uvm_fault.c revision 1.124.4.3 1 /* $NetBSD: uvm_fault.c,v 1.124.4.3 2010/08/11 22:55:16 yamt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.124.4.3 2010/08/11 22:55:16 yamt Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0; lcv < n; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 vaddr_t startva;
699 int npages;
700 int centeridx;
701 struct vm_anon *anon_spare;
702 bool wire_mapping;
703 bool narrow;
704 bool wire_paging;
705 bool maxprot;
706 bool cow_now;
707 bool promote;
708 };
709
710 static inline int uvm_fault_check(
711 struct uvm_faultinfo *, struct uvm_faultctx *,
712 struct vm_anon ***, struct vm_page ***);
713
714 static int uvm_fault_upper(
715 struct uvm_faultinfo *, struct uvm_faultctx *,
716 struct vm_anon **);
717 static inline int uvm_fault_upper_lookup(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 struct vm_anon **, struct vm_page **);
720 static inline void uvm_fault_upper_neighbor(
721 struct uvm_faultinfo *, struct uvm_faultctx *,
722 vaddr_t, struct vm_page *, bool);
723 static inline int uvm_fault_upper_loan(
724 struct uvm_faultinfo *, struct uvm_faultctx *,
725 struct vm_anon *, struct uvm_object **);
726 static inline int uvm_fault_upper_promote(
727 struct uvm_faultinfo *, struct uvm_faultctx *,
728 struct uvm_object *, struct vm_anon *);
729 static inline int uvm_fault_upper_direct(
730 struct uvm_faultinfo *, struct uvm_faultctx *,
731 struct uvm_object *, struct vm_anon *);
732 static int uvm_fault_upper_enter(
733 struct uvm_faultinfo *, struct uvm_faultctx *,
734 struct uvm_object *, struct vm_anon *,
735 struct vm_page *, struct vm_anon *);
736 static inline void uvm_fault_upper_done(
737 struct uvm_faultinfo *, struct uvm_faultctx *,
738 struct uvm_object *, struct vm_anon *,
739 struct vm_page *);
740
741 static int uvm_fault_lower(
742 struct uvm_faultinfo *, struct uvm_faultctx *,
743 struct vm_page **);
744 static inline void uvm_fault_lower_lookup(
745 struct uvm_faultinfo *, struct uvm_faultctx *,
746 struct vm_page **);
747 static inline void uvm_fault_lower_neighbor(
748 struct uvm_faultinfo *, struct uvm_faultctx *,
749 vaddr_t, struct vm_page *, bool);
750 static inline int uvm_fault_lower_io(
751 struct uvm_faultinfo *, struct uvm_faultctx *,
752 struct uvm_object **, struct vm_page **);
753 static inline int uvm_fault_lower_direct(
754 struct uvm_faultinfo *, struct uvm_faultctx *,
755 struct uvm_object *, struct vm_page *);
756 static inline int uvm_fault_lower_direct_loan(
757 struct uvm_faultinfo *, struct uvm_faultctx *,
758 struct uvm_object *, struct vm_page **,
759 struct vm_page **);
760 static inline int uvm_fault_lower_promote(
761 struct uvm_faultinfo *, struct uvm_faultctx *,
762 struct uvm_object *, struct vm_page *);
763 static int uvm_fault_lower_enter(
764 struct uvm_faultinfo *, struct uvm_faultctx *,
765 struct uvm_object *,
766 struct vm_anon *, struct vm_page *,
767 struct vm_page *);
768 static inline void uvm_fault_lower_done(
769 struct uvm_faultinfo *, struct uvm_faultctx *,
770 struct uvm_object *, struct vm_anon *,
771 struct vm_page *);
772
773 int
774 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
775 vm_prot_t access_type, int fault_flag)
776 {
777 struct uvm_faultinfo ufi;
778 struct uvm_faultctx flt = {
779 .access_type = access_type,
780
781 /* don't look for neighborhood * pages on "wire" fault */
782 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
783
784 /* "wire" fault causes wiring of both mapping and paging */
785 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
786 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
787
788 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
789 };
790 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
791 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
792 int error;
793 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
794
795 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
796 orig_map, vaddr, access_type, fault_flag);
797
798 uvmexp.faults++; /* XXX: locking? */
799
800 /*
801 * init the IN parameters in the ufi
802 */
803
804 ufi.orig_map = orig_map;
805 ufi.orig_rvaddr = trunc_page(vaddr);
806 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
807
808 error = ERESTART;
809 while (error == ERESTART) {
810 anons = anons_store;
811 pages = pages_store;
812
813 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
814 if (error != 0)
815 continue;
816
817 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
818 if (error != 0)
819 continue;
820
821 if (pages[flt.centeridx] == PGO_DONTCARE)
822 error = uvm_fault_upper(&ufi, &flt, anons);
823 else {
824 struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
825
826 if (uobj && uobj->pgops->pgo_fault != NULL) {
827 /*
828 * invoke "special" fault routine.
829 */
830 mutex_enter(&uobj->vmobjlock);
831 /* locked: maps(read), amap(if there), uobj */
832 error = uobj->pgops->pgo_fault(&ufi,
833 flt.startva, pages, flt.npages,
834 flt.centeridx, flt.access_type,
835 PGO_LOCKED|PGO_SYNCIO);
836
837 /* locked: nothing, pgo_fault has unlocked everything */
838
839 /*
840 * object fault routine responsible for pmap_update().
841 */
842 } else {
843 error = uvm_fault_lower(&ufi, &flt, pages);
844 }
845 }
846 }
847
848 if (flt.anon_spare != NULL) {
849 flt.anon_spare->an_ref--;
850 uvm_anfree(flt.anon_spare);
851 }
852 return error;
853 }
854
855 /*
856 * uvm_fault_check: check prot, handle needs-copy, etc.
857 *
858 * 1. lookup entry.
859 * 2. check protection.
860 * 3. adjust fault condition (mainly for simulated fault).
861 * 4. handle needs-copy (lazy amap copy).
862 * 5. establish range of interest for neighbor fault (aka pre-fault).
863 * 6. look up anons (if amap exists).
864 * 7. flush pages (if MADV_SEQUENTIAL)
865 *
866 * => called with nothing locked.
867 * => if we fail (result != 0) we unlock everything.
868 */
869
870 static int
871 uvm_fault_check(
872 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
873 struct vm_anon ***ranons, struct vm_page ***rpages)
874 {
875 struct vm_amap *amap;
876 struct uvm_object *uobj;
877 vm_prot_t check_prot;
878 int nback, nforw;
879 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
880
881 /*
882 * lookup and lock the maps
883 */
884
885 if (uvmfault_lookup(ufi, false) == false) {
886 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
887 return EFAULT;
888 }
889 /* locked: maps(read) */
890
891 #ifdef DIAGNOSTIC
892 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
893 printf("Page fault on non-pageable map:\n");
894 printf("ufi->map = %p\n", ufi->map);
895 printf("ufi->orig_map = %p\n", ufi->orig_map);
896 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
897 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
898 }
899 #endif
900
901 /*
902 * check protection
903 */
904
905 check_prot = flt->maxprot ?
906 ufi->entry->max_protection : ufi->entry->protection;
907 if ((check_prot & flt->access_type) != flt->access_type) {
908 UVMHIST_LOG(maphist,
909 "<- protection failure (prot=0x%x, access=0x%x)",
910 ufi->entry->protection, flt->access_type, 0, 0);
911 uvmfault_unlockmaps(ufi, false);
912 return EACCES;
913 }
914
915 /*
916 * "enter_prot" is the protection we want to enter the page in at.
917 * for certain pages (e.g. copy-on-write pages) this protection can
918 * be more strict than ufi->entry->protection. "wired" means either
919 * the entry is wired or we are fault-wiring the pg.
920 */
921
922 flt->enter_prot = ufi->entry->protection;
923 if (VM_MAPENT_ISWIRED(ufi->entry))
924 flt->wire_mapping = true;
925
926 if (flt->wire_mapping) {
927 flt->access_type = flt->enter_prot; /* full access for wired */
928 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
929 } else {
930 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
931 }
932
933 flt->promote = false;
934
935 /*
936 * handle "needs_copy" case. if we need to copy the amap we will
937 * have to drop our readlock and relock it with a write lock. (we
938 * need a write lock to change anything in a map entry [e.g.
939 * needs_copy]).
940 */
941
942 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
943 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
944 KASSERT(!flt->maxprot);
945 /* need to clear */
946 UVMHIST_LOG(maphist,
947 " need to clear needs_copy and refault",0,0,0,0);
948 uvmfault_unlockmaps(ufi, false);
949 uvmfault_amapcopy(ufi);
950 uvmexp.fltamcopy++;
951 return ERESTART;
952
953 } else {
954
955 /*
956 * ensure that we pmap_enter page R/O since
957 * needs_copy is still true
958 */
959
960 flt->enter_prot &= ~VM_PROT_WRITE;
961 }
962 }
963
964 /*
965 * identify the players
966 */
967
968 amap = ufi->entry->aref.ar_amap; /* upper layer */
969 uobj = ufi->entry->object.uvm_obj; /* lower layer */
970
971 /*
972 * check for a case 0 fault. if nothing backing the entry then
973 * error now.
974 */
975
976 if (amap == NULL && uobj == NULL) {
977 uvmfault_unlockmaps(ufi, false);
978 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
979 return EFAULT;
980 }
981
982 /*
983 * establish range of interest based on advice from mapper
984 * and then clip to fit map entry. note that we only want
985 * to do this the first time through the fault. if we
986 * ReFault we will disable this by setting "narrow" to true.
987 */
988
989 if (flt->narrow == false) {
990
991 /* wide fault (!narrow) */
992 KASSERT(uvmadvice[ufi->entry->advice].advice ==
993 ufi->entry->advice);
994 nback = MIN(uvmadvice[ufi->entry->advice].nback,
995 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
996 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
997 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
998 ((ufi->entry->end - ufi->orig_rvaddr) >>
999 PAGE_SHIFT) - 1);
1000 /*
1001 * note: "-1" because we don't want to count the
1002 * faulting page as forw
1003 */
1004 flt->npages = nback + nforw + 1;
1005 flt->centeridx = nback;
1006
1007 flt->narrow = true; /* ensure only once per-fault */
1008
1009 } else {
1010
1011 /* narrow fault! */
1012 nback = nforw = 0;
1013 flt->startva = ufi->orig_rvaddr;
1014 flt->npages = 1;
1015 flt->centeridx = 0;
1016
1017 }
1018 /* offset from entry's start to pgs' start */
1019 const voff_t eoff = flt->startva - ufi->entry->start;
1020
1021 /* locked: maps(read) */
1022 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
1023 flt->narrow, nback, nforw, flt->startva);
1024 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1025 amap, uobj, 0);
1026
1027 /*
1028 * if we've got an amap, lock it and extract current anons.
1029 */
1030
1031 if (amap) {
1032 amap_lock(amap);
1033 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1034 } else {
1035 *ranons = NULL; /* to be safe */
1036 }
1037
1038 /* locked: maps(read), amap(if there) */
1039 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1040
1041 /*
1042 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1043 * now and then forget about them (for the rest of the fault).
1044 */
1045
1046 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1047
1048 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
1049 0,0,0,0);
1050 /* flush back-page anons? */
1051 if (amap)
1052 uvmfault_anonflush(*ranons, nback);
1053
1054 /* flush object? */
1055 if (uobj) {
1056 voff_t uoff;
1057
1058 uoff = ufi->entry->offset + eoff;
1059 mutex_enter(&uobj->vmobjlock);
1060 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1061 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1062 }
1063
1064 /* now forget about the backpages */
1065 if (amap)
1066 *ranons += nback;
1067 flt->startva += (nback << PAGE_SHIFT);
1068 flt->npages -= nback;
1069 flt->centeridx = 0;
1070 }
1071 /*
1072 * => startva is fixed
1073 * => npages is fixed
1074 */
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1081 *
1082 * iterate range of interest:
1083 * 1. check if h/w mapping exists. if yes, we don't care
1084 * 2. check if anon exists. if not, page is lower.
1085 * 3. if anon exists, enter h/w mapping for neighbors.
1086 *
1087 * => called with amap locked (if exists).
1088 */
1089
1090 static int
1091 uvm_fault_upper_lookup(
1092 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1093 struct vm_anon **anons, struct vm_page **pages)
1094 {
1095 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1096 int lcv;
1097 vaddr_t currva;
1098 bool shadowed;
1099 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1100
1101 /* locked: maps(read), amap(if there) */
1102 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1103
1104 /*
1105 * map in the backpages and frontpages we found in the amap in hopes
1106 * of preventing future faults. we also init the pages[] array as
1107 * we go.
1108 */
1109
1110 currva = flt->startva;
1111 shadowed = false;
1112 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1113 /*
1114 * dont play with VAs that are already mapped
1115 * except for center)
1116 */
1117 if (lcv != flt->centeridx &&
1118 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1119 pages[lcv] = PGO_DONTCARE;
1120 continue;
1121 }
1122
1123 /*
1124 * unmapped or center page. check if any anon at this level.
1125 */
1126 if (amap == NULL || anons[lcv] == NULL) {
1127 pages[lcv] = NULL;
1128 continue;
1129 }
1130
1131 /*
1132 * check for present page and map if possible. re-activate it.
1133 */
1134
1135 pages[lcv] = PGO_DONTCARE;
1136 if (lcv == flt->centeridx) { /* save center for later! */
1137 shadowed = true;
1138 } else {
1139 struct vm_anon *anon = anons[lcv];
1140
1141 mutex_enter(&anon->an_lock);
1142 struct vm_page *pg = anon->an_page;
1143
1144 /* ignore loaned and busy pages */
1145 if (pg != NULL && pg->loan_count == 0 &&
1146 (pg->flags & PG_BUSY) == 0)
1147 uvm_fault_upper_neighbor(ufi, flt, currva,
1148 pg, anon->an_ref > 1);
1149 mutex_exit(&anon->an_lock);
1150 }
1151 }
1152
1153 /* locked: maps(read), amap(if there) */
1154 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1155 /* (shadowed == true) if there is an anon at the faulting address */
1156 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1157 (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1158
1159 /*
1160 * note that if we are really short of RAM we could sleep in the above
1161 * call to pmap_enter with everything locked. bad?
1162 *
1163 * XXX Actually, that is bad; pmap_enter() should just fail in that
1164 * XXX case. --thorpej
1165 */
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * uvm_fault_upper_neighbor: enter single lower neighbor page.
1172 *
1173 * => called with amap and anon locked.
1174 */
1175
1176 static void
1177 uvm_fault_upper_neighbor(
1178 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1179 vaddr_t currva, struct vm_page *pg, bool readonly)
1180 {
1181 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1182
1183 /* locked: amap, anon */
1184
1185 mutex_enter(&uvm_pageqlock);
1186 uvm_pageenqueue(pg);
1187 mutex_exit(&uvm_pageqlock);
1188 UVMHIST_LOG(maphist,
1189 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1190 ufi->orig_map->pmap, currva, pg, 0);
1191 uvmexp.fltnamap++;
1192
1193 /*
1194 * Since this page isn't the page that's actually faulting,
1195 * ignore pmap_enter() failures; it's not critical that we
1196 * enter these right now.
1197 */
1198
1199 (void) pmap_enter(ufi->orig_map->pmap, currva,
1200 VM_PAGE_TO_PHYS(pg),
1201 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1202 flt->enter_prot,
1203 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1204
1205 pmap_update(ufi->orig_map->pmap);
1206 }
1207
1208 /*
1209 * uvm_fault_upper: handle upper fault.
1210 *
1211 * 1. acquire anon lock.
1212 * 2. get anon. let uvmfault_anonget do the dirty work.
1213 * 3. handle loan.
1214 * 4. dispatch direct or promote handlers.
1215 */
1216
1217 static int
1218 uvm_fault_upper(
1219 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1220 struct vm_anon **anons)
1221 {
1222 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1223 struct vm_anon * const anon = anons[flt->centeridx];
1224 struct uvm_object *uobj;
1225 int error;
1226 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1227
1228 /* locked: maps(read), amap */
1229 KASSERT(mutex_owned(&amap->am_l));
1230
1231 /*
1232 * handle case 1: fault on an anon in our amap
1233 */
1234
1235 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1236 mutex_enter(&anon->an_lock);
1237
1238 /* locked: maps(read), amap, anon */
1239 KASSERT(mutex_owned(&amap->am_l));
1240 KASSERT(mutex_owned(&anon->an_lock));
1241
1242 /*
1243 * no matter if we have case 1A or case 1B we are going to need to
1244 * have the anon's memory resident. ensure that now.
1245 */
1246
1247 /*
1248 * let uvmfault_anonget do the dirty work.
1249 * if it fails (!OK) it will unlock everything for us.
1250 * if it succeeds, locks are still valid and locked.
1251 * also, if it is OK, then the anon's page is on the queues.
1252 * if the page is on loan from a uvm_object, then anonget will
1253 * lock that object for us if it does not fail.
1254 */
1255
1256 error = uvmfault_anonget(ufi, amap, anon);
1257 switch (error) {
1258 case 0:
1259 break;
1260
1261 case ERESTART:
1262 return ERESTART;
1263
1264 case EAGAIN:
1265 kpause("fltagain1", false, hz/2, NULL);
1266 return ERESTART;
1267
1268 default:
1269 return error;
1270 }
1271
1272 /*
1273 * uobj is non null if the page is on loan from an object (i.e. uobj)
1274 */
1275
1276 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1277
1278 /* locked: maps(read), amap, anon, uobj(if one) */
1279 KASSERT(mutex_owned(&amap->am_l));
1280 KASSERT(mutex_owned(&anon->an_lock));
1281 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1282
1283 /*
1284 * special handling for loaned pages
1285 */
1286
1287 if (anon->an_page->loan_count) {
1288 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1289 if (error != 0)
1290 return error;
1291 }
1292
1293 /*
1294 * if we are case 1B then we will need to allocate a new blank
1295 * anon to transfer the data into. note that we have a lock
1296 * on anon, so no one can busy or release the page until we are done.
1297 * also note that the ref count can't drop to zero here because
1298 * it is > 1 and we are only dropping one ref.
1299 *
1300 * in the (hopefully very rare) case that we are out of RAM we
1301 * will unlock, wait for more RAM, and refault.
1302 *
1303 * if we are out of anon VM we kill the process (XXX: could wait?).
1304 */
1305
1306 if (flt->cow_now && anon->an_ref > 1) {
1307 flt->promote = true;
1308 error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1309 } else {
1310 error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1311 }
1312 return error;
1313 }
1314
1315 /*
1316 * uvm_fault_upper_loan: handle loaned upper page.
1317 *
1318 * 1. if not cow'ing now, just mark enter_prot as read-only.
1319 * 2. if cow'ing now, and if ref count is 1, break loan.
1320 */
1321
1322 static int
1323 uvm_fault_upper_loan(
1324 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1325 struct vm_anon *anon, struct uvm_object **ruobj)
1326 {
1327 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1328 int error = 0;
1329 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1330
1331 if (!flt->cow_now) {
1332
1333 /*
1334 * for read faults on loaned pages we just cap the
1335 * protection at read-only.
1336 */
1337
1338 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1339
1340 } else {
1341 /*
1342 * note that we can't allow writes into a loaned page!
1343 *
1344 * if we have a write fault on a loaned page in an
1345 * anon then we need to look at the anon's ref count.
1346 * if it is greater than one then we are going to do
1347 * a normal copy-on-write fault into a new anon (this
1348 * is not a problem). however, if the reference count
1349 * is one (a case where we would normally allow a
1350 * write directly to the page) then we need to kill
1351 * the loan before we continue.
1352 */
1353
1354 /* >1 case is already ok */
1355 if (anon->an_ref == 1) {
1356 error = uvm_loanbreak_anon(anon, *ruobj);
1357 if (error != 0) {
1358 uvmfault_unlockall(ufi, amap, *ruobj, anon);
1359 uvm_wait("flt_noram2");
1360 return ERESTART;
1361 }
1362 /* if we were a loan reciever uobj is gone */
1363 if (*ruobj)
1364 *ruobj = NULL;
1365 }
1366 }
1367 return error;
1368 }
1369
1370 /*
1371 * uvm_fault_upper_promote: promote upper page.
1372 *
1373 * 1. call uvmfault_promote.
1374 * 2. enqueue page.
1375 * 3. deref.
1376 * 4. pass page to uvm_fault_upper_enter.
1377 */
1378
1379 static int
1380 uvm_fault_upper_promote(
1381 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1382 struct uvm_object *uobj, struct vm_anon *anon)
1383 {
1384 struct vm_anon * const oanon = anon;
1385 struct vm_page *pg;
1386 int error;
1387 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1388
1389 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1390 uvmexp.flt_acow++;
1391
1392 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1393 &anon, &flt->anon_spare);
1394 switch (error) {
1395 case 0:
1396 break;
1397 case ERESTART:
1398 return ERESTART;
1399 default:
1400 return error;
1401 }
1402
1403 pg = anon->an_page;
1404 mutex_enter(&uvm_pageqlock);
1405 uvm_pageactivate(pg);
1406 mutex_exit(&uvm_pageqlock);
1407 pg->flags &= ~(PG_BUSY|PG_FAKE);
1408 UVM_PAGE_OWN(pg, NULL);
1409
1410 /* deref: can not drop to zero here by defn! */
1411 oanon->an_ref--;
1412
1413 /*
1414 * note: oanon is still locked, as is the new anon. we
1415 * need to check for this later when we unlock oanon; if
1416 * oanon != anon, we'll have to unlock anon, too.
1417 */
1418
1419 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1420 }
1421
1422 /*
1423 * uvm_fault_upper_direct: handle direct fault.
1424 */
1425
1426 static int
1427 uvm_fault_upper_direct(
1428 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1429 struct uvm_object *uobj, struct vm_anon *anon)
1430 {
1431 struct vm_anon * const oanon = anon;
1432 struct vm_page *pg;
1433 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1434
1435 uvmexp.flt_anon++;
1436 pg = anon->an_page;
1437 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1438 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1439
1440 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1441 }
1442
1443 /*
1444 * uvm_fault_upper_enter: enter h/w mapping of upper page.
1445 */
1446
1447 static int
1448 uvm_fault_upper_enter(
1449 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1450 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1451 struct vm_anon *oanon)
1452 {
1453 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1454 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1455
1456 /* locked: maps(read), amap, oanon, anon(if different from oanon) */
1457 KASSERT(mutex_owned(&amap->am_l));
1458 KASSERT(mutex_owned(&anon->an_lock));
1459 KASSERT(mutex_owned(&oanon->an_lock));
1460
1461 /*
1462 * now map the page in.
1463 */
1464
1465 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1466 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1467 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1468 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1469 != 0) {
1470
1471 /*
1472 * No need to undo what we did; we can simply think of
1473 * this as the pmap throwing away the mapping information.
1474 *
1475 * We do, however, have to go through the ReFault path,
1476 * as the map may change while we're asleep.
1477 */
1478
1479 if (anon != oanon)
1480 mutex_exit(&anon->an_lock);
1481 uvmfault_unlockall(ufi, amap, uobj, oanon);
1482 if (!uvm_reclaimable()) {
1483 UVMHIST_LOG(maphist,
1484 "<- failed. out of VM",0,0,0,0);
1485 /* XXX instrumentation */
1486 return ENOMEM;
1487 }
1488 /* XXX instrumentation */
1489 uvm_wait("flt_pmfail1");
1490 return ERESTART;
1491 }
1492
1493 uvm_fault_upper_done(ufi, flt, uobj, anon, pg);
1494
1495 /*
1496 * done case 1! finish up by unlocking everything and returning success
1497 */
1498
1499 if (anon != oanon) {
1500 mutex_exit(&anon->an_lock);
1501 }
1502 pmap_update(ufi->orig_map->pmap);
1503 uvmfault_unlockall(ufi, amap, uobj, oanon);
1504 return 0;
1505 }
1506
1507 /*
1508 * uvm_fault_upper_done: queue upper center page.
1509 */
1510
1511 static void
1512 uvm_fault_upper_done(
1513 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1514 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
1515 {
1516 const bool wire_paging = flt->wire_paging;
1517
1518 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1519
1520 /*
1521 * ... update the page queues.
1522 */
1523
1524 mutex_enter(&uvm_pageqlock);
1525 if (wire_paging) {
1526 uvm_pagewire(pg);
1527
1528 /*
1529 * since the now-wired page cannot be paged out,
1530 * release its swap resources for others to use.
1531 * since an anon with no swap cannot be PG_CLEAN,
1532 * clear its clean flag now.
1533 */
1534
1535 pg->flags &= ~(PG_CLEAN);
1536
1537 } else {
1538 uvm_pageactivate(pg);
1539 }
1540 mutex_exit(&uvm_pageqlock);
1541
1542 if (wire_paging) {
1543 uvm_anon_dropswap(anon);
1544 }
1545 }
1546
1547 /*
1548 * uvm_fault_lower: handle lower fault.
1549 *
1550 * 1. check uobj
1551 * 1.1. if null, ZFOD.
1552 * 1.2. if not null, look up unnmapped neighbor pages.
1553 * 2. for center page, check if promote.
1554 * 2.1. ZFOD always needs promotion.
1555 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1556 * 3. if uobj is not ZFOD and page is not found, do i/o.
1557 * 4. dispatch either direct / promote fault.
1558 */
1559
1560 static int
1561 uvm_fault_lower(
1562 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1563 struct vm_page **pages)
1564 {
1565 #ifdef DIAGNOSTIC
1566 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1567 #endif
1568 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1569 struct vm_page *uobjpage;
1570 int error;
1571 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1572
1573 /* locked: maps(read), amap(if there), uobj(if !null) */
1574
1575 /*
1576 * now, if the desired page is not shadowed by the amap and we have
1577 * a backing object that does not have a special fault routine, then
1578 * we ask (with pgo_get) the object for resident pages that we care
1579 * about and attempt to map them in. we do not let pgo_get block
1580 * (PGO_LOCKED).
1581 */
1582
1583 if (uobj == NULL) {
1584 /* zero fill; don't care neighbor pages */
1585 uobjpage = NULL;
1586 } else {
1587 uvm_fault_lower_lookup(ufi, flt, pages);
1588 uobjpage = pages[flt->centeridx];
1589 }
1590
1591 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1592 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1593 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1594 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1595
1596 /*
1597 * note that at this point we are done with any front or back pages.
1598 * we are now going to focus on the center page (i.e. the one we've
1599 * faulted on). if we have faulted on the upper (anon) layer
1600 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1601 * not touched it yet). if we have faulted on the bottom (uobj)
1602 * layer [i.e. case 2] and the page was both present and available,
1603 * then we've got a pointer to it as "uobjpage" and we've already
1604 * made it BUSY.
1605 */
1606
1607 /*
1608 * locked:
1609 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1610 */
1611 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1612 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1613 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1614
1615 /*
1616 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1617 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1618 * have a backing object, check and see if we are going to promote
1619 * the data up to an anon during the fault.
1620 */
1621
1622 if (uobj == NULL) {
1623 uobjpage = PGO_DONTCARE;
1624 flt->promote = true; /* always need anon here */
1625 } else {
1626 KASSERT(uobjpage != PGO_DONTCARE);
1627 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1628 }
1629 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1630 flt->promote, (uobj == NULL), 0,0);
1631
1632 /*
1633 * if uobjpage is not null then we do not need to do I/O to get the
1634 * uobjpage.
1635 *
1636 * if uobjpage is null, then we need to unlock and ask the pager to
1637 * get the data for us. once we have the data, we need to reverify
1638 * the state the world. we are currently not holding any resources.
1639 */
1640
1641 if (uobjpage) {
1642 /* update rusage counters */
1643 curlwp->l_ru.ru_minflt++;
1644 } else {
1645 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1646 if (error != 0)
1647 return error;
1648 }
1649
1650 /*
1651 * locked:
1652 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1653 */
1654 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1655 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1656 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1657
1658 /*
1659 * notes:
1660 * - at this point uobjpage can not be NULL
1661 * - at this point uobjpage can not be PG_RELEASED (since we checked
1662 * for it above)
1663 * - at this point uobjpage could be PG_WANTED (handle later)
1664 */
1665
1666 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1667 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1668 (uobjpage->flags & PG_CLEAN) != 0);
1669
1670 if (flt->promote == false) {
1671 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1672 } else {
1673 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1674 }
1675 return error;
1676 }
1677
1678 /*
1679 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1680 *
1681 * 1. get on-memory pages.
1682 * 2. if failed, give up (get only center page later).
1683 * 3. if succeeded, enter h/w mapping of neighbor pages.
1684 */
1685
1686 static void
1687 uvm_fault_lower_lookup(
1688 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1689 struct vm_page **pages)
1690 {
1691 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1692 int lcv, gotpages;
1693 vaddr_t currva;
1694 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1695
1696 mutex_enter(&uobj->vmobjlock);
1697 /* locked: maps(read), amap(if there), uobj */
1698 /*
1699 * the following call to pgo_get does _not_ change locking state
1700 */
1701
1702 uvmexp.fltlget++;
1703 gotpages = flt->npages;
1704 (void) uobj->pgops->pgo_get(uobj,
1705 ufi->entry->offset + flt->startva - ufi->entry->start,
1706 pages, &gotpages, flt->centeridx,
1707 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1708
1709 /*
1710 * check for pages to map, if we got any
1711 */
1712
1713 if (gotpages == 0) {
1714 pages[flt->centeridx] = NULL;
1715 return;
1716 }
1717
1718 currva = flt->startva;
1719 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1720 struct vm_page *curpg;
1721
1722 curpg = pages[lcv];
1723 if (curpg == NULL || curpg == PGO_DONTCARE) {
1724 continue;
1725 }
1726 KASSERT(curpg->uobject == uobj);
1727
1728 /*
1729 * if center page is resident and not PG_BUSY|PG_RELEASED
1730 * then pgo_get made it PG_BUSY for us and gave us a handle
1731 * to it.
1732 */
1733
1734 if (lcv == flt->centeridx) {
1735 UVMHIST_LOG(maphist, " got uobjpage "
1736 "(0x%x) with locked get",
1737 curpg, 0,0,0);
1738 } else {
1739 bool readonly = (curpg->flags & PG_RDONLY)
1740 || (curpg->loan_count > 0)
1741 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1742
1743 uvm_fault_lower_neighbor(ufi, flt,
1744 currva, curpg, readonly);
1745 }
1746 }
1747 pmap_update(ufi->orig_map->pmap);
1748 }
1749
1750 /*
1751 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1752 */
1753
1754 static void
1755 uvm_fault_lower_neighbor(
1756 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1757 vaddr_t currva, struct vm_page *pg, bool readonly)
1758 {
1759 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1760
1761 /* locked: maps(read), amap(if there), uobj */
1762
1763 /*
1764 * calling pgo_get with PGO_LOCKED returns us pages which
1765 * are neither busy nor released, so we don't need to check
1766 * for this. we can just directly enter the pages.
1767 */
1768
1769 mutex_enter(&uvm_pageqlock);
1770 uvm_pageenqueue(pg);
1771 mutex_exit(&uvm_pageqlock);
1772 UVMHIST_LOG(maphist,
1773 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1774 ufi->orig_map->pmap, currva, pg, 0);
1775 uvmexp.fltnomap++;
1776
1777 /*
1778 * Since this page isn't the page that's actually faulting,
1779 * ignore pmap_enter() failures; it's not critical that we
1780 * enter these right now.
1781 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1782 * held the lock the whole time we've had the handle.
1783 */
1784 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1785 KASSERT((pg->flags & PG_RELEASED) == 0);
1786 KASSERT((pg->flags & PG_WANTED) == 0);
1787 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1788 (pg->flags & PG_CLEAN) != 0);
1789 pg->flags &= ~(PG_BUSY);
1790 UVM_PAGE_OWN(pg, NULL);
1791
1792 (void) pmap_enter(ufi->orig_map->pmap, currva,
1793 VM_PAGE_TO_PHYS(pg),
1794 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1795 flt->enter_prot & MASK(ufi->entry),
1796 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1797 }
1798
1799 /*
1800 * uvm_fault_lower_io: get lower page from backing store.
1801 *
1802 * 1. unlock everything, because i/o will block.
1803 * 2. call pgo_get.
1804 * 3. if failed, recover.
1805 * 4. if succeeded, relock everything and verify things.
1806 */
1807
1808 static int
1809 uvm_fault_lower_io(
1810 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1811 struct uvm_object **ruobj, struct vm_page **ruobjpage)
1812 {
1813 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1814 struct uvm_object *uobj = *ruobj;
1815 struct vm_page *pg;
1816 bool locked;
1817 int gotpages;
1818 int error;
1819 voff_t uoff;
1820 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1821
1822 /* update rusage counters */
1823 curlwp->l_ru.ru_majflt++;
1824
1825 /* locked: maps(read), amap(if there), uobj */
1826 uvmfault_unlockall(ufi, amap, NULL, NULL);
1827 /* locked: uobj */
1828
1829 uvmexp.fltget++;
1830 gotpages = 1;
1831 pg = NULL;
1832 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1833 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1834 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1835 PGO_SYNCIO);
1836 /* locked: pg(if no error) */
1837
1838 /*
1839 * recover from I/O
1840 */
1841
1842 if (error) {
1843 if (error == EAGAIN) {
1844 UVMHIST_LOG(maphist,
1845 " pgo_get says TRY AGAIN!",0,0,0,0);
1846 kpause("fltagain2", false, hz/2, NULL);
1847 return ERESTART;
1848 }
1849
1850 #if 0
1851 KASSERT(error != ERESTART);
1852 #else
1853 /* XXXUEBS don't re-fault? */
1854 if (error == ERESTART)
1855 error = EIO;
1856 #endif
1857
1858 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1859 error, 0,0,0);
1860 return error;
1861 }
1862
1863 /* locked: pg */
1864
1865 KASSERT((pg->flags & PG_BUSY) != 0);
1866
1867 mutex_enter(&uvm_pageqlock);
1868 uvm_pageactivate(pg);
1869 mutex_exit(&uvm_pageqlock);
1870
1871 /*
1872 * re-verify the state of the world by first trying to relock
1873 * the maps. always relock the object.
1874 */
1875
1876 locked = uvmfault_relock(ufi);
1877 if (locked && amap)
1878 amap_lock(amap);
1879
1880 /* might be changed */
1881 uobj = pg->uobject;
1882
1883 mutex_enter(&uobj->vmobjlock);
1884
1885 /* locked(locked): maps(read), amap(if !null), uobj, pg */
1886 /* locked(!locked): uobj, pg */
1887
1888 /*
1889 * verify that the page has not be released and re-verify
1890 * that amap slot is still free. if there is a problem,
1891 * we unlock and clean up.
1892 */
1893
1894 if ((pg->flags & PG_RELEASED) != 0 ||
1895 (locked && amap && amap_lookup(&ufi->entry->aref,
1896 ufi->orig_rvaddr - ufi->entry->start))) {
1897 if (locked)
1898 uvmfault_unlockall(ufi, amap, NULL, NULL);
1899 locked = false;
1900 }
1901
1902 /*
1903 * didn't get the lock? release the page and retry.
1904 */
1905
1906 if (locked == false) {
1907 UVMHIST_LOG(maphist,
1908 " wasn't able to relock after fault: retry",
1909 0,0,0,0);
1910 if (pg->flags & PG_WANTED) {
1911 wakeup(pg);
1912 }
1913 if (pg->flags & PG_RELEASED) {
1914 uvmexp.fltpgrele++;
1915 uvm_pagefree(pg);
1916 mutex_exit(&uobj->vmobjlock);
1917 return ERESTART;
1918 }
1919 pg->flags &= ~(PG_BUSY|PG_WANTED);
1920 UVM_PAGE_OWN(pg, NULL);
1921 mutex_exit(&uobj->vmobjlock);
1922 return ERESTART;
1923 }
1924
1925 /*
1926 * we have the data in pg which is busy and
1927 * not released. we are holding object lock (so the page
1928 * can't be released on us).
1929 */
1930
1931 /* locked: maps(read), amap(if !null), uobj, pg */
1932
1933 *ruobj = uobj;
1934 *ruobjpage = pg;
1935 return 0;
1936 }
1937
1938 /*
1939 * uvm_fault_lower_direct: fault lower center page
1940 *
1941 * 1. adjust h/w mapping protection.
1942 * 2. if page is loaned, resolve.
1943 */
1944
1945 int
1946 uvm_fault_lower_direct(
1947 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1948 struct uvm_object *uobj, struct vm_page *uobjpage)
1949 {
1950 struct vm_page *pg;
1951 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1952
1953 /*
1954 * we are not promoting. if the mapping is COW ensure that we
1955 * don't give more access than we should (e.g. when doing a read
1956 * fault on a COPYONWRITE mapping we want to map the COW page in
1957 * R/O even though the entry protection could be R/W).
1958 *
1959 * set "pg" to the page we want to map in (uobjpage, usually)
1960 */
1961
1962 uvmexp.flt_obj++;
1963 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1964 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1965 flt->enter_prot &= ~VM_PROT_WRITE;
1966 pg = uobjpage; /* map in the actual object */
1967
1968 KASSERT(uobjpage != PGO_DONTCARE);
1969
1970 /*
1971 * we are faulting directly on the page. be careful
1972 * about writing to loaned pages...
1973 */
1974
1975 if (uobjpage->loan_count) {
1976 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1977 }
1978 KASSERT(pg == uobjpage);
1979
1980 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1981 }
1982
1983 /*
1984 * uvm_fault_lower_direct_loan: resolve loaned page.
1985 *
1986 * 1. if not cow'ing, adjust h/w mapping protection.
1987 * 2. if cow'ing, break loan.
1988 */
1989
1990 static int
1991 uvm_fault_lower_direct_loan(
1992 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1993 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1994 {
1995 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1996 struct vm_page *pg;
1997 struct vm_page *uobjpage = *ruobjpage;
1998 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1999
2000 if (!flt->cow_now) {
2001 /* read fault: cap the protection at readonly */
2002 /* cap! */
2003 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2004 } else {
2005 /* write fault: must break the loan here */
2006
2007 pg = uvm_loanbreak(uobjpage);
2008 if (pg == NULL) {
2009
2010 /*
2011 * drop ownership of page, it can't be released
2012 */
2013
2014 if (uobjpage->flags & PG_WANTED)
2015 wakeup(uobjpage);
2016 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2017 UVM_PAGE_OWN(uobjpage, NULL);
2018
2019 uvmfault_unlockall(ufi, amap, uobj, NULL);
2020 UVMHIST_LOG(maphist,
2021 " out of RAM breaking loan, waiting",
2022 0,0,0,0);
2023 uvmexp.fltnoram++;
2024 uvm_wait("flt_noram4");
2025 return ERESTART;
2026 }
2027 *rpg = pg;
2028 *ruobjpage = pg;
2029 }
2030 return 0;
2031 }
2032
2033 /*
2034 * uvm_fault_lower_promote: promote lower page.
2035 *
2036 * 1. call uvmfault_promote.
2037 * 2. fill in data.
2038 * 3. if not ZFOD, dispose old page.
2039 */
2040
2041 int
2042 uvm_fault_lower_promote(
2043 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2044 struct uvm_object *uobj, struct vm_page *uobjpage)
2045 {
2046 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2047 struct vm_anon *anon;
2048 struct vm_page *pg;
2049 int error;
2050 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2051
2052 /*
2053 * if we are going to promote the data to an anon we
2054 * allocate a blank anon here and plug it into our amap.
2055 */
2056 #if DIAGNOSTIC
2057 if (amap == NULL)
2058 panic("uvm_fault: want to promote data, but no anon");
2059 #endif
2060 error = uvmfault_promote(ufi, NULL, uobjpage,
2061 &anon, &flt->anon_spare);
2062 switch (error) {
2063 case 0:
2064 break;
2065 case ERESTART:
2066 return ERESTART;
2067 default:
2068 return error;
2069 }
2070
2071 pg = anon->an_page;
2072
2073 /*
2074 * fill in the data
2075 */
2076
2077 if (uobjpage != PGO_DONTCARE) {
2078 uvmexp.flt_prcopy++;
2079
2080 /*
2081 * promote to shared amap? make sure all sharing
2082 * procs see it
2083 */
2084
2085 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2086 pmap_page_protect(uobjpage, VM_PROT_NONE);
2087 /*
2088 * XXX: PAGE MIGHT BE WIRED!
2089 */
2090 }
2091
2092 /*
2093 * dispose of uobjpage. it can't be PG_RELEASED
2094 * since we still hold the object lock.
2095 * drop handle to uobj as well.
2096 */
2097
2098 if (uobjpage->flags & PG_WANTED)
2099 /* still have the obj lock */
2100 wakeup(uobjpage);
2101 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2102 UVM_PAGE_OWN(uobjpage, NULL);
2103 mutex_exit(&uobj->vmobjlock);
2104 uobj = NULL;
2105
2106 UVMHIST_LOG(maphist,
2107 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2108 uobjpage, anon, pg, 0);
2109
2110 } else {
2111 uvmexp.flt_przero++;
2112
2113 /*
2114 * Page is zero'd and marked dirty by
2115 * uvmfault_promote().
2116 */
2117
2118 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
2119 anon, pg, 0, 0);
2120 }
2121
2122 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2123 }
2124
2125 /*
2126 * uvm_fault_lower_enter: enter h/w mapping of lower page.
2127 */
2128
2129 int
2130 uvm_fault_lower_enter(
2131 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2132 struct uvm_object *uobj,
2133 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2134 {
2135 struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2136 int error;
2137 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2138
2139 /*
2140 * locked:
2141 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2142 * anon(if !null), pg(if anon)
2143 *
2144 * note: pg is either the uobjpage or the new page in the new anon
2145 */
2146 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2147 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2148 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2149 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2150 KASSERT((pg->flags & PG_BUSY) != 0);
2151
2152 /*
2153 * all resources are present. we can now map it in and free our
2154 * resources.
2155 */
2156
2157 UVMHIST_LOG(maphist,
2158 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2159 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2160 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2161 (pg->flags & PG_RDONLY) == 0);
2162 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2163 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2164 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2165
2166 /*
2167 * No need to undo what we did; we can simply think of
2168 * this as the pmap throwing away the mapping information.
2169 *
2170 * We do, however, have to go through the ReFault path,
2171 * as the map may change while we're asleep.
2172 */
2173
2174 if (pg->flags & PG_WANTED)
2175 wakeup(pg);
2176
2177 /*
2178 * note that pg can't be PG_RELEASED since we did not drop
2179 * the object lock since the last time we checked.
2180 */
2181 KASSERT((pg->flags & PG_RELEASED) == 0);
2182
2183 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2184 UVM_PAGE_OWN(pg, NULL);
2185
2186 uvmfault_unlockall(ufi, amap, uobj, anon);
2187 if (!uvm_reclaimable()) {
2188 UVMHIST_LOG(maphist,
2189 "<- failed. out of VM",0,0,0,0);
2190 /* XXX instrumentation */
2191 error = ENOMEM;
2192 return error;
2193 }
2194 /* XXX instrumentation */
2195 uvm_wait("flt_pmfail2");
2196 return ERESTART;
2197 }
2198
2199 uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2200
2201 pmap_update(ufi->orig_map->pmap);
2202 uvmfault_unlockall(ufi, amap, uobj, anon);
2203
2204 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2205 return 0;
2206 }
2207
2208 /*
2209 * uvm_fault_lower_done: queue lower center page.
2210 */
2211
2212 void
2213 uvm_fault_lower_done(
2214 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2215 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2216 {
2217 bool dropswap = false;
2218
2219 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2220
2221 mutex_enter(&uvm_pageqlock);
2222 if (flt->wire_paging) {
2223 uvm_pagewire(pg);
2224 if (pg->pqflags & PQ_AOBJ) {
2225
2226 /*
2227 * since the now-wired page cannot be paged out,
2228 * release its swap resources for others to use.
2229 * since an aobj page with no swap cannot be PG_CLEAN,
2230 * clear its clean flag now.
2231 */
2232
2233 KASSERT(uobj != NULL);
2234 pg->flags &= ~(PG_CLEAN);
2235 dropswap = true;
2236 }
2237 } else {
2238 uvm_pageactivate(pg);
2239 }
2240 mutex_exit(&uvm_pageqlock);
2241
2242 if (dropswap) {
2243 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2244 }
2245 if (pg->flags & PG_WANTED)
2246 wakeup(pg);
2247
2248 /*
2249 * note that pg can't be PG_RELEASED since we did not drop the object
2250 * lock since the last time we checked.
2251 */
2252 KASSERT((pg->flags & PG_RELEASED) == 0);
2253
2254 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2255 UVM_PAGE_OWN(pg, NULL);
2256 }
2257
2258
2259 /*
2260 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2261 *
2262 * => map may be read-locked by caller, but MUST NOT be write-locked.
2263 * => if map is read-locked, any operations which may cause map to
2264 * be write-locked in uvm_fault() must be taken care of by
2265 * the caller. See uvm_map_pageable().
2266 */
2267
2268 int
2269 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2270 vm_prot_t access_type, int maxprot)
2271 {
2272 vaddr_t va;
2273 int error;
2274
2275 /*
2276 * now fault it in a page at a time. if the fault fails then we have
2277 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2278 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2279 */
2280
2281 /*
2282 * XXX work around overflowing a vaddr_t. this prevents us from
2283 * wiring the last page in the address space, though.
2284 */
2285 if (start > end) {
2286 return EFAULT;
2287 }
2288
2289 for (va = start; va < end; va += PAGE_SIZE) {
2290 error = uvm_fault_internal(map, va, access_type,
2291 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2292 if (error) {
2293 if (va != start) {
2294 uvm_fault_unwire(map, start, va);
2295 }
2296 return error;
2297 }
2298 }
2299 return 0;
2300 }
2301
2302 /*
2303 * uvm_fault_unwire(): unwire range of virtual space.
2304 */
2305
2306 void
2307 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2308 {
2309 vm_map_lock_read(map);
2310 uvm_fault_unwire_locked(map, start, end);
2311 vm_map_unlock_read(map);
2312 }
2313
2314 /*
2315 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2316 *
2317 * => map must be at least read-locked.
2318 */
2319
2320 void
2321 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2322 {
2323 struct vm_map_entry *entry;
2324 pmap_t pmap = vm_map_pmap(map);
2325 vaddr_t va;
2326 paddr_t pa;
2327 struct vm_page *pg;
2328
2329 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2330
2331 /*
2332 * we assume that the area we are unwiring has actually been wired
2333 * in the first place. this means that we should be able to extract
2334 * the PAs from the pmap. we also lock out the page daemon so that
2335 * we can call uvm_pageunwire.
2336 */
2337
2338 mutex_enter(&uvm_pageqlock);
2339
2340 /*
2341 * find the beginning map entry for the region.
2342 */
2343
2344 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2345 if (uvm_map_lookup_entry(map, start, &entry) == false)
2346 panic("uvm_fault_unwire_locked: address not in map");
2347
2348 for (va = start; va < end; va += PAGE_SIZE) {
2349 if (pmap_extract(pmap, va, &pa) == false)
2350 continue;
2351
2352 /*
2353 * find the map entry for the current address.
2354 */
2355
2356 KASSERT(va >= entry->start);
2357 while (va >= entry->end) {
2358 KASSERT(entry->next != &map->header &&
2359 entry->next->start <= entry->end);
2360 entry = entry->next;
2361 }
2362
2363 /*
2364 * if the entry is no longer wired, tell the pmap.
2365 */
2366
2367 if (VM_MAPENT_ISWIRED(entry) == 0)
2368 pmap_unwire(pmap, va);
2369
2370 pg = PHYS_TO_VM_PAGE(pa);
2371 if (pg)
2372 uvm_pageunwire(pg);
2373 }
2374
2375 mutex_exit(&uvm_pageqlock);
2376 }
2377