uvm_fault.c revision 1.123.6.1 1 /* $NetBSD: uvm_fault.c,v 1.123.6.1 2008/04/03 12:43:14 mjf Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.123.6.1 2008/04/03 12:43:14 mjf Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static const struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static inline void
193 uvmfault_anonflush(struct vm_anon **anons, int n)
194 {
195 int lcv;
196 struct vm_page *pg;
197
198 for (lcv = 0 ; lcv < n ; lcv++) {
199 if (anons[lcv] == NULL)
200 continue;
201 mutex_enter(&anons[lcv]->an_lock);
202 pg = anons[lcv]->an_page;
203 if (pg && (pg->flags & PG_BUSY) == 0) {
204 mutex_enter(&uvm_pageqlock);
205 if (pg->wire_count == 0) {
206 uvm_pagedeactivate(pg);
207 }
208 mutex_exit(&uvm_pageqlock);
209 }
210 mutex_exit(&anons[lcv]->an_lock);
211 }
212 }
213
214 /*
215 * normal functions
216 */
217
218 /*
219 * uvmfault_amapcopy: clear "needs_copy" in a map.
220 *
221 * => called with VM data structures unlocked (usually, see below)
222 * => we get a write lock on the maps and clear needs_copy for a VA
223 * => if we are out of RAM we sleep (waiting for more)
224 */
225
226 static void
227 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
228 {
229 for (;;) {
230
231 /*
232 * no mapping? give up.
233 */
234
235 if (uvmfault_lookup(ufi, true) == false)
236 return;
237
238 /*
239 * copy if needed.
240 */
241
242 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
244 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
245
246 /*
247 * didn't work? must be out of RAM. unlock and sleep.
248 */
249
250 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251 uvmfault_unlockmaps(ufi, true);
252 uvm_wait("fltamapcopy");
253 continue;
254 }
255
256 /*
257 * got it! unlock and return.
258 */
259
260 uvmfault_unlockmaps(ufi, true);
261 return;
262 }
263 /*NOTREACHED*/
264 }
265
266 /*
267 * uvmfault_anonget: get data in an anon into a non-busy, non-released
268 * page in that anon.
269 *
270 * => maps, amap, and anon locked by caller.
271 * => if we fail (result != 0) we unlock everything.
272 * => if we are successful, we return with everything still locked.
273 * => we don't move the page on the queues [gets moved later]
274 * => if we allocate a new page [we_own], it gets put on the queues.
275 * either way, the result is that the page is on the queues at return time
276 * => for pages which are on loan from a uvm_object (and thus are not
277 * owned by the anon): if successful, we return with the owning object
278 * locked. the caller must unlock this object when it unlocks everything
279 * else.
280 */
281
282 int
283 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
284 struct vm_anon *anon)
285 {
286 bool we_own; /* we own anon's page? */
287 bool locked; /* did we relock? */
288 struct vm_page *pg;
289 int error;
290 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
291
292 KASSERT(mutex_owned(&anon->an_lock));
293
294 error = 0;
295 uvmexp.fltanget++;
296 /* bump rusage counters */
297 if (anon->an_page)
298 curlwp->l_ru.ru_minflt++;
299 else
300 curlwp->l_ru.ru_majflt++;
301
302 /*
303 * loop until we get it, or fail.
304 */
305
306 for (;;) {
307 we_own = false; /* true if we set PG_BUSY on a page */
308 pg = anon->an_page;
309
310 /*
311 * if there is a resident page and it is loaned, then anon
312 * may not own it. call out to uvm_anon_lockpage() to ensure
313 * the real owner of the page has been identified and locked.
314 */
315
316 if (pg && pg->loan_count)
317 pg = uvm_anon_lockloanpg(anon);
318
319 /*
320 * page there? make sure it is not busy/released.
321 */
322
323 if (pg) {
324
325 /*
326 * at this point, if the page has a uobject [meaning
327 * we have it on loan], then that uobject is locked
328 * by us! if the page is busy, we drop all the
329 * locks (including uobject) and try again.
330 */
331
332 if ((pg->flags & PG_BUSY) == 0) {
333 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
334 return (0);
335 }
336 pg->flags |= PG_WANTED;
337 uvmexp.fltpgwait++;
338
339 /*
340 * the last unlock must be an atomic unlock+wait on
341 * the owner of page
342 */
343
344 if (pg->uobject) { /* owner is uobject ? */
345 uvmfault_unlockall(ufi, amap, NULL, anon);
346 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
347 0,0,0);
348 UVM_UNLOCK_AND_WAIT(pg,
349 &pg->uobject->vmobjlock,
350 false, "anonget1",0);
351 } else {
352 /* anon owns page */
353 uvmfault_unlockall(ufi, amap, NULL, NULL);
354 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
355 0,0,0);
356 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
357 "anonget2",0);
358 }
359 } else {
360 #if defined(VMSWAP)
361
362 /*
363 * no page, we must try and bring it in.
364 */
365
366 pg = uvm_pagealloc(NULL, 0, anon, 0);
367 if (pg == NULL) { /* out of RAM. */
368 uvmfault_unlockall(ufi, amap, NULL, anon);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable()) {
373 return ENOMEM;
374 }
375 uvm_wait("flt_noram1");
376 } else {
377 /* we set the PG_BUSY bit */
378 we_own = true;
379 uvmfault_unlockall(ufi, amap, NULL, anon);
380
381 /*
382 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
383 * page into the uvm_swap_get function with
384 * all data structures unlocked. note that
385 * it is ok to read an_swslot here because
386 * we hold PG_BUSY on the page.
387 */
388 uvmexp.pageins++;
389 error = uvm_swap_get(pg, anon->an_swslot,
390 PGO_SYNCIO);
391
392 /*
393 * we clean up after the i/o below in the
394 * "we_own" case
395 */
396 }
397 #else /* defined(VMSWAP) */
398 panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 }
401
402 /*
403 * now relock and try again
404 */
405
406 locked = uvmfault_relock(ufi);
407 if (locked && amap != NULL) {
408 amap_lock(amap);
409 }
410 if (locked || we_own)
411 mutex_enter(&anon->an_lock);
412
413 /*
414 * if we own the page (i.e. we set PG_BUSY), then we need
415 * to clean up after the I/O. there are three cases to
416 * consider:
417 * [1] page released during I/O: free anon and ReFault.
418 * [2] I/O not OK. free the page and cause the fault
419 * to fail.
420 * [3] I/O OK! activate the page and sync with the
421 * non-we_own case (i.e. drop anon lock if not locked).
422 */
423
424 if (we_own) {
425 #if defined(VMSWAP)
426 if (pg->flags & PG_WANTED) {
427 wakeup(pg);
428 }
429 if (error) {
430
431 /*
432 * remove the swap slot from the anon
433 * and mark the anon as having no real slot.
434 * don't free the swap slot, thus preventing
435 * it from being used again.
436 */
437
438 if (anon->an_swslot > 0)
439 uvm_swap_markbad(anon->an_swslot, 1);
440 anon->an_swslot = SWSLOT_BAD;
441
442 if ((pg->flags & PG_RELEASED) != 0)
443 goto released;
444
445 /*
446 * note: page was never !PG_BUSY, so it
447 * can't be mapped and thus no need to
448 * pmap_page_protect it...
449 */
450
451 mutex_enter(&uvm_pageqlock);
452 uvm_pagefree(pg);
453 mutex_exit(&uvm_pageqlock);
454
455 if (locked)
456 uvmfault_unlockall(ufi, amap, NULL,
457 anon);
458 else
459 mutex_exit(&anon->an_lock);
460 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
461 return error;
462 }
463
464 if ((pg->flags & PG_RELEASED) != 0) {
465 released:
466 KASSERT(anon->an_ref == 0);
467
468 /*
469 * released while we unlocked amap.
470 */
471
472 if (locked)
473 uvmfault_unlockall(ufi, amap, NULL,
474 NULL);
475
476 uvm_anon_release(anon);
477
478 if (error) {
479 UVMHIST_LOG(maphist,
480 "<- ERROR/RELEASED", 0,0,0,0);
481 return error;
482 }
483
484 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
485 return ERESTART;
486 }
487
488 /*
489 * we've successfully read the page, activate it.
490 */
491
492 mutex_enter(&uvm_pageqlock);
493 uvm_pageactivate(pg);
494 mutex_exit(&uvm_pageqlock);
495 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
496 UVM_PAGE_OWN(pg, NULL);
497 if (!locked)
498 mutex_exit(&anon->an_lock);
499 #else /* defined(VMSWAP) */
500 panic("%s: we_own", __func__);
501 #endif /* defined(VMSWAP) */
502 }
503
504 /*
505 * we were not able to relock. restart fault.
506 */
507
508 if (!locked) {
509 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
510 return (ERESTART);
511 }
512
513 /*
514 * verify no one has touched the amap and moved the anon on us.
515 */
516
517 if (ufi != NULL &&
518 amap_lookup(&ufi->entry->aref,
519 ufi->orig_rvaddr - ufi->entry->start) != anon) {
520
521 uvmfault_unlockall(ufi, amap, NULL, anon);
522 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
523 return (ERESTART);
524 }
525
526 /*
527 * try it again!
528 */
529
530 uvmexp.fltanretry++;
531 continue;
532 }
533 /*NOTREACHED*/
534 }
535
536 /*
537 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
538 *
539 * 1. allocate an anon and a page.
540 * 2. fill its contents.
541 * 3. put it into amap.
542 *
543 * => if we fail (result != 0) we unlock everything.
544 * => on success, return a new locked anon via 'nanon'.
545 * (*nanon)->an_page will be a resident, locked, dirty page.
546 */
547
548 static int
549 uvmfault_promote(struct uvm_faultinfo *ufi,
550 struct vm_anon *oanon,
551 struct vm_page *uobjpage,
552 struct vm_anon **nanon, /* OUT: allocated anon */
553 struct vm_anon **spare)
554 {
555 struct vm_amap *amap = ufi->entry->aref.ar_amap;
556 struct uvm_object *uobj;
557 struct vm_anon *anon;
558 struct vm_page *pg;
559 struct vm_page *opg;
560 int error;
561 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
562
563 if (oanon) {
564 /* anon COW */
565 opg = oanon->an_page;
566 KASSERT(opg != NULL);
567 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
568 } else if (uobjpage != PGO_DONTCARE) {
569 /* object-backed COW */
570 opg = uobjpage;
571 } else {
572 /* ZFOD */
573 opg = NULL;
574 }
575 if (opg != NULL) {
576 uobj = opg->uobject;
577 } else {
578 uobj = NULL;
579 }
580
581 KASSERT(amap != NULL);
582 KASSERT(uobjpage != NULL);
583 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
584 KASSERT(mutex_owned(&amap->am_l));
585 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
586 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
587 #if 0
588 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
589 #endif
590
591 if (*spare != NULL) {
592 anon = *spare;
593 *spare = NULL;
594 mutex_enter(&anon->an_lock);
595 } else if (ufi->map != kernel_map) {
596 anon = uvm_analloc();
597 } else {
598 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
599
600 /*
601 * we can't allocate anons with kernel_map locked.
602 */
603
604 uvm_page_unbusy(&uobjpage, 1);
605 uvmfault_unlockall(ufi, amap, uobj, oanon);
606
607 *spare = uvm_analloc();
608 if (*spare == NULL) {
609 goto nomem;
610 }
611 mutex_exit(&(*spare)->an_lock);
612 error = ERESTART;
613 goto done;
614 }
615 if (anon) {
616
617 /*
618 * The new anon is locked.
619 *
620 * if opg == NULL, we want a zero'd, dirty page,
621 * so have uvm_pagealloc() do that for us.
622 */
623
624 pg = uvm_pagealloc(NULL, 0, anon,
625 (opg == NULL) ? UVM_PGA_ZERO : 0);
626 } else {
627 pg = NULL;
628 }
629
630 /*
631 * out of memory resources?
632 */
633
634 if (pg == NULL) {
635 /* save anon for the next try. */
636 if (anon != NULL) {
637 mutex_exit(&anon->an_lock);
638 *spare = anon;
639 }
640
641 /* unlock and fail ... */
642 uvm_page_unbusy(&uobjpage, 1);
643 uvmfault_unlockall(ufi, amap, uobj, oanon);
644 nomem:
645 if (!uvm_reclaimable()) {
646 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
647 uvmexp.fltnoanon++;
648 error = ENOMEM;
649 goto done;
650 }
651
652 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
653 uvmexp.fltnoram++;
654 uvm_wait("flt_noram5");
655 error = ERESTART;
656 goto done;
657 }
658
659 /* copy page [pg now dirty] */
660 if (opg) {
661 uvm_pagecopy(opg, pg);
662 }
663
664 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
665 oanon != NULL);
666
667 *nanon = anon;
668 error = 0;
669 done:
670 return error;
671 }
672
673
674 /*
675 * F A U L T - m a i n e n t r y p o i n t
676 */
677
678 /*
679 * uvm_fault: page fault handler
680 *
681 * => called from MD code to resolve a page fault
682 * => VM data structures usually should be unlocked. however, it is
683 * possible to call here with the main map locked if the caller
684 * gets a write lock, sets it recusive, and then calls us (c.f.
685 * uvm_map_pageable). this should be avoided because it keeps
686 * the map locked off during I/O.
687 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
688 */
689
690 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
691 ~VM_PROT_WRITE : VM_PROT_ALL)
692
693 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
694 #define UVM_FAULT_WIRE 1
695 #define UVM_FAULT_WIREMAX 2
696
697 int
698 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
699 vm_prot_t access_type, int fault_flag)
700 {
701 struct uvm_faultinfo ufi;
702 vm_prot_t enter_prot, check_prot;
703 bool wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
704 int npages, nback, nforw, centeridx, error, lcv, gotpages;
705 vaddr_t startva, currva;
706 voff_t uoff;
707 struct vm_amap *amap;
708 struct uvm_object *uobj;
709 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
710 struct vm_anon *anon_spare;
711 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
712 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
713
714 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
715 orig_map, vaddr, access_type, fault_flag);
716
717 anon = anon_spare = NULL;
718 pg = NULL;
719
720 uvmexp.faults++; /* XXX: locking? */
721
722 /*
723 * init the IN parameters in the ufi
724 */
725
726 ufi.orig_map = orig_map;
727 ufi.orig_rvaddr = trunc_page(vaddr);
728 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
729 wire_fault = (fault_flag > 0);
730 if (wire_fault)
731 narrow = true; /* don't look for neighborhood
732 * pages on wire */
733 else
734 narrow = false; /* normal fault */
735
736 /*
737 * "goto ReFault" means restart the page fault from ground zero.
738 */
739 ReFault:
740
741 /*
742 * lookup and lock the maps
743 */
744
745 if (uvmfault_lookup(&ufi, false) == false) {
746 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
747 error = EFAULT;
748 goto done;
749 }
750 /* locked: maps(read) */
751
752 #ifdef DIAGNOSTIC
753 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
754 printf("Page fault on non-pageable map:\n");
755 printf("ufi.map = %p\n", ufi.map);
756 printf("ufi.orig_map = %p\n", ufi.orig_map);
757 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
758 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
759 }
760 #endif
761
762 /*
763 * check protection
764 */
765
766 check_prot = fault_flag == UVM_FAULT_WIREMAX ?
767 ufi.entry->max_protection : ufi.entry->protection;
768 if ((check_prot & access_type) != access_type) {
769 UVMHIST_LOG(maphist,
770 "<- protection failure (prot=0x%x, access=0x%x)",
771 ufi.entry->protection, access_type, 0, 0);
772 uvmfault_unlockmaps(&ufi, false);
773 error = EACCES;
774 goto done;
775 }
776
777 /*
778 * "enter_prot" is the protection we want to enter the page in at.
779 * for certain pages (e.g. copy-on-write pages) this protection can
780 * be more strict than ufi.entry->protection. "wired" means either
781 * the entry is wired or we are fault-wiring the pg.
782 */
783
784 enter_prot = ufi.entry->protection;
785 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
786 if (wired) {
787 access_type = enter_prot; /* full access for wired */
788 cow_now = (check_prot & VM_PROT_WRITE) != 0;
789 } else {
790 cow_now = (access_type & VM_PROT_WRITE) != 0;
791 }
792
793 /*
794 * handle "needs_copy" case. if we need to copy the amap we will
795 * have to drop our readlock and relock it with a write lock. (we
796 * need a write lock to change anything in a map entry [e.g.
797 * needs_copy]).
798 */
799
800 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
801 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
802 KASSERT(fault_flag != UVM_FAULT_WIREMAX);
803 /* need to clear */
804 UVMHIST_LOG(maphist,
805 " need to clear needs_copy and refault",0,0,0,0);
806 uvmfault_unlockmaps(&ufi, false);
807 uvmfault_amapcopy(&ufi);
808 uvmexp.fltamcopy++;
809 goto ReFault;
810
811 } else {
812
813 /*
814 * ensure that we pmap_enter page R/O since
815 * needs_copy is still true
816 */
817
818 enter_prot &= ~VM_PROT_WRITE;
819 }
820 }
821
822 /*
823 * identify the players
824 */
825
826 amap = ufi.entry->aref.ar_amap; /* top layer */
827 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
828
829 /*
830 * check for a case 0 fault. if nothing backing the entry then
831 * error now.
832 */
833
834 if (amap == NULL && uobj == NULL) {
835 uvmfault_unlockmaps(&ufi, false);
836 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
837 error = EFAULT;
838 goto done;
839 }
840
841 /*
842 * establish range of interest based on advice from mapper
843 * and then clip to fit map entry. note that we only want
844 * to do this the first time through the fault. if we
845 * ReFault we will disable this by setting "narrow" to true.
846 */
847
848 if (narrow == false) {
849
850 /* wide fault (!narrow) */
851 KASSERT(uvmadvice[ufi.entry->advice].advice ==
852 ufi.entry->advice);
853 nback = MIN(uvmadvice[ufi.entry->advice].nback,
854 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
855 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
856 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
857 ((ufi.entry->end - ufi.orig_rvaddr) >>
858 PAGE_SHIFT) - 1);
859 /*
860 * note: "-1" because we don't want to count the
861 * faulting page as forw
862 */
863 npages = nback + nforw + 1;
864 centeridx = nback;
865
866 narrow = true; /* ensure only once per-fault */
867
868 } else {
869
870 /* narrow fault! */
871 nback = nforw = 0;
872 startva = ufi.orig_rvaddr;
873 npages = 1;
874 centeridx = 0;
875
876 }
877
878 /* locked: maps(read) */
879 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
880 narrow, nback, nforw, startva);
881 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
882 amap, uobj, 0);
883
884 /*
885 * if we've got an amap, lock it and extract current anons.
886 */
887
888 if (amap) {
889 amap_lock(amap);
890 anons = anons_store;
891 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
892 anons, npages);
893 } else {
894 anons = NULL; /* to be safe */
895 }
896
897 /* locked: maps(read), amap(if there) */
898 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
899
900 /*
901 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
902 * now and then forget about them (for the rest of the fault).
903 */
904
905 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
906
907 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
908 0,0,0,0);
909 /* flush back-page anons? */
910 if (amap)
911 uvmfault_anonflush(anons, nback);
912
913 /* flush object? */
914 if (uobj) {
915 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
916 mutex_enter(&uobj->vmobjlock);
917 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
918 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
919 }
920
921 /* now forget about the backpages */
922 if (amap)
923 anons += nback;
924 startva += (nback << PAGE_SHIFT);
925 npages -= nback;
926 nback = centeridx = 0;
927 }
928
929 /* locked: maps(read), amap(if there) */
930 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
931
932 /*
933 * map in the backpages and frontpages we found in the amap in hopes
934 * of preventing future faults. we also init the pages[] array as
935 * we go.
936 */
937
938 currva = startva;
939 shadowed = false;
940 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
941
942 /*
943 * dont play with VAs that are already mapped
944 * except for center)
945 */
946 if (lcv != centeridx &&
947 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
948 pages[lcv] = PGO_DONTCARE;
949 continue;
950 }
951
952 /*
953 * unmapped or center page. check if any anon at this level.
954 */
955 if (amap == NULL || anons[lcv] == NULL) {
956 pages[lcv] = NULL;
957 continue;
958 }
959
960 /*
961 * check for present page and map if possible. re-activate it.
962 */
963
964 pages[lcv] = PGO_DONTCARE;
965 if (lcv == centeridx) { /* save center for later! */
966 shadowed = true;
967 continue;
968 }
969 anon = anons[lcv];
970 mutex_enter(&anon->an_lock);
971 /* ignore loaned pages */
972 if (anon->an_page && anon->an_page->loan_count == 0 &&
973 (anon->an_page->flags & PG_BUSY) == 0) {
974 mutex_enter(&uvm_pageqlock);
975 uvm_pageenqueue(anon->an_page);
976 mutex_exit(&uvm_pageqlock);
977 UVMHIST_LOG(maphist,
978 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
979 ufi.orig_map->pmap, currva, anon->an_page, 0);
980 uvmexp.fltnamap++;
981
982 /*
983 * Since this isn't the page that's actually faulting,
984 * ignore pmap_enter() failures; it's not critical
985 * that we enter these right now.
986 */
987
988 (void) pmap_enter(ufi.orig_map->pmap, currva,
989 VM_PAGE_TO_PHYS(anon->an_page),
990 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
991 enter_prot,
992 PMAP_CANFAIL |
993 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
994 }
995 mutex_exit(&anon->an_lock);
996 pmap_update(ufi.orig_map->pmap);
997 }
998
999 /* locked: maps(read), amap(if there) */
1000 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1001 /* (shadowed == true) if there is an anon at the faulting address */
1002 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1003 (uobj && shadowed == false),0,0);
1004
1005 /*
1006 * note that if we are really short of RAM we could sleep in the above
1007 * call to pmap_enter with everything locked. bad?
1008 *
1009 * XXX Actually, that is bad; pmap_enter() should just fail in that
1010 * XXX case. --thorpej
1011 */
1012
1013 /*
1014 * if the desired page is not shadowed by the amap and we have a
1015 * backing object, then we check to see if the backing object would
1016 * prefer to handle the fault itself (rather than letting us do it
1017 * with the usual pgo_get hook). the backing object signals this by
1018 * providing a pgo_fault routine.
1019 */
1020
1021 if (uobj && shadowed == false && uobj->pgops->pgo_fault != NULL) {
1022 mutex_enter(&uobj->vmobjlock);
1023 /* locked: maps(read), amap (if there), uobj */
1024 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1025 centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1026
1027 /* locked: nothing, pgo_fault has unlocked everything */
1028
1029 if (error == ERESTART)
1030 goto ReFault; /* try again! */
1031 /*
1032 * object fault routine responsible for pmap_update().
1033 */
1034 goto done;
1035 }
1036
1037 /*
1038 * now, if the desired page is not shadowed by the amap and we have
1039 * a backing object that does not have a special fault routine, then
1040 * we ask (with pgo_get) the object for resident pages that we care
1041 * about and attempt to map them in. we do not let pgo_get block
1042 * (PGO_LOCKED).
1043 */
1044
1045 if (uobj && shadowed == false) {
1046 mutex_enter(&uobj->vmobjlock);
1047 /* locked (!shadowed): maps(read), amap (if there), uobj */
1048 /*
1049 * the following call to pgo_get does _not_ change locking state
1050 */
1051
1052 uvmexp.fltlget++;
1053 gotpages = npages;
1054 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
1055 (startva - ufi.entry->start),
1056 pages, &gotpages, centeridx,
1057 access_type & MASK(ufi.entry),
1058 ufi.entry->advice, PGO_LOCKED);
1059
1060 /*
1061 * check for pages to map, if we got any
1062 */
1063
1064 uobjpage = NULL;
1065
1066 if (gotpages) {
1067 currva = startva;
1068 for (lcv = 0; lcv < npages;
1069 lcv++, currva += PAGE_SIZE) {
1070 struct vm_page *curpg;
1071 bool readonly;
1072
1073 curpg = pages[lcv];
1074 if (curpg == NULL || curpg == PGO_DONTCARE) {
1075 continue;
1076 }
1077 KASSERT(curpg->uobject == uobj);
1078
1079 /*
1080 * if center page is resident and not
1081 * PG_BUSY|PG_RELEASED then pgo_get
1082 * made it PG_BUSY for us and gave
1083 * us a handle to it. remember this
1084 * page as "uobjpage." (for later use).
1085 */
1086
1087 if (lcv == centeridx) {
1088 uobjpage = curpg;
1089 UVMHIST_LOG(maphist, " got uobjpage "
1090 "(0x%x) with locked get",
1091 uobjpage, 0,0,0);
1092 continue;
1093 }
1094
1095 /*
1096 * calling pgo_get with PGO_LOCKED returns us
1097 * pages which are neither busy nor released,
1098 * so we don't need to check for this.
1099 * we can just directly enter the pages.
1100 */
1101
1102 mutex_enter(&uvm_pageqlock);
1103 uvm_pageenqueue(curpg);
1104 mutex_exit(&uvm_pageqlock);
1105 UVMHIST_LOG(maphist,
1106 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1107 ufi.orig_map->pmap, currva, curpg, 0);
1108 uvmexp.fltnomap++;
1109
1110 /*
1111 * Since this page isn't the page that's
1112 * actually faulting, ignore pmap_enter()
1113 * failures; it's not critical that we
1114 * enter these right now.
1115 */
1116 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1117 KASSERT((curpg->flags & PG_RELEASED) == 0);
1118 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1119 (curpg->flags & PG_CLEAN) != 0);
1120 readonly = (curpg->flags & PG_RDONLY)
1121 || (curpg->loan_count > 0)
1122 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1123
1124 (void) pmap_enter(ufi.orig_map->pmap, currva,
1125 VM_PAGE_TO_PHYS(curpg),
1126 readonly ?
1127 enter_prot & ~VM_PROT_WRITE :
1128 enter_prot & MASK(ufi.entry),
1129 PMAP_CANFAIL |
1130 (wired ? PMAP_WIRED : 0));
1131
1132 /*
1133 * NOTE: page can't be PG_WANTED or PG_RELEASED
1134 * because we've held the lock the whole time
1135 * we've had the handle.
1136 */
1137 KASSERT((curpg->flags & PG_WANTED) == 0);
1138 KASSERT((curpg->flags & PG_RELEASED) == 0);
1139
1140 curpg->flags &= ~(PG_BUSY);
1141 UVM_PAGE_OWN(curpg, NULL);
1142 }
1143 pmap_update(ufi.orig_map->pmap);
1144 }
1145 } else {
1146 uobjpage = NULL;
1147 }
1148
1149 /* locked (shadowed): maps(read), amap */
1150 /* locked (!shadowed): maps(read), amap(if there),
1151 uobj(if !null), uobjpage(if !null) */
1152 if (shadowed) {
1153 KASSERT(mutex_owned(&amap->am_l));
1154 } else {
1155 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1156 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1157 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1158 }
1159
1160 /*
1161 * note that at this point we are done with any front or back pages.
1162 * we are now going to focus on the center page (i.e. the one we've
1163 * faulted on). if we have faulted on the top (anon) layer
1164 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1165 * not touched it yet). if we have faulted on the bottom (uobj)
1166 * layer [i.e. case 2] and the page was both present and available,
1167 * then we've got a pointer to it as "uobjpage" and we've already
1168 * made it BUSY.
1169 */
1170
1171 /*
1172 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1173 */
1174
1175 /*
1176 * redirect case 2: if we are not shadowed, go to case 2.
1177 */
1178
1179 if (shadowed == false)
1180 goto Case2;
1181
1182 /* locked: maps(read), amap */
1183
1184 /*
1185 * handle case 1: fault on an anon in our amap
1186 */
1187
1188 anon = anons[centeridx];
1189 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1190 mutex_enter(&anon->an_lock);
1191
1192 /* locked: maps(read), amap, anon */
1193 KASSERT(mutex_owned(&amap->am_l));
1194 KASSERT(mutex_owned(&anon->an_lock));
1195
1196 /*
1197 * no matter if we have case 1A or case 1B we are going to need to
1198 * have the anon's memory resident. ensure that now.
1199 */
1200
1201 /*
1202 * let uvmfault_anonget do the dirty work.
1203 * if it fails (!OK) it will unlock everything for us.
1204 * if it succeeds, locks are still valid and locked.
1205 * also, if it is OK, then the anon's page is on the queues.
1206 * if the page is on loan from a uvm_object, then anonget will
1207 * lock that object for us if it does not fail.
1208 */
1209
1210 error = uvmfault_anonget(&ufi, amap, anon);
1211 switch (error) {
1212 case 0:
1213 break;
1214
1215 case ERESTART:
1216 goto ReFault;
1217
1218 case EAGAIN:
1219 tsleep(&lbolt, PVM, "fltagain1", 0);
1220 goto ReFault;
1221
1222 default:
1223 goto done;
1224 }
1225
1226 /*
1227 * uobj is non null if the page is on loan from an object (i.e. uobj)
1228 */
1229
1230 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1231
1232 /* locked: maps(read), amap, anon, uobj(if one) */
1233 KASSERT(mutex_owned(&amap->am_l));
1234 KASSERT(mutex_owned(&anon->an_lock));
1235 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1236
1237 /*
1238 * special handling for loaned pages
1239 */
1240
1241 if (anon->an_page->loan_count) {
1242
1243 if (!cow_now) {
1244
1245 /*
1246 * for read faults on loaned pages we just cap the
1247 * protection at read-only.
1248 */
1249
1250 enter_prot = enter_prot & ~VM_PROT_WRITE;
1251
1252 } else {
1253 /*
1254 * note that we can't allow writes into a loaned page!
1255 *
1256 * if we have a write fault on a loaned page in an
1257 * anon then we need to look at the anon's ref count.
1258 * if it is greater than one then we are going to do
1259 * a normal copy-on-write fault into a new anon (this
1260 * is not a problem). however, if the reference count
1261 * is one (a case where we would normally allow a
1262 * write directly to the page) then we need to kill
1263 * the loan before we continue.
1264 */
1265
1266 /* >1 case is already ok */
1267 if (anon->an_ref == 1) {
1268
1269 /* get new un-owned replacement page */
1270 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1271 if (pg == NULL) {
1272 uvmfault_unlockall(&ufi, amap, uobj,
1273 anon);
1274 uvm_wait("flt_noram2");
1275 goto ReFault;
1276 }
1277
1278 /*
1279 * copy data, kill loan, and drop uobj lock
1280 * (if any)
1281 */
1282 /* copy old -> new */
1283 uvm_pagecopy(anon->an_page, pg);
1284
1285 /* force reload */
1286 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1287 mutex_enter(&uvm_pageqlock); /* KILL loan */
1288
1289 anon->an_page->uanon = NULL;
1290 /* in case we owned */
1291 anon->an_page->pqflags &= ~PQ_ANON;
1292
1293 if (uobj) {
1294 /* if we were receiver of loan */
1295 anon->an_page->loan_count--;
1296 } else {
1297 /*
1298 * we were the lender (A->K); need
1299 * to remove the page from pageq's.
1300 */
1301 uvm_pagedequeue(anon->an_page);
1302 }
1303
1304 if (uobj) {
1305 mutex_exit(&uobj->vmobjlock);
1306 uobj = NULL;
1307 }
1308
1309 /* install new page in anon */
1310 anon->an_page = pg;
1311 pg->uanon = anon;
1312 pg->pqflags |= PQ_ANON;
1313
1314 uvm_pageactivate(pg);
1315 mutex_exit(&uvm_pageqlock);
1316
1317 pg->flags &= ~(PG_BUSY|PG_FAKE);
1318 UVM_PAGE_OWN(pg, NULL);
1319
1320 /* done! */
1321 } /* ref == 1 */
1322 } /* write fault */
1323 } /* loan count */
1324
1325 /*
1326 * if we are case 1B then we will need to allocate a new blank
1327 * anon to transfer the data into. note that we have a lock
1328 * on anon, so no one can busy or release the page until we are done.
1329 * also note that the ref count can't drop to zero here because
1330 * it is > 1 and we are only dropping one ref.
1331 *
1332 * in the (hopefully very rare) case that we are out of RAM we
1333 * will unlock, wait for more RAM, and refault.
1334 *
1335 * if we are out of anon VM we kill the process (XXX: could wait?).
1336 */
1337
1338 if (cow_now && anon->an_ref > 1) {
1339
1340 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1341 uvmexp.flt_acow++;
1342 oanon = anon; /* oanon = old, locked anon */
1343
1344 error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1345 &anon, &anon_spare);
1346 switch (error) {
1347 case 0:
1348 break;
1349 case ERESTART:
1350 goto ReFault;
1351 default:
1352 goto done;
1353 }
1354
1355 pg = anon->an_page;
1356 mutex_enter(&uvm_pageqlock);
1357 uvm_pageactivate(pg);
1358 mutex_exit(&uvm_pageqlock);
1359 pg->flags &= ~(PG_BUSY|PG_FAKE);
1360 UVM_PAGE_OWN(pg, NULL);
1361
1362 /* deref: can not drop to zero here by defn! */
1363 oanon->an_ref--;
1364
1365 /*
1366 * note: oanon is still locked, as is the new anon. we
1367 * need to check for this later when we unlock oanon; if
1368 * oanon != anon, we'll have to unlock anon, too.
1369 */
1370
1371 } else {
1372
1373 uvmexp.flt_anon++;
1374 oanon = anon; /* old, locked anon is same as anon */
1375 pg = anon->an_page;
1376 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1377 enter_prot = enter_prot & ~VM_PROT_WRITE;
1378
1379 }
1380
1381 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1382 KASSERT(mutex_owned(&amap->am_l));
1383 KASSERT(mutex_owned(&anon->an_lock));
1384 KASSERT(mutex_owned(&oanon->an_lock));
1385
1386 /*
1387 * now map the page in.
1388 */
1389
1390 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1391 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1392 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1393 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1394 != 0) {
1395
1396 /*
1397 * No need to undo what we did; we can simply think of
1398 * this as the pmap throwing away the mapping information.
1399 *
1400 * We do, however, have to go through the ReFault path,
1401 * as the map may change while we're asleep.
1402 */
1403
1404 if (anon != oanon)
1405 mutex_exit(&anon->an_lock);
1406 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1407 if (!uvm_reclaimable()) {
1408 UVMHIST_LOG(maphist,
1409 "<- failed. out of VM",0,0,0,0);
1410 /* XXX instrumentation */
1411 error = ENOMEM;
1412 goto done;
1413 }
1414 /* XXX instrumentation */
1415 uvm_wait("flt_pmfail1");
1416 goto ReFault;
1417 }
1418
1419 /*
1420 * ... update the page queues.
1421 */
1422
1423 mutex_enter(&uvm_pageqlock);
1424 if (wire_fault) {
1425 uvm_pagewire(pg);
1426
1427 /*
1428 * since the now-wired page cannot be paged out,
1429 * release its swap resources for others to use.
1430 * since an anon with no swap cannot be PG_CLEAN,
1431 * clear its clean flag now.
1432 */
1433
1434 pg->flags &= ~(PG_CLEAN);
1435 uvm_anon_dropswap(anon);
1436 } else {
1437 uvm_pageactivate(pg);
1438 }
1439 mutex_exit(&uvm_pageqlock);
1440
1441 /*
1442 * done case 1! finish up by unlocking everything and returning success
1443 */
1444
1445 if (anon != oanon)
1446 mutex_exit(&anon->an_lock);
1447 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1448 pmap_update(ufi.orig_map->pmap);
1449 error = 0;
1450 goto done;
1451
1452 Case2:
1453 /*
1454 * handle case 2: faulting on backing object or zero fill
1455 */
1456
1457 /*
1458 * locked:
1459 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1460 */
1461 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1462 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1463 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1464
1465 /*
1466 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1467 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1468 * have a backing object, check and see if we are going to promote
1469 * the data up to an anon during the fault.
1470 */
1471
1472 if (uobj == NULL) {
1473 uobjpage = PGO_DONTCARE;
1474 promote = true; /* always need anon here */
1475 } else {
1476 KASSERT(uobjpage != PGO_DONTCARE);
1477 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1478 }
1479 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1480 promote, (uobj == NULL), 0,0);
1481
1482 /*
1483 * if uobjpage is not null then we do not need to do I/O to get the
1484 * uobjpage.
1485 *
1486 * if uobjpage is null, then we need to unlock and ask the pager to
1487 * get the data for us. once we have the data, we need to reverify
1488 * the state the world. we are currently not holding any resources.
1489 */
1490
1491 if (uobjpage) {
1492 /* update rusage counters */
1493 curlwp->l_ru.ru_minflt++;
1494 } else {
1495 /* update rusage counters */
1496 curlwp->l_ru.ru_majflt++;
1497
1498 /* locked: maps(read), amap(if there), uobj */
1499 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1500 /* locked: uobj */
1501
1502 uvmexp.fltget++;
1503 gotpages = 1;
1504 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1505 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1506 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1507 PGO_SYNCIO);
1508 /* locked: uobjpage(if no error) */
1509 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1510
1511 /*
1512 * recover from I/O
1513 */
1514
1515 if (error) {
1516 if (error == EAGAIN) {
1517 UVMHIST_LOG(maphist,
1518 " pgo_get says TRY AGAIN!",0,0,0,0);
1519 tsleep(&lbolt, PVM, "fltagain2", 0);
1520 goto ReFault;
1521 }
1522
1523 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1524 error, 0,0,0);
1525 goto done;
1526 }
1527
1528 /* locked: uobjpage */
1529
1530 mutex_enter(&uvm_pageqlock);
1531 uvm_pageactivate(uobjpage);
1532 mutex_exit(&uvm_pageqlock);
1533
1534 /*
1535 * re-verify the state of the world by first trying to relock
1536 * the maps. always relock the object.
1537 */
1538
1539 locked = uvmfault_relock(&ufi);
1540 if (locked && amap)
1541 amap_lock(amap);
1542 uobj = uobjpage->uobject;
1543 mutex_enter(&uobj->vmobjlock);
1544
1545 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1546 /* locked(!locked): uobj, uobjpage */
1547
1548 /*
1549 * verify that the page has not be released and re-verify
1550 * that amap slot is still free. if there is a problem,
1551 * we unlock and clean up.
1552 */
1553
1554 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1555 (locked && amap &&
1556 amap_lookup(&ufi.entry->aref,
1557 ufi.orig_rvaddr - ufi.entry->start))) {
1558 if (locked)
1559 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1560 locked = false;
1561 }
1562
1563 /*
1564 * didn't get the lock? release the page and retry.
1565 */
1566
1567 if (locked == false) {
1568 UVMHIST_LOG(maphist,
1569 " wasn't able to relock after fault: retry",
1570 0,0,0,0);
1571 if (uobjpage->flags & PG_WANTED)
1572 wakeup(uobjpage);
1573 if (uobjpage->flags & PG_RELEASED) {
1574 uvmexp.fltpgrele++;
1575 uvm_pagefree(uobjpage);
1576 goto ReFault;
1577 }
1578 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1579 UVM_PAGE_OWN(uobjpage, NULL);
1580 mutex_exit(&uobj->vmobjlock);
1581 goto ReFault;
1582 }
1583
1584 /*
1585 * we have the data in uobjpage which is busy and
1586 * not released. we are holding object lock (so the page
1587 * can't be released on us).
1588 */
1589
1590 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1591 }
1592
1593 /*
1594 * locked:
1595 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1596 */
1597 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1598 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1599 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1600
1601 /*
1602 * notes:
1603 * - at this point uobjpage can not be NULL
1604 * - at this point uobjpage can not be PG_RELEASED (since we checked
1605 * for it above)
1606 * - at this point uobjpage could be PG_WANTED (handle later)
1607 */
1608
1609 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1610 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1611 (uobjpage->flags & PG_CLEAN) != 0);
1612 if (promote == false) {
1613
1614 /*
1615 * we are not promoting. if the mapping is COW ensure that we
1616 * don't give more access than we should (e.g. when doing a read
1617 * fault on a COPYONWRITE mapping we want to map the COW page in
1618 * R/O even though the entry protection could be R/W).
1619 *
1620 * set "pg" to the page we want to map in (uobjpage, usually)
1621 */
1622
1623 /* no anon in this case. */
1624 anon = NULL;
1625
1626 uvmexp.flt_obj++;
1627 if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1628 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1629 enter_prot &= ~VM_PROT_WRITE;
1630 pg = uobjpage; /* map in the actual object */
1631
1632 KASSERT(uobjpage != PGO_DONTCARE);
1633
1634 /*
1635 * we are faulting directly on the page. be careful
1636 * about writing to loaned pages...
1637 */
1638
1639 if (uobjpage->loan_count) {
1640 if (!cow_now) {
1641 /* read fault: cap the protection at readonly */
1642 /* cap! */
1643 enter_prot = enter_prot & ~VM_PROT_WRITE;
1644 } else {
1645 /* write fault: must break the loan here */
1646
1647 pg = uvm_loanbreak(uobjpage);
1648 if (pg == NULL) {
1649
1650 /*
1651 * drop ownership of page, it can't
1652 * be released
1653 */
1654
1655 if (uobjpage->flags & PG_WANTED)
1656 wakeup(uobjpage);
1657 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1658 UVM_PAGE_OWN(uobjpage, NULL);
1659
1660 uvmfault_unlockall(&ufi, amap, uobj,
1661 NULL);
1662 UVMHIST_LOG(maphist,
1663 " out of RAM breaking loan, waiting",
1664 0,0,0,0);
1665 uvmexp.fltnoram++;
1666 uvm_wait("flt_noram4");
1667 goto ReFault;
1668 }
1669 uobjpage = pg;
1670 }
1671 }
1672 } else {
1673
1674 /*
1675 * if we are going to promote the data to an anon we
1676 * allocate a blank anon here and plug it into our amap.
1677 */
1678 #if DIAGNOSTIC
1679 if (amap == NULL)
1680 panic("uvm_fault: want to promote data, but no anon");
1681 #endif
1682 error = uvmfault_promote(&ufi, NULL, uobjpage,
1683 &anon, &anon_spare);
1684 switch (error) {
1685 case 0:
1686 break;
1687 case ERESTART:
1688 goto ReFault;
1689 default:
1690 goto done;
1691 }
1692
1693 pg = anon->an_page;
1694
1695 /*
1696 * fill in the data
1697 */
1698
1699 if (uobjpage != PGO_DONTCARE) {
1700 uvmexp.flt_prcopy++;
1701
1702 /*
1703 * promote to shared amap? make sure all sharing
1704 * procs see it
1705 */
1706
1707 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1708 pmap_page_protect(uobjpage, VM_PROT_NONE);
1709 /*
1710 * XXX: PAGE MIGHT BE WIRED!
1711 */
1712 }
1713
1714 /*
1715 * dispose of uobjpage. it can't be PG_RELEASED
1716 * since we still hold the object lock.
1717 * drop handle to uobj as well.
1718 */
1719
1720 if (uobjpage->flags & PG_WANTED)
1721 /* still have the obj lock */
1722 wakeup(uobjpage);
1723 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1724 UVM_PAGE_OWN(uobjpage, NULL);
1725 mutex_exit(&uobj->vmobjlock);
1726 uobj = NULL;
1727
1728 UVMHIST_LOG(maphist,
1729 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1730 uobjpage, anon, pg, 0);
1731
1732 } else {
1733 uvmexp.flt_przero++;
1734
1735 /*
1736 * Page is zero'd and marked dirty by
1737 * uvmfault_promote().
1738 */
1739
1740 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1741 anon, pg, 0, 0);
1742 }
1743 }
1744
1745 /*
1746 * locked:
1747 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1748 * anon(if !null), pg(if anon)
1749 *
1750 * note: pg is either the uobjpage or the new page in the new anon
1751 */
1752 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1753 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1754 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1755 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1756 KASSERT((pg->flags & PG_BUSY) != 0);
1757
1758 /*
1759 * all resources are present. we can now map it in and free our
1760 * resources.
1761 */
1762
1763 UVMHIST_LOG(maphist,
1764 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1765 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1766 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1767 (pg->flags & PG_RDONLY) == 0);
1768 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1769 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1770 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1771
1772 /*
1773 * No need to undo what we did; we can simply think of
1774 * this as the pmap throwing away the mapping information.
1775 *
1776 * We do, however, have to go through the ReFault path,
1777 * as the map may change while we're asleep.
1778 */
1779
1780 if (pg->flags & PG_WANTED)
1781 wakeup(pg);
1782
1783 /*
1784 * note that pg can't be PG_RELEASED since we did not drop
1785 * the object lock since the last time we checked.
1786 */
1787 KASSERT((pg->flags & PG_RELEASED) == 0);
1788
1789 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1790 UVM_PAGE_OWN(pg, NULL);
1791 uvmfault_unlockall(&ufi, amap, uobj, anon);
1792 if (!uvm_reclaimable()) {
1793 UVMHIST_LOG(maphist,
1794 "<- failed. out of VM",0,0,0,0);
1795 /* XXX instrumentation */
1796 error = ENOMEM;
1797 goto done;
1798 }
1799 /* XXX instrumentation */
1800 uvm_wait("flt_pmfail2");
1801 goto ReFault;
1802 }
1803
1804 mutex_enter(&uvm_pageqlock);
1805 if (wire_fault) {
1806 uvm_pagewire(pg);
1807 if (pg->pqflags & PQ_AOBJ) {
1808
1809 /*
1810 * since the now-wired page cannot be paged out,
1811 * release its swap resources for others to use.
1812 * since an aobj page with no swap cannot be PG_CLEAN,
1813 * clear its clean flag now.
1814 */
1815
1816 KASSERT(uobj != NULL);
1817 pg->flags &= ~(PG_CLEAN);
1818 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1819 }
1820 } else {
1821 uvm_pageactivate(pg);
1822 }
1823 mutex_exit(&uvm_pageqlock);
1824 if (pg->flags & PG_WANTED)
1825 wakeup(pg);
1826
1827 /*
1828 * note that pg can't be PG_RELEASED since we did not drop the object
1829 * lock since the last time we checked.
1830 */
1831 KASSERT((pg->flags & PG_RELEASED) == 0);
1832
1833 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1834 UVM_PAGE_OWN(pg, NULL);
1835 uvmfault_unlockall(&ufi, amap, uobj, anon);
1836 pmap_update(ufi.orig_map->pmap);
1837 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1838 error = 0;
1839 done:
1840 if (anon_spare != NULL) {
1841 anon_spare->an_ref--;
1842 uvm_anfree(anon_spare);
1843 }
1844 return error;
1845 }
1846
1847
1848 /*
1849 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1850 *
1851 * => map may be read-locked by caller, but MUST NOT be write-locked.
1852 * => if map is read-locked, any operations which may cause map to
1853 * be write-locked in uvm_fault() must be taken care of by
1854 * the caller. See uvm_map_pageable().
1855 */
1856
1857 int
1858 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1859 vm_prot_t access_type, int wiremax)
1860 {
1861 vaddr_t va;
1862 int error;
1863
1864 /*
1865 * now fault it in a page at a time. if the fault fails then we have
1866 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1867 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1868 */
1869
1870 /*
1871 * XXX work around overflowing a vaddr_t. this prevents us from
1872 * wiring the last page in the address space, though.
1873 */
1874 if (start > end) {
1875 return EFAULT;
1876 }
1877
1878 for (va = start ; va < end ; va += PAGE_SIZE) {
1879 error = uvm_fault_internal(map, va, access_type,
1880 wiremax ? UVM_FAULT_WIREMAX : UVM_FAULT_WIRE);
1881 if (error) {
1882 if (va != start) {
1883 uvm_fault_unwire(map, start, va);
1884 }
1885 return error;
1886 }
1887 }
1888 return 0;
1889 }
1890
1891 /*
1892 * uvm_fault_unwire(): unwire range of virtual space.
1893 */
1894
1895 void
1896 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1897 {
1898 vm_map_lock_read(map);
1899 uvm_fault_unwire_locked(map, start, end);
1900 vm_map_unlock_read(map);
1901 }
1902
1903 /*
1904 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1905 *
1906 * => map must be at least read-locked.
1907 */
1908
1909 void
1910 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1911 {
1912 struct vm_map_entry *entry;
1913 pmap_t pmap = vm_map_pmap(map);
1914 vaddr_t va;
1915 paddr_t pa;
1916 struct vm_page *pg;
1917
1918 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1919
1920 /*
1921 * we assume that the area we are unwiring has actually been wired
1922 * in the first place. this means that we should be able to extract
1923 * the PAs from the pmap. we also lock out the page daemon so that
1924 * we can call uvm_pageunwire.
1925 */
1926
1927 mutex_enter(&uvm_pageqlock);
1928
1929 /*
1930 * find the beginning map entry for the region.
1931 */
1932
1933 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1934 if (uvm_map_lookup_entry(map, start, &entry) == false)
1935 panic("uvm_fault_unwire_locked: address not in map");
1936
1937 for (va = start; va < end; va += PAGE_SIZE) {
1938 if (pmap_extract(pmap, va, &pa) == false)
1939 continue;
1940
1941 /*
1942 * find the map entry for the current address.
1943 */
1944
1945 KASSERT(va >= entry->start);
1946 while (va >= entry->end) {
1947 KASSERT(entry->next != &map->header &&
1948 entry->next->start <= entry->end);
1949 entry = entry->next;
1950 }
1951
1952 /*
1953 * if the entry is no longer wired, tell the pmap.
1954 */
1955
1956 if (VM_MAPENT_ISWIRED(entry) == 0)
1957 pmap_unwire(pmap, va);
1958
1959 pg = PHYS_TO_VM_PAGE(pa);
1960 if (pg)
1961 uvm_pageunwire(pg);
1962 }
1963
1964 mutex_exit(&uvm_pageqlock);
1965 }
1966