uvm_fault.c revision 1.113 1 /* $NetBSD: uvm_fault.c,v 1.113 2006/10/03 18:26:03 christos Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.113 2006/10/03 18:26:03 christos Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53 #include <sys/vnode.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ----------->new| | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----| |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in top level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * given that we are not currently multiprocessor or multithreaded we might
151 * as well choose alternative 2 now. maybe alternative 3 would be useful
152 * in the future. XXX keep in mind for future consideration//rechecking.
153 */
154
155 /*
156 * local data structures
157 */
158
159 struct uvm_advice {
160 int advice;
161 int nback;
162 int nforw;
163 };
164
165 /*
166 * page range array:
167 * note: index in array must match "advice" value
168 * XXX: borrowed numbers from freebsd. do they work well for us?
169 */
170
171 static const struct uvm_advice uvmadvice[] = {
172 { MADV_NORMAL, 3, 4 },
173 { MADV_RANDOM, 0, 0 },
174 { MADV_SEQUENTIAL, 8, 7},
175 };
176
177 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
178
179 /*
180 * private prototypes
181 */
182
183 /*
184 * inline functions
185 */
186
187 /*
188 * uvmfault_anonflush: try and deactivate pages in specified anons
189 *
190 * => does not have to deactivate page if it is busy
191 */
192
193 static inline void
194 uvmfault_anonflush(struct vm_anon **anons, int n)
195 {
196 int lcv;
197 struct vm_page *pg;
198
199 for (lcv = 0 ; lcv < n ; lcv++) {
200 if (anons[lcv] == NULL)
201 continue;
202 simple_lock(&anons[lcv]->an_lock);
203 pg = anons[lcv]->an_page;
204 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
205 uvm_lock_pageq();
206 if (pg->wire_count == 0) {
207 pmap_clear_reference(pg);
208 uvm_pagedeactivate(pg);
209 }
210 uvm_unlock_pageq();
211 }
212 simple_unlock(&anons[lcv]->an_lock);
213 }
214 }
215
216 /*
217 * normal functions
218 */
219
220 /*
221 * uvmfault_amapcopy: clear "needs_copy" in a map.
222 *
223 * => called with VM data structures unlocked (usually, see below)
224 * => we get a write lock on the maps and clear needs_copy for a VA
225 * => if we are out of RAM we sleep (waiting for more)
226 */
227
228 static void
229 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
230 {
231 for (;;) {
232
233 /*
234 * no mapping? give up.
235 */
236
237 if (uvmfault_lookup(ufi, TRUE) == FALSE)
238 return;
239
240 /*
241 * copy if needed.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
245 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
246 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
247
248 /*
249 * didn't work? must be out of RAM. unlock and sleep.
250 */
251
252 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
253 uvmfault_unlockmaps(ufi, TRUE);
254 uvm_wait("fltamapcopy");
255 continue;
256 }
257
258 /*
259 * got it! unlock and return.
260 */
261
262 uvmfault_unlockmaps(ufi, TRUE);
263 return;
264 }
265 /*NOTREACHED*/
266 }
267
268 /*
269 * uvmfault_anonget: get data in an anon into a non-busy, non-released
270 * page in that anon.
271 *
272 * => maps, amap, and anon locked by caller.
273 * => if we fail (result != 0) we unlock everything.
274 * => if we are successful, we return with everything still locked.
275 * => we don't move the page on the queues [gets moved later]
276 * => if we allocate a new page [we_own], it gets put on the queues.
277 * either way, the result is that the page is on the queues at return time
278 * => for pages which are on loan from a uvm_object (and thus are not
279 * owned by the anon): if successful, we return with the owning object
280 * locked. the caller must unlock this object when it unlocks everything
281 * else.
282 */
283
284 int
285 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
286 struct vm_anon *anon)
287 {
288 boolean_t we_own; /* we own anon's page? */
289 boolean_t locked; /* did we relock? */
290 struct vm_page *pg;
291 int error;
292 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
293
294 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
295
296 error = 0;
297 uvmexp.fltanget++;
298 /* bump rusage counters */
299 if (anon->an_page)
300 curproc->p_stats->p_ru.ru_minflt++;
301 else
302 curproc->p_stats->p_ru.ru_majflt++;
303
304 /*
305 * loop until we get it, or fail.
306 */
307
308 for (;;) {
309 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
310 pg = anon->an_page;
311
312 /*
313 * if there is a resident page and it is loaned, then anon
314 * may not own it. call out to uvm_anon_lockpage() to ensure
315 * the real owner of the page has been identified and locked.
316 */
317
318 if (pg && pg->loan_count)
319 pg = uvm_anon_lockloanpg(anon);
320
321 /*
322 * page there? make sure it is not busy/released.
323 */
324
325 if (pg) {
326
327 /*
328 * at this point, if the page has a uobject [meaning
329 * we have it on loan], then that uobject is locked
330 * by us! if the page is busy, we drop all the
331 * locks (including uobject) and try again.
332 */
333
334 if ((pg->flags & PG_BUSY) == 0) {
335 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
336 return (0);
337 }
338 pg->flags |= PG_WANTED;
339 uvmexp.fltpgwait++;
340
341 /*
342 * the last unlock must be an atomic unlock+wait on
343 * the owner of page
344 */
345
346 if (pg->uobject) { /* owner is uobject ? */
347 uvmfault_unlockall(ufi, amap, NULL, anon);
348 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
349 0,0,0);
350 UVM_UNLOCK_AND_WAIT(pg,
351 &pg->uobject->vmobjlock,
352 FALSE, "anonget1",0);
353 } else {
354 /* anon owns page */
355 uvmfault_unlockall(ufi, amap, NULL, NULL);
356 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
357 0,0,0);
358 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
359 "anonget2",0);
360 }
361 } else {
362 #if defined(VMSWAP)
363
364 /*
365 * no page, we must try and bring it in.
366 */
367
368 pg = uvm_pagealloc(NULL, 0, anon, 0);
369 if (pg == NULL) { /* out of RAM. */
370 uvmfault_unlockall(ufi, amap, NULL, anon);
371 uvmexp.fltnoram++;
372 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
373 0,0,0);
374 if (!uvm_reclaimable()) {
375 return ENOMEM;
376 }
377 uvm_wait("flt_noram1");
378 } else {
379 /* we set the PG_BUSY bit */
380 we_own = TRUE;
381 uvmfault_unlockall(ufi, amap, NULL, anon);
382
383 /*
384 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
385 * page into the uvm_swap_get function with
386 * all data structures unlocked. note that
387 * it is ok to read an_swslot here because
388 * we hold PG_BUSY on the page.
389 */
390 uvmexp.pageins++;
391 error = uvm_swap_get(pg, anon->an_swslot,
392 PGO_SYNCIO);
393
394 /*
395 * we clean up after the i/o below in the
396 * "we_own" case
397 */
398 }
399 #else /* defined(VMSWAP) */
400 panic("%s: no page", __func__);
401 #endif /* defined(VMSWAP) */
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 #if defined(VMSWAP)
428 if (pg->flags & PG_WANTED) {
429 wakeup(pg);
430 }
431 if (error) {
432
433 /*
434 * remove the swap slot from the anon
435 * and mark the anon as having no real slot.
436 * don't free the swap slot, thus preventing
437 * it from being used again.
438 */
439
440 if (anon->an_swslot > 0)
441 uvm_swap_markbad(anon->an_swslot, 1);
442 anon->an_swslot = SWSLOT_BAD;
443
444 if ((pg->flags & PG_RELEASED) != 0)
445 goto released;
446
447 /*
448 * note: page was never !PG_BUSY, so it
449 * can't be mapped and thus no need to
450 * pmap_page_protect it...
451 */
452
453 uvm_lock_pageq();
454 uvm_pagefree(pg);
455 uvm_unlock_pageq();
456
457 if (locked)
458 uvmfault_unlockall(ufi, amap, NULL,
459 anon);
460 else
461 simple_unlock(&anon->an_lock);
462 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
463 return error;
464 }
465
466 if ((pg->flags & PG_RELEASED) != 0) {
467 released:
468 KASSERT(anon->an_ref == 0);
469
470 /*
471 * released while we unlocked amap.
472 */
473
474 if (locked)
475 uvmfault_unlockall(ufi, amap, NULL,
476 NULL);
477
478 uvm_anon_release(anon);
479
480 if (error) {
481 UVMHIST_LOG(maphist,
482 "<- ERROR/RELEASED", 0,0,0,0);
483 return error;
484 }
485
486 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
487 return ERESTART;
488 }
489
490 /*
491 * we've successfully read the page, activate it.
492 */
493
494 uvm_lock_pageq();
495 uvm_pageactivate(pg);
496 uvm_unlock_pageq();
497 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
498 UVM_PAGE_OWN(pg, NULL);
499 if (!locked)
500 simple_unlock(&anon->an_lock);
501 #else /* defined(VMSWAP) */
502 panic("%s: we_own", __func__);
503 #endif /* defined(VMSWAP) */
504 }
505
506 /*
507 * we were not able to relock. restart fault.
508 */
509
510 if (!locked) {
511 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
512 return (ERESTART);
513 }
514
515 /*
516 * verify no one has touched the amap and moved the anon on us.
517 */
518
519 if (ufi != NULL &&
520 amap_lookup(&ufi->entry->aref,
521 ufi->orig_rvaddr - ufi->entry->start) != anon) {
522
523 uvmfault_unlockall(ufi, amap, NULL, anon);
524 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
525 return (ERESTART);
526 }
527
528 /*
529 * try it again!
530 */
531
532 uvmexp.fltanretry++;
533 continue;
534 }
535 /*NOTREACHED*/
536 }
537
538 /*
539 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
540 *
541 * 1. allocate an anon and a page.
542 * 2. fill its contents.
543 * 3. put it into amap.
544 *
545 * => if we fail (result != 0) we unlock everything.
546 * => on success, return a new locked anon via 'nanon'.
547 * (*nanon)->an_page will be a resident, locked, dirty page.
548 */
549
550 static int
551 uvmfault_promote(struct uvm_faultinfo *ufi,
552 struct vm_anon *oanon,
553 struct vm_page *uobjpage,
554 struct vm_anon **nanon, /* OUT: allocated anon */
555 struct vm_anon **spare)
556 {
557 struct vm_amap *amap = ufi->entry->aref.ar_amap;
558 struct uvm_object *uobj;
559 struct vm_anon *anon;
560 struct vm_page *pg;
561 struct vm_page *opg;
562 int error;
563 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
564
565 if (oanon) {
566 /* anon COW */
567 opg = oanon->an_page;
568 KASSERT(opg != NULL);
569 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
570 } else if (uobjpage != PGO_DONTCARE) {
571 /* object-backed COW */
572 opg = uobjpage;
573 } else {
574 /* ZFOD */
575 opg = NULL;
576 }
577 if (opg != NULL) {
578 uobj = opg->uobject;
579 } else {
580 uobj = NULL;
581 }
582
583 KASSERT(amap != NULL);
584 KASSERT(uobjpage != NULL);
585 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
586 LOCK_ASSERT(simple_lock_held(&amap->am_l));
587 LOCK_ASSERT(oanon == NULL || simple_lock_held(&oanon->an_lock));
588 LOCK_ASSERT(uobj == NULL || simple_lock_held(&uobj->vmobjlock));
589 LOCK_ASSERT(*spare == NULL || !simple_lock_held(&(*spare)->an_lock));
590
591 if (*spare != NULL) {
592 anon = *spare;
593 *spare = NULL;
594 simple_lock(&anon->an_lock);
595 } else if (ufi->map != kernel_map) {
596 anon = uvm_analloc();
597 } else {
598 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
599
600 /*
601 * we can't allocate anons with kernel_map locked.
602 */
603
604 uvm_page_unbusy(&uobjpage, 1);
605 uvmfault_unlockall(ufi, amap, uobj, oanon);
606
607 *spare = uvm_analloc();
608 if (*spare == NULL) {
609 goto nomem;
610 }
611 simple_unlock(&(*spare)->an_lock);
612 error = ERESTART;
613 goto done;
614 }
615 if (anon) {
616
617 /*
618 * The new anon is locked.
619 *
620 * if opg == NULL, we want a zero'd, dirty page,
621 * so have uvm_pagealloc() do that for us.
622 */
623
624 pg = uvm_pagealloc(NULL, 0, anon,
625 (opg == NULL) ? UVM_PGA_ZERO : 0);
626 } else {
627 pg = NULL;
628 }
629
630 /*
631 * out of memory resources?
632 */
633
634 if (pg == NULL) {
635 /* save anon for the next try. */
636 if (anon != NULL) {
637 simple_unlock(&anon->an_lock);
638 *spare = anon;
639 }
640
641 /* unlock and fail ... */
642 uvm_page_unbusy(&uobjpage, 1);
643 uvmfault_unlockall(ufi, amap, uobj, oanon);
644 nomem:
645 if (!uvm_reclaimable()) {
646 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
647 uvmexp.fltnoanon++;
648 error = ENOMEM;
649 goto done;
650 }
651
652 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
653 uvmexp.fltnoram++;
654 uvm_wait("flt_noram5");
655 error = ERESTART;
656 goto done;
657 }
658
659 /* copy page [pg now dirty] */
660 if (opg) {
661 uvm_pagecopy(opg, pg);
662 }
663
664 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
665 oanon != NULL);
666
667 *nanon = anon;
668 error = 0;
669 done:
670 return error;
671 }
672
673
674 /*
675 * F A U L T - m a i n e n t r y p o i n t
676 */
677
678 /*
679 * uvm_fault: page fault handler
680 *
681 * => called from MD code to resolve a page fault
682 * => VM data structures usually should be unlocked. however, it is
683 * possible to call here with the main map locked if the caller
684 * gets a write lock, sets it recusive, and then calls us (c.f.
685 * uvm_map_pageable). this should be avoided because it keeps
686 * the map locked off during I/O.
687 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
688 */
689
690 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
691 ~VM_PROT_WRITE : VM_PROT_ALL)
692
693 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
694 #define UVM_FAULT_WIRE 1
695 #define UVM_FAULT_WIREMAX 2
696
697 int
698 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
699 vm_prot_t access_type, int fault_flag)
700 {
701 struct uvm_faultinfo ufi;
702 vm_prot_t enter_prot, check_prot;
703 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
704 int npages, nback, nforw, centeridx, error, lcv, gotpages;
705 vaddr_t startva, currva;
706 voff_t uoff;
707 struct vm_amap *amap;
708 struct uvm_object *uobj;
709 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
710 struct vm_anon *anon_spare;
711 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
712 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
713
714 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
715 orig_map, vaddr, access_type, fault_flag);
716
717 anon = anon_spare = NULL;
718 pg = NULL;
719
720 uvmexp.faults++; /* XXX: locking? */
721
722 /*
723 * init the IN parameters in the ufi
724 */
725
726 ufi.orig_map = orig_map;
727 ufi.orig_rvaddr = trunc_page(vaddr);
728 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
729 wire_fault = (fault_flag > 0);
730 if (wire_fault)
731 narrow = TRUE; /* don't look for neighborhood
732 * pages on wire */
733 else
734 narrow = FALSE; /* normal fault */
735
736 /*
737 * "goto ReFault" means restart the page fault from ground zero.
738 */
739 ReFault:
740
741 /*
742 * lookup and lock the maps
743 */
744
745 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
746 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
747 error = EFAULT;
748 goto done;
749 }
750 /* locked: maps(read) */
751
752 #ifdef DIAGNOSTIC
753 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
754 printf("Page fault on non-pageable map:\n");
755 printf("ufi.map = %p\n", ufi.map);
756 printf("ufi.orig_map = %p\n", ufi.orig_map);
757 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
758 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
759 }
760 #endif
761
762 /*
763 * check protection
764 */
765
766 check_prot = fault_flag == UVM_FAULT_WIREMAX ?
767 ufi.entry->max_protection : ufi.entry->protection;
768 if ((check_prot & access_type) != access_type) {
769 UVMHIST_LOG(maphist,
770 "<- protection failure (prot=0x%x, access=0x%x)",
771 ufi.entry->protection, access_type, 0, 0);
772 uvmfault_unlockmaps(&ufi, FALSE);
773 error = EACCES;
774 goto done;
775 }
776
777 /*
778 * "enter_prot" is the protection we want to enter the page in at.
779 * for certain pages (e.g. copy-on-write pages) this protection can
780 * be more strict than ufi.entry->protection. "wired" means either
781 * the entry is wired or we are fault-wiring the pg.
782 */
783
784 enter_prot = ufi.entry->protection;
785 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
786 if (wired) {
787 access_type = enter_prot; /* full access for wired */
788 cow_now = (check_prot & VM_PROT_WRITE) != 0;
789 } else {
790 cow_now = (access_type & VM_PROT_WRITE) != 0;
791 }
792
793 /*
794 * handle "needs_copy" case. if we need to copy the amap we will
795 * have to drop our readlock and relock it with a write lock. (we
796 * need a write lock to change anything in a map entry [e.g.
797 * needs_copy]).
798 */
799
800 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
801 KASSERT(fault_flag != UVM_FAULT_WIREMAX);
802 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
803 /* need to clear */
804 UVMHIST_LOG(maphist,
805 " need to clear needs_copy and refault",0,0,0,0);
806 uvmfault_unlockmaps(&ufi, FALSE);
807 uvmfault_amapcopy(&ufi);
808 uvmexp.fltamcopy++;
809 goto ReFault;
810
811 } else {
812
813 /*
814 * ensure that we pmap_enter page R/O since
815 * needs_copy is still true
816 */
817
818 enter_prot &= ~VM_PROT_WRITE;
819 }
820 }
821
822 /*
823 * identify the players
824 */
825
826 amap = ufi.entry->aref.ar_amap; /* top layer */
827 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
828
829 /*
830 * check for a case 0 fault. if nothing backing the entry then
831 * error now.
832 */
833
834 if (amap == NULL && uobj == NULL) {
835 uvmfault_unlockmaps(&ufi, FALSE);
836 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
837 error = EFAULT;
838 goto done;
839 }
840
841 /*
842 * establish range of interest based on advice from mapper
843 * and then clip to fit map entry. note that we only want
844 * to do this the first time through the fault. if we
845 * ReFault we will disable this by setting "narrow" to true.
846 */
847
848 if (narrow == FALSE) {
849
850 /* wide fault (!narrow) */
851 KASSERT(uvmadvice[ufi.entry->advice].advice ==
852 ufi.entry->advice);
853 nback = MIN(uvmadvice[ufi.entry->advice].nback,
854 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
855 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
856 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
857 ((ufi.entry->end - ufi.orig_rvaddr) >>
858 PAGE_SHIFT) - 1);
859 /*
860 * note: "-1" because we don't want to count the
861 * faulting page as forw
862 */
863 npages = nback + nforw + 1;
864 centeridx = nback;
865
866 narrow = TRUE; /* ensure only once per-fault */
867
868 } else {
869
870 /* narrow fault! */
871 nback = nforw = 0;
872 startva = ufi.orig_rvaddr;
873 npages = 1;
874 centeridx = 0;
875
876 }
877
878 /* locked: maps(read) */
879 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
880 narrow, nback, nforw, startva);
881 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
882 amap, uobj, 0);
883
884 /*
885 * if we've got an amap, lock it and extract current anons.
886 */
887
888 if (amap) {
889 amap_lock(amap);
890 anons = anons_store;
891 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
892 anons, npages);
893 } else {
894 anons = NULL; /* to be safe */
895 }
896
897 /* locked: maps(read), amap(if there) */
898 LOCK_ASSERT(amap == NULL || simple_lock_held(&amap->am_l));
899
900 /*
901 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
902 * now and then forget about them (for the rest of the fault).
903 */
904
905 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
906
907 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
908 0,0,0,0);
909 /* flush back-page anons? */
910 if (amap)
911 uvmfault_anonflush(anons, nback);
912
913 /* flush object? */
914 if (uobj) {
915 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
916 simple_lock(&uobj->vmobjlock);
917 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
918 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
919 }
920
921 /* now forget about the backpages */
922 if (amap)
923 anons += nback;
924 startva += (nback << PAGE_SHIFT);
925 npages -= nback;
926 nback = centeridx = 0;
927 }
928
929 /* locked: maps(read), amap(if there) */
930 LOCK_ASSERT(amap == NULL || simple_lock_held(&amap->am_l));
931
932 /*
933 * map in the backpages and frontpages we found in the amap in hopes
934 * of preventing future faults. we also init the pages[] array as
935 * we go.
936 */
937
938 currva = startva;
939 shadowed = FALSE;
940 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
941
942 /*
943 * dont play with VAs that are already mapped
944 * except for center)
945 */
946 if (lcv != centeridx &&
947 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
948 pages[lcv] = PGO_DONTCARE;
949 continue;
950 }
951
952 /*
953 * unmapped or center page. check if any anon at this level.
954 */
955 if (amap == NULL || anons[lcv] == NULL) {
956 pages[lcv] = NULL;
957 continue;
958 }
959
960 /*
961 * check for present page and map if possible. re-activate it.
962 */
963
964 pages[lcv] = PGO_DONTCARE;
965 if (lcv == centeridx) { /* save center for later! */
966 shadowed = TRUE;
967 continue;
968 }
969 anon = anons[lcv];
970 simple_lock(&anon->an_lock);
971 /* ignore loaned pages */
972 if (anon->an_page && anon->an_page->loan_count == 0 &&
973 (anon->an_page->flags & PG_BUSY) == 0) {
974 uvm_lock_pageq();
975 uvm_pageenqueue(anon->an_page);
976 uvm_unlock_pageq();
977 UVMHIST_LOG(maphist,
978 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
979 ufi.orig_map->pmap, currva, anon->an_page, 0);
980 uvmexp.fltnamap++;
981
982 /*
983 * Since this isn't the page that's actually faulting,
984 * ignore pmap_enter() failures; it's not critical
985 * that we enter these right now.
986 */
987
988 (void) pmap_enter(ufi.orig_map->pmap, currva,
989 VM_PAGE_TO_PHYS(anon->an_page),
990 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
991 enter_prot,
992 PMAP_CANFAIL |
993 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
994 }
995 simple_unlock(&anon->an_lock);
996 pmap_update(ufi.orig_map->pmap);
997 }
998
999 /* locked: maps(read), amap(if there) */
1000 LOCK_ASSERT(amap == NULL || simple_lock_held(&amap->am_l));
1001 /* (shadowed == TRUE) if there is an anon at the faulting address */
1002 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1003 (uobj && shadowed == FALSE),0,0);
1004
1005 /*
1006 * note that if we are really short of RAM we could sleep in the above
1007 * call to pmap_enter with everything locked. bad?
1008 *
1009 * XXX Actually, that is bad; pmap_enter() should just fail in that
1010 * XXX case. --thorpej
1011 */
1012
1013 /*
1014 * if the desired page is not shadowed by the amap and we have a
1015 * backing object, then we check to see if the backing object would
1016 * prefer to handle the fault itself (rather than letting us do it
1017 * with the usual pgo_get hook). the backing object signals this by
1018 * providing a pgo_fault routine.
1019 */
1020
1021 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
1022 simple_lock(&uobj->vmobjlock);
1023
1024 /* locked: maps(read), amap (if there), uobj */
1025 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1026 centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1027
1028 /* locked: nothing, pgo_fault has unlocked everything */
1029
1030 if (error == ERESTART)
1031 goto ReFault; /* try again! */
1032 /*
1033 * object fault routine responsible for pmap_update().
1034 */
1035 goto done;
1036 }
1037
1038 /*
1039 * now, if the desired page is not shadowed by the amap and we have
1040 * a backing object that does not have a special fault routine, then
1041 * we ask (with pgo_get) the object for resident pages that we care
1042 * about and attempt to map them in. we do not let pgo_get block
1043 * (PGO_LOCKED).
1044 */
1045
1046 if (uobj && shadowed == FALSE) {
1047 simple_lock(&uobj->vmobjlock);
1048
1049 /* locked (!shadowed): maps(read), amap (if there), uobj */
1050 /*
1051 * the following call to pgo_get does _not_ change locking state
1052 */
1053
1054 uvmexp.fltlget++;
1055 gotpages = npages;
1056 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
1057 (startva - ufi.entry->start),
1058 pages, &gotpages, centeridx,
1059 access_type & MASK(ufi.entry),
1060 ufi.entry->advice, PGO_LOCKED);
1061
1062 /*
1063 * check for pages to map, if we got any
1064 */
1065
1066 uobjpage = NULL;
1067
1068 if (gotpages) {
1069 currva = startva;
1070 for (lcv = 0; lcv < npages;
1071 lcv++, currva += PAGE_SIZE) {
1072 struct vm_page *curpg;
1073 boolean_t readonly;
1074
1075 curpg = pages[lcv];
1076 if (curpg == NULL || curpg == PGO_DONTCARE) {
1077 continue;
1078 }
1079 KASSERT(curpg->uobject == uobj);
1080
1081 /*
1082 * if center page is resident and not
1083 * PG_BUSY|PG_RELEASED then pgo_get
1084 * made it PG_BUSY for us and gave
1085 * us a handle to it. remember this
1086 * page as "uobjpage." (for later use).
1087 */
1088
1089 if (lcv == centeridx) {
1090 uobjpage = curpg;
1091 UVMHIST_LOG(maphist, " got uobjpage "
1092 "(0x%x) with locked get",
1093 uobjpage, 0,0,0);
1094 continue;
1095 }
1096
1097 /*
1098 * calling pgo_get with PGO_LOCKED returns us
1099 * pages which are neither busy nor released,
1100 * so we don't need to check for this.
1101 * we can just directly enter the pages.
1102 */
1103
1104 uvm_lock_pageq();
1105 uvm_pageenqueue(curpg);
1106 uvm_unlock_pageq();
1107 UVMHIST_LOG(maphist,
1108 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1109 ufi.orig_map->pmap, currva, curpg, 0);
1110 uvmexp.fltnomap++;
1111
1112 /*
1113 * Since this page isn't the page that's
1114 * actually faulting, ignore pmap_enter()
1115 * failures; it's not critical that we
1116 * enter these right now.
1117 */
1118 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1119 KASSERT((curpg->flags & PG_RELEASED) == 0);
1120 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1121 (curpg->flags & PG_CLEAN) != 0);
1122 readonly = (curpg->flags & PG_RDONLY)
1123 || (curpg->loan_count > 0)
1124 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1125
1126 (void) pmap_enter(ufi.orig_map->pmap, currva,
1127 VM_PAGE_TO_PHYS(curpg),
1128 readonly ?
1129 enter_prot & ~VM_PROT_WRITE :
1130 enter_prot & MASK(ufi.entry),
1131 PMAP_CANFAIL |
1132 (wired ? PMAP_WIRED : 0));
1133
1134 /*
1135 * NOTE: page can't be PG_WANTED or PG_RELEASED
1136 * because we've held the lock the whole time
1137 * we've had the handle.
1138 */
1139 KASSERT((curpg->flags & PG_WANTED) == 0);
1140 KASSERT((curpg->flags & PG_RELEASED) == 0);
1141
1142 curpg->flags &= ~(PG_BUSY);
1143 UVM_PAGE_OWN(curpg, NULL);
1144 }
1145 pmap_update(ufi.orig_map->pmap);
1146 }
1147 } else {
1148 uobjpage = NULL;
1149 }
1150
1151 /* locked (shadowed): maps(read), amap */
1152 /* locked (!shadowed): maps(read), amap(if there),
1153 uobj(if !null), uobjpage(if !null) */
1154 if (shadowed) {
1155 LOCK_ASSERT(simple_lock_held(&amap->am_l));
1156 } else {
1157 LOCK_ASSERT(amap == NULL || simple_lock_held(&amap->am_l));
1158 LOCK_ASSERT(uobj == NULL || simple_lock_held(&uobj->vmobjlock));
1159 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1160 }
1161
1162 /*
1163 * note that at this point we are done with any front or back pages.
1164 * we are now going to focus on the center page (i.e. the one we've
1165 * faulted on). if we have faulted on the top (anon) layer
1166 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1167 * not touched it yet). if we have faulted on the bottom (uobj)
1168 * layer [i.e. case 2] and the page was both present and available,
1169 * then we've got a pointer to it as "uobjpage" and we've already
1170 * made it BUSY.
1171 */
1172
1173 /*
1174 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1175 */
1176
1177 /*
1178 * redirect case 2: if we are not shadowed, go to case 2.
1179 */
1180
1181 if (shadowed == FALSE)
1182 goto Case2;
1183
1184 /* locked: maps(read), amap */
1185
1186 /*
1187 * handle case 1: fault on an anon in our amap
1188 */
1189
1190 anon = anons[centeridx];
1191 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1192 simple_lock(&anon->an_lock);
1193
1194 /* locked: maps(read), amap, anon */
1195 LOCK_ASSERT(simple_lock_held(&amap->am_l));
1196 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
1197
1198 /*
1199 * no matter if we have case 1A or case 1B we are going to need to
1200 * have the anon's memory resident. ensure that now.
1201 */
1202
1203 /*
1204 * let uvmfault_anonget do the dirty work.
1205 * if it fails (!OK) it will unlock everything for us.
1206 * if it succeeds, locks are still valid and locked.
1207 * also, if it is OK, then the anon's page is on the queues.
1208 * if the page is on loan from a uvm_object, then anonget will
1209 * lock that object for us if it does not fail.
1210 */
1211
1212 error = uvmfault_anonget(&ufi, amap, anon);
1213 switch (error) {
1214 case 0:
1215 break;
1216
1217 case ERESTART:
1218 goto ReFault;
1219
1220 case EAGAIN:
1221 tsleep(&lbolt, PVM, "fltagain1", 0);
1222 goto ReFault;
1223
1224 default:
1225 goto done;
1226 }
1227
1228 /*
1229 * uobj is non null if the page is on loan from an object (i.e. uobj)
1230 */
1231
1232 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1233
1234 /* locked: maps(read), amap, anon, uobj(if one) */
1235 LOCK_ASSERT(simple_lock_held(&amap->am_l));
1236 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
1237 LOCK_ASSERT(uobj == NULL || simple_lock_held(&uobj->vmobjlock));
1238
1239 /*
1240 * special handling for loaned pages
1241 */
1242
1243 if (anon->an_page->loan_count) {
1244
1245 if (!cow_now) {
1246
1247 /*
1248 * for read faults on loaned pages we just cap the
1249 * protection at read-only.
1250 */
1251
1252 enter_prot = enter_prot & ~VM_PROT_WRITE;
1253
1254 } else {
1255 /*
1256 * note that we can't allow writes into a loaned page!
1257 *
1258 * if we have a write fault on a loaned page in an
1259 * anon then we need to look at the anon's ref count.
1260 * if it is greater than one then we are going to do
1261 * a normal copy-on-write fault into a new anon (this
1262 * is not a problem). however, if the reference count
1263 * is one (a case where we would normally allow a
1264 * write directly to the page) then we need to kill
1265 * the loan before we continue.
1266 */
1267
1268 /* >1 case is already ok */
1269 if (anon->an_ref == 1) {
1270
1271 /* get new un-owned replacement page */
1272 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1273 if (pg == NULL) {
1274 uvmfault_unlockall(&ufi, amap, uobj,
1275 anon);
1276 uvm_wait("flt_noram2");
1277 goto ReFault;
1278 }
1279
1280 /*
1281 * copy data, kill loan, and drop uobj lock
1282 * (if any)
1283 */
1284 /* copy old -> new */
1285 uvm_pagecopy(anon->an_page, pg);
1286
1287 /* force reload */
1288 pmap_page_protect(anon->an_page,
1289 VM_PROT_NONE);
1290 uvm_lock_pageq(); /* KILL loan */
1291
1292 anon->an_page->uanon = NULL;
1293 /* in case we owned */
1294 anon->an_page->pqflags &= ~PQ_ANON;
1295
1296 if (uobj) {
1297 /* if we were receiver of loan */
1298 anon->an_page->loan_count--;
1299 } else {
1300 /*
1301 * we were the lender (A->K); need
1302 * to remove the page from pageq's.
1303 */
1304 uvm_pagedequeue(anon->an_page);
1305 }
1306
1307 if (uobj) {
1308 simple_unlock(&uobj->vmobjlock);
1309 uobj = NULL;
1310 }
1311
1312 /* install new page in anon */
1313 anon->an_page = pg;
1314 pg->uanon = anon;
1315 pg->pqflags |= PQ_ANON;
1316
1317 uvm_pageactivate(pg);
1318 uvm_unlock_pageq();
1319
1320 pg->flags &= ~(PG_BUSY|PG_FAKE);
1321 UVM_PAGE_OWN(pg, NULL);
1322
1323 /* done! */
1324 } /* ref == 1 */
1325 } /* write fault */
1326 } /* loan count */
1327
1328 /*
1329 * if we are case 1B then we will need to allocate a new blank
1330 * anon to transfer the data into. note that we have a lock
1331 * on anon, so no one can busy or release the page until we are done.
1332 * also note that the ref count can't drop to zero here because
1333 * it is > 1 and we are only dropping one ref.
1334 *
1335 * in the (hopefully very rare) case that we are out of RAM we
1336 * will unlock, wait for more RAM, and refault.
1337 *
1338 * if we are out of anon VM we kill the process (XXX: could wait?).
1339 */
1340
1341 if (cow_now && anon->an_ref > 1) {
1342
1343 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1344 uvmexp.flt_acow++;
1345 oanon = anon; /* oanon = old, locked anon */
1346
1347 error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1348 &anon, &anon_spare);
1349 switch (error) {
1350 case 0:
1351 break;
1352 case ERESTART:
1353 goto ReFault;
1354 default:
1355 goto done;
1356 }
1357
1358 pg = anon->an_page;
1359 uvm_lock_pageq();
1360 uvm_pageactivate(pg);
1361 uvm_unlock_pageq();
1362 pg->flags &= ~(PG_BUSY|PG_FAKE);
1363 UVM_PAGE_OWN(pg, NULL);
1364
1365 /* deref: can not drop to zero here by defn! */
1366 oanon->an_ref--;
1367
1368 /*
1369 * note: oanon is still locked, as is the new anon. we
1370 * need to check for this later when we unlock oanon; if
1371 * oanon != anon, we'll have to unlock anon, too.
1372 */
1373
1374 } else {
1375
1376 uvmexp.flt_anon++;
1377 oanon = anon; /* old, locked anon is same as anon */
1378 pg = anon->an_page;
1379 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1380 enter_prot = enter_prot & ~VM_PROT_WRITE;
1381
1382 }
1383
1384 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1385 LOCK_ASSERT(simple_lock_held(&amap->am_l));
1386 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
1387 LOCK_ASSERT(simple_lock_held(&oanon->an_lock));
1388
1389 /*
1390 * now map the page in.
1391 */
1392
1393 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1394 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1395 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1396 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1397 != 0) {
1398
1399 /*
1400 * No need to undo what we did; we can simply think of
1401 * this as the pmap throwing away the mapping information.
1402 *
1403 * We do, however, have to go through the ReFault path,
1404 * as the map may change while we're asleep.
1405 */
1406
1407 if (anon != oanon)
1408 simple_unlock(&anon->an_lock);
1409 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1410 if (!uvm_reclaimable()) {
1411 UVMHIST_LOG(maphist,
1412 "<- failed. out of VM",0,0,0,0);
1413 /* XXX instrumentation */
1414 error = ENOMEM;
1415 goto done;
1416 }
1417 /* XXX instrumentation */
1418 uvm_wait("flt_pmfail1");
1419 goto ReFault;
1420 }
1421
1422 /*
1423 * ... update the page queues.
1424 */
1425
1426 uvm_lock_pageq();
1427 if (wire_fault) {
1428 uvm_pagewire(pg);
1429
1430 /*
1431 * since the now-wired page cannot be paged out,
1432 * release its swap resources for others to use.
1433 * since an anon with no swap cannot be PG_CLEAN,
1434 * clear its clean flag now.
1435 */
1436
1437 pg->flags &= ~(PG_CLEAN);
1438 uvm_anon_dropswap(anon);
1439 } else {
1440 uvm_pageactivate(pg);
1441 }
1442 uvm_unlock_pageq();
1443
1444 /*
1445 * done case 1! finish up by unlocking everything and returning success
1446 */
1447
1448 if (anon != oanon)
1449 simple_unlock(&anon->an_lock);
1450 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1451 pmap_update(ufi.orig_map->pmap);
1452 error = 0;
1453 goto done;
1454
1455 Case2:
1456 /*
1457 * handle case 2: faulting on backing object or zero fill
1458 */
1459
1460 /*
1461 * locked:
1462 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1463 */
1464 LOCK_ASSERT(amap == NULL || simple_lock_held(&amap->am_l));
1465 LOCK_ASSERT(uobj == NULL || simple_lock_held(&uobj->vmobjlock));
1466 LOCK_ASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1467
1468 /*
1469 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1470 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1471 * have a backing object, check and see if we are going to promote
1472 * the data up to an anon during the fault.
1473 */
1474
1475 if (uobj == NULL) {
1476 uobjpage = PGO_DONTCARE;
1477 promote = TRUE; /* always need anon here */
1478 } else {
1479 KASSERT(uobjpage != PGO_DONTCARE);
1480 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1481 }
1482 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1483 promote, (uobj == NULL), 0,0);
1484
1485 /*
1486 * if uobjpage is not null then we do not need to do I/O to get the
1487 * uobjpage.
1488 *
1489 * if uobjpage is null, then we need to unlock and ask the pager to
1490 * get the data for us. once we have the data, we need to reverify
1491 * the state the world. we are currently not holding any resources.
1492 */
1493
1494 if (uobjpage) {
1495 /* update rusage counters */
1496 curproc->p_stats->p_ru.ru_minflt++;
1497 } else {
1498 /* update rusage counters */
1499 curproc->p_stats->p_ru.ru_majflt++;
1500
1501 /* locked: maps(read), amap(if there), uobj */
1502 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1503 /* locked: uobj */
1504
1505 uvmexp.fltget++;
1506 gotpages = 1;
1507 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1508 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1509 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1510 PGO_SYNCIO);
1511 /* locked: uobjpage(if no error) */
1512 LOCK_ASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1513
1514 /*
1515 * recover from I/O
1516 */
1517
1518 if (error) {
1519 if (error == EAGAIN) {
1520 UVMHIST_LOG(maphist,
1521 " pgo_get says TRY AGAIN!",0,0,0,0);
1522 tsleep(&lbolt, PVM, "fltagain2", 0);
1523 goto ReFault;
1524 }
1525
1526 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1527 error, 0,0,0);
1528 goto done;
1529 }
1530
1531 /* locked: uobjpage */
1532
1533 uvm_lock_pageq();
1534 uvm_pageactivate(uobjpage);
1535 uvm_unlock_pageq();
1536
1537 /*
1538 * re-verify the state of the world by first trying to relock
1539 * the maps. always relock the object.
1540 */
1541
1542 locked = uvmfault_relock(&ufi);
1543 if (locked && amap)
1544 amap_lock(amap);
1545 uobj = uobjpage->uobject;
1546 simple_lock(&uobj->vmobjlock);
1547
1548 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1549 /* locked(!locked): uobj, uobjpage */
1550
1551 /*
1552 * verify that the page has not be released and re-verify
1553 * that amap slot is still free. if there is a problem,
1554 * we unlock and clean up.
1555 */
1556
1557 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1558 (locked && amap &&
1559 amap_lookup(&ufi.entry->aref,
1560 ufi.orig_rvaddr - ufi.entry->start))) {
1561 if (locked)
1562 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1563 locked = FALSE;
1564 }
1565
1566 /*
1567 * didn't get the lock? release the page and retry.
1568 */
1569
1570 if (locked == FALSE) {
1571 UVMHIST_LOG(maphist,
1572 " wasn't able to relock after fault: retry",
1573 0,0,0,0);
1574 if (uobjpage->flags & PG_WANTED)
1575 wakeup(uobjpage);
1576 if (uobjpage->flags & PG_RELEASED) {
1577 uvmexp.fltpgrele++;
1578 uvm_pagefree(uobjpage);
1579 goto ReFault;
1580 }
1581 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1582 UVM_PAGE_OWN(uobjpage, NULL);
1583 simple_unlock(&uobj->vmobjlock);
1584 goto ReFault;
1585 }
1586
1587 /*
1588 * we have the data in uobjpage which is busy and
1589 * not released. we are holding object lock (so the page
1590 * can't be released on us).
1591 */
1592
1593 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1594 }
1595
1596 /*
1597 * locked:
1598 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1599 */
1600 LOCK_ASSERT(amap == NULL || simple_lock_held(&amap->am_l));
1601 LOCK_ASSERT(uobj == NULL || simple_lock_held(&uobj->vmobjlock));
1602 LOCK_ASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1603
1604 /*
1605 * notes:
1606 * - at this point uobjpage can not be NULL
1607 * - at this point uobjpage can not be PG_RELEASED (since we checked
1608 * for it above)
1609 * - at this point uobjpage could be PG_WANTED (handle later)
1610 */
1611
1612 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1613 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1614 (uobjpage->flags & PG_CLEAN) != 0);
1615 if (promote == FALSE) {
1616
1617 /*
1618 * we are not promoting. if the mapping is COW ensure that we
1619 * don't give more access than we should (e.g. when doing a read
1620 * fault on a COPYONWRITE mapping we want to map the COW page in
1621 * R/O even though the entry protection could be R/W).
1622 *
1623 * set "pg" to the page we want to map in (uobjpage, usually)
1624 */
1625
1626 /* no anon in this case. */
1627 anon = NULL;
1628
1629 uvmexp.flt_obj++;
1630 if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1631 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1632 enter_prot &= ~VM_PROT_WRITE;
1633 pg = uobjpage; /* map in the actual object */
1634
1635 KASSERT(uobjpage != PGO_DONTCARE);
1636
1637 /*
1638 * we are faulting directly on the page. be careful
1639 * about writing to loaned pages...
1640 */
1641
1642 if (uobjpage->loan_count) {
1643 if (!cow_now) {
1644 /* read fault: cap the protection at readonly */
1645 /* cap! */
1646 enter_prot = enter_prot & ~VM_PROT_WRITE;
1647 } else {
1648 /* write fault: must break the loan here */
1649
1650 pg = uvm_loanbreak(uobjpage);
1651 if (pg == NULL) {
1652
1653 /*
1654 * drop ownership of page, it can't
1655 * be released
1656 */
1657
1658 if (uobjpage->flags & PG_WANTED)
1659 wakeup(uobjpage);
1660 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1661 UVM_PAGE_OWN(uobjpage, NULL);
1662
1663 uvmfault_unlockall(&ufi, amap, uobj,
1664 NULL);
1665 UVMHIST_LOG(maphist,
1666 " out of RAM breaking loan, waiting",
1667 0,0,0,0);
1668 uvmexp.fltnoram++;
1669 uvm_wait("flt_noram4");
1670 goto ReFault;
1671 }
1672 uobjpage = pg;
1673 }
1674 }
1675 } else {
1676
1677 /*
1678 * if we are going to promote the data to an anon we
1679 * allocate a blank anon here and plug it into our amap.
1680 */
1681 #if DIAGNOSTIC
1682 if (amap == NULL)
1683 panic("uvm_fault: want to promote data, but no anon");
1684 #endif
1685 error = uvmfault_promote(&ufi, NULL, uobjpage,
1686 &anon, &anon_spare);
1687 switch (error) {
1688 case 0:
1689 break;
1690 case ERESTART:
1691 goto ReFault;
1692 default:
1693 goto done;
1694 }
1695
1696 pg = anon->an_page;
1697
1698 /*
1699 * fill in the data
1700 */
1701
1702 if (uobjpage != PGO_DONTCARE) {
1703 uvmexp.flt_prcopy++;
1704
1705 /*
1706 * promote to shared amap? make sure all sharing
1707 * procs see it
1708 */
1709
1710 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1711 pmap_page_protect(uobjpage, VM_PROT_NONE);
1712 /*
1713 * XXX: PAGE MIGHT BE WIRED!
1714 */
1715 }
1716
1717 /*
1718 * dispose of uobjpage. it can't be PG_RELEASED
1719 * since we still hold the object lock.
1720 * drop handle to uobj as well.
1721 */
1722
1723 if (uobjpage->flags & PG_WANTED)
1724 /* still have the obj lock */
1725 wakeup(uobjpage);
1726 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1727 UVM_PAGE_OWN(uobjpage, NULL);
1728 simple_unlock(&uobj->vmobjlock);
1729 uobj = NULL;
1730
1731 UVMHIST_LOG(maphist,
1732 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1733 uobjpage, anon, pg, 0);
1734
1735 } else {
1736 uvmexp.flt_przero++;
1737
1738 /*
1739 * Page is zero'd and marked dirty by
1740 * uvmfault_promote().
1741 */
1742
1743 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1744 anon, pg, 0, 0);
1745 }
1746 }
1747
1748 /*
1749 * locked:
1750 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1751 * anon(if !null), pg(if anon)
1752 *
1753 * note: pg is either the uobjpage or the new page in the new anon
1754 */
1755 LOCK_ASSERT(amap == NULL || simple_lock_held(&amap->am_l));
1756 LOCK_ASSERT(uobj == NULL || simple_lock_held(&uobj->vmobjlock));
1757 LOCK_ASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1758 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
1759 LOCK_ASSERT((pg->flags & PG_BUSY) != 0);
1760
1761 /*
1762 * all resources are present. we can now map it in and free our
1763 * resources.
1764 */
1765
1766 UVMHIST_LOG(maphist,
1767 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1768 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1769 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1770 (pg->flags & PG_RDONLY) == 0);
1771 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1772 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1773 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1774
1775 /*
1776 * No need to undo what we did; we can simply think of
1777 * this as the pmap throwing away the mapping information.
1778 *
1779 * We do, however, have to go through the ReFault path,
1780 * as the map may change while we're asleep.
1781 */
1782
1783 if (pg->flags & PG_WANTED)
1784 wakeup(pg);
1785
1786 /*
1787 * note that pg can't be PG_RELEASED since we did not drop
1788 * the object lock since the last time we checked.
1789 */
1790 KASSERT((pg->flags & PG_RELEASED) == 0);
1791
1792 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1793 UVM_PAGE_OWN(pg, NULL);
1794 uvmfault_unlockall(&ufi, amap, uobj, anon);
1795 if (!uvm_reclaimable()) {
1796 UVMHIST_LOG(maphist,
1797 "<- failed. out of VM",0,0,0,0);
1798 /* XXX instrumentation */
1799 error = ENOMEM;
1800 goto done;
1801 }
1802 /* XXX instrumentation */
1803 uvm_wait("flt_pmfail2");
1804 goto ReFault;
1805 }
1806
1807 uvm_lock_pageq();
1808 if (wire_fault) {
1809 uvm_pagewire(pg);
1810 if (pg->pqflags & PQ_AOBJ) {
1811
1812 /*
1813 * since the now-wired page cannot be paged out,
1814 * release its swap resources for others to use.
1815 * since an aobj page with no swap cannot be PG_CLEAN,
1816 * clear its clean flag now.
1817 */
1818
1819 KASSERT(uobj != NULL);
1820 pg->flags &= ~(PG_CLEAN);
1821 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1822 }
1823 } else {
1824 uvm_pageactivate(pg);
1825 }
1826 uvm_unlock_pageq();
1827 if (pg->flags & PG_WANTED)
1828 wakeup(pg);
1829
1830 /*
1831 * note that pg can't be PG_RELEASED since we did not drop the object
1832 * lock since the last time we checked.
1833 */
1834 KASSERT((pg->flags & PG_RELEASED) == 0);
1835
1836 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1837 UVM_PAGE_OWN(pg, NULL);
1838 uvmfault_unlockall(&ufi, amap, uobj, anon);
1839 pmap_update(ufi.orig_map->pmap);
1840 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1841 error = 0;
1842 done:
1843 if (anon_spare != NULL) {
1844 anon_spare->an_ref--;
1845 uvm_anfree(anon_spare);
1846 }
1847 return error;
1848 }
1849
1850
1851 /*
1852 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1853 *
1854 * => map may be read-locked by caller, but MUST NOT be write-locked.
1855 * => if map is read-locked, any operations which may cause map to
1856 * be write-locked in uvm_fault() must be taken care of by
1857 * the caller. See uvm_map_pageable().
1858 */
1859
1860 int
1861 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1862 vm_prot_t access_type, int wiremax)
1863 {
1864 vaddr_t va;
1865 int error;
1866
1867 /*
1868 * now fault it in a page at a time. if the fault fails then we have
1869 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1870 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1871 */
1872
1873 /*
1874 * XXX work around overflowing a vaddr_t. this prevents us from
1875 * wiring the last page in the address space, though.
1876 */
1877 if (start > end) {
1878 return EFAULT;
1879 }
1880
1881 for (va = start ; va < end ; va += PAGE_SIZE) {
1882 error = uvm_fault_internal(map, va, access_type,
1883 wiremax ? UVM_FAULT_WIREMAX : UVM_FAULT_WIRE);
1884 if (error) {
1885 if (va != start) {
1886 uvm_fault_unwire(map, start, va);
1887 }
1888 return error;
1889 }
1890 }
1891 return 0;
1892 }
1893
1894 /*
1895 * uvm_fault_unwire(): unwire range of virtual space.
1896 */
1897
1898 void
1899 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1900 {
1901 vm_map_lock_read(map);
1902 uvm_fault_unwire_locked(map, start, end);
1903 vm_map_unlock_read(map);
1904 }
1905
1906 /*
1907 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1908 *
1909 * => map must be at least read-locked.
1910 */
1911
1912 void
1913 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1914 {
1915 struct vm_map_entry *entry;
1916 pmap_t pmap = vm_map_pmap(map);
1917 vaddr_t va;
1918 paddr_t pa;
1919 struct vm_page *pg;
1920
1921 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1922
1923 /*
1924 * we assume that the area we are unwiring has actually been wired
1925 * in the first place. this means that we should be able to extract
1926 * the PAs from the pmap. we also lock out the page daemon so that
1927 * we can call uvm_pageunwire.
1928 */
1929
1930 uvm_lock_pageq();
1931
1932 /*
1933 * find the beginning map entry for the region.
1934 */
1935
1936 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1937 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1938 panic("uvm_fault_unwire_locked: address not in map");
1939
1940 for (va = start; va < end; va += PAGE_SIZE) {
1941 if (pmap_extract(pmap, va, &pa) == FALSE)
1942 continue;
1943
1944 /*
1945 * find the map entry for the current address.
1946 */
1947
1948 KASSERT(va >= entry->start);
1949 while (va >= entry->end) {
1950 KASSERT(entry->next != &map->header &&
1951 entry->next->start <= entry->end);
1952 entry = entry->next;
1953 }
1954
1955 /*
1956 * if the entry is no longer wired, tell the pmap.
1957 */
1958
1959 if (VM_MAPENT_ISWIRED(entry) == 0)
1960 pmap_unwire(pmap, va);
1961
1962 pg = PHYS_TO_VM_PAGE(pa);
1963 if (pg)
1964 uvm_pageunwire(pg);
1965 }
1966
1967 uvm_unlock_pageq();
1968 }
1969