uvm_fault.c revision 1.125.6.1.4.5 1 /* $NetBSD: uvm_fault.c,v 1.125.6.1.4.5 2012/04/12 01:40:27 matt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.125.6.1.4.5 2012/04/12 01:40:27 matt Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * we use alternative 2. given that we are multi-threaded now we may want
150 * to reconsider the choice.
151 */
152
153 /*
154 * local data structures
155 */
156
157 struct uvm_advice {
158 int advice;
159 int nback;
160 int nforw;
161 };
162
163 /*
164 * page range array:
165 * note: index in array must match "advice" value
166 * XXX: borrowed numbers from freebsd. do they work well for us?
167 */
168
169 static const struct uvm_advice uvmadvice[] = {
170 { MADV_NORMAL, 3, 4 },
171 { MADV_RANDOM, 0, 0 },
172 { MADV_SEQUENTIAL, 8, 7},
173 };
174
175 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
176
177 /*
178 * private prototypes
179 */
180
181 /*
182 * inline functions
183 */
184
185 /*
186 * uvmfault_anonflush: try and deactivate pages in specified anons
187 *
188 * => does not have to deactivate page if it is busy
189 */
190
191 static inline void
192 uvmfault_anonflush(struct vm_anon **anons, int n)
193 {
194 int lcv;
195 struct vm_page *pg;
196
197 for (lcv = 0 ; lcv < n ; lcv++) {
198 if (anons[lcv] == NULL)
199 continue;
200 mutex_enter(&anons[lcv]->an_lock);
201 pg = anons[lcv]->an_page;
202 if (pg && (pg->flags & PG_BUSY) == 0) {
203 mutex_enter(&uvm_pageqlock);
204 if (pg->wire_count == 0) {
205 uvm_pagedeactivate(pg);
206 }
207 mutex_exit(&uvm_pageqlock);
208 }
209 mutex_exit(&anons[lcv]->an_lock);
210 }
211 }
212
213 /*
214 * normal functions
215 */
216
217 /*
218 * uvmfault_amapcopy: clear "needs_copy" in a map.
219 *
220 * => called with VM data structures unlocked (usually, see below)
221 * => we get a write lock on the maps and clear needs_copy for a VA
222 * => if we are out of RAM we sleep (waiting for more)
223 */
224
225 static void
226 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
227 {
228 for (;;) {
229
230 /*
231 * no mapping? give up.
232 */
233
234 if (uvmfault_lookup(ufi, true) == false)
235 return;
236
237 /*
238 * copy if needed.
239 */
240
241 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
242 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
243 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
244
245 /*
246 * didn't work? must be out of RAM. unlock and sleep.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
250 uvmfault_unlockmaps(ufi, true);
251 uvm_wait("fltamapcopy");
252 continue;
253 }
254
255 /*
256 * got it! unlock and return.
257 */
258
259 uvmfault_unlockmaps(ufi, true);
260 return;
261 }
262 /*NOTREACHED*/
263 }
264
265 /*
266 * uvmfault_anonget: get data in an anon into a non-busy, non-released
267 * page in that anon.
268 *
269 * => maps, amap, and anon locked by caller.
270 * => if we fail (result != 0) we unlock everything.
271 * => if we are successful, we return with everything still locked.
272 * => we don't move the page on the queues [gets moved later]
273 * => if we allocate a new page [we_own], it gets put on the queues.
274 * either way, the result is that the page is on the queues at return time
275 * => for pages which are on loan from a uvm_object (and thus are not
276 * owned by the anon): if successful, we return with the owning object
277 * locked. the caller must unlock this object when it unlocks everything
278 * else.
279 */
280
281 int
282 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
283 struct vm_anon *anon)
284 {
285 bool we_own; /* we own anon's page? */
286 bool locked; /* did we relock? */
287 struct vm_page *pg;
288 int error;
289 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
290
291 KASSERT(mutex_owned(&anon->an_lock));
292
293 error = 0;
294 uvmexp.fltanget++;
295 /* bump rusage counters */
296 if (anon->an_page)
297 curlwp->l_ru.ru_minflt++;
298 else
299 curlwp->l_ru.ru_majflt++;
300
301 /*
302 * loop until we get it, or fail.
303 */
304
305 for (;;) {
306 we_own = false; /* true if we set PG_BUSY on a page */
307 pg = anon->an_page;
308
309 /*
310 * if there is a resident page and it is loaned, then anon
311 * may not own it. call out to uvm_anon_lockpage() to ensure
312 * the real owner of the page has been identified and locked.
313 */
314
315 if (pg && pg->loan_count)
316 pg = uvm_anon_lockloanpg(anon);
317
318 /*
319 * page there? make sure it is not busy/released.
320 */
321
322 if (pg) {
323
324 /*
325 * at this point, if the page has a uobject [meaning
326 * we have it on loan], then that uobject is locked
327 * by us! if the page is busy, we drop all the
328 * locks (including uobject) and try again.
329 */
330
331 if ((pg->flags & PG_BUSY) == 0) {
332 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
333 return (0);
334 }
335 pg->flags |= PG_WANTED;
336 uvmexp.fltpgwait++;
337
338 /*
339 * the last unlock must be an atomic unlock+wait on
340 * the owner of page
341 */
342
343 if (pg->uobject) { /* owner is uobject ? */
344 uvmfault_unlockall(ufi, amap, NULL, anon);
345 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
346 0,0,0);
347 UVM_UNLOCK_AND_WAIT(pg,
348 &pg->uobject->vmobjlock,
349 false, "anonget1",0);
350 } else {
351 /* anon owns page */
352 uvmfault_unlockall(ufi, amap, NULL, NULL);
353 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
354 0,0,0);
355 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
356 "anonget2",0);
357 }
358 } else {
359 #if defined(VMSWAP)
360
361 /*
362 * no page, we must try and bring it in.
363 */
364 KASSERT(ufi != NULL);
365 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr,
366 NULL, UVM_FLAG_COLORMATCH);
367 if (pg == NULL) { /* out of RAM. */
368 uvmfault_unlockall(ufi, amap, NULL, anon);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable(atop(ufi->orig_rvaddr),
373 false)) {
374 return ENOMEM;
375 }
376 uvm_wait("flt_noram1");
377 } else {
378 /* we set the PG_BUSY bit */
379 we_own = true;
380 uvmfault_unlockall(ufi, amap, NULL, anon);
381
382 /*
383 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
384 * page into the uvm_swap_get function with
385 * all data structures unlocked. note that
386 * it is ok to read an_swslot here because
387 * we hold PG_BUSY on the page.
388 */
389 uvmexp.pageins++;
390 error = uvm_swap_get(pg, anon->an_swslot,
391 PGO_SYNCIO);
392
393 /*
394 * we clean up after the i/o below in the
395 * "we_own" case
396 */
397 }
398 #else /* defined(VMSWAP) */
399 panic("%s: no page", __func__);
400 #endif /* defined(VMSWAP) */
401 }
402
403 /*
404 * now relock and try again
405 */
406
407 locked = uvmfault_relock(ufi);
408 if (locked && amap != NULL) {
409 amap_lock(amap);
410 }
411 if (locked || we_own)
412 mutex_enter(&anon->an_lock);
413
414 /*
415 * if we own the page (i.e. we set PG_BUSY), then we need
416 * to clean up after the I/O. there are three cases to
417 * consider:
418 * [1] page released during I/O: free anon and ReFault.
419 * [2] I/O not OK. free the page and cause the fault
420 * to fail.
421 * [3] I/O OK! activate the page and sync with the
422 * non-we_own case (i.e. drop anon lock if not locked).
423 */
424
425 if (we_own) {
426 #if defined(VMSWAP)
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431
432 /*
433 * remove the swap slot from the anon
434 * and mark the anon as having no real slot.
435 * don't free the swap slot, thus preventing
436 * it from being used again.
437 */
438
439 if (anon->an_swslot > 0)
440 uvm_swap_markbad(anon->an_swslot, 1);
441 anon->an_swslot = SWSLOT_BAD;
442
443 if ((pg->flags & PG_RELEASED) != 0)
444 goto released;
445
446 /*
447 * note: page was never !PG_BUSY, so it
448 * can't be mapped and thus no need to
449 * pmap_page_protect it...
450 */
451
452 mutex_enter(&uvm_pageqlock);
453 uvm_pagefree(pg);
454 mutex_exit(&uvm_pageqlock);
455
456 if (locked)
457 uvmfault_unlockall(ufi, amap, NULL,
458 anon);
459 else
460 mutex_exit(&anon->an_lock);
461 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
462 return error;
463 }
464
465 if ((pg->flags & PG_RELEASED) != 0) {
466 released:
467 KASSERT(anon->an_ref == 0);
468
469 /*
470 * released while we unlocked amap.
471 */
472
473 if (locked)
474 uvmfault_unlockall(ufi, amap, NULL,
475 NULL);
476
477 uvm_anon_release(anon);
478
479 if (error) {
480 UVMHIST_LOG(maphist,
481 "<- ERROR/RELEASED", 0,0,0,0);
482 return error;
483 }
484
485 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
486 return ERESTART;
487 }
488
489 /*
490 * we've successfully read the page, activate it.
491 */
492
493 mutex_enter(&uvm_pageqlock);
494 uvm_pageactivate(pg);
495 mutex_exit(&uvm_pageqlock);
496 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
497 UVM_PAGE_OWN(pg, NULL, NULL);
498 if (!locked)
499 mutex_exit(&anon->an_lock);
500 #else /* defined(VMSWAP) */
501 panic("%s: we_own", __func__);
502 #endif /* defined(VMSWAP) */
503 }
504
505 /*
506 * we were not able to relock. restart fault.
507 */
508
509 if (!locked) {
510 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
511 return (ERESTART);
512 }
513
514 /*
515 * verify no one has touched the amap and moved the anon on us.
516 */
517
518 if (ufi != NULL &&
519 amap_lookup(&ufi->entry->aref,
520 ufi->orig_rvaddr - ufi->entry->start) != anon) {
521
522 uvmfault_unlockall(ufi, amap, NULL, anon);
523 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
524 return (ERESTART);
525 }
526
527 /*
528 * try it again!
529 */
530
531 uvmexp.fltanretry++;
532 continue;
533 }
534 /*NOTREACHED*/
535 }
536
537 /*
538 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
539 *
540 * 1. allocate an anon and a page.
541 * 2. fill its contents.
542 * 3. put it into amap.
543 *
544 * => if we fail (result != 0) we unlock everything.
545 * => on success, return a new locked anon via 'nanon'.
546 * (*nanon)->an_page will be a resident, locked, dirty page.
547 */
548
549 static int
550 uvmfault_promote(struct uvm_faultinfo *ufi,
551 struct vm_anon *oanon,
552 struct vm_page *uobjpage,
553 struct vm_anon **nanon, /* OUT: allocated anon */
554 struct vm_anon **spare)
555 {
556 struct vm_amap *amap = ufi->entry->aref.ar_amap;
557 struct uvm_object *uobj;
558 struct vm_anon *anon;
559 struct vm_page *pg;
560 struct vm_page *opg;
561 int error;
562 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
563
564 if (oanon) {
565 /* anon COW */
566 opg = oanon->an_page;
567 KASSERT(opg != NULL);
568 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
569 } else if (uobjpage != PGO_DONTCARE) {
570 /* object-backed COW */
571 opg = uobjpage;
572 } else {
573 /* ZFOD */
574 opg = NULL;
575 }
576 if (opg != NULL) {
577 uobj = opg->uobject;
578 } else {
579 uobj = NULL;
580 }
581
582 KASSERT(amap != NULL);
583 KASSERT(uobjpage != NULL);
584 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
585 KASSERT(mutex_owned(&amap->am_l));
586 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
587 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
588 #if 0
589 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
590 #endif
591
592 if (*spare != NULL) {
593 anon = *spare;
594 *spare = NULL;
595 mutex_enter(&anon->an_lock);
596 } else if (ufi->map != kernel_map) {
597 anon = uvm_analloc();
598 } else {
599 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
600
601 /*
602 * we can't allocate anons with kernel_map locked.
603 */
604
605 uvm_page_unbusy(&uobjpage, 1);
606 uvmfault_unlockall(ufi, amap, uobj, oanon);
607
608 *spare = uvm_analloc();
609 if (*spare == NULL) {
610 goto nomem;
611 }
612 mutex_exit(&(*spare)->an_lock);
613 error = ERESTART;
614 goto done;
615 }
616 if (anon) {
617
618 /*
619 * The new anon is locked.
620 *
621 * if opg == NULL, we want a zero'd, dirty page,
622 * so have uvm_pagealloc() do that for us.
623 */
624
625 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
626 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
627 } else {
628 pg = NULL;
629 }
630
631 /*
632 * out of memory resources?
633 */
634
635 if (pg == NULL) {
636 /* save anon for the next try. */
637 if (anon != NULL) {
638 mutex_exit(&anon->an_lock);
639 *spare = anon;
640 }
641
642 /* unlock and fail ... */
643 uvm_page_unbusy(&uobjpage, 1);
644 uvmfault_unlockall(ufi, amap, uobj, oanon);
645 nomem:
646 if (!uvm_reclaimable(atop(ufi->orig_rvaddr), false)) {
647 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
648 uvmexp.fltnoanon++;
649 error = ENOMEM;
650 goto done;
651 }
652
653 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
654 uvmexp.fltnoram++;
655 uvm_wait("flt_noram5");
656 error = ERESTART;
657 goto done;
658 }
659
660 /* copy page [pg now dirty] */
661 if (opg) {
662 uvm_pagecopy(opg, pg);
663 }
664
665 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
666 oanon != NULL);
667
668 *nanon = anon;
669 error = 0;
670 done:
671 return error;
672 }
673
674
675 /*
676 * F A U L T - m a i n e n t r y p o i n t
677 */
678
679 /*
680 * uvm_fault: page fault handler
681 *
682 * => called from MD code to resolve a page fault
683 * => VM data structures usually should be unlocked. however, it is
684 * possible to call here with the main map locked if the caller
685 * gets a write lock, sets it recusive, and then calls us (c.f.
686 * uvm_map_pageable). this should be avoided because it keeps
687 * the map locked off during I/O.
688 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
689 */
690
691 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
692 ~VM_PROT_WRITE : VM_PROT_ALL)
693
694 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
695 #define UVM_FAULT_WIRE 1
696 #define UVM_FAULT_WIREMAX 2
697
698 int
699 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
700 vm_prot_t access_type, int fault_flag)
701 {
702 struct uvm_faultinfo ufi;
703 vm_prot_t enter_prot, check_prot;
704 bool wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
705 int npages, nback, nforw, centeridx, error, lcv, gotpages;
706 vaddr_t startva, currva;
707 voff_t uoff;
708 struct vm_amap *amap;
709 struct uvm_object *uobj;
710 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
711 struct vm_anon *anon_spare;
712 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
713 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
714
715 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
716 orig_map, vaddr, access_type, fault_flag);
717
718 anon = anon_spare = NULL;
719 pg = NULL;
720
721 uvmexp.faults++; /* XXX: locking? */
722
723 /*
724 * init the IN parameters in the ufi
725 */
726
727 ufi.orig_map = orig_map;
728 ufi.orig_rvaddr = trunc_page(vaddr);
729 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
730 wire_fault = (fault_flag > 0);
731 if (wire_fault)
732 narrow = true; /* don't look for neighborhood
733 * pages on wire */
734 else
735 narrow = false; /* normal fault */
736
737 /*
738 * "goto ReFault" means restart the page fault from ground zero.
739 */
740 ReFault:
741
742 /*
743 * lookup and lock the maps
744 */
745
746 if (uvmfault_lookup(&ufi, false) == false) {
747 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
748 error = EFAULT;
749 goto done;
750 }
751 /* locked: maps(read) */
752
753 #ifdef DIAGNOSTIC
754 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
755 printf("Page fault on non-pageable map:\n");
756 printf("ufi.map = %p\n", ufi.map);
757 printf("ufi.orig_map = %p\n", ufi.orig_map);
758 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
759 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
760 }
761 #endif
762
763 /*
764 * check protection
765 */
766
767 check_prot = fault_flag == UVM_FAULT_WIREMAX ?
768 ufi.entry->max_protection : ufi.entry->protection;
769 if ((check_prot & access_type) != access_type) {
770 UVMHIST_LOG(maphist,
771 "<- protection failure (prot=0x%x, access=0x%x)",
772 ufi.entry->protection, access_type, 0, 0);
773 uvmfault_unlockmaps(&ufi, false);
774 error = EACCES;
775 goto done;
776 }
777
778 /*
779 * "enter_prot" is the protection we want to enter the page in at.
780 * for certain pages (e.g. copy-on-write pages) this protection can
781 * be more strict than ufi.entry->protection. "wired" means either
782 * the entry is wired or we are fault-wiring the pg.
783 */
784
785 enter_prot = ufi.entry->protection;
786 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
787 if (wired) {
788 access_type = enter_prot; /* full access for wired */
789 cow_now = (check_prot & VM_PROT_WRITE) != 0;
790 } else {
791 cow_now = (access_type & VM_PROT_WRITE) != 0;
792 }
793
794 /*
795 * handle "needs_copy" case. if we need to copy the amap we will
796 * have to drop our readlock and relock it with a write lock. (we
797 * need a write lock to change anything in a map entry [e.g.
798 * needs_copy]).
799 */
800
801 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
802 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
803 KASSERT(fault_flag != UVM_FAULT_WIREMAX);
804 /* need to clear */
805 UVMHIST_LOG(maphist,
806 " need to clear needs_copy and refault",0,0,0,0);
807 uvmfault_unlockmaps(&ufi, false);
808 uvmfault_amapcopy(&ufi);
809 uvmexp.fltamcopy++;
810 goto ReFault;
811
812 } else {
813
814 /*
815 * ensure that we pmap_enter page R/O since
816 * needs_copy is still true
817 */
818
819 enter_prot &= ~VM_PROT_WRITE;
820 }
821 }
822
823 /*
824 * identify the players
825 */
826
827 amap = ufi.entry->aref.ar_amap; /* top layer */
828 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
829
830 /*
831 * check for a case 0 fault. if nothing backing the entry then
832 * error now.
833 */
834
835 if (amap == NULL && uobj == NULL) {
836 uvmfault_unlockmaps(&ufi, false);
837 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
838 error = EFAULT;
839 goto done;
840 }
841
842 /*
843 * establish range of interest based on advice from mapper
844 * and then clip to fit map entry. note that we only want
845 * to do this the first time through the fault. if we
846 * ReFault we will disable this by setting "narrow" to true.
847 */
848
849 if (narrow == false) {
850
851 /* wide fault (!narrow) */
852 KASSERT(uvmadvice[ufi.entry->advice].advice ==
853 ufi.entry->advice);
854 nback = MIN(uvmadvice[ufi.entry->advice].nback,
855 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
856 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
857 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
858 ((ufi.entry->end - ufi.orig_rvaddr) >>
859 PAGE_SHIFT) - 1);
860 /*
861 * note: "-1" because we don't want to count the
862 * faulting page as forw
863 */
864 npages = nback + nforw + 1;
865 centeridx = nback;
866
867 narrow = true; /* ensure only once per-fault */
868
869 } else {
870
871 /* narrow fault! */
872 nback = nforw = 0;
873 startva = ufi.orig_rvaddr;
874 npages = 1;
875 centeridx = 0;
876
877 }
878
879 /* locked: maps(read) */
880 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
881 narrow, nback, nforw, startva);
882 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
883 amap, uobj, 0);
884
885 /*
886 * if we've got an amap, lock it and extract current anons.
887 */
888
889 if (amap) {
890 amap_lock(amap);
891 anons = anons_store;
892 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
893 anons, npages);
894 } else {
895 anons = NULL; /* to be safe */
896 }
897
898 /* locked: maps(read), amap(if there) */
899 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
900
901 /*
902 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
903 * now and then forget about them (for the rest of the fault).
904 */
905
906 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
907
908 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
909 0,0,0,0);
910 /* flush back-page anons? */
911 if (amap)
912 uvmfault_anonflush(anons, nback);
913
914 /* flush object? */
915 if (uobj) {
916 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
917 mutex_enter(&uobj->vmobjlock);
918 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
919 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
920 }
921
922 /* now forget about the backpages */
923 if (amap)
924 anons += nback;
925 startva += (nback << PAGE_SHIFT);
926 npages -= nback;
927 nback = centeridx = 0;
928 }
929
930 /* locked: maps(read), amap(if there) */
931 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
932
933 /*
934 * map in the backpages and frontpages we found in the amap in hopes
935 * of preventing future faults. we also init the pages[] array as
936 * we go.
937 */
938
939 currva = startva;
940 shadowed = false;
941 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
942
943 /*
944 * dont play with VAs that are already mapped
945 * except for center)
946 */
947 if (lcv != centeridx &&
948 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
949 pages[lcv] = PGO_DONTCARE;
950 continue;
951 }
952
953 /*
954 * unmapped or center page. check if any anon at this level.
955 */
956 if (amap == NULL || anons[lcv] == NULL) {
957 pages[lcv] = NULL;
958 continue;
959 }
960
961 /*
962 * check for present page and map if possible. re-activate it.
963 */
964
965 pages[lcv] = PGO_DONTCARE;
966 if (lcv == centeridx) { /* save center for later! */
967 shadowed = true;
968 continue;
969 }
970 anon = anons[lcv];
971 mutex_enter(&anon->an_lock);
972 /* ignore loaned pages */
973 if (anon->an_page && anon->an_page->loan_count == 0 &&
974 (anon->an_page->flags & PG_BUSY) == 0) {
975 mutex_enter(&uvm_pageqlock);
976 uvm_pageenqueue(anon->an_page);
977 mutex_exit(&uvm_pageqlock);
978 UVMHIST_LOG(maphist,
979 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
980 ufi.orig_map->pmap, currva, anon->an_page, 0);
981 uvmexp.fltnamap++;
982
983 /*
984 * Since this isn't the page that's actually faulting,
985 * ignore pmap_enter() failures; it's not critical
986 * that we enter these right now.
987 */
988
989 (void) pmap_enter(ufi.orig_map->pmap, currva,
990 VM_PAGE_TO_PHYS(anon->an_page),
991 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
992 enter_prot,
993 PMAP_CANFAIL |
994 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
995 }
996 pmap_update(ufi.orig_map->pmap);
997 mutex_exit(&anon->an_lock);
998 }
999
1000 /* locked: maps(read), amap(if there) */
1001 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1002 /* (shadowed == true) if there is an anon at the faulting address */
1003 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1004 (uobj && shadowed == false),0,0);
1005
1006 /*
1007 * note that if we are really short of RAM we could sleep in the above
1008 * call to pmap_enter with everything locked. bad?
1009 *
1010 * XXX Actually, that is bad; pmap_enter() should just fail in that
1011 * XXX case. --thorpej
1012 */
1013
1014 /*
1015 * if the desired page is not shadowed by the amap and we have a
1016 * backing object, then we check to see if the backing object would
1017 * prefer to handle the fault itself (rather than letting us do it
1018 * with the usual pgo_get hook). the backing object signals this by
1019 * providing a pgo_fault routine.
1020 */
1021
1022 if (uobj && shadowed == false && uobj->pgops->pgo_fault != NULL) {
1023 mutex_enter(&uobj->vmobjlock);
1024 /* locked: maps(read), amap (if there), uobj */
1025 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1026 centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1027
1028 /* locked: nothing, pgo_fault has unlocked everything */
1029
1030 if (error == ERESTART)
1031 goto ReFault; /* try again! */
1032 /*
1033 * object fault routine responsible for pmap_update().
1034 */
1035 goto done;
1036 }
1037
1038 /*
1039 * now, if the desired page is not shadowed by the amap and we have
1040 * a backing object that does not have a special fault routine, then
1041 * we ask (with pgo_get) the object for resident pages that we care
1042 * about and attempt to map them in. we do not let pgo_get block
1043 * (PGO_LOCKED).
1044 */
1045
1046 if (uobj && shadowed == false) {
1047 mutex_enter(&uobj->vmobjlock);
1048 /* locked (!shadowed): maps(read), amap (if there), uobj */
1049 /*
1050 * the following call to pgo_get does _not_ change locking state
1051 */
1052
1053 uvmexp.fltlget++;
1054 gotpages = npages;
1055 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
1056 (startva - ufi.entry->start),
1057 pages, &gotpages, centeridx,
1058 access_type & MASK(ufi.entry),
1059 ufi.entry->advice, PGO_LOCKED);
1060
1061 /*
1062 * check for pages to map, if we got any
1063 */
1064
1065 uobjpage = NULL;
1066
1067 if (gotpages) {
1068 currva = startva;
1069 for (lcv = 0; lcv < npages;
1070 lcv++, currva += PAGE_SIZE) {
1071 struct vm_page *curpg;
1072 bool readonly;
1073
1074 curpg = pages[lcv];
1075 if (curpg == NULL || curpg == PGO_DONTCARE) {
1076 continue;
1077 }
1078 KASSERT(curpg->uobject == uobj);
1079
1080 /*
1081 * if center page is resident and not
1082 * PG_BUSY|PG_RELEASED then pgo_get
1083 * made it PG_BUSY for us and gave
1084 * us a handle to it. remember this
1085 * page as "uobjpage." (for later use).
1086 */
1087
1088 if (lcv == centeridx) {
1089 uobjpage = curpg;
1090 UVMHIST_LOG(maphist, " got uobjpage "
1091 "(0x%x) with locked get",
1092 uobjpage, 0,0,0);
1093 continue;
1094 }
1095
1096 /*
1097 * calling pgo_get with PGO_LOCKED returns us
1098 * pages which are neither busy nor released,
1099 * so we don't need to check for this.
1100 * we can just directly enter the pages.
1101 */
1102
1103 mutex_enter(&uvm_pageqlock);
1104 uvm_pageenqueue(curpg);
1105 mutex_exit(&uvm_pageqlock);
1106 UVMHIST_LOG(maphist,
1107 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1108 ufi.orig_map->pmap, currva, curpg, 0);
1109 uvmexp.fltnomap++;
1110
1111 /*
1112 * Since this page isn't the page that's
1113 * actually faulting, ignore pmap_enter()
1114 * failures; it's not critical that we
1115 * enter these right now.
1116 */
1117 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1118 KASSERT((curpg->flags & PG_RELEASED) == 0);
1119 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1120 (curpg->flags & PG_CLEAN) != 0);
1121 readonly = (curpg->flags & PG_RDONLY)
1122 || (curpg->loan_count > 0)
1123 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1124
1125 (void) pmap_enter(ufi.orig_map->pmap, currva,
1126 VM_PAGE_TO_PHYS(curpg),
1127 readonly ?
1128 enter_prot & ~VM_PROT_WRITE :
1129 enter_prot & MASK(ufi.entry),
1130 PMAP_CANFAIL |
1131 (wired ? PMAP_WIRED : 0));
1132
1133 /*
1134 * NOTE: page can't be PG_WANTED or PG_RELEASED
1135 * because we've held the lock the whole time
1136 * we've had the handle.
1137 */
1138 KASSERT((curpg->flags & PG_WANTED) == 0);
1139 KASSERT((curpg->flags & PG_RELEASED) == 0);
1140
1141 curpg->flags &= ~(PG_BUSY);
1142 UVM_PAGE_OWN(curpg, NULL, NULL);
1143 }
1144 pmap_update(ufi.orig_map->pmap);
1145 }
1146 } else {
1147 uobjpage = NULL;
1148 }
1149
1150 /* locked (shadowed): maps(read), amap */
1151 /* locked (!shadowed): maps(read), amap(if there),
1152 uobj(if !null), uobjpage(if !null) */
1153 if (shadowed) {
1154 KASSERT(mutex_owned(&amap->am_l));
1155 } else {
1156 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1157 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1158 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1159 }
1160
1161 /*
1162 * note that at this point we are done with any front or back pages.
1163 * we are now going to focus on the center page (i.e. the one we've
1164 * faulted on). if we have faulted on the top (anon) layer
1165 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1166 * not touched it yet). if we have faulted on the bottom (uobj)
1167 * layer [i.e. case 2] and the page was both present and available,
1168 * then we've got a pointer to it as "uobjpage" and we've already
1169 * made it BUSY.
1170 */
1171
1172 /*
1173 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1174 */
1175
1176 /*
1177 * redirect case 2: if we are not shadowed, go to case 2.
1178 */
1179
1180 if (shadowed == false)
1181 goto Case2;
1182
1183 /* locked: maps(read), amap */
1184
1185 /*
1186 * handle case 1: fault on an anon in our amap
1187 */
1188
1189 anon = anons[centeridx];
1190 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1191 mutex_enter(&anon->an_lock);
1192
1193 /* locked: maps(read), amap, anon */
1194 KASSERT(mutex_owned(&amap->am_l));
1195 KASSERT(mutex_owned(&anon->an_lock));
1196
1197 /*
1198 * no matter if we have case 1A or case 1B we are going to need to
1199 * have the anon's memory resident. ensure that now.
1200 */
1201
1202 /*
1203 * let uvmfault_anonget do the dirty work.
1204 * if it fails (!OK) it will unlock everything for us.
1205 * if it succeeds, locks are still valid and locked.
1206 * also, if it is OK, then the anon's page is on the queues.
1207 * if the page is on loan from a uvm_object, then anonget will
1208 * lock that object for us if it does not fail.
1209 */
1210
1211 error = uvmfault_anonget(&ufi, amap, anon);
1212 switch (error) {
1213 case 0:
1214 break;
1215
1216 case ERESTART:
1217 goto ReFault;
1218
1219 case EAGAIN:
1220 tsleep(&lbolt, PVM, "fltagain1", 0);
1221 goto ReFault;
1222
1223 default:
1224 goto done;
1225 }
1226
1227 /*
1228 * uobj is non null if the page is on loan from an object (i.e. uobj)
1229 */
1230
1231 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1232
1233 /* locked: maps(read), amap, anon, uobj(if one) */
1234 KASSERT(mutex_owned(&amap->am_l));
1235 KASSERT(mutex_owned(&anon->an_lock));
1236 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1237
1238 /*
1239 * special handling for loaned pages
1240 */
1241
1242 if (anon->an_page->loan_count) {
1243
1244 if (!cow_now) {
1245
1246 /*
1247 * for read faults on loaned pages we just cap the
1248 * protection at read-only.
1249 */
1250
1251 enter_prot = enter_prot & ~VM_PROT_WRITE;
1252
1253 } else {
1254 /*
1255 * note that we can't allow writes into a loaned page!
1256 *
1257 * if we have a write fault on a loaned page in an
1258 * anon then we need to look at the anon's ref count.
1259 * if it is greater than one then we are going to do
1260 * a normal copy-on-write fault into a new anon (this
1261 * is not a problem). however, if the reference count
1262 * is one (a case where we would normally allow a
1263 * write directly to the page) then we need to kill
1264 * the loan before we continue.
1265 */
1266
1267 /* >1 case is already ok */
1268 if (anon->an_ref == 1) {
1269
1270 /* get new un-owned replacement page */
1271 pg = uvm_pagealloc(NULL, ufi.orig_rvaddr,
1272 NULL, UVM_FLAG_COLORMATCH);
1273 if (pg == NULL) {
1274 uvmfault_unlockall(&ufi, amap, uobj,
1275 anon);
1276 uvm_wait("flt_noram2");
1277 goto ReFault;
1278 }
1279
1280 /*
1281 * copy data, kill loan, and drop uobj lock
1282 * (if any)
1283 */
1284 /* copy old -> new */
1285 uvm_pagecopy(anon->an_page, pg);
1286
1287 /* force reload */
1288 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1289 mutex_enter(&uvm_pageqlock); /* KILL loan */
1290
1291 anon->an_page->uanon = NULL;
1292 /* in case we owned */
1293 anon->an_page->pqflags &= ~PQ_ANON;
1294
1295 if (uobj) {
1296 /* if we were receiver of loan */
1297 anon->an_page->loan_count--;
1298 } else {
1299 /*
1300 * we were the lender (A->K); need
1301 * to remove the page from pageq's.
1302 */
1303 uvm_pagedequeue(anon->an_page);
1304 }
1305
1306 if (uobj) {
1307 mutex_exit(&uobj->vmobjlock);
1308 uobj = NULL;
1309 }
1310
1311 /* install new page in anon */
1312 anon->an_page = pg;
1313 pg->uanon = anon;
1314 pg->pqflags |= PQ_ANON;
1315
1316 uvm_pageactivate(pg);
1317 mutex_exit(&uvm_pageqlock);
1318
1319 pg->flags &= ~(PG_BUSY|PG_FAKE);
1320 UVM_PAGE_OWN(pg, NULL, NULL);
1321
1322 /* done! */
1323 } /* ref == 1 */
1324 } /* write fault */
1325 } /* loan count */
1326
1327 /*
1328 * if we are case 1B then we will need to allocate a new blank
1329 * anon to transfer the data into. note that we have a lock
1330 * on anon, so no one can busy or release the page until we are done.
1331 * also note that the ref count can't drop to zero here because
1332 * it is > 1 and we are only dropping one ref.
1333 *
1334 * in the (hopefully very rare) case that we are out of RAM we
1335 * will unlock, wait for more RAM, and refault.
1336 *
1337 * if we are out of anon VM we kill the process (XXX: could wait?).
1338 */
1339
1340 if (cow_now && anon->an_ref > 1) {
1341
1342 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1343 uvmexp.flt_acow++;
1344 oanon = anon; /* oanon = old, locked anon */
1345
1346 error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1347 &anon, &anon_spare);
1348 switch (error) {
1349 case 0:
1350 break;
1351 case ERESTART:
1352 goto ReFault;
1353 default:
1354 goto done;
1355 }
1356
1357 pg = anon->an_page;
1358 mutex_enter(&uvm_pageqlock);
1359 uvm_pageactivate(pg);
1360 mutex_exit(&uvm_pageqlock);
1361 pg->flags &= ~(PG_BUSY|PG_FAKE);
1362 UVM_PAGE_OWN(pg, NULL, NULL);
1363
1364 /* deref: can not drop to zero here by defn! */
1365 oanon->an_ref--;
1366
1367 /*
1368 * note: oanon is still locked, as is the new anon. we
1369 * need to check for this later when we unlock oanon; if
1370 * oanon != anon, we'll have to unlock anon, too.
1371 */
1372
1373 } else {
1374
1375 uvmexp.flt_anon++;
1376 oanon = anon; /* old, locked anon is same as anon */
1377 pg = anon->an_page;
1378 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1379 enter_prot = enter_prot & ~VM_PROT_WRITE;
1380
1381 }
1382
1383 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1384 KASSERT(mutex_owned(&amap->am_l));
1385 KASSERT(mutex_owned(&anon->an_lock));
1386 KASSERT(mutex_owned(&oanon->an_lock));
1387
1388 /*
1389 * now map the page in.
1390 */
1391
1392 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1393 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1394 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1395 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1396 != 0) {
1397
1398 /*
1399 * No need to undo what we did; we can simply think of
1400 * this as the pmap throwing away the mapping information.
1401 *
1402 * We do, however, have to go through the ReFault path,
1403 * as the map may change while we're asleep.
1404 */
1405
1406 if (anon != oanon)
1407 mutex_exit(&anon->an_lock);
1408 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1409 if (!uvm_reclaimable(atop(ufi.orig_rvaddr), false)) {
1410 UVMHIST_LOG(maphist,
1411 "<- failed. out of VM",0,0,0,0);
1412 /* XXX instrumentation */
1413 error = ENOMEM;
1414 goto done;
1415 }
1416 /* XXX instrumentation */
1417 uvm_wait("flt_pmfail1");
1418 goto ReFault;
1419 }
1420
1421 /*
1422 * ... update the page queues.
1423 */
1424
1425 mutex_enter(&uvm_pageqlock);
1426 if (wire_fault) {
1427 uvm_pagewire(pg);
1428
1429 /*
1430 * since the now-wired page cannot be paged out,
1431 * release its swap resources for others to use.
1432 * since an anon with no swap cannot be PG_CLEAN,
1433 * clear its clean flag now.
1434 */
1435
1436 pg->flags &= ~(PG_CLEAN);
1437 uvm_anon_dropswap(anon);
1438 } else {
1439 uvm_pageactivate(pg);
1440 }
1441 mutex_exit(&uvm_pageqlock);
1442
1443 /*
1444 * done case 1! finish up by unlocking everything and returning success
1445 */
1446
1447 if (anon != oanon)
1448 mutex_exit(&anon->an_lock);
1449 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1450 pmap_update(ufi.orig_map->pmap);
1451 error = 0;
1452 goto done;
1453
1454 Case2:
1455 /*
1456 * handle case 2: faulting on backing object or zero fill
1457 */
1458
1459 /*
1460 * locked:
1461 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1462 */
1463 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1464 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1465 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1466
1467 /*
1468 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1469 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1470 * have a backing object, check and see if we are going to promote
1471 * the data up to an anon during the fault.
1472 */
1473
1474 if (uobj == NULL) {
1475 uobjpage = PGO_DONTCARE;
1476 promote = true; /* always need anon here */
1477 } else {
1478 KASSERT(uobjpage != PGO_DONTCARE);
1479 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1480 }
1481 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1482 promote, (uobj == NULL), 0,0);
1483
1484 /*
1485 * if uobjpage is not null then we do not need to do I/O to get the
1486 * uobjpage.
1487 *
1488 * if uobjpage is null, then we need to unlock and ask the pager to
1489 * get the data for us. once we have the data, we need to reverify
1490 * the state the world. we are currently not holding any resources.
1491 */
1492
1493 if (uobjpage) {
1494 /* update rusage counters */
1495 curlwp->l_ru.ru_minflt++;
1496 } else {
1497 /* update rusage counters */
1498 curlwp->l_ru.ru_majflt++;
1499
1500 /* locked: maps(read), amap(if there), uobj */
1501 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1502 /* locked: uobj */
1503
1504 uvmexp.fltget++;
1505 gotpages = 1;
1506 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1507 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1508 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1509 PGO_SYNCIO);
1510 /* locked: uobjpage(if no error) */
1511 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1512
1513 /*
1514 * recover from I/O
1515 */
1516
1517 if (error) {
1518 if (error == EAGAIN) {
1519 UVMHIST_LOG(maphist,
1520 " pgo_get says TRY AGAIN!",0,0,0,0);
1521 tsleep(&lbolt, PVM, "fltagain2", 0);
1522 goto ReFault;
1523 }
1524
1525 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1526 error, 0,0,0);
1527 goto done;
1528 }
1529
1530 /* locked: uobjpage */
1531
1532 mutex_enter(&uvm_pageqlock);
1533 uvm_pageactivate(uobjpage);
1534 mutex_exit(&uvm_pageqlock);
1535
1536 /*
1537 * re-verify the state of the world by first trying to relock
1538 * the maps. always relock the object.
1539 */
1540
1541 locked = uvmfault_relock(&ufi);
1542 if (locked && amap)
1543 amap_lock(amap);
1544 uobj = uobjpage->uobject;
1545 mutex_enter(&uobj->vmobjlock);
1546
1547 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1548 /* locked(!locked): uobj, uobjpage */
1549
1550 /*
1551 * verify that the page has not be released and re-verify
1552 * that amap slot is still free. if there is a problem,
1553 * we unlock and clean up.
1554 */
1555
1556 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1557 (locked && amap &&
1558 amap_lookup(&ufi.entry->aref,
1559 ufi.orig_rvaddr - ufi.entry->start))) {
1560 if (locked)
1561 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1562 locked = false;
1563 }
1564
1565 /*
1566 * didn't get the lock? release the page and retry.
1567 */
1568
1569 if (locked == false) {
1570 UVMHIST_LOG(maphist,
1571 " wasn't able to relock after fault: retry",
1572 0,0,0,0);
1573 if (uobjpage->flags & PG_WANTED)
1574 wakeup(uobjpage);
1575 if (uobjpage->flags & PG_RELEASED) {
1576 uvmexp.fltpgrele++;
1577 uvm_pagefree(uobjpage);
1578 goto ReFault;
1579 }
1580 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1581 UVM_PAGE_OWN(uobjpage, NULL, NULL);
1582 mutex_exit(&uobj->vmobjlock);
1583 goto ReFault;
1584 }
1585
1586 /*
1587 * we have the data in uobjpage which is busy and
1588 * not released. we are holding object lock (so the page
1589 * can't be released on us).
1590 */
1591
1592 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1593 }
1594
1595 /*
1596 * locked:
1597 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1598 */
1599 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1600 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1601 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1602
1603 /*
1604 * notes:
1605 * - at this point uobjpage can not be NULL
1606 * - at this point uobjpage can not be PG_RELEASED (since we checked
1607 * for it above)
1608 * - at this point uobjpage could be PG_WANTED (handle later)
1609 */
1610
1611 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1612 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1613 (uobjpage->flags & PG_CLEAN) != 0);
1614 if (promote == false) {
1615
1616 /*
1617 * we are not promoting. if the mapping is COW ensure that we
1618 * don't give more access than we should (e.g. when doing a read
1619 * fault on a COPYONWRITE mapping we want to map the COW page in
1620 * R/O even though the entry protection could be R/W).
1621 *
1622 * set "pg" to the page we want to map in (uobjpage, usually)
1623 */
1624
1625 /* no anon in this case. */
1626 anon = NULL;
1627
1628 uvmexp.flt_obj++;
1629 if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1630 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1631 enter_prot &= ~VM_PROT_WRITE;
1632 pg = uobjpage; /* map in the actual object */
1633
1634 KASSERT(uobjpage != PGO_DONTCARE);
1635
1636 /*
1637 * we are faulting directly on the page. be careful
1638 * about writing to loaned pages...
1639 */
1640
1641 if (uobjpage->loan_count) {
1642 if (!cow_now) {
1643 /* read fault: cap the protection at readonly */
1644 /* cap! */
1645 enter_prot = enter_prot & ~VM_PROT_WRITE;
1646 } else {
1647 /* write fault: must break the loan here */
1648
1649 pg = uvm_loanbreak(uobjpage);
1650 if (pg == NULL) {
1651
1652 /*
1653 * drop ownership of page, it can't
1654 * be released
1655 */
1656
1657 if (uobjpage->flags & PG_WANTED)
1658 wakeup(uobjpage);
1659 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1660 UVM_PAGE_OWN(uobjpage, NULL, NULL);
1661
1662 uvmfault_unlockall(&ufi, amap, uobj,
1663 NULL);
1664 UVMHIST_LOG(maphist,
1665 " out of RAM breaking loan, waiting",
1666 0,0,0,0);
1667 uvmexp.fltnoram++;
1668 uvm_wait("flt_noram4");
1669 goto ReFault;
1670 }
1671 uobjpage = pg;
1672 }
1673 }
1674 } else {
1675
1676 /*
1677 * if we are going to promote the data to an anon we
1678 * allocate a blank anon here and plug it into our amap.
1679 */
1680 #if DIAGNOSTIC
1681 if (amap == NULL)
1682 panic("uvm_fault: want to promote data, but no anon");
1683 #endif
1684 error = uvmfault_promote(&ufi, NULL, uobjpage,
1685 &anon, &anon_spare);
1686 switch (error) {
1687 case 0:
1688 break;
1689 case ERESTART:
1690 goto ReFault;
1691 default:
1692 goto done;
1693 }
1694
1695 pg = anon->an_page;
1696
1697 /*
1698 * fill in the data
1699 */
1700
1701 if (uobjpage != PGO_DONTCARE) {
1702 uvmexp.flt_prcopy++;
1703
1704 /*
1705 * promote to shared amap? make sure all sharing
1706 * procs see it
1707 */
1708
1709 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1710 pmap_page_protect(uobjpage, VM_PROT_NONE);
1711 /*
1712 * XXX: PAGE MIGHT BE WIRED!
1713 */
1714 }
1715
1716 /*
1717 * dispose of uobjpage. it can't be PG_RELEASED
1718 * since we still hold the object lock.
1719 * drop handle to uobj as well.
1720 */
1721
1722 if (uobjpage->flags & PG_WANTED)
1723 /* still have the obj lock */
1724 wakeup(uobjpage);
1725 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1726 UVM_PAGE_OWN(uobjpage, NULL, NULL);
1727 mutex_exit(&uobj->vmobjlock);
1728 uobj = NULL;
1729
1730 UVMHIST_LOG(maphist,
1731 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1732 uobjpage, anon, pg, 0);
1733
1734 } else {
1735 uvmexp.flt_przero++;
1736
1737 /*
1738 * Page is zero'd and marked dirty by
1739 * uvmfault_promote().
1740 */
1741
1742 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1743 anon, pg, 0, 0);
1744 }
1745 }
1746
1747 /*
1748 * locked:
1749 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1750 * anon(if !null), pg(if anon)
1751 *
1752 * note: pg is either the uobjpage or the new page in the new anon
1753 */
1754 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1755 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1756 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1757 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1758 KASSERT((pg->flags & PG_BUSY) != 0);
1759
1760 /*
1761 * all resources are present. we can now map it in and free our
1762 * resources.
1763 */
1764
1765 UVMHIST_LOG(maphist,
1766 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1767 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1768 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1769 (pg->flags & PG_RDONLY) == 0);
1770 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1771 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1772 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1773
1774 /*
1775 * No need to undo what we did; we can simply think of
1776 * this as the pmap throwing away the mapping information.
1777 *
1778 * We do, however, have to go through the ReFault path,
1779 * as the map may change while we're asleep.
1780 */
1781
1782 if (pg->flags & PG_WANTED)
1783 wakeup(pg);
1784
1785 /*
1786 * note that pg can't be PG_RELEASED since we did not drop
1787 * the object lock since the last time we checked.
1788 */
1789 KASSERT((pg->flags & PG_RELEASED) == 0);
1790
1791 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1792 UVM_PAGE_OWN(pg, NULL, NULL);
1793 uvmfault_unlockall(&ufi, amap, uobj, anon);
1794 if (!uvm_reclaimable(atop(ufi.orig_rvaddr), false)) {
1795 UVMHIST_LOG(maphist,
1796 "<- failed. out of VM",0,0,0,0);
1797 /* XXX instrumentation */
1798 error = ENOMEM;
1799 goto done;
1800 }
1801 /* XXX instrumentation */
1802 uvm_wait("flt_pmfail2");
1803 goto ReFault;
1804 }
1805
1806 mutex_enter(&uvm_pageqlock);
1807 if (wire_fault) {
1808 uvm_pagewire(pg);
1809 if (pg->pqflags & PQ_AOBJ) {
1810
1811 /*
1812 * since the now-wired page cannot be paged out,
1813 * release its swap resources for others to use.
1814 * since an aobj page with no swap cannot be PG_CLEAN,
1815 * clear its clean flag now.
1816 */
1817
1818 KASSERT(uobj != NULL);
1819 pg->flags &= ~(PG_CLEAN);
1820 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1821 }
1822 } else {
1823 uvm_pageactivate(pg);
1824 }
1825 mutex_exit(&uvm_pageqlock);
1826 if (pg->flags & PG_WANTED)
1827 wakeup(pg);
1828
1829 /*
1830 * note that pg can't be PG_RELEASED since we did not drop the object
1831 * lock since the last time we checked.
1832 */
1833 KASSERT((pg->flags & PG_RELEASED) == 0);
1834
1835 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1836 UVM_PAGE_OWN(pg, NULL, NULL);
1837 uvmfault_unlockall(&ufi, amap, uobj, anon);
1838 pmap_update(ufi.orig_map->pmap);
1839 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1840 error = 0;
1841 done:
1842 if (anon_spare != NULL) {
1843 anon_spare->an_ref--;
1844 uvm_anfree(anon_spare);
1845 }
1846 return error;
1847 }
1848
1849
1850 /*
1851 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1852 *
1853 * => map may be read-locked by caller, but MUST NOT be write-locked.
1854 * => if map is read-locked, any operations which may cause map to
1855 * be write-locked in uvm_fault() must be taken care of by
1856 * the caller. See uvm_map_pageable().
1857 */
1858
1859 int
1860 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1861 vm_prot_t access_type, int wiremax)
1862 {
1863 vaddr_t va;
1864 int error;
1865
1866 /*
1867 * now fault it in a page at a time. if the fault fails then we have
1868 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1869 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1870 */
1871
1872 /*
1873 * XXX work around overflowing a vaddr_t. this prevents us from
1874 * wiring the last page in the address space, though.
1875 */
1876 if (start > end) {
1877 return EFAULT;
1878 }
1879
1880 for (va = start ; va < end ; va += PAGE_SIZE) {
1881 error = uvm_fault_internal(map, va, access_type,
1882 wiremax ? UVM_FAULT_WIREMAX : UVM_FAULT_WIRE);
1883 if (error) {
1884 if (va != start) {
1885 uvm_fault_unwire(map, start, va);
1886 }
1887 return error;
1888 }
1889 }
1890 return 0;
1891 }
1892
1893 /*
1894 * uvm_fault_unwire(): unwire range of virtual space.
1895 */
1896
1897 void
1898 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1899 {
1900 vm_map_lock_read(map);
1901 uvm_fault_unwire_locked(map, start, end);
1902 vm_map_unlock_read(map);
1903 }
1904
1905 /*
1906 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1907 *
1908 * => map must be at least read-locked.
1909 */
1910
1911 void
1912 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1913 {
1914 struct vm_map_entry *entry;
1915 pmap_t pmap = vm_map_pmap(map);
1916 vaddr_t va;
1917 paddr_t pa;
1918 struct vm_page *pg;
1919
1920 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1921
1922 /*
1923 * we assume that the area we are unwiring has actually been wired
1924 * in the first place. this means that we should be able to extract
1925 * the PAs from the pmap. we also lock out the page daemon so that
1926 * we can call uvm_pageunwire.
1927 */
1928
1929 mutex_enter(&uvm_pageqlock);
1930
1931 /*
1932 * find the beginning map entry for the region.
1933 */
1934
1935 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1936 if (uvm_map_lookup_entry(map, start, &entry) == false)
1937 panic("uvm_fault_unwire_locked: address not in map");
1938
1939 for (va = start; va < end; va += PAGE_SIZE) {
1940 if (pmap_extract(pmap, va, &pa) == false)
1941 continue;
1942
1943 /*
1944 * find the map entry for the current address.
1945 */
1946
1947 KASSERT(va >= entry->start);
1948 while (va >= entry->end) {
1949 KASSERT(entry->next != &map->header &&
1950 entry->next->start <= entry->end);
1951 entry = entry->next;
1952 }
1953
1954 /*
1955 * if the entry is no longer wired, tell the pmap.
1956 */
1957
1958 if (VM_MAPENT_ISWIRED(entry) == 0)
1959 pmap_unwire(pmap, va);
1960
1961 pg = PHYS_TO_VM_PAGE(pa);
1962 if (pg)
1963 uvm_pageunwire(pg);
1964 }
1965
1966 mutex_exit(&uvm_pageqlock);
1967 }
1968