not shadowed by the amap and we have
1867 1.173 uebayasi * a backing object that does not have a special fault routine, then
1868 1.173 uebayasi * we ask (with pgo_get) the object for resident pages that we care
1869 1.173 uebayasi * about and attempt to map them in. we do not let pgo_get block
1870 1.173 uebayasi * (PGO_LOCKED).
1871 1.173 uebayasi */
1872 1.173 uebayasi
1873 1.173 uebayasi if (uobj == NULL) {
1874 1.173 uebayasi /* zero fill; don't care neighbor pages */
1875 1.173 uebayasi uobjpage = NULL;
1876 1.173 uebayasi } else {
1877 1.173 uebayasi uvm_fault_lower_lookup(ufi, flt, pages);
1878 1.173 uebayasi uobjpage = pages[flt->centeridx];
1879 1.173 uebayasi }
1880 1.173 uebayasi
1881 1.173 uebayasi /*
1882 1.173 uebayasi * note that at this point we are done with any front or back pages.
1883 1.173 uebayasi * we are now going to focus on the center page (i.e. the one we've
1884 1.173 uebayasi * faulted on). if we have faulted on the upper (anon) layer
1885 1.173 uebayasi * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1886 1.173 uebayasi * not touched it yet). if we have faulted on the bottom (uobj)
1887 1.173 uebayasi * layer [i.e. case 2] and the page was both present and available,
1888 1.173 uebayasi * then we've got a pointer to it as "uobjpage" and we've already
1889 1.173 uebayasi * made it BUSY.
1890 1.7 mrg */
1891 1.7 mrg
1892 1.7 mrg /*
1893 1.7 mrg * locked:
1894 1.7 mrg * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1895 1.7 mrg */
1896 1.222 ad KASSERT(amap == NULL ||
1897 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1898 1.227 ad KASSERT(uobj == NULL ||
1899 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1900 1.7 mrg
1901 1.7 mrg /*
1902 1.7 mrg * note that uobjpage can not be PGO_DONTCARE at this point. we now
1903 1.7 mrg * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1904 1.7 mrg * have a backing object, check and see if we are going to promote
1905 1.7 mrg * the data up to an anon during the fault.
1906 1.7 mrg */
1907 1.7 mrg
1908 1.7 mrg if (uobj == NULL) {
1909 1.63 chs uobjpage = PGO_DONTCARE;
1910 1.168 uebayasi flt->promote = true; /* always need anon here */
1911 1.7 mrg } else {
1912 1.52 chs KASSERT(uobjpage != PGO_DONTCARE);
1913 1.168 uebayasi flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1914 1.7 mrg }
1915 1.201 pgoyette UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd",
1916 1.168 uebayasi flt->promote, (uobj == NULL), 0,0);
1917 1.1 mrg
1918 1.7 mrg /*
1919 1.9 chuck * if uobjpage is not null then we do not need to do I/O to get the
1920 1.9 chuck * uobjpage.
1921 1.9 chuck *
1922 1.63 chs * if uobjpage is null, then we need to unlock and ask the pager to
1923 1.7 mrg * get the data for us. once we have the data, we need to reverify
1924 1.7 mrg * the state the world. we are currently not holding any resources.
1925 1.7 mrg */
1926 1.1 mrg
1927 1.9 chuck if (uobjpage) {
1928 1.9 chuck /* update rusage counters */
1929 1.124 ad curlwp->l_ru.ru_minflt++;
1930 1.9 chuck } else {
1931 1.163 uebayasi error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1932 1.148 uebayasi if (error != 0)
1933 1.148 uebayasi return error;
1934 1.148 uebayasi }
1935 1.160 uebayasi
1936 1.160 uebayasi /*
1937 1.160 uebayasi * locked:
1938 1.160 uebayasi * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1939 1.160 uebayasi */
1940 1.222 ad KASSERT(amap == NULL ||
1941 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1942 1.227 ad KASSERT(uobj == NULL ||
1943 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1944 1.160 uebayasi
1945 1.160 uebayasi /*
1946 1.160 uebayasi * notes:
1947 1.160 uebayasi * - at this point uobjpage can not be NULL
1948 1.160 uebayasi * - at this point uobjpage can not be PG_RELEASED (since we checked
1949 1.160 uebayasi * for it above)
1950 1.218 ad * - at this point uobjpage could be waited on (handle later)
1951 1.227 ad * - uobjpage can be from a different object if tmpfs (vnode vs UAO)
1952 1.160 uebayasi */
1953 1.160 uebayasi
1954 1.177 yamt KASSERT(uobjpage != NULL);
1955 1.227 ad KASSERT(uobj == NULL ||
1956 1.227 ad uobjpage->uobject->vmobjlock == uobj->vmobjlock);
1957 1.160 uebayasi KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1958 1.215 ad uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
1959 1.160 uebayasi
1960 1.177 yamt if (!flt->promote) {
1961 1.163 uebayasi error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1962 1.160 uebayasi } else {
1963 1.163 uebayasi error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1964 1.160 uebayasi }
1965 1.160 uebayasi return error;
1966 1.148 uebayasi }
1967 1.148 uebayasi
1968 1.173 uebayasi /*
1969 1.173 uebayasi * uvm_fault_lower_lookup: look up on-memory uobj pages.
1970 1.173 uebayasi *
1971 1.173 uebayasi * 1. get on-memory pages.
1972 1.173 uebayasi * 2. if failed, give up (get only center page later).
1973 1.173 uebayasi * 3. if succeeded, enter h/w mapping of neighbor pages.
1974 1.173 uebayasi */
1975 1.173 uebayasi
1976 1.173 uebayasi static void
1977 1.173 uebayasi uvm_fault_lower_lookup(
1978 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1979 1.173 uebayasi struct vm_page **pages)
1980 1.173 uebayasi {
1981 1.173 uebayasi struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1982 1.173 uebayasi int lcv, gotpages;
1983 1.173 uebayasi vaddr_t currva;
1984 1.227 ad bool entered;
1985 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1986 1.173 uebayasi
1987 1.222 ad rw_enter(uobj->vmobjlock, flt->lower_lock_type);
1988 1.222 ad
1989 1.222 ad /*
1990 1.222 ad * Locked: maps(read), amap(if there), uobj
1991 1.222 ad */
1992 1.173 uebayasi
1993 1.213 ad cpu_count(CPU_COUNT_FLTLGET, 1);
1994 1.173 uebayasi gotpages = flt->npages;
1995 1.173 uebayasi (void) uobj->pgops->pgo_get(uobj,
1996 1.173 uebayasi ufi->entry->offset + flt->startva - ufi->entry->start,
1997 1.173 uebayasi pages, &gotpages, flt->centeridx,
1998 1.222 ad flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1999 1.227 ad PGO_LOCKED);
2000 1.173 uebayasi
2001 1.222 ad KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2002 1.186 rmind
2003 1.173 uebayasi /*
2004 1.173 uebayasi * check for pages to map, if we got any
2005 1.173 uebayasi */
2006 1.173 uebayasi
2007 1.173 uebayasi if (gotpages == 0) {
2008 1.173 uebayasi pages[flt->centeridx] = NULL;
2009 1.173 uebayasi return;
2010 1.173 uebayasi }
2011 1.173 uebayasi
2012 1.227 ad entered = false;
2013 1.173 uebayasi currva = flt->startva;
2014 1.173 uebayasi for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
2015 1.173 uebayasi struct vm_page *curpg;
2016 1.173 uebayasi
2017 1.173 uebayasi curpg = pages[lcv];
2018 1.173 uebayasi if (curpg == NULL || curpg == PGO_DONTCARE) {
2019 1.173 uebayasi continue;
2020 1.173 uebayasi }
2021 1.173 uebayasi
2022 1.227 ad /*
2023 1.227 ad * in the case of tmpfs, the pages might be from a different
2024 1.227 ad * uvm_object. just make sure that they have the same lock.
2025 1.227 ad */
2026 1.227 ad
2027 1.227 ad KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock);
2028 1.227 ad KASSERT((curpg->flags & PG_BUSY) == 0);
2029 1.222 ad
2030 1.173 uebayasi /*
2031 1.227 ad * leave the centre page for later. don't screw with
2032 1.227 ad * existing mappings (needless & expensive).
2033 1.173 uebayasi */
2034 1.173 uebayasi
2035 1.173 uebayasi if (lcv == flt->centeridx) {
2036 1.217 rin UVMHIST_LOG(maphist, " got uobjpage (%#jx) "
2037 1.201 pgoyette "with locked get", (uintptr_t)curpg, 0, 0, 0);
2038 1.227 ad } else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
2039 1.215 ad uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
2040 1.227 ad entered = true;
2041 1.173 uebayasi }
2042 1.173 uebayasi }
2043 1.227 ad if (entered) {
2044 1.227 ad pmap_update(ufi->orig_map->pmap);
2045 1.227 ad }
2046 1.173 uebayasi }
2047 1.173 uebayasi
2048 1.173 uebayasi /*
2049 1.173 uebayasi * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
2050 1.173 uebayasi */
2051 1.173 uebayasi
2052 1.173 uebayasi static void
2053 1.173 uebayasi uvm_fault_lower_neighbor(
2054 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2055 1.215 ad vaddr_t currva, struct vm_page *pg)
2056 1.173 uebayasi {
2057 1.215 ad const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
2058 1.182 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2059 1.173 uebayasi
2060 1.173 uebayasi /* locked: maps(read), amap(if there), uobj */
2061 1.173 uebayasi
2062 1.173 uebayasi /*
2063 1.173 uebayasi * calling pgo_get with PGO_LOCKED returns us pages which
2064 1.173 uebayasi * are neither busy nor released, so we don't need to check
2065 1.173 uebayasi * for this. we can just directly enter the pages.
2066 1.227 ad *
2067 1.222 ad * there wasn't a direct fault on the page, so avoid the cost of
2068 1.227 ad * activating it.
2069 1.222 ad */
2070 1.222 ad
2071 1.227 ad if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
2072 1.222 ad uvm_pagelock(pg);
2073 1.222 ad uvm_pageenqueue(pg);
2074 1.222 ad uvm_pageunlock(pg);
2075 1.222 ad }
2076 1.227 ad
2077 1.173 uebayasi UVMHIST_LOG(maphist,
2078 1.201 pgoyette " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
2079 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
2080 1.213 ad cpu_count(CPU_COUNT_FLTNOMAP, 1);
2081 1.173 uebayasi
2082 1.173 uebayasi /*
2083 1.173 uebayasi * Since this page isn't the page that's actually faulting,
2084 1.173 uebayasi * ignore pmap_enter() failures; it's not critical that we
2085 1.173 uebayasi * enter these right now.
2086 1.219 ad * NOTE: page can't be waited on or PG_RELEASED because we've
2087 1.173 uebayasi * held the lock the whole time we've had the handle.
2088 1.173 uebayasi */
2089 1.173 uebayasi KASSERT((pg->flags & PG_PAGEOUT) == 0);
2090 1.173 uebayasi KASSERT((pg->flags & PG_RELEASED) == 0);
2091 1.215 ad KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
2092 1.215 ad uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
2093 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0);
2094 1.222 ad KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type);
2095 1.199 skrll
2096 1.223 skrll const vm_prot_t mapprot =
2097 1.199 skrll readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
2098 1.199 skrll flt->enter_prot & MASK(ufi->entry);
2099 1.223 skrll const u_int mapflags =
2100 1.199 skrll PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
2101 1.173 uebayasi (void) pmap_enter(ufi->orig_map->pmap, currva,
2102 1.199 skrll VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
2103 1.173 uebayasi }
2104 1.173 uebayasi
2105 1.173 uebayasi /*
2106 1.173 uebayasi * uvm_fault_lower_io: get lower page from backing store.
2107 1.173 uebayasi *
2108 1.173 uebayasi * 1. unlock everything, because i/o will block.
2109 1.173 uebayasi * 2. call pgo_get.
2110 1.173 uebayasi * 3. if failed, recover.
2111 1.173 uebayasi * 4. if succeeded, relock everything and verify things.
2112 1.173 uebayasi */
2113 1.173 uebayasi
2114 1.148 uebayasi static int
2115 1.163 uebayasi uvm_fault_lower_io(
2116 1.222 ad struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2117 1.156 uebayasi struct uvm_object **ruobj, struct vm_page **ruobjpage)
2118 1.148 uebayasi {
2119 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2120 1.156 uebayasi struct uvm_object *uobj = *ruobj;
2121 1.158 uebayasi struct vm_page *pg;
2122 1.149 uebayasi bool locked;
2123 1.149 uebayasi int gotpages;
2124 1.149 uebayasi int error;
2125 1.149 uebayasi voff_t uoff;
2126 1.208 chs vm_prot_t access_type;
2127 1.208 chs int advice;
2128 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2129 1.149 uebayasi
2130 1.149 uebayasi /* update rusage counters */
2131 1.149 uebayasi curlwp->l_ru.ru_majflt++;
2132 1.137 uebayasi
2133 1.208 chs /* grab everything we need from the entry before we unlock */
2134 1.208 chs uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
2135 1.208 chs access_type = flt->access_type & MASK(ufi->entry);
2136 1.208 chs advice = ufi->entry->advice;
2137 1.208 chs
2138 1.186 rmind /* Locked: maps(read), amap(if there), uobj */
2139 1.222 ad KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2140 1.222 ad
2141 1.222 ad /* Upgrade to a write lock if needed. */
2142 1.222 ad error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL);
2143 1.222 ad if (error != 0) {
2144 1.222 ad return error;
2145 1.222 ad }
2146 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
2147 1.186 rmind
2148 1.222 ad /* Locked: uobj(write) */
2149 1.222 ad KASSERT(rw_write_held(uobj->vmobjlock));
2150 1.63 chs
2151 1.213 ad cpu_count(CPU_COUNT_FLTGET, 1);
2152 1.149 uebayasi gotpages = 1;
2153 1.166 mlelstv pg = NULL;
2154 1.158 uebayasi error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
2155 1.208 chs 0, access_type, advice, PGO_SYNCIO);
2156 1.158 uebayasi /* locked: pg(if no error) */
2157 1.52 chs
2158 1.149 uebayasi /*
2159 1.149 uebayasi * recover from I/O
2160 1.149 uebayasi */
2161 1.1 mrg
2162 1.149 uebayasi if (error) {
2163 1.149 uebayasi if (error == EAGAIN) {
2164 1.149 uebayasi UVMHIST_LOG(maphist,
2165 1.149 uebayasi " pgo_get says TRY AGAIN!",0,0,0,0);
2166 1.149 uebayasi kpause("fltagain2", false, hz/2, NULL);
2167 1.149 uebayasi return ERESTART;
2168 1.149 uebayasi }
2169 1.1 mrg
2170 1.139 uebayasi #if 0
2171 1.149 uebayasi KASSERT(error != ERESTART);
2172 1.139 uebayasi #else
2173 1.149 uebayasi /* XXXUEBS don't re-fault? */
2174 1.149 uebayasi if (error == ERESTART)
2175 1.149 uebayasi error = EIO;
2176 1.139 uebayasi #endif
2177 1.139 uebayasi
2178 1.201 pgoyette UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
2179 1.149 uebayasi error, 0,0,0);
2180 1.149 uebayasi return error;
2181 1.149 uebayasi }
2182 1.7 mrg
2183 1.149 uebayasi /*
2184 1.149 uebayasi * re-verify the state of the world by first trying to relock
2185 1.149 uebayasi * the maps. always relock the object.
2186 1.149 uebayasi */
2187 1.7 mrg
2188 1.149 uebayasi locked = uvmfault_relock(ufi);
2189 1.149 uebayasi if (locked && amap)
2190 1.222 ad amap_lock(amap, flt->upper_lock_type);
2191 1.156 uebayasi
2192 1.156 uebayasi /* might be changed */
2193 1.158 uebayasi uobj = pg->uobject;
2194 1.156 uebayasi
2195 1.222 ad rw_enter(uobj->vmobjlock, flt->lower_lock_type);
2196 1.186 rmind KASSERT((pg->flags & PG_BUSY) != 0);
2197 1.222 ad KASSERT(flt->lower_lock_type == RW_WRITER);
2198 1.186 rmind
2199 1.214 ad uvm_pagelock(pg);
2200 1.186 rmind uvm_pageactivate(pg);
2201 1.214 ad uvm_pageunlock(pg);
2202 1.63 chs
2203 1.158 uebayasi /* locked(locked): maps(read), amap(if !null), uobj, pg */
2204 1.158 uebayasi /* locked(!locked): uobj, pg */
2205 1.7 mrg
2206 1.149 uebayasi /*
2207 1.149 uebayasi * verify that the page has not be released and re-verify
2208 1.149 uebayasi * that amap slot is still free. if there is a problem,
2209 1.149 uebayasi * we unlock and clean up.
2210 1.149 uebayasi */
2211 1.7 mrg
2212 1.158 uebayasi if ((pg->flags & PG_RELEASED) != 0 ||
2213 1.158 uebayasi (locked && amap && amap_lookup(&ufi->entry->aref,
2214 1.149 uebayasi ufi->orig_rvaddr - ufi->entry->start))) {
2215 1.149 uebayasi if (locked)
2216 1.186 rmind uvmfault_unlockall(ufi, amap, NULL);
2217 1.149 uebayasi locked = false;
2218 1.149 uebayasi }
2219 1.7 mrg
2220 1.149 uebayasi /*
2221 1.227 ad * unbusy/release the page.
2222 1.227 ad */
2223 1.227 ad
2224 1.227 ad if ((pg->flags & PG_RELEASED) == 0) {
2225 1.227 ad pg->flags &= ~PG_BUSY;
2226 1.227 ad uvm_pagelock(pg);
2227 1.227 ad uvm_pagewakeup(pg);
2228 1.227 ad uvm_pageunlock(pg);
2229 1.227 ad UVM_PAGE_OWN(pg, NULL);
2230 1.227 ad } else {
2231 1.227 ad cpu_count(CPU_COUNT_FLTPGRELE, 1);
2232 1.227 ad uvm_pagefree(pg);
2233 1.227 ad }
2234 1.227 ad
2235 1.227 ad /*
2236 1.227 ad * didn't get the lock? retry.
2237 1.149 uebayasi */
2238 1.7 mrg
2239 1.149 uebayasi if (locked == false) {
2240 1.149 uebayasi UVMHIST_LOG(maphist,
2241 1.149 uebayasi " wasn't able to relock after fault: retry",
2242 1.149 uebayasi 0,0,0,0);
2243 1.216 ad rw_exit(uobj->vmobjlock);
2244 1.149 uebayasi return ERESTART;
2245 1.149 uebayasi }
2246 1.7 mrg
2247 1.149 uebayasi /*
2248 1.227 ad * we have the data in pg. we are holding object lock (so the page
2249 1.149 uebayasi * can't be released on us).
2250 1.149 uebayasi */
2251 1.7 mrg
2252 1.227 ad /* locked: maps(read), amap(if !null), uobj */
2253 1.148 uebayasi
2254 1.156 uebayasi *ruobj = uobj;
2255 1.158 uebayasi *ruobjpage = pg;
2256 1.148 uebayasi return 0;
2257 1.148 uebayasi }
2258 1.148 uebayasi
2259 1.173 uebayasi /*
2260 1.173 uebayasi * uvm_fault_lower_direct: fault lower center page
2261 1.173 uebayasi *
2262 1.177 yamt * 1. adjust flt->enter_prot.
2263 1.173 uebayasi * 2. if page is loaned, resolve.
2264 1.173 uebayasi */
2265 1.173 uebayasi
2266 1.148 uebayasi int
2267 1.163 uebayasi uvm_fault_lower_direct(
2268 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2269 1.156 uebayasi struct uvm_object *uobj, struct vm_page *uobjpage)
2270 1.148 uebayasi {
2271 1.149 uebayasi struct vm_page *pg;
2272 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2273 1.149 uebayasi
2274 1.149 uebayasi /*
2275 1.149 uebayasi * we are not promoting. if the mapping is COW ensure that we
2276 1.149 uebayasi * don't give more access than we should (e.g. when doing a read
2277 1.149 uebayasi * fault on a COPYONWRITE mapping we want to map the COW page in
2278 1.149 uebayasi * R/O even though the entry protection could be R/W).
2279 1.149 uebayasi *
2280 1.149 uebayasi * set "pg" to the page we want to map in (uobjpage, usually)
2281 1.149 uebayasi */
2282 1.1 mrg
2283 1.213 ad cpu_count(CPU_COUNT_FLT_OBJ, 1);
2284 1.149 uebayasi if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2285 1.149 uebayasi UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2286 1.149 uebayasi flt->enter_prot &= ~VM_PROT_WRITE;
2287 1.149 uebayasi pg = uobjpage; /* map in the actual object */
2288 1.7 mrg
2289 1.149 uebayasi KASSERT(uobjpage != PGO_DONTCARE);
2290 1.7 mrg
2291 1.149 uebayasi /*
2292 1.149 uebayasi * we are faulting directly on the page. be careful
2293 1.149 uebayasi * about writing to loaned pages...
2294 1.149 uebayasi */
2295 1.149 uebayasi
2296 1.149 uebayasi if (uobjpage->loan_count) {
2297 1.163 uebayasi uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2298 1.151 uebayasi }
2299 1.151 uebayasi KASSERT(pg == uobjpage);
2300 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0);
2301 1.183 yamt return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2302 1.151 uebayasi }
2303 1.151 uebayasi
2304 1.173 uebayasi /*
2305 1.173 uebayasi * uvm_fault_lower_direct_loan: resolve loaned page.
2306 1.173 uebayasi *
2307 1.177 yamt * 1. if not cow'ing, adjust flt->enter_prot.
2308 1.173 uebayasi * 2. if cow'ing, break loan.
2309 1.173 uebayasi */
2310 1.173 uebayasi
2311 1.151 uebayasi static int
2312 1.163 uebayasi uvm_fault_lower_direct_loan(
2313 1.151 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2314 1.177 yamt struct uvm_object *uobj, struct vm_page **rpg,
2315 1.177 yamt struct vm_page **ruobjpage)
2316 1.151 uebayasi {
2317 1.152 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2318 1.152 uebayasi struct vm_page *pg;
2319 1.152 uebayasi struct vm_page *uobjpage = *ruobjpage;
2320 1.222 ad int error;
2321 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2322 1.152 uebayasi
2323 1.152 uebayasi if (!flt->cow_now) {
2324 1.152 uebayasi /* read fault: cap the protection at readonly */
2325 1.152 uebayasi /* cap! */
2326 1.152 uebayasi flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2327 1.152 uebayasi } else {
2328 1.222 ad /*
2329 1.222 ad * write fault: must break the loan here. to do this
2330 1.222 ad * we need a write lock on the object.
2331 1.222 ad */
2332 1.222 ad
2333 1.222 ad error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage);
2334 1.222 ad if (error != 0) {
2335 1.222 ad return error;
2336 1.222 ad }
2337 1.222 ad KASSERT(rw_write_held(uobj->vmobjlock));
2338 1.152 uebayasi
2339 1.152 uebayasi pg = uvm_loanbreak(uobjpage);
2340 1.152 uebayasi if (pg == NULL) {
2341 1.152 uebayasi
2342 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
2343 1.152 uebayasi UVMHIST_LOG(maphist,
2344 1.152 uebayasi " out of RAM breaking loan, waiting",
2345 1.152 uebayasi 0,0,0,0);
2346 1.213 ad cpu_count(CPU_COUNT_FLTNORAM, 1);
2347 1.152 uebayasi uvm_wait("flt_noram4");
2348 1.152 uebayasi return ERESTART;
2349 1.69 chs }
2350 1.152 uebayasi *rpg = pg;
2351 1.152 uebayasi *ruobjpage = pg;
2352 1.227 ad
2353 1.227 ad /*
2354 1.227 ad * drop ownership of page while still holding object lock,
2355 1.227 ad * which won't be dropped until the page is entered.
2356 1.227 ad */
2357 1.227 ad
2358 1.227 ad uvm_pagelock(pg);
2359 1.227 ad uvm_pagewakeup(pg);
2360 1.227 ad uvm_pageunlock(pg);
2361 1.227 ad pg->flags &= ~PG_BUSY;
2362 1.227 ad UVM_PAGE_OWN(pg, NULL);
2363 1.152 uebayasi }
2364 1.152 uebayasi return 0;
2365 1.148 uebayasi }
2366 1.148 uebayasi
2367 1.173 uebayasi /*
2368 1.173 uebayasi * uvm_fault_lower_promote: promote lower page.
2369 1.173 uebayasi *
2370 1.173 uebayasi * 1. call uvmfault_promote.
2371 1.173 uebayasi * 2. fill in data.
2372 1.173 uebayasi * 3. if not ZFOD, dispose old page.
2373 1.173 uebayasi */
2374 1.173 uebayasi
2375 1.148 uebayasi int
2376 1.163 uebayasi uvm_fault_lower_promote(
2377 1.148 uebayasi struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2378 1.156 uebayasi struct uvm_object *uobj, struct vm_page *uobjpage)
2379 1.148 uebayasi {
2380 1.149 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2381 1.149 uebayasi struct vm_anon *anon;
2382 1.149 uebayasi struct vm_page *pg;
2383 1.149 uebayasi int error;
2384 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2385 1.63 chs
2386 1.186 rmind KASSERT(amap != NULL);
2387 1.186 rmind
2388 1.222 ad /* promoting requires a write lock. */
2389 1.222 ad error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj);
2390 1.222 ad if (error != 0) {
2391 1.222 ad return error;
2392 1.222 ad }
2393 1.222 ad KASSERT(rw_write_held(amap->am_lock));
2394 1.227 ad KASSERT(uobj == NULL ||
2395 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2396 1.222 ad
2397 1.149 uebayasi /*
2398 1.186 rmind * If we are going to promote the data to an anon we
2399 1.149 uebayasi * allocate a blank anon here and plug it into our amap.
2400 1.149 uebayasi */
2401 1.222 ad error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare);
2402 1.149 uebayasi switch (error) {
2403 1.149 uebayasi case 0:
2404 1.149 uebayasi break;
2405 1.149 uebayasi case ERESTART:
2406 1.149 uebayasi return ERESTART;
2407 1.149 uebayasi default:
2408 1.149 uebayasi return error;
2409 1.149 uebayasi }
2410 1.149 uebayasi
2411 1.149 uebayasi pg = anon->an_page;
2412 1.149 uebayasi
2413 1.149 uebayasi /*
2414 1.186 rmind * Fill in the data.
2415 1.149 uebayasi */
2416 1.105 yamt
2417 1.149 uebayasi if (uobjpage != PGO_DONTCARE) {
2418 1.213 ad cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
2419 1.1 mrg
2420 1.7 mrg /*
2421 1.149 uebayasi * promote to shared amap? make sure all sharing
2422 1.149 uebayasi * procs see it
2423 1.7 mrg */
2424 1.7 mrg
2425 1.149 uebayasi if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2426 1.149 uebayasi pmap_page_protect(uobjpage, VM_PROT_NONE);
2427 1.7 mrg /*
2428 1.149 uebayasi * XXX: PAGE MIGHT BE WIRED!
2429 1.7 mrg */
2430 1.149 uebayasi }
2431 1.69 chs
2432 1.149 uebayasi UVMHIST_LOG(maphist,
2433 1.217 rin " promote uobjpage %#jx to anon/page %#jx/%#jx",
2434 1.201 pgoyette (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2435 1.63 chs
2436 1.149 uebayasi } else {
2437 1.213 ad cpu_count(CPU_COUNT_FLT_PRZERO, 1);
2438 1.7 mrg
2439 1.149 uebayasi /*
2440 1.149 uebayasi * Page is zero'd and marked dirty by
2441 1.149 uebayasi * uvmfault_promote().
2442 1.149 uebayasi */
2443 1.52 chs
2444 1.217 rin UVMHIST_LOG(maphist," zero fill anon/page %#jx/%#jx",
2445 1.201 pgoyette (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2446 1.149 uebayasi }
2447 1.148 uebayasi
2448 1.183 yamt return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2449 1.148 uebayasi }
2450 1.148 uebayasi
2451 1.173 uebayasi /*
2452 1.183 yamt * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2453 1.183 yamt * from the lower page.
2454 1.173 uebayasi */
2455 1.173 uebayasi
2456 1.148 uebayasi int
2457 1.163 uebayasi uvm_fault_lower_enter(
2458 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2459 1.148 uebayasi struct uvm_object *uobj,
2460 1.183 yamt struct vm_anon *anon, struct vm_page *pg)
2461 1.148 uebayasi {
2462 1.148 uebayasi struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2463 1.215 ad const bool readonly = uvm_pagereadonly_p(pg);
2464 1.148 uebayasi int error;
2465 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2466 1.7 mrg
2467 1.7 mrg /*
2468 1.186 rmind * Locked:
2469 1.186 rmind *
2470 1.186 rmind * maps(read), amap(if !null), uobj(if !null),
2471 1.186 rmind * anon(if !null), pg(if anon), unlock_uobj(if !null)
2472 1.7 mrg *
2473 1.222 ad * anon must be write locked (promotion). uobj can be either.
2474 1.222 ad *
2475 1.186 rmind * Note: pg is either the uobjpage or the new page in the new anon.
2476 1.7 mrg */
2477 1.227 ad
2478 1.222 ad KASSERT(amap == NULL ||
2479 1.222 ad rw_lock_op(amap->am_lock) == flt->upper_lock_type);
2480 1.227 ad KASSERT(uobj == NULL ||
2481 1.227 ad rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2482 1.186 rmind KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2483 1.227 ad
2484 1.227 ad /*
2485 1.227 ad * note that pg can't be PG_RELEASED or PG_BUSY since we did
2486 1.227 ad * not drop the object lock since the last time we checked.
2487 1.227 ad */
2488 1.227 ad
2489 1.227 ad KASSERT((pg->flags & PG_RELEASED) == 0);
2490 1.227 ad KASSERT((pg->flags & PG_BUSY) == 0);
2491 1.7 mrg
2492 1.7 mrg /*
2493 1.7 mrg * all resources are present. we can now map it in and free our
2494 1.7 mrg * resources.
2495 1.7 mrg */
2496 1.7 mrg
2497 1.7 mrg UVMHIST_LOG(maphist,
2498 1.201 pgoyette " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2499 1.201 pgoyette (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2500 1.201 pgoyette (uintptr_t)pg, flt->promote);
2501 1.215 ad KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
2502 1.215 ad "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
2503 1.215 ad "entry=%p map=%p orig_rvaddr=%p pg=%p",
2504 1.215 ad flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
2505 1.215 ad UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
2506 1.215 ad (void *)ufi->orig_rvaddr, pg);
2507 1.215 ad KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
2508 1.177 yamt if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2509 1.177 yamt VM_PAGE_TO_PHYS(pg),
2510 1.215 ad readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2511 1.177 yamt flt->access_type | PMAP_CANFAIL |
2512 1.177 yamt (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2513 1.52 chs
2514 1.46 thorpej /*
2515 1.46 thorpej * No need to undo what we did; we can simply think of
2516 1.46 thorpej * this as the pmap throwing away the mapping information.
2517 1.46 thorpej *
2518 1.46 thorpej * We do, however, have to go through the ReFault path,
2519 1.46 thorpej * as the map may change while we're asleep.
2520 1.46 thorpej */
2521 1.52 chs
2522 1.183 yamt /*
2523 1.183 yamt * ensure that the page is queued in the case that
2524 1.183 yamt * we just promoted the page.
2525 1.183 yamt */
2526 1.183 yamt
2527 1.227 ad if (anon != NULL) {
2528 1.222 ad uvm_pagelock(pg);
2529 1.222 ad uvm_pageenqueue(pg);
2530 1.222 ad uvm_pagewakeup(pg);
2531 1.222 ad uvm_pageunlock(pg);
2532 1.222 ad }
2533 1.171 uebayasi
2534 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
2535 1.92 yamt if (!uvm_reclaimable()) {
2536 1.46 thorpej UVMHIST_LOG(maphist,
2537 1.46 thorpej "<- failed. out of VM",0,0,0,0);
2538 1.46 thorpej /* XXX instrumentation */
2539 1.106 yamt error = ENOMEM;
2540 1.138 uebayasi return error;
2541 1.46 thorpej }
2542 1.46 thorpej /* XXX instrumentation */
2543 1.46 thorpej uvm_wait("flt_pmfail2");
2544 1.139 uebayasi return ERESTART;
2545 1.46 thorpej }
2546 1.1 mrg
2547 1.177 yamt uvm_fault_lower_done(ufi, flt, uobj, pg);
2548 1.175 rmind pmap_update(ufi->orig_map->pmap);
2549 1.186 rmind uvmfault_unlockall(ufi, amap, uobj);
2550 1.175 rmind
2551 1.169 uebayasi UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2552 1.169 uebayasi return 0;
2553 1.148 uebayasi }
2554 1.148 uebayasi
2555 1.173 uebayasi /*
2556 1.173 uebayasi * uvm_fault_lower_done: queue lower center page.
2557 1.173 uebayasi */
2558 1.173 uebayasi
2559 1.169 uebayasi void
2560 1.163 uebayasi uvm_fault_lower_done(
2561 1.177 yamt struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2562 1.177 yamt struct uvm_object *uobj, struct vm_page *pg)
2563 1.148 uebayasi {
2564 1.174 rmind
2565 1.228 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2566 1.148 uebayasi
2567 1.146 uebayasi if (flt->wire_paging) {
2568 1.227 ad uvm_pagelock(pg);
2569 1.8 chuck uvm_pagewire(pg);
2570 1.227 ad uvm_pageunlock(pg);
2571 1.212 ad if (pg->flags & PG_AOBJ) {
2572 1.29 chs
2573 1.29 chs /*
2574 1.29 chs * since the now-wired page cannot be paged out,
2575 1.29 chs * release its swap resources for others to use.
2576 1.215 ad * since an aobj page with no swap cannot be clean,
2577 1.215 ad * mark it dirty now.
2578 1.227 ad *
2579 1.227 ad * use pg->uobject here. if the page is from a
2580 1.227 ad * tmpfs vnode, the pages are backed by its UAO and
2581 1.227 ad * not the vnode.
2582 1.29 chs */
2583 1.29 chs
2584 1.113 christos KASSERT(uobj != NULL);
2585 1.227 ad KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
2586 1.215 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2587 1.227 ad uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
2588 1.22 chs }
2589 1.227 ad } else if (uvmpdpol_pageactivate_p(pg)) {
2590 1.227 ad /*
2591 1.227 ad * avoid re-activating the page unless needed,
2592 1.227 ad * to avoid false sharing on multiprocessor.
2593 1.227 ad */
2594 1.227 ad
2595 1.227 ad uvm_pagelock(pg);
2596 1.7 mrg uvm_pageactivate(pg);
2597 1.227 ad uvm_pageunlock(pg);
2598 1.174 rmind }
2599 1.1 mrg }
2600 1.1 mrg
2601 1.110 drochner
2602 1.1 mrg /*
2603 1.1 mrg * uvm_fault_wire: wire down a range of virtual addresses in a map.
2604 1.1 mrg *
2605 1.36 thorpej * => map may be read-locked by caller, but MUST NOT be write-locked.
2606 1.36 thorpej * => if map is read-locked, any operations which may cause map to
2607 1.36 thorpej * be write-locked in uvm_fault() must be taken care of by
2608 1.36 thorpej * the caller. See uvm_map_pageable().
2609 1.1 mrg */
2610 1.1 mrg
2611 1.7 mrg int
2612 1.95 thorpej uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2613 1.130 uebayasi vm_prot_t access_type, int maxprot)
2614 1.7 mrg {
2615 1.12 eeh vaddr_t va;
2616 1.58 chs int error;
2617 1.7 mrg
2618 1.7 mrg /*
2619 1.47 chs * now fault it in a page at a time. if the fault fails then we have
2620 1.63 chs * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2621 1.47 chs * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2622 1.7 mrg */
2623 1.1 mrg
2624 1.65 chs /*
2625 1.65 chs * XXX work around overflowing a vaddr_t. this prevents us from
2626 1.65 chs * wiring the last page in the address space, though.
2627 1.65 chs */
2628 1.65 chs if (start > end) {
2629 1.65 chs return EFAULT;
2630 1.65 chs }
2631 1.65 chs
2632 1.163 uebayasi for (va = start; va < end; va += PAGE_SIZE) {
2633 1.110 drochner error = uvm_fault_internal(map, va, access_type,
2634 1.177 yamt (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2635 1.58 chs if (error) {
2636 1.7 mrg if (va != start) {
2637 1.31 thorpej uvm_fault_unwire(map, start, va);
2638 1.7 mrg }
2639 1.58 chs return error;
2640 1.7 mrg }
2641 1.7 mrg }
2642 1.58 chs return 0;
2643 1.1 mrg }
2644 1.1 mrg
2645 1.1 mrg /*
2646 1.1 mrg * uvm_fault_unwire(): unwire range of virtual space.
2647 1.1 mrg */
2648 1.1 mrg
2649 1.7 mrg void
2650 1.95 thorpej uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2651 1.36 thorpej {
2652 1.36 thorpej vm_map_lock_read(map);
2653 1.36 thorpej uvm_fault_unwire_locked(map, start, end);
2654 1.36 thorpej vm_map_unlock_read(map);
2655 1.36 thorpej }
2656 1.36 thorpej
2657 1.36 thorpej /*
2658 1.36 thorpej * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2659 1.36 thorpej *
2660 1.36 thorpej * => map must be at least read-locked.
2661 1.36 thorpej */
2662 1.36 thorpej
2663 1.36 thorpej void
2664 1.95 thorpej uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2665 1.7 mrg {
2666 1.186 rmind struct vm_map_entry *entry, *oentry;
2667 1.31 thorpej pmap_t pmap = vm_map_pmap(map);
2668 1.42 thorpej vaddr_t va;
2669 1.12 eeh paddr_t pa;
2670 1.42 thorpej struct vm_page *pg;
2671 1.31 thorpej
2672 1.7 mrg /*
2673 1.7 mrg * we assume that the area we are unwiring has actually been wired
2674 1.7 mrg * in the first place. this means that we should be able to extract
2675 1.7 mrg * the PAs from the pmap. we also lock out the page daemon so that
2676 1.7 mrg * we can call uvm_pageunwire.
2677 1.7 mrg */
2678 1.37 thorpej
2679 1.37 thorpej /*
2680 1.37 thorpej * find the beginning map entry for the region.
2681 1.37 thorpej */
2682 1.74 chs
2683 1.232 riastrad KASSERT(start >= vm_map_min(map));
2684 1.232 riastrad KASSERT(end <= vm_map_max(map));
2685 1.119 thorpej if (uvm_map_lookup_entry(map, start, &entry) == false)
2686 1.37 thorpej panic("uvm_fault_unwire_locked: address not in map");
2687 1.37 thorpej
2688 1.186 rmind oentry = NULL;
2689 1.69 chs for (va = start; va < end; va += PAGE_SIZE) {
2690 1.42 thorpej
2691 1.42 thorpej /*
2692 1.74 chs * find the map entry for the current address.
2693 1.42 thorpej */
2694 1.56 chs
2695 1.56 chs KASSERT(va >= entry->start);
2696 1.74 chs while (va >= entry->end) {
2697 1.232 riastrad KASSERT(entry->next != &map->header);
2698 1.232 riastrad KASSERT(entry->next->start <= entry->end);
2699 1.42 thorpej entry = entry->next;
2700 1.42 thorpej }
2701 1.37 thorpej
2702 1.42 thorpej /*
2703 1.186 rmind * lock it.
2704 1.186 rmind */
2705 1.186 rmind
2706 1.186 rmind if (entry != oentry) {
2707 1.186 rmind if (oentry != NULL) {
2708 1.186 rmind uvm_map_unlock_entry(oentry);
2709 1.186 rmind }
2710 1.216 ad uvm_map_lock_entry(entry, RW_WRITER);
2711 1.186 rmind oentry = entry;
2712 1.186 rmind }
2713 1.186 rmind
2714 1.186 rmind /*
2715 1.42 thorpej * if the entry is no longer wired, tell the pmap.
2716 1.42 thorpej */
2717 1.74 chs
2718 1.207 chs if (!pmap_extract(pmap, va, &pa))
2719 1.207 chs continue;
2720 1.207 chs
2721 1.42 thorpej if (VM_MAPENT_ISWIRED(entry) == 0)
2722 1.42 thorpej pmap_unwire(pmap, va);
2723 1.42 thorpej
2724 1.42 thorpej pg = PHYS_TO_VM_PAGE(pa);
2725 1.214 ad if (pg) {
2726 1.214 ad uvm_pagelock(pg);
2727 1.42 thorpej uvm_pageunwire(pg);
2728 1.214 ad uvm_pageunlock(pg);
2729 1.214 ad }
2730 1.7 mrg }
2731 1.1 mrg
2732 1.186 rmind if (oentry != NULL) {
2733 1.186 rmind uvm_map_unlock_entry(entry);
2734 1.186 rmind }
2735 1.1 mrg }
2736