uvm_fault.c revision 1.106 1 /* $NetBSD: uvm_fault.c,v 1.106 2006/01/31 14:05:47 yamt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.106 2006/01/31 14:05:47 yamt Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53 #include <sys/vnode.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ----------->new| | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----| |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in top level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * given that we are not currently multiprocessor or multithreaded we might
151 * as well choose alternative 2 now. maybe alternative 3 would be useful
152 * in the future. XXX keep in mind for future consideration//rechecking.
153 */
154
155 /*
156 * local data structures
157 */
158
159 struct uvm_advice {
160 int advice;
161 int nback;
162 int nforw;
163 };
164
165 /*
166 * page range array:
167 * note: index in array must match "advice" value
168 * XXX: borrowed numbers from freebsd. do they work well for us?
169 */
170
171 static const struct uvm_advice uvmadvice[] = {
172 { MADV_NORMAL, 3, 4 },
173 { MADV_RANDOM, 0, 0 },
174 { MADV_SEQUENTIAL, 8, 7},
175 };
176
177 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
178
179 /*
180 * private prototypes
181 */
182
183 /*
184 * inline functions
185 */
186
187 /*
188 * uvmfault_anonflush: try and deactivate pages in specified anons
189 *
190 * => does not have to deactivate page if it is busy
191 */
192
193 static inline void
194 uvmfault_anonflush(struct vm_anon **anons, int n)
195 {
196 int lcv;
197 struct vm_page *pg;
198
199 for (lcv = 0 ; lcv < n ; lcv++) {
200 if (anons[lcv] == NULL)
201 continue;
202 simple_lock(&anons[lcv]->an_lock);
203 pg = anons[lcv]->an_page;
204 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
205 uvm_lock_pageq();
206 if (pg->wire_count == 0) {
207 pmap_clear_reference(pg);
208 uvm_pagedeactivate(pg);
209 }
210 uvm_unlock_pageq();
211 }
212 simple_unlock(&anons[lcv]->an_lock);
213 }
214 }
215
216 /*
217 * normal functions
218 */
219
220 /*
221 * uvmfault_amapcopy: clear "needs_copy" in a map.
222 *
223 * => called with VM data structures unlocked (usually, see below)
224 * => we get a write lock on the maps and clear needs_copy for a VA
225 * => if we are out of RAM we sleep (waiting for more)
226 */
227
228 static void
229 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
230 {
231 for (;;) {
232
233 /*
234 * no mapping? give up.
235 */
236
237 if (uvmfault_lookup(ufi, TRUE) == FALSE)
238 return;
239
240 /*
241 * copy if needed.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
245 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
246 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
247
248 /*
249 * didn't work? must be out of RAM. unlock and sleep.
250 */
251
252 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
253 uvmfault_unlockmaps(ufi, TRUE);
254 uvm_wait("fltamapcopy");
255 continue;
256 }
257
258 /*
259 * got it! unlock and return.
260 */
261
262 uvmfault_unlockmaps(ufi, TRUE);
263 return;
264 }
265 /*NOTREACHED*/
266 }
267
268 /*
269 * uvmfault_anonget: get data in an anon into a non-busy, non-released
270 * page in that anon.
271 *
272 * => maps, amap, and anon locked by caller.
273 * => if we fail (result != 0) we unlock everything.
274 * => if we are successful, we return with everything still locked.
275 * => we don't move the page on the queues [gets moved later]
276 * => if we allocate a new page [we_own], it gets put on the queues.
277 * either way, the result is that the page is on the queues at return time
278 * => for pages which are on loan from a uvm_object (and thus are not
279 * owned by the anon): if successful, we return with the owning object
280 * locked. the caller must unlock this object when it unlocks everything
281 * else.
282 */
283
284 int
285 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
286 struct vm_anon *anon)
287 {
288 boolean_t we_own; /* we own anon's page? */
289 boolean_t locked; /* did we relock? */
290 struct vm_page *pg;
291 int error;
292 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
293
294 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
295
296 error = 0;
297 uvmexp.fltanget++;
298 /* bump rusage counters */
299 if (anon->an_page)
300 curproc->p_stats->p_ru.ru_minflt++;
301 else
302 curproc->p_stats->p_ru.ru_majflt++;
303
304 /*
305 * loop until we get it, or fail.
306 */
307
308 for (;;) {
309 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
310 pg = anon->an_page;
311
312 /*
313 * if there is a resident page and it is loaned, then anon
314 * may not own it. call out to uvm_anon_lockpage() to ensure
315 * the real owner of the page has been identified and locked.
316 */
317
318 if (pg && pg->loan_count)
319 pg = uvm_anon_lockloanpg(anon);
320
321 /*
322 * page there? make sure it is not busy/released.
323 */
324
325 if (pg) {
326
327 /*
328 * at this point, if the page has a uobject [meaning
329 * we have it on loan], then that uobject is locked
330 * by us! if the page is busy, we drop all the
331 * locks (including uobject) and try again.
332 */
333
334 if ((pg->flags & PG_BUSY) == 0) {
335 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
336 return (0);
337 }
338 pg->flags |= PG_WANTED;
339 uvmexp.fltpgwait++;
340
341 /*
342 * the last unlock must be an atomic unlock+wait on
343 * the owner of page
344 */
345
346 if (pg->uobject) { /* owner is uobject ? */
347 uvmfault_unlockall(ufi, amap, NULL, anon);
348 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
349 0,0,0);
350 UVM_UNLOCK_AND_WAIT(pg,
351 &pg->uobject->vmobjlock,
352 FALSE, "anonget1",0);
353 } else {
354 /* anon owns page */
355 uvmfault_unlockall(ufi, amap, NULL, NULL);
356 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
357 0,0,0);
358 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
359 "anonget2",0);
360 }
361 } else {
362 #if defined(VMSWAP)
363
364 /*
365 * no page, we must try and bring it in.
366 */
367
368 pg = uvm_pagealloc(NULL, 0, anon, 0);
369 if (pg == NULL) { /* out of RAM. */
370 uvmfault_unlockall(ufi, amap, NULL, anon);
371 uvmexp.fltnoram++;
372 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
373 0,0,0);
374 if (!uvm_reclaimable()) {
375 return ENOMEM;
376 }
377 uvm_wait("flt_noram1");
378 } else {
379 /* we set the PG_BUSY bit */
380 we_own = TRUE;
381 uvmfault_unlockall(ufi, amap, NULL, anon);
382
383 /*
384 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
385 * page into the uvm_swap_get function with
386 * all data structures unlocked. note that
387 * it is ok to read an_swslot here because
388 * we hold PG_BUSY on the page.
389 */
390 uvmexp.pageins++;
391 error = uvm_swap_get(pg, anon->an_swslot,
392 PGO_SYNCIO);
393
394 /*
395 * we clean up after the i/o below in the
396 * "we_own" case
397 */
398 }
399 #else /* defined(VMSWAP) */
400 panic("%s: no page", __func__);
401 #endif /* defined(VMSWAP) */
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 #if defined(VMSWAP)
428 if (pg->flags & PG_WANTED) {
429 wakeup(pg);
430 }
431 if (error) {
432
433 /*
434 * remove the swap slot from the anon
435 * and mark the anon as having no real slot.
436 * don't free the swap slot, thus preventing
437 * it from being used again.
438 */
439
440 if (anon->an_swslot > 0)
441 uvm_swap_markbad(anon->an_swslot, 1);
442 anon->an_swslot = SWSLOT_BAD;
443
444 if ((pg->flags & PG_RELEASED) != 0)
445 goto released;
446
447 /*
448 * note: page was never !PG_BUSY, so it
449 * can't be mapped and thus no need to
450 * pmap_page_protect it...
451 */
452
453 uvm_lock_pageq();
454 uvm_pagefree(pg);
455 uvm_unlock_pageq();
456
457 if (locked)
458 uvmfault_unlockall(ufi, amap, NULL,
459 anon);
460 else
461 simple_unlock(&anon->an_lock);
462 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
463 return error;
464 }
465
466 if ((pg->flags & PG_RELEASED) != 0) {
467 released:
468 KASSERT(anon->an_ref == 0);
469
470 /*
471 * released while we unlocked amap.
472 */
473
474 if (locked)
475 uvmfault_unlockall(ufi, amap, NULL,
476 NULL);
477
478 uvm_anon_release(anon);
479
480 if (error) {
481 UVMHIST_LOG(maphist,
482 "<- ERROR/RELEASED", 0,0,0,0);
483 return error;
484 }
485
486 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
487 return ERESTART;
488 }
489
490 /*
491 * we've successfully read the page, activate it.
492 */
493
494 uvm_lock_pageq();
495 uvm_pageactivate(pg);
496 uvm_unlock_pageq();
497 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
498 UVM_PAGE_OWN(pg, NULL);
499 if (!locked)
500 simple_unlock(&anon->an_lock);
501 #else /* defined(VMSWAP) */
502 panic("%s: we_own", __func__);
503 #endif /* defined(VMSWAP) */
504 }
505
506 /*
507 * we were not able to relock. restart fault.
508 */
509
510 if (!locked) {
511 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
512 return (ERESTART);
513 }
514
515 /*
516 * verify no one has touched the amap and moved the anon on us.
517 */
518
519 if (ufi != NULL &&
520 amap_lookup(&ufi->entry->aref,
521 ufi->orig_rvaddr - ufi->entry->start) != anon) {
522
523 uvmfault_unlockall(ufi, amap, NULL, anon);
524 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
525 return (ERESTART);
526 }
527
528 /*
529 * try it again!
530 */
531
532 uvmexp.fltanretry++;
533 continue;
534 }
535 /*NOTREACHED*/
536 }
537
538 /*
539 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
540 *
541 * 1. allocate an anon and a page.
542 * 2. fill its contents.
543 * 3. put it into amap.
544 *
545 * => if we fail (result != 0) we unlock everything.
546 * => on success, return a new locked anon via 'nanon'.
547 * (*nanon)->an_page will be a resident, locked, dirty page.
548 */
549
550 static int
551 uvmfault_promote(struct uvm_faultinfo *ufi,
552 struct vm_anon *oanon,
553 struct vm_page *uobjpage,
554 struct vm_anon **nanon, /* OUT: allocated anon */
555 struct vm_anon **spare)
556 {
557 struct vm_amap *amap = ufi->entry->aref.ar_amap;
558 struct uvm_object *uobj;
559 struct vm_anon *anon;
560 struct vm_page *pg;
561 struct vm_page *opg;
562 int error;
563 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
564
565 if (oanon) {
566 /* anon COW */
567 opg = oanon->an_page;
568 KASSERT(opg != NULL);
569 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
570 } else if (uobjpage != PGO_DONTCARE) {
571 /* object-backed COW */
572 opg = uobjpage;
573 KASSERT(opg->uobject == ufi->entry->object.uvm_obj);
574 } else {
575 /* ZFOD */
576 opg = NULL;
577 }
578 if (opg != NULL) {
579 uobj = opg->uobject;
580 } else {
581 uobj = NULL;
582 }
583
584 KASSERT(amap != NULL);
585 KASSERT(uobjpage != NULL);
586 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
587 LOCK_ASSERT(simple_lock_held(&amap->am_l));
588 LOCK_ASSERT(oanon == NULL || simple_lock_held(&oanon->an_lock));
589 LOCK_ASSERT(uobj == NULL || simple_lock_held(&uobj->vmobjlock));
590 LOCK_ASSERT(*spare == NULL || !simple_lock_held(&(*spare)->an_lock));
591
592 if (*spare != NULL) {
593 anon = *spare;
594 *spare = NULL;
595 simple_lock(&anon->an_lock);
596 } else if (ufi->map != kernel_map) {
597 anon = uvm_analloc();
598 } else {
599 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
600
601 /*
602 * we can't allocate anons with kernel_map locked.
603 */
604
605 uvm_page_unbusy(&uobjpage, 1);
606 uvmfault_unlockall(ufi, amap, uobj, oanon);
607
608 *spare = uvm_analloc();
609 if (*spare == NULL) {
610 goto nomem;
611 }
612 simple_unlock(&(*spare)->an_lock);
613 error = ERESTART;
614 goto done;
615 }
616 if (anon) {
617
618 /*
619 * The new anon is locked.
620 *
621 * if opg == NULL, we want a zero'd, dirty page,
622 * so have uvm_pagealloc() do that for us.
623 */
624
625 pg = uvm_pagealloc(NULL, 0, anon,
626 (opg == NULL) ? UVM_PGA_ZERO : 0);
627 } else {
628 pg = NULL;
629 }
630
631 /*
632 * out of memory resources?
633 */
634
635 if (pg == NULL) {
636 /* save anon for the next try. */
637 if (anon != NULL) {
638 simple_unlock(&anon->an_lock);
639 *spare = anon;
640 }
641
642 /* unlock and fail ... */
643 uvm_page_unbusy(&uobjpage, 1);
644 uvmfault_unlockall(ufi, amap, uobj, oanon);
645 nomem:
646 if (!uvm_reclaimable()) {
647 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
648 uvmexp.fltnoanon++;
649 error = ENOMEM;
650 goto done;
651 }
652
653 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
654 uvmexp.fltnoram++;
655 uvm_wait("flt_noram5");
656 error = ERESTART;
657 goto done;
658 }
659
660 /* copy page [pg now dirty] */
661 if (opg) {
662 uvm_pagecopy(opg, pg);
663 }
664
665 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
666 oanon != NULL);
667
668 *nanon = anon;
669 error = 0;
670 done:
671 return error;
672 }
673
674
675 /*
676 * F A U L T - m a i n e n t r y p o i n t
677 */
678
679 /*
680 * uvm_fault: page fault handler
681 *
682 * => called from MD code to resolve a page fault
683 * => VM data structures usually should be unlocked. however, it is
684 * possible to call here with the main map locked if the caller
685 * gets a write lock, sets it recusive, and then calls us (c.f.
686 * uvm_map_pageable). this should be avoided because it keeps
687 * the map locked off during I/O.
688 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
689 */
690
691 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
692 ~VM_PROT_WRITE : VM_PROT_ALL)
693
694 int
695 uvm_fault(struct vm_map *orig_map, vaddr_t vaddr, vm_fault_t fault_type,
696 vm_prot_t access_type)
697 {
698 struct uvm_faultinfo ufi;
699 vm_prot_t enter_prot, check_prot;
700 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
701 int npages, nback, nforw, centeridx, error, lcv, gotpages;
702 vaddr_t startva, currva;
703 voff_t uoff;
704 struct vm_amap *amap;
705 struct uvm_object *uobj;
706 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
707 struct vm_anon *anon_spare;
708 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
709 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
710
711 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
712 orig_map, vaddr, fault_type, access_type);
713
714 anon = anon_spare = NULL;
715 pg = NULL;
716
717 uvmexp.faults++; /* XXX: locking? */
718
719 /*
720 * init the IN parameters in the ufi
721 */
722
723 ufi.orig_map = orig_map;
724 ufi.orig_rvaddr = trunc_page(vaddr);
725 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
726 wire_fault = fault_type == VM_FAULT_WIRE ||
727 fault_type == VM_FAULT_WIREMAX;
728 if (wire_fault)
729 narrow = TRUE; /* don't look for neighborhood
730 * pages on wire */
731 else
732 narrow = FALSE; /* normal fault */
733
734 /*
735 * "goto ReFault" means restart the page fault from ground zero.
736 */
737 ReFault:
738
739 /*
740 * lookup and lock the maps
741 */
742
743 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
744 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
745 error = EFAULT;
746 goto done;
747 }
748 /* locked: maps(read) */
749
750 #ifdef DIAGNOSTIC
751 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
752 printf("Page fault on non-pageable map:\n");
753 printf("ufi.map = %p\n", ufi.map);
754 printf("ufi.orig_map = %p\n", ufi.orig_map);
755 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
756 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
757 }
758 #endif
759
760 /*
761 * check protection
762 */
763
764 check_prot = fault_type == VM_FAULT_WIREMAX ?
765 ufi.entry->max_protection : ufi.entry->protection;
766 if ((check_prot & access_type) != access_type) {
767 UVMHIST_LOG(maphist,
768 "<- protection failure (prot=0x%x, access=0x%x)",
769 ufi.entry->protection, access_type, 0, 0);
770 uvmfault_unlockmaps(&ufi, FALSE);
771 error = EACCES;
772 goto done;
773 }
774
775 /*
776 * "enter_prot" is the protection we want to enter the page in at.
777 * for certain pages (e.g. copy-on-write pages) this protection can
778 * be more strict than ufi.entry->protection. "wired" means either
779 * the entry is wired or we are fault-wiring the pg.
780 */
781
782 enter_prot = ufi.entry->protection;
783 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
784 if (wired) {
785 access_type = enter_prot; /* full access for wired */
786 cow_now = (check_prot & VM_PROT_WRITE) != 0;
787 } else {
788 cow_now = (access_type & VM_PROT_WRITE) != 0;
789 }
790
791 /*
792 * handle "needs_copy" case. if we need to copy the amap we will
793 * have to drop our readlock and relock it with a write lock. (we
794 * need a write lock to change anything in a map entry [e.g.
795 * needs_copy]).
796 */
797
798 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
799 KASSERT(fault_type != VM_FAULT_WIREMAX);
800 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
801 /* need to clear */
802 UVMHIST_LOG(maphist,
803 " need to clear needs_copy and refault",0,0,0,0);
804 uvmfault_unlockmaps(&ufi, FALSE);
805 uvmfault_amapcopy(&ufi);
806 uvmexp.fltamcopy++;
807 goto ReFault;
808
809 } else {
810
811 /*
812 * ensure that we pmap_enter page R/O since
813 * needs_copy is still true
814 */
815
816 enter_prot &= ~VM_PROT_WRITE;
817 }
818 }
819
820 /*
821 * identify the players
822 */
823
824 amap = ufi.entry->aref.ar_amap; /* top layer */
825 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
826
827 /*
828 * check for a case 0 fault. if nothing backing the entry then
829 * error now.
830 */
831
832 if (amap == NULL && uobj == NULL) {
833 uvmfault_unlockmaps(&ufi, FALSE);
834 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
835 error = EFAULT;
836 goto done;
837 }
838
839 /*
840 * establish range of interest based on advice from mapper
841 * and then clip to fit map entry. note that we only want
842 * to do this the first time through the fault. if we
843 * ReFault we will disable this by setting "narrow" to true.
844 */
845
846 if (narrow == FALSE) {
847
848 /* wide fault (!narrow) */
849 KASSERT(uvmadvice[ufi.entry->advice].advice ==
850 ufi.entry->advice);
851 nback = MIN(uvmadvice[ufi.entry->advice].nback,
852 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
853 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
854 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
855 ((ufi.entry->end - ufi.orig_rvaddr) >>
856 PAGE_SHIFT) - 1);
857 /*
858 * note: "-1" because we don't want to count the
859 * faulting page as forw
860 */
861 npages = nback + nforw + 1;
862 centeridx = nback;
863
864 narrow = TRUE; /* ensure only once per-fault */
865
866 } else {
867
868 /* narrow fault! */
869 nback = nforw = 0;
870 startva = ufi.orig_rvaddr;
871 npages = 1;
872 centeridx = 0;
873
874 }
875
876 /* locked: maps(read) */
877 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
878 narrow, nback, nforw, startva);
879 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
880 amap, uobj, 0);
881
882 /*
883 * if we've got an amap, lock it and extract current anons.
884 */
885
886 if (amap) {
887 amap_lock(amap);
888 anons = anons_store;
889 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
890 anons, npages);
891 } else {
892 anons = NULL; /* to be safe */
893 }
894
895 /* locked: maps(read), amap(if there) */
896
897 /*
898 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
899 * now and then forget about them (for the rest of the fault).
900 */
901
902 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
903
904 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
905 0,0,0,0);
906 /* flush back-page anons? */
907 if (amap)
908 uvmfault_anonflush(anons, nback);
909
910 /* flush object? */
911 if (uobj) {
912 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
913 simple_lock(&uobj->vmobjlock);
914 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
915 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
916 }
917
918 /* now forget about the backpages */
919 if (amap)
920 anons += nback;
921 startva += (nback << PAGE_SHIFT);
922 npages -= nback;
923 nback = centeridx = 0;
924 }
925
926 /* locked: maps(read), amap(if there) */
927
928 /*
929 * map in the backpages and frontpages we found in the amap in hopes
930 * of preventing future faults. we also init the pages[] array as
931 * we go.
932 */
933
934 currva = startva;
935 shadowed = FALSE;
936 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
937
938 /*
939 * dont play with VAs that are already mapped
940 * except for center)
941 */
942 if (lcv != centeridx &&
943 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
944 pages[lcv] = PGO_DONTCARE;
945 continue;
946 }
947
948 /*
949 * unmapped or center page. check if any anon at this level.
950 */
951 if (amap == NULL || anons[lcv] == NULL) {
952 pages[lcv] = NULL;
953 continue;
954 }
955
956 /*
957 * check for present page and map if possible. re-activate it.
958 */
959
960 pages[lcv] = PGO_DONTCARE;
961 if (lcv == centeridx) { /* save center for later! */
962 shadowed = TRUE;
963 continue;
964 }
965 anon = anons[lcv];
966 simple_lock(&anon->an_lock);
967 /* ignore loaned pages */
968 if (anon->an_page && anon->an_page->loan_count == 0 &&
969 (anon->an_page->flags & PG_BUSY) == 0) {
970 uvm_lock_pageq();
971 uvm_pageactivate(anon->an_page);
972 uvm_unlock_pageq();
973 UVMHIST_LOG(maphist,
974 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
975 ufi.orig_map->pmap, currva, anon->an_page, 0);
976 uvmexp.fltnamap++;
977
978 /*
979 * Since this isn't the page that's actually faulting,
980 * ignore pmap_enter() failures; it's not critical
981 * that we enter these right now.
982 */
983
984 (void) pmap_enter(ufi.orig_map->pmap, currva,
985 VM_PAGE_TO_PHYS(anon->an_page),
986 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
987 enter_prot,
988 PMAP_CANFAIL |
989 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
990 }
991 simple_unlock(&anon->an_lock);
992 pmap_update(ufi.orig_map->pmap);
993 }
994
995 /* locked: maps(read), amap(if there) */
996 /* (shadowed == TRUE) if there is an anon at the faulting address */
997 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
998 (uobj && shadowed == FALSE),0,0);
999
1000 /*
1001 * note that if we are really short of RAM we could sleep in the above
1002 * call to pmap_enter with everything locked. bad?
1003 *
1004 * XXX Actually, that is bad; pmap_enter() should just fail in that
1005 * XXX case. --thorpej
1006 */
1007
1008 /*
1009 * if the desired page is not shadowed by the amap and we have a
1010 * backing object, then we check to see if the backing object would
1011 * prefer to handle the fault itself (rather than letting us do it
1012 * with the usual pgo_get hook). the backing object signals this by
1013 * providing a pgo_fault routine.
1014 */
1015
1016 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
1017 simple_lock(&uobj->vmobjlock);
1018
1019 /* locked: maps(read), amap (if there), uobj */
1020 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1021 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
1022
1023 /* locked: nothing, pgo_fault has unlocked everything */
1024
1025 if (error == ERESTART)
1026 goto ReFault; /* try again! */
1027 /*
1028 * object fault routine responsible for pmap_update().
1029 */
1030 goto done;
1031 }
1032
1033 /*
1034 * now, if the desired page is not shadowed by the amap and we have
1035 * a backing object that does not have a special fault routine, then
1036 * we ask (with pgo_get) the object for resident pages that we care
1037 * about and attempt to map them in. we do not let pgo_get block
1038 * (PGO_LOCKED).
1039 */
1040
1041 if (uobj && shadowed == FALSE) {
1042 simple_lock(&uobj->vmobjlock);
1043
1044 /* locked (!shadowed): maps(read), amap (if there), uobj */
1045 /*
1046 * the following call to pgo_get does _not_ change locking state
1047 */
1048
1049 uvmexp.fltlget++;
1050 gotpages = npages;
1051 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
1052 (startva - ufi.entry->start),
1053 pages, &gotpages, centeridx,
1054 access_type & MASK(ufi.entry),
1055 ufi.entry->advice, PGO_LOCKED);
1056
1057 /*
1058 * check for pages to map, if we got any
1059 */
1060
1061 uobjpage = NULL;
1062
1063 if (gotpages) {
1064 currva = startva;
1065 for (lcv = 0; lcv < npages;
1066 lcv++, currva += PAGE_SIZE) {
1067 struct vm_page *curpg;
1068 boolean_t readonly;
1069
1070 curpg = pages[lcv];
1071 if (curpg == NULL || curpg == PGO_DONTCARE) {
1072 continue;
1073 }
1074
1075 /*
1076 * if center page is resident and not
1077 * PG_BUSY|PG_RELEASED then pgo_get
1078 * made it PG_BUSY for us and gave
1079 * us a handle to it. remember this
1080 * page as "uobjpage." (for later use).
1081 */
1082
1083 if (lcv == centeridx) {
1084 uobjpage = curpg;
1085 UVMHIST_LOG(maphist, " got uobjpage "
1086 "(0x%x) with locked get",
1087 uobjpage, 0,0,0);
1088 continue;
1089 }
1090
1091 /*
1092 * calling pgo_get with PGO_LOCKED returns us
1093 * pages which are neither busy nor released,
1094 * so we don't need to check for this.
1095 * we can just directly enter the pages.
1096 */
1097
1098 uvm_lock_pageq();
1099 uvm_pageactivate(curpg);
1100 uvm_unlock_pageq();
1101 UVMHIST_LOG(maphist,
1102 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1103 ufi.orig_map->pmap, currva, curpg, 0);
1104 uvmexp.fltnomap++;
1105
1106 /*
1107 * Since this page isn't the page that's
1108 * actually faulting, ignore pmap_enter()
1109 * failures; it's not critical that we
1110 * enter these right now.
1111 */
1112 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1113 KASSERT((curpg->flags & PG_RELEASED) == 0);
1114 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1115 (curpg->flags & PG_CLEAN) != 0);
1116 readonly = (curpg->flags & PG_RDONLY)
1117 || (curpg->loan_count > 0)
1118 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1119
1120 (void) pmap_enter(ufi.orig_map->pmap, currva,
1121 VM_PAGE_TO_PHYS(curpg),
1122 readonly ?
1123 enter_prot & ~VM_PROT_WRITE :
1124 enter_prot & MASK(ufi.entry),
1125 PMAP_CANFAIL |
1126 (wired ? PMAP_WIRED : 0));
1127
1128 /*
1129 * NOTE: page can't be PG_WANTED or PG_RELEASED
1130 * because we've held the lock the whole time
1131 * we've had the handle.
1132 */
1133
1134 curpg->flags &= ~(PG_BUSY);
1135 UVM_PAGE_OWN(curpg, NULL);
1136 }
1137 pmap_update(ufi.orig_map->pmap);
1138 }
1139 } else {
1140 uobjpage = NULL;
1141 }
1142
1143 /* locked (shadowed): maps(read), amap */
1144 /* locked (!shadowed): maps(read), amap(if there),
1145 uobj(if !null), uobjpage(if !null) */
1146
1147 /*
1148 * note that at this point we are done with any front or back pages.
1149 * we are now going to focus on the center page (i.e. the one we've
1150 * faulted on). if we have faulted on the top (anon) layer
1151 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1152 * not touched it yet). if we have faulted on the bottom (uobj)
1153 * layer [i.e. case 2] and the page was both present and available,
1154 * then we've got a pointer to it as "uobjpage" and we've already
1155 * made it BUSY.
1156 */
1157
1158 /*
1159 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1160 */
1161
1162 /*
1163 * redirect case 2: if we are not shadowed, go to case 2.
1164 */
1165
1166 if (shadowed == FALSE)
1167 goto Case2;
1168
1169 /* locked: maps(read), amap */
1170
1171 /*
1172 * handle case 1: fault on an anon in our amap
1173 */
1174
1175 anon = anons[centeridx];
1176 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1177 simple_lock(&anon->an_lock);
1178
1179 /* locked: maps(read), amap, anon */
1180
1181 /*
1182 * no matter if we have case 1A or case 1B we are going to need to
1183 * have the anon's memory resident. ensure that now.
1184 */
1185
1186 /*
1187 * let uvmfault_anonget do the dirty work.
1188 * if it fails (!OK) it will unlock everything for us.
1189 * if it succeeds, locks are still valid and locked.
1190 * also, if it is OK, then the anon's page is on the queues.
1191 * if the page is on loan from a uvm_object, then anonget will
1192 * lock that object for us if it does not fail.
1193 */
1194
1195 error = uvmfault_anonget(&ufi, amap, anon);
1196 switch (error) {
1197 case 0:
1198 break;
1199
1200 case ERESTART:
1201 goto ReFault;
1202
1203 case EAGAIN:
1204 tsleep(&lbolt, PVM, "fltagain1", 0);
1205 goto ReFault;
1206
1207 default:
1208 goto done;
1209 }
1210
1211 /*
1212 * uobj is non null if the page is on loan from an object (i.e. uobj)
1213 */
1214
1215 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1216
1217 /* locked: maps(read), amap, anon, uobj(if one) */
1218
1219 /*
1220 * special handling for loaned pages
1221 */
1222
1223 if (anon->an_page->loan_count) {
1224
1225 if (!cow_now) {
1226
1227 /*
1228 * for read faults on loaned pages we just cap the
1229 * protection at read-only.
1230 */
1231
1232 enter_prot = enter_prot & ~VM_PROT_WRITE;
1233
1234 } else {
1235 /*
1236 * note that we can't allow writes into a loaned page!
1237 *
1238 * if we have a write fault on a loaned page in an
1239 * anon then we need to look at the anon's ref count.
1240 * if it is greater than one then we are going to do
1241 * a normal copy-on-write fault into a new anon (this
1242 * is not a problem). however, if the reference count
1243 * is one (a case where we would normally allow a
1244 * write directly to the page) then we need to kill
1245 * the loan before we continue.
1246 */
1247
1248 /* >1 case is already ok */
1249 if (anon->an_ref == 1) {
1250
1251 /* get new un-owned replacement page */
1252 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1253 if (pg == NULL) {
1254 uvmfault_unlockall(&ufi, amap, uobj,
1255 anon);
1256 uvm_wait("flt_noram2");
1257 goto ReFault;
1258 }
1259
1260 /*
1261 * copy data, kill loan, and drop uobj lock
1262 * (if any)
1263 */
1264 /* copy old -> new */
1265 uvm_pagecopy(anon->an_page, pg);
1266
1267 /* force reload */
1268 pmap_page_protect(anon->an_page,
1269 VM_PROT_NONE);
1270 uvm_lock_pageq(); /* KILL loan */
1271
1272 anon->an_page->uanon = NULL;
1273 /* in case we owned */
1274 anon->an_page->pqflags &= ~PQ_ANON;
1275
1276 if (uobj) {
1277 /* if we were receiver of loan */
1278 anon->an_page->loan_count--;
1279 } else {
1280 /*
1281 * we were the lender (A->K); need
1282 * to remove the page from pageq's.
1283 */
1284 uvm_pagedequeue(anon->an_page);
1285 }
1286
1287 uvm_pageactivate(pg);
1288 uvm_unlock_pageq();
1289 if (uobj) {
1290 simple_unlock(&uobj->vmobjlock);
1291 uobj = NULL;
1292 }
1293
1294 /* install new page in anon */
1295 anon->an_page = pg;
1296 pg->uanon = anon;
1297 pg->pqflags |= PQ_ANON;
1298 pg->flags &= ~(PG_BUSY|PG_FAKE);
1299 UVM_PAGE_OWN(pg, NULL);
1300
1301 /* done! */
1302 } /* ref == 1 */
1303 } /* write fault */
1304 } /* loan count */
1305
1306 /*
1307 * if we are case 1B then we will need to allocate a new blank
1308 * anon to transfer the data into. note that we have a lock
1309 * on anon, so no one can busy or release the page until we are done.
1310 * also note that the ref count can't drop to zero here because
1311 * it is > 1 and we are only dropping one ref.
1312 *
1313 * in the (hopefully very rare) case that we are out of RAM we
1314 * will unlock, wait for more RAM, and refault.
1315 *
1316 * if we are out of anon VM we kill the process (XXX: could wait?).
1317 */
1318
1319 if (cow_now && anon->an_ref > 1) {
1320
1321 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1322 uvmexp.flt_acow++;
1323 oanon = anon; /* oanon = old, locked anon */
1324
1325 error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1326 &anon, &anon_spare);
1327 switch (error) {
1328 case 0:
1329 break;
1330 case ERESTART:
1331 goto ReFault;
1332 default:
1333 goto done;
1334 }
1335
1336 pg = anon->an_page;
1337 uvm_lock_pageq();
1338 uvm_pageactivate(pg);
1339 uvm_unlock_pageq();
1340 pg->flags &= ~(PG_BUSY|PG_FAKE);
1341 UVM_PAGE_OWN(pg, NULL);
1342
1343 /* deref: can not drop to zero here by defn! */
1344 oanon->an_ref--;
1345
1346 /*
1347 * note: oanon is still locked, as is the new anon. we
1348 * need to check for this later when we unlock oanon; if
1349 * oanon != anon, we'll have to unlock anon, too.
1350 */
1351
1352 } else {
1353
1354 uvmexp.flt_anon++;
1355 oanon = anon; /* old, locked anon is same as anon */
1356 pg = anon->an_page;
1357 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1358 enter_prot = enter_prot & ~VM_PROT_WRITE;
1359
1360 }
1361
1362 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1363
1364 /*
1365 * now map the page in.
1366 */
1367
1368 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1369 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1370 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1371 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1372 != 0) {
1373
1374 /*
1375 * No need to undo what we did; we can simply think of
1376 * this as the pmap throwing away the mapping information.
1377 *
1378 * We do, however, have to go through the ReFault path,
1379 * as the map may change while we're asleep.
1380 */
1381
1382 if (anon != oanon)
1383 simple_unlock(&anon->an_lock);
1384 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1385 if (!uvm_reclaimable()) {
1386 UVMHIST_LOG(maphist,
1387 "<- failed. out of VM",0,0,0,0);
1388 /* XXX instrumentation */
1389 error = ENOMEM;
1390 goto done;
1391 }
1392 /* XXX instrumentation */
1393 uvm_wait("flt_pmfail1");
1394 goto ReFault;
1395 }
1396
1397 /*
1398 * ... update the page queues.
1399 */
1400
1401 uvm_lock_pageq();
1402 if (wire_fault) {
1403 uvm_pagewire(pg);
1404
1405 /*
1406 * since the now-wired page cannot be paged out,
1407 * release its swap resources for others to use.
1408 * since an anon with no swap cannot be PG_CLEAN,
1409 * clear its clean flag now.
1410 */
1411
1412 pg->flags &= ~(PG_CLEAN);
1413 uvm_anon_dropswap(anon);
1414 } else {
1415 uvm_pageactivate(pg);
1416 }
1417 uvm_unlock_pageq();
1418
1419 /*
1420 * done case 1! finish up by unlocking everything and returning success
1421 */
1422
1423 if (anon != oanon)
1424 simple_unlock(&anon->an_lock);
1425 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1426 pmap_update(ufi.orig_map->pmap);
1427 error = 0;
1428 goto done;
1429
1430 Case2:
1431 /*
1432 * handle case 2: faulting on backing object or zero fill
1433 */
1434
1435 /*
1436 * locked:
1437 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1438 */
1439
1440 /*
1441 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1442 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1443 * have a backing object, check and see if we are going to promote
1444 * the data up to an anon during the fault.
1445 */
1446
1447 if (uobj == NULL) {
1448 uobjpage = PGO_DONTCARE;
1449 promote = TRUE; /* always need anon here */
1450 } else {
1451 KASSERT(uobjpage != PGO_DONTCARE);
1452 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1453 }
1454 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1455 promote, (uobj == NULL), 0,0);
1456
1457 /*
1458 * if uobjpage is not null then we do not need to do I/O to get the
1459 * uobjpage.
1460 *
1461 * if uobjpage is null, then we need to unlock and ask the pager to
1462 * get the data for us. once we have the data, we need to reverify
1463 * the state the world. we are currently not holding any resources.
1464 */
1465
1466 if (uobjpage) {
1467 /* update rusage counters */
1468 curproc->p_stats->p_ru.ru_minflt++;
1469 } else {
1470 /* update rusage counters */
1471 curproc->p_stats->p_ru.ru_majflt++;
1472
1473 /* locked: maps(read), amap(if there), uobj */
1474 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1475 /* locked: uobj */
1476
1477 uvmexp.fltget++;
1478 gotpages = 1;
1479 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1480 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1481 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1482 PGO_SYNCIO);
1483 /* locked: uobjpage(if no error) */
1484
1485 /*
1486 * recover from I/O
1487 */
1488
1489 if (error) {
1490 if (error == EAGAIN) {
1491 UVMHIST_LOG(maphist,
1492 " pgo_get says TRY AGAIN!",0,0,0,0);
1493 tsleep(&lbolt, PVM, "fltagain2", 0);
1494 goto ReFault;
1495 }
1496
1497 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1498 error, 0,0,0);
1499 goto done;
1500 }
1501
1502 /* locked: uobjpage */
1503
1504 uvm_lock_pageq();
1505 uvm_pageactivate(uobjpage);
1506 uvm_unlock_pageq();
1507
1508 /*
1509 * re-verify the state of the world by first trying to relock
1510 * the maps. always relock the object.
1511 */
1512
1513 locked = uvmfault_relock(&ufi);
1514 if (locked && amap)
1515 amap_lock(amap);
1516 simple_lock(&uobj->vmobjlock);
1517
1518 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1519 /* locked(!locked): uobj, uobjpage */
1520
1521 /*
1522 * verify that the page has not be released and re-verify
1523 * that amap slot is still free. if there is a problem,
1524 * we unlock and clean up.
1525 */
1526
1527 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1528 (locked && amap &&
1529 amap_lookup(&ufi.entry->aref,
1530 ufi.orig_rvaddr - ufi.entry->start))) {
1531 if (locked)
1532 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1533 locked = FALSE;
1534 }
1535
1536 /*
1537 * didn't get the lock? release the page and retry.
1538 */
1539
1540 if (locked == FALSE) {
1541 UVMHIST_LOG(maphist,
1542 " wasn't able to relock after fault: retry",
1543 0,0,0,0);
1544 if (uobjpage->flags & PG_WANTED)
1545 wakeup(uobjpage);
1546 if (uobjpage->flags & PG_RELEASED) {
1547 uvmexp.fltpgrele++;
1548 uvm_pagefree(uobjpage);
1549 goto ReFault;
1550 }
1551 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1552 UVM_PAGE_OWN(uobjpage, NULL);
1553 simple_unlock(&uobj->vmobjlock);
1554 goto ReFault;
1555 }
1556
1557 /*
1558 * we have the data in uobjpage which is busy and
1559 * not released. we are holding object lock (so the page
1560 * can't be released on us).
1561 */
1562
1563 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1564 }
1565
1566 /*
1567 * locked:
1568 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1569 */
1570
1571 /*
1572 * notes:
1573 * - at this point uobjpage can not be NULL
1574 * - at this point uobjpage can not be PG_RELEASED (since we checked
1575 * for it above)
1576 * - at this point uobjpage could be PG_WANTED (handle later)
1577 */
1578
1579 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1580 (uobjpage->flags & PG_CLEAN) != 0);
1581 if (promote == FALSE) {
1582
1583 /*
1584 * we are not promoting. if the mapping is COW ensure that we
1585 * don't give more access than we should (e.g. when doing a read
1586 * fault on a COPYONWRITE mapping we want to map the COW page in
1587 * R/O even though the entry protection could be R/W).
1588 *
1589 * set "pg" to the page we want to map in (uobjpage, usually)
1590 */
1591
1592 /* no anon in this case. */
1593 anon = NULL;
1594
1595 uvmexp.flt_obj++;
1596 if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1597 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1598 enter_prot &= ~VM_PROT_WRITE;
1599 pg = uobjpage; /* map in the actual object */
1600
1601 /* assert(uobjpage != PGO_DONTCARE) */
1602
1603 /*
1604 * we are faulting directly on the page. be careful
1605 * about writing to loaned pages...
1606 */
1607
1608 if (uobjpage->loan_count) {
1609 if (!cow_now) {
1610 /* read fault: cap the protection at readonly */
1611 /* cap! */
1612 enter_prot = enter_prot & ~VM_PROT_WRITE;
1613 } else {
1614 /* write fault: must break the loan here */
1615
1616 pg = uvm_loanbreak(uobjpage);
1617 if (pg == NULL) {
1618
1619 /*
1620 * drop ownership of page, it can't
1621 * be released
1622 */
1623
1624 if (uobjpage->flags & PG_WANTED)
1625 wakeup(uobjpage);
1626 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1627 UVM_PAGE_OWN(uobjpage, NULL);
1628
1629 uvmfault_unlockall(&ufi, amap, uobj,
1630 NULL);
1631 UVMHIST_LOG(maphist,
1632 " out of RAM breaking loan, waiting",
1633 0,0,0,0);
1634 uvmexp.fltnoram++;
1635 uvm_wait("flt_noram4");
1636 goto ReFault;
1637 }
1638 uobjpage = pg;
1639 }
1640 }
1641 } else {
1642
1643 /*
1644 * if we are going to promote the data to an anon we
1645 * allocate a blank anon here and plug it into our amap.
1646 */
1647 #if DIAGNOSTIC
1648 if (amap == NULL)
1649 panic("uvm_fault: want to promote data, but no anon");
1650 #endif
1651 error = uvmfault_promote(&ufi, NULL, uobjpage,
1652 &anon, &anon_spare);
1653 switch (error) {
1654 case 0:
1655 break;
1656 case ERESTART:
1657 goto ReFault;
1658 default:
1659 goto done;
1660 }
1661
1662 pg = anon->an_page;
1663
1664 /*
1665 * fill in the data
1666 */
1667
1668 if (uobjpage != PGO_DONTCARE) {
1669 uvmexp.flt_prcopy++;
1670
1671 /*
1672 * promote to shared amap? make sure all sharing
1673 * procs see it
1674 */
1675
1676 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1677 pmap_page_protect(uobjpage, VM_PROT_NONE);
1678 /*
1679 * XXX: PAGE MIGHT BE WIRED!
1680 */
1681 }
1682
1683 /*
1684 * dispose of uobjpage. it can't be PG_RELEASED
1685 * since we still hold the object lock.
1686 * drop handle to uobj as well.
1687 */
1688
1689 if (uobjpage->flags & PG_WANTED)
1690 /* still have the obj lock */
1691 wakeup(uobjpage);
1692 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1693 UVM_PAGE_OWN(uobjpage, NULL);
1694 simple_unlock(&uobj->vmobjlock);
1695 uobj = NULL;
1696
1697 UVMHIST_LOG(maphist,
1698 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1699 uobjpage, anon, pg, 0);
1700
1701 } else {
1702 uvmexp.flt_przero++;
1703
1704 /*
1705 * Page is zero'd and marked dirty by
1706 * uvmfault_promote().
1707 */
1708
1709 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1710 anon, pg, 0, 0);
1711 }
1712 }
1713
1714 /*
1715 * locked:
1716 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1717 * anon(if !null), pg(if anon)
1718 *
1719 * note: pg is either the uobjpage or the new page in the new anon
1720 */
1721
1722 /*
1723 * all resources are present. we can now map it in and free our
1724 * resources.
1725 */
1726
1727 UVMHIST_LOG(maphist,
1728 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1729 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1730 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1731 (pg->flags & PG_RDONLY) == 0);
1732 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1733 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1734 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1735
1736 /*
1737 * No need to undo what we did; we can simply think of
1738 * this as the pmap throwing away the mapping information.
1739 *
1740 * We do, however, have to go through the ReFault path,
1741 * as the map may change while we're asleep.
1742 */
1743
1744 if (pg->flags & PG_WANTED)
1745 wakeup(pg);
1746
1747 /*
1748 * note that pg can't be PG_RELEASED since we did not drop
1749 * the object lock since the last time we checked.
1750 */
1751
1752 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1753 UVM_PAGE_OWN(pg, NULL);
1754 uvmfault_unlockall(&ufi, amap, uobj, anon);
1755 if (!uvm_reclaimable()) {
1756 UVMHIST_LOG(maphist,
1757 "<- failed. out of VM",0,0,0,0);
1758 /* XXX instrumentation */
1759 error = ENOMEM;
1760 goto done;
1761 }
1762 /* XXX instrumentation */
1763 uvm_wait("flt_pmfail2");
1764 goto ReFault;
1765 }
1766
1767 uvm_lock_pageq();
1768 if (wire_fault) {
1769 uvm_pagewire(pg);
1770 if (pg->pqflags & PQ_AOBJ) {
1771
1772 /*
1773 * since the now-wired page cannot be paged out,
1774 * release its swap resources for others to use.
1775 * since an aobj page with no swap cannot be PG_CLEAN,
1776 * clear its clean flag now.
1777 */
1778
1779 pg->flags &= ~(PG_CLEAN);
1780 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1781 }
1782 } else {
1783 uvm_pageactivate(pg);
1784 }
1785 uvm_unlock_pageq();
1786 if (pg->flags & PG_WANTED)
1787 wakeup(pg);
1788
1789 /*
1790 * note that pg can't be PG_RELEASED since we did not drop the object
1791 * lock since the last time we checked.
1792 */
1793
1794 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1795 UVM_PAGE_OWN(pg, NULL);
1796 uvmfault_unlockall(&ufi, amap, uobj, anon);
1797 pmap_update(ufi.orig_map->pmap);
1798 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1799 error = 0;
1800 done:
1801 if (anon_spare != NULL) {
1802 anon_spare->an_ref--;
1803 uvm_anfree(anon_spare);
1804 }
1805 return error;
1806 }
1807
1808 /*
1809 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1810 *
1811 * => map may be read-locked by caller, but MUST NOT be write-locked.
1812 * => if map is read-locked, any operations which may cause map to
1813 * be write-locked in uvm_fault() must be taken care of by
1814 * the caller. See uvm_map_pageable().
1815 */
1816
1817 int
1818 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1819 vm_fault_t fault_type, vm_prot_t access_type)
1820 {
1821 vaddr_t va;
1822 int error;
1823
1824 /*
1825 * now fault it in a page at a time. if the fault fails then we have
1826 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1827 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1828 */
1829
1830 /*
1831 * XXX work around overflowing a vaddr_t. this prevents us from
1832 * wiring the last page in the address space, though.
1833 */
1834 if (start > end) {
1835 return EFAULT;
1836 }
1837
1838 for (va = start ; va < end ; va += PAGE_SIZE) {
1839 error = uvm_fault(map, va, fault_type, access_type);
1840 if (error) {
1841 if (va != start) {
1842 uvm_fault_unwire(map, start, va);
1843 }
1844 return error;
1845 }
1846 }
1847 return 0;
1848 }
1849
1850 /*
1851 * uvm_fault_unwire(): unwire range of virtual space.
1852 */
1853
1854 void
1855 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1856 {
1857 vm_map_lock_read(map);
1858 uvm_fault_unwire_locked(map, start, end);
1859 vm_map_unlock_read(map);
1860 }
1861
1862 /*
1863 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1864 *
1865 * => map must be at least read-locked.
1866 */
1867
1868 void
1869 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1870 {
1871 struct vm_map_entry *entry;
1872 pmap_t pmap = vm_map_pmap(map);
1873 vaddr_t va;
1874 paddr_t pa;
1875 struct vm_page *pg;
1876
1877 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1878
1879 /*
1880 * we assume that the area we are unwiring has actually been wired
1881 * in the first place. this means that we should be able to extract
1882 * the PAs from the pmap. we also lock out the page daemon so that
1883 * we can call uvm_pageunwire.
1884 */
1885
1886 uvm_lock_pageq();
1887
1888 /*
1889 * find the beginning map entry for the region.
1890 */
1891
1892 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1893 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1894 panic("uvm_fault_unwire_locked: address not in map");
1895
1896 for (va = start; va < end; va += PAGE_SIZE) {
1897 if (pmap_extract(pmap, va, &pa) == FALSE)
1898 continue;
1899
1900 /*
1901 * find the map entry for the current address.
1902 */
1903
1904 KASSERT(va >= entry->start);
1905 while (va >= entry->end) {
1906 KASSERT(entry->next != &map->header &&
1907 entry->next->start <= entry->end);
1908 entry = entry->next;
1909 }
1910
1911 /*
1912 * if the entry is no longer wired, tell the pmap.
1913 */
1914
1915 if (VM_MAPENT_ISWIRED(entry) == 0)
1916 pmap_unwire(pmap, va);
1917
1918 pg = PHYS_TO_VM_PAGE(pa);
1919 if (pg)
1920 uvm_pageunwire(pg);
1921 }
1922
1923 uvm_unlock_pageq();
1924 }
1925