uvm_fault.c revision 1.135 1 /* $NetBSD: uvm_fault.c,v 1.135 2010/01/31 07:46:03 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.135 2010/01/31 07:46:03 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 int
696 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
697 vm_prot_t access_type, int fault_flag)
698 {
699 struct uvm_faultinfo ufi;
700 vm_prot_t enter_prot, check_prot;
701 bool wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
702 int npages, nback, nforw, centeridx, error, lcv, gotpages;
703 vaddr_t startva, currva;
704 voff_t uoff;
705 struct vm_amap *amap;
706 struct uvm_object *uobj;
707 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
708 struct vm_anon *anon_spare;
709 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
710 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
711
712 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
713 orig_map, vaddr, access_type, fault_flag);
714
715 anon = anon_spare = NULL;
716 pg = NULL;
717
718 uvmexp.faults++; /* XXX: locking? */
719
720 /*
721 * init the IN parameters in the ufi
722 */
723
724 ufi.orig_map = orig_map;
725 ufi.orig_rvaddr = trunc_page(vaddr);
726 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
727 wire_fault = (fault_flag & UVM_FAULT_WIRE) != 0;
728 if (wire_fault)
729 narrow = true; /* don't look for neighborhood
730 * pages on wire */
731 else
732 narrow = false; /* normal fault */
733
734 /*
735 * "goto ReFault" means restart the page fault from ground zero.
736 */
737 ReFault:
738
739 /*
740 * lookup and lock the maps
741 */
742
743 if (uvmfault_lookup(&ufi, false) == false) {
744 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
745 error = EFAULT;
746 goto done;
747 }
748 /* locked: maps(read) */
749
750 #ifdef DIAGNOSTIC
751 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
752 printf("Page fault on non-pageable map:\n");
753 printf("ufi.map = %p\n", ufi.map);
754 printf("ufi.orig_map = %p\n", ufi.orig_map);
755 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
756 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
757 }
758 #endif
759
760 /*
761 * check protection
762 */
763
764 check_prot = (fault_flag & UVM_FAULT_MAXPROT) ?
765 ufi.entry->max_protection : ufi.entry->protection;
766 if ((check_prot & access_type) != access_type) {
767 UVMHIST_LOG(maphist,
768 "<- protection failure (prot=0x%x, access=0x%x)",
769 ufi.entry->protection, access_type, 0, 0);
770 uvmfault_unlockmaps(&ufi, false);
771 error = EACCES;
772 goto done;
773 }
774
775 /*
776 * "enter_prot" is the protection we want to enter the page in at.
777 * for certain pages (e.g. copy-on-write pages) this protection can
778 * be more strict than ufi.entry->protection. "wired" means either
779 * the entry is wired or we are fault-wiring the pg.
780 */
781
782 enter_prot = ufi.entry->protection;
783 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
784 if (wired) {
785 access_type = enter_prot; /* full access for wired */
786 cow_now = (check_prot & VM_PROT_WRITE) != 0;
787 } else {
788 cow_now = (access_type & VM_PROT_WRITE) != 0;
789 }
790
791 /*
792 * handle "needs_copy" case. if we need to copy the amap we will
793 * have to drop our readlock and relock it with a write lock. (we
794 * need a write lock to change anything in a map entry [e.g.
795 * needs_copy]).
796 */
797
798 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
799 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
800 KASSERT((fault_flag & UVM_FAULT_MAXPROT) == 0);
801 /* need to clear */
802 UVMHIST_LOG(maphist,
803 " need to clear needs_copy and refault",0,0,0,0);
804 uvmfault_unlockmaps(&ufi, false);
805 uvmfault_amapcopy(&ufi);
806 uvmexp.fltamcopy++;
807 goto ReFault;
808
809 } else {
810
811 /*
812 * ensure that we pmap_enter page R/O since
813 * needs_copy is still true
814 */
815
816 enter_prot &= ~VM_PROT_WRITE;
817 }
818 }
819
820 /*
821 * identify the players
822 */
823
824 amap = ufi.entry->aref.ar_amap; /* upper layer */
825 uobj = ufi.entry->object.uvm_obj; /* lower layer */
826
827 /*
828 * check for a case 0 fault. if nothing backing the entry then
829 * error now.
830 */
831
832 if (amap == NULL && uobj == NULL) {
833 uvmfault_unlockmaps(&ufi, false);
834 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
835 error = EFAULT;
836 goto done;
837 }
838
839 /*
840 * establish range of interest based on advice from mapper
841 * and then clip to fit map entry. note that we only want
842 * to do this the first time through the fault. if we
843 * ReFault we will disable this by setting "narrow" to true.
844 */
845
846 if (narrow == false) {
847
848 /* wide fault (!narrow) */
849 KASSERT(uvmadvice[ufi.entry->advice].advice ==
850 ufi.entry->advice);
851 nback = MIN(uvmadvice[ufi.entry->advice].nback,
852 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
853 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
854 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
855 ((ufi.entry->end - ufi.orig_rvaddr) >>
856 PAGE_SHIFT) - 1);
857 /*
858 * note: "-1" because we don't want to count the
859 * faulting page as forw
860 */
861 npages = nback + nforw + 1;
862 centeridx = nback;
863
864 narrow = true; /* ensure only once per-fault */
865
866 } else {
867
868 /* narrow fault! */
869 nback = nforw = 0;
870 startva = ufi.orig_rvaddr;
871 npages = 1;
872 centeridx = 0;
873
874 }
875 /* offset from entry's start to pgs' start */
876 voff_t eoff = startva - ufi.entry->start;
877
878 /* locked: maps(read) */
879 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
880 narrow, nback, nforw, startva);
881 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
882 amap, uobj, 0);
883
884 /*
885 * if we've got an amap, lock it and extract current anons.
886 */
887
888 if (amap) {
889 amap_lock(amap);
890 anons = anons_store;
891 amap_lookups(&ufi.entry->aref, eoff, anons, npages);
892 } else {
893 anons = NULL; /* to be safe */
894 }
895
896 /* locked: maps(read), amap(if there) */
897 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
898
899 /*
900 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
901 * now and then forget about them (for the rest of the fault).
902 */
903
904 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
905
906 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
907 0,0,0,0);
908 /* flush back-page anons? */
909 if (amap)
910 uvmfault_anonflush(anons, nback);
911
912 /* flush object? */
913 if (uobj) {
914 uoff = ufi.entry->offset + eoff;
915 mutex_enter(&uobj->vmobjlock);
916 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
917 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
918 }
919
920 /* now forget about the backpages */
921 if (amap)
922 anons += nback;
923 startva += (nback << PAGE_SHIFT);
924 npages -= nback;
925 nback = centeridx = 0;
926 eoff = startva - ufi.entry->start;
927 }
928
929 /* locked: maps(read), amap(if there) */
930 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
931
932 /*
933 * map in the backpages and frontpages we found in the amap in hopes
934 * of preventing future faults. we also init the pages[] array as
935 * we go.
936 */
937
938 currva = startva;
939 shadowed = false;
940 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
941
942 /*
943 * dont play with VAs that are already mapped
944 * except for center)
945 */
946 if (lcv != centeridx &&
947 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
948 pages[lcv] = PGO_DONTCARE;
949 continue;
950 }
951
952 /*
953 * unmapped or center page. check if any anon at this level.
954 */
955 if (amap == NULL || anons[lcv] == NULL) {
956 pages[lcv] = NULL;
957 continue;
958 }
959
960 /*
961 * check for present page and map if possible. re-activate it.
962 */
963
964 pages[lcv] = PGO_DONTCARE;
965 if (lcv == centeridx) { /* save center for later! */
966 shadowed = true;
967 continue;
968 }
969 anon = anons[lcv];
970 mutex_enter(&anon->an_lock);
971 /* ignore loaned pages */
972 if (anon->an_page && anon->an_page->loan_count == 0 &&
973 (anon->an_page->flags & PG_BUSY) == 0) {
974 mutex_enter(&uvm_pageqlock);
975 uvm_pageenqueue(anon->an_page);
976 mutex_exit(&uvm_pageqlock);
977 UVMHIST_LOG(maphist,
978 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
979 ufi.orig_map->pmap, currva, anon->an_page, 0);
980 uvmexp.fltnamap++;
981
982 /*
983 * Since this isn't the page that's actually faulting,
984 * ignore pmap_enter() failures; it's not critical
985 * that we enter these right now.
986 */
987
988 (void) pmap_enter(ufi.orig_map->pmap, currva,
989 VM_PAGE_TO_PHYS(anon->an_page),
990 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
991 enter_prot,
992 PMAP_CANFAIL |
993 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
994 }
995 pmap_update(ufi.orig_map->pmap);
996 mutex_exit(&anon->an_lock);
997 }
998
999 /* locked: maps(read), amap(if there) */
1000 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1001 /* (shadowed == true) if there is an anon at the faulting address */
1002 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1003 (uobj && shadowed == false),0,0);
1004
1005 /*
1006 * note that if we are really short of RAM we could sleep in the above
1007 * call to pmap_enter with everything locked. bad?
1008 *
1009 * XXX Actually, that is bad; pmap_enter() should just fail in that
1010 * XXX case. --thorpej
1011 */
1012
1013 if (shadowed == true)
1014 goto Case1;
1015
1016 /*
1017 * if the desired page is not shadowed by the amap and we have a
1018 * backing object, then we check to see if the backing object would
1019 * prefer to handle the fault itself (rather than letting us do it
1020 * with the usual pgo_get hook). the backing object signals this by
1021 * providing a pgo_fault routine.
1022 */
1023
1024 if (uobj && uobj->pgops->pgo_fault != NULL) {
1025 mutex_enter(&uobj->vmobjlock);
1026 /* locked: maps(read), amap (if there), uobj */
1027 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1028 centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1029
1030 /* locked: nothing, pgo_fault has unlocked everything */
1031
1032 if (error == ERESTART)
1033 goto ReFault; /* try again! */
1034 /*
1035 * object fault routine responsible for pmap_update().
1036 */
1037 goto done;
1038 }
1039
1040 /*
1041 * now, if the desired page is not shadowed by the amap and we have
1042 * a backing object that does not have a special fault routine, then
1043 * we ask (with pgo_get) the object for resident pages that we care
1044 * about and attempt to map them in. we do not let pgo_get block
1045 * (PGO_LOCKED).
1046 */
1047
1048 if (uobj == NULL) {
1049 /* zero fill; don't care neighbor pages */
1050 uobjpage = NULL;
1051 goto lower_fault_lookup_done;
1052 }
1053
1054 mutex_enter(&uobj->vmobjlock);
1055 /* locked (!shadowed): maps(read), amap (if there), uobj */
1056 /*
1057 * the following call to pgo_get does _not_ change locking state
1058 */
1059
1060 uvmexp.fltlget++;
1061 gotpages = npages;
1062 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset + eoff,
1063 pages, &gotpages, centeridx,
1064 access_type & MASK(ufi.entry),
1065 ufi.entry->advice, PGO_LOCKED);
1066
1067 /*
1068 * check for pages to map, if we got any
1069 */
1070
1071 uobjpage = NULL;
1072
1073 if (gotpages == 0)
1074 goto lower_fault_lookup_done;
1075
1076 currva = startva;
1077 for (lcv = 0; lcv < npages;
1078 lcv++, currva += PAGE_SIZE) {
1079 struct vm_page *curpg;
1080 bool readonly;
1081
1082 curpg = pages[lcv];
1083 if (curpg == NULL || curpg == PGO_DONTCARE) {
1084 continue;
1085 }
1086 KASSERT(curpg->uobject == uobj);
1087
1088 /*
1089 * if center page is resident and not
1090 * PG_BUSY|PG_RELEASED then pgo_get
1091 * made it PG_BUSY for us and gave
1092 * us a handle to it. remember this
1093 * page as "uobjpage." (for later use).
1094 */
1095
1096 if (lcv == centeridx) {
1097 uobjpage = curpg;
1098 UVMHIST_LOG(maphist, " got uobjpage "
1099 "(0x%x) with locked get",
1100 uobjpage, 0,0,0);
1101 continue;
1102 }
1103
1104 /*
1105 * calling pgo_get with PGO_LOCKED returns us
1106 * pages which are neither busy nor released,
1107 * so we don't need to check for this.
1108 * we can just directly enter the pages.
1109 */
1110
1111 mutex_enter(&uvm_pageqlock);
1112 uvm_pageenqueue(curpg);
1113 mutex_exit(&uvm_pageqlock);
1114 UVMHIST_LOG(maphist,
1115 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1116 ufi.orig_map->pmap, currva, curpg, 0);
1117 uvmexp.fltnomap++;
1118
1119 /*
1120 * Since this page isn't the page that's
1121 * actually faulting, ignore pmap_enter()
1122 * failures; it's not critical that we
1123 * enter these right now.
1124 */
1125 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1126 KASSERT((curpg->flags & PG_RELEASED) == 0);
1127 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1128 (curpg->flags & PG_CLEAN) != 0);
1129 readonly = (curpg->flags & PG_RDONLY)
1130 || (curpg->loan_count > 0)
1131 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1132
1133 (void) pmap_enter(ufi.orig_map->pmap, currva,
1134 VM_PAGE_TO_PHYS(curpg),
1135 readonly ?
1136 enter_prot & ~VM_PROT_WRITE :
1137 enter_prot & MASK(ufi.entry),
1138 PMAP_CANFAIL |
1139 (wired ? PMAP_WIRED : 0));
1140
1141 /*
1142 * NOTE: page can't be PG_WANTED or PG_RELEASED
1143 * because we've held the lock the whole time
1144 * we've had the handle.
1145 */
1146 KASSERT((curpg->flags & PG_WANTED) == 0);
1147 KASSERT((curpg->flags & PG_RELEASED) == 0);
1148
1149 curpg->flags &= ~(PG_BUSY);
1150 UVM_PAGE_OWN(curpg, NULL);
1151 }
1152 pmap_update(ufi.orig_map->pmap);
1153
1154 lower_fault_lookup_done:
1155 {}
1156
1157 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1158 KASSERT(!shadowed);
1159 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1160 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1161 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1162
1163 /*
1164 * note that at this point we are done with any front or back pages.
1165 * we are now going to focus on the center page (i.e. the one we've
1166 * faulted on). if we have faulted on the upper (anon) layer
1167 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1168 * not touched it yet). if we have faulted on the bottom (uobj)
1169 * layer [i.e. case 2] and the page was both present and available,
1170 * then we've got a pointer to it as "uobjpage" and we've already
1171 * made it BUSY.
1172 */
1173
1174 /*
1175 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1176 */
1177
1178 /*
1179 * redirect case 2: if we are not shadowed, go to case 2.
1180 */
1181
1182 goto Case2;
1183
1184 Case1:
1185 /* locked: maps(read), amap */
1186 KASSERT(mutex_owned(&amap->am_l));
1187
1188 /*
1189 * handle case 1: fault on an anon in our amap
1190 */
1191
1192 anon = anons[centeridx];
1193 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1194 mutex_enter(&anon->an_lock);
1195
1196 /* locked: maps(read), amap, anon */
1197 KASSERT(mutex_owned(&amap->am_l));
1198 KASSERT(mutex_owned(&anon->an_lock));
1199
1200 /*
1201 * no matter if we have case 1A or case 1B we are going to need to
1202 * have the anon's memory resident. ensure that now.
1203 */
1204
1205 /*
1206 * let uvmfault_anonget do the dirty work.
1207 * if it fails (!OK) it will unlock everything for us.
1208 * if it succeeds, locks are still valid and locked.
1209 * also, if it is OK, then the anon's page is on the queues.
1210 * if the page is on loan from a uvm_object, then anonget will
1211 * lock that object for us if it does not fail.
1212 */
1213
1214 error = uvmfault_anonget(&ufi, amap, anon);
1215 switch (error) {
1216 case 0:
1217 break;
1218
1219 case ERESTART:
1220 goto ReFault;
1221
1222 case EAGAIN:
1223 kpause("fltagain1", false, hz/2, NULL);
1224 goto ReFault;
1225
1226 default:
1227 goto done;
1228 }
1229
1230 /*
1231 * uobj is non null if the page is on loan from an object (i.e. uobj)
1232 */
1233
1234 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1235
1236 /* locked: maps(read), amap, anon, uobj(if one) */
1237 KASSERT(mutex_owned(&amap->am_l));
1238 KASSERT(mutex_owned(&anon->an_lock));
1239 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1240
1241 /*
1242 * special handling for loaned pages
1243 */
1244
1245 if (anon->an_page->loan_count) {
1246
1247 if (!cow_now) {
1248
1249 /*
1250 * for read faults on loaned pages we just cap the
1251 * protection at read-only.
1252 */
1253
1254 enter_prot = enter_prot & ~VM_PROT_WRITE;
1255
1256 } else {
1257 /*
1258 * note that we can't allow writes into a loaned page!
1259 *
1260 * if we have a write fault on a loaned page in an
1261 * anon then we need to look at the anon's ref count.
1262 * if it is greater than one then we are going to do
1263 * a normal copy-on-write fault into a new anon (this
1264 * is not a problem). however, if the reference count
1265 * is one (a case where we would normally allow a
1266 * write directly to the page) then we need to kill
1267 * the loan before we continue.
1268 */
1269
1270 /* >1 case is already ok */
1271 if (anon->an_ref == 1) {
1272
1273 /* get new un-owned replacement page */
1274 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1275 if (pg == NULL) {
1276 uvmfault_unlockall(&ufi, amap, uobj,
1277 anon);
1278 uvm_wait("flt_noram2");
1279 goto ReFault;
1280 }
1281
1282 /*
1283 * copy data, kill loan, and drop uobj lock
1284 * (if any)
1285 */
1286 /* copy old -> new */
1287 uvm_pagecopy(anon->an_page, pg);
1288
1289 /* force reload */
1290 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1291 mutex_enter(&uvm_pageqlock); /* KILL loan */
1292
1293 anon->an_page->uanon = NULL;
1294 /* in case we owned */
1295 anon->an_page->pqflags &= ~PQ_ANON;
1296
1297 if (uobj) {
1298 /* if we were receiver of loan */
1299 anon->an_page->loan_count--;
1300 } else {
1301 /*
1302 * we were the lender (A->K); need
1303 * to remove the page from pageq's.
1304 */
1305 uvm_pagedequeue(anon->an_page);
1306 }
1307
1308 if (uobj) {
1309 mutex_exit(&uobj->vmobjlock);
1310 uobj = NULL;
1311 }
1312
1313 /* install new page in anon */
1314 anon->an_page = pg;
1315 pg->uanon = anon;
1316 pg->pqflags |= PQ_ANON;
1317
1318 uvm_pageactivate(pg);
1319 mutex_exit(&uvm_pageqlock);
1320
1321 pg->flags &= ~(PG_BUSY|PG_FAKE);
1322 UVM_PAGE_OWN(pg, NULL);
1323
1324 /* done! */
1325 } /* ref == 1 */
1326 } /* write fault */
1327 } /* loan count */
1328
1329 /*
1330 * if we are case 1B then we will need to allocate a new blank
1331 * anon to transfer the data into. note that we have a lock
1332 * on anon, so no one can busy or release the page until we are done.
1333 * also note that the ref count can't drop to zero here because
1334 * it is > 1 and we are only dropping one ref.
1335 *
1336 * in the (hopefully very rare) case that we are out of RAM we
1337 * will unlock, wait for more RAM, and refault.
1338 *
1339 * if we are out of anon VM we kill the process (XXX: could wait?).
1340 */
1341
1342 if (cow_now && anon->an_ref > 1) {
1343
1344 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1345 uvmexp.flt_acow++;
1346 oanon = anon; /* oanon = old, locked anon */
1347
1348 error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1349 &anon, &anon_spare);
1350 switch (error) {
1351 case 0:
1352 break;
1353 case ERESTART:
1354 goto ReFault;
1355 default:
1356 goto done;
1357 }
1358
1359 pg = anon->an_page;
1360 mutex_enter(&uvm_pageqlock);
1361 uvm_pageactivate(pg);
1362 mutex_exit(&uvm_pageqlock);
1363 pg->flags &= ~(PG_BUSY|PG_FAKE);
1364 UVM_PAGE_OWN(pg, NULL);
1365
1366 /* deref: can not drop to zero here by defn! */
1367 oanon->an_ref--;
1368
1369 /*
1370 * note: oanon is still locked, as is the new anon. we
1371 * need to check for this later when we unlock oanon; if
1372 * oanon != anon, we'll have to unlock anon, too.
1373 */
1374
1375 } else {
1376
1377 uvmexp.flt_anon++;
1378 oanon = anon; /* old, locked anon is same as anon */
1379 pg = anon->an_page;
1380 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1381 enter_prot = enter_prot & ~VM_PROT_WRITE;
1382
1383 }
1384
1385 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1386 KASSERT(mutex_owned(&amap->am_l));
1387 KASSERT(mutex_owned(&anon->an_lock));
1388 KASSERT(mutex_owned(&oanon->an_lock));
1389
1390 /*
1391 * now map the page in.
1392 */
1393
1394 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1395 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1396 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1397 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1398 != 0) {
1399
1400 /*
1401 * No need to undo what we did; we can simply think of
1402 * this as the pmap throwing away the mapping information.
1403 *
1404 * We do, however, have to go through the ReFault path,
1405 * as the map may change while we're asleep.
1406 */
1407
1408 if (anon != oanon)
1409 mutex_exit(&anon->an_lock);
1410 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1411 if (!uvm_reclaimable()) {
1412 UVMHIST_LOG(maphist,
1413 "<- failed. out of VM",0,0,0,0);
1414 /* XXX instrumentation */
1415 error = ENOMEM;
1416 goto done;
1417 }
1418 /* XXX instrumentation */
1419 uvm_wait("flt_pmfail1");
1420 goto ReFault;
1421 }
1422
1423 /*
1424 * ... update the page queues.
1425 */
1426
1427 mutex_enter(&uvm_pageqlock);
1428 if (wire_fault) {
1429 uvm_pagewire(pg);
1430
1431 /*
1432 * since the now-wired page cannot be paged out,
1433 * release its swap resources for others to use.
1434 * since an anon with no swap cannot be PG_CLEAN,
1435 * clear its clean flag now.
1436 */
1437
1438 pg->flags &= ~(PG_CLEAN);
1439 uvm_anon_dropswap(anon);
1440 } else {
1441 uvm_pageactivate(pg);
1442 }
1443 mutex_exit(&uvm_pageqlock);
1444
1445 /*
1446 * done case 1! finish up by unlocking everything and returning success
1447 */
1448
1449 if (anon != oanon)
1450 mutex_exit(&anon->an_lock);
1451 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1452 pmap_update(ufi.orig_map->pmap);
1453 error = 0;
1454 goto done;
1455
1456 Case2:
1457 /*
1458 * handle case 2: faulting on backing object or zero fill
1459 */
1460
1461 /*
1462 * locked:
1463 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1464 */
1465 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1466 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1467 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1468
1469 /*
1470 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1471 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1472 * have a backing object, check and see if we are going to promote
1473 * the data up to an anon during the fault.
1474 */
1475
1476 if (uobj == NULL) {
1477 uobjpage = PGO_DONTCARE;
1478 promote = true; /* always need anon here */
1479 } else {
1480 KASSERT(uobjpage != PGO_DONTCARE);
1481 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1482 }
1483 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1484 promote, (uobj == NULL), 0,0);
1485
1486 /*
1487 * if uobjpage is not null then we do not need to do I/O to get the
1488 * uobjpage.
1489 *
1490 * if uobjpage is null, then we need to unlock and ask the pager to
1491 * get the data for us. once we have the data, we need to reverify
1492 * the state the world. we are currently not holding any resources.
1493 */
1494
1495 if (uobjpage) {
1496 /* update rusage counters */
1497 curlwp->l_ru.ru_minflt++;
1498 } else {
1499 /* update rusage counters */
1500 curlwp->l_ru.ru_majflt++;
1501
1502 /* locked: maps(read), amap(if there), uobj */
1503 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1504 /* locked: uobj */
1505
1506 uvmexp.fltget++;
1507 gotpages = 1;
1508 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1509 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1510 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1511 PGO_SYNCIO);
1512 /* locked: uobjpage(if no error) */
1513 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1514
1515 /*
1516 * recover from I/O
1517 */
1518
1519 if (error) {
1520 if (error == EAGAIN) {
1521 UVMHIST_LOG(maphist,
1522 " pgo_get says TRY AGAIN!",0,0,0,0);
1523 kpause("fltagain2", false, hz/2, NULL);
1524 goto ReFault;
1525 }
1526
1527 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1528 error, 0,0,0);
1529 goto done;
1530 }
1531
1532 /* locked: uobjpage */
1533
1534 mutex_enter(&uvm_pageqlock);
1535 uvm_pageactivate(uobjpage);
1536 mutex_exit(&uvm_pageqlock);
1537
1538 /*
1539 * re-verify the state of the world by first trying to relock
1540 * the maps. always relock the object.
1541 */
1542
1543 locked = uvmfault_relock(&ufi);
1544 if (locked && amap)
1545 amap_lock(amap);
1546 uobj = uobjpage->uobject;
1547 mutex_enter(&uobj->vmobjlock);
1548
1549 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1550 /* locked(!locked): uobj, uobjpage */
1551
1552 /*
1553 * verify that the page has not be released and re-verify
1554 * that amap slot is still free. if there is a problem,
1555 * we unlock and clean up.
1556 */
1557
1558 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1559 (locked && amap &&
1560 amap_lookup(&ufi.entry->aref,
1561 ufi.orig_rvaddr - ufi.entry->start))) {
1562 if (locked)
1563 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1564 locked = false;
1565 }
1566
1567 /*
1568 * didn't get the lock? release the page and retry.
1569 */
1570
1571 if (locked == false) {
1572 UVMHIST_LOG(maphist,
1573 " wasn't able to relock after fault: retry",
1574 0,0,0,0);
1575 if (uobjpage->flags & PG_WANTED)
1576 wakeup(uobjpage);
1577 if (uobjpage->flags & PG_RELEASED) {
1578 uvmexp.fltpgrele++;
1579 uvm_pagefree(uobjpage);
1580 goto ReFault;
1581 }
1582 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1583 UVM_PAGE_OWN(uobjpage, NULL);
1584 mutex_exit(&uobj->vmobjlock);
1585 goto ReFault;
1586 }
1587
1588 /*
1589 * we have the data in uobjpage which is busy and
1590 * not released. we are holding object lock (so the page
1591 * can't be released on us).
1592 */
1593
1594 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1595 }
1596
1597 /*
1598 * locked:
1599 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1600 */
1601 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1602 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1603 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1604
1605 /*
1606 * notes:
1607 * - at this point uobjpage can not be NULL
1608 * - at this point uobjpage can not be PG_RELEASED (since we checked
1609 * for it above)
1610 * - at this point uobjpage could be PG_WANTED (handle later)
1611 */
1612
1613 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1614 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1615 (uobjpage->flags & PG_CLEAN) != 0);
1616 if (promote == false) {
1617
1618 /*
1619 * we are not promoting. if the mapping is COW ensure that we
1620 * don't give more access than we should (e.g. when doing a read
1621 * fault on a COPYONWRITE mapping we want to map the COW page in
1622 * R/O even though the entry protection could be R/W).
1623 *
1624 * set "pg" to the page we want to map in (uobjpage, usually)
1625 */
1626
1627 /* no anon in this case. */
1628 anon = NULL;
1629
1630 uvmexp.flt_obj++;
1631 if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1632 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1633 enter_prot &= ~VM_PROT_WRITE;
1634 pg = uobjpage; /* map in the actual object */
1635
1636 KASSERT(uobjpage != PGO_DONTCARE);
1637
1638 /*
1639 * we are faulting directly on the page. be careful
1640 * about writing to loaned pages...
1641 */
1642
1643 if (uobjpage->loan_count) {
1644 if (!cow_now) {
1645 /* read fault: cap the protection at readonly */
1646 /* cap! */
1647 enter_prot = enter_prot & ~VM_PROT_WRITE;
1648 } else {
1649 /* write fault: must break the loan here */
1650
1651 pg = uvm_loanbreak(uobjpage);
1652 if (pg == NULL) {
1653
1654 /*
1655 * drop ownership of page, it can't
1656 * be released
1657 */
1658
1659 if (uobjpage->flags & PG_WANTED)
1660 wakeup(uobjpage);
1661 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1662 UVM_PAGE_OWN(uobjpage, NULL);
1663
1664 uvmfault_unlockall(&ufi, amap, uobj,
1665 NULL);
1666 UVMHIST_LOG(maphist,
1667 " out of RAM breaking loan, waiting",
1668 0,0,0,0);
1669 uvmexp.fltnoram++;
1670 uvm_wait("flt_noram4");
1671 goto ReFault;
1672 }
1673 uobjpage = pg;
1674 }
1675 }
1676 } else {
1677
1678 /*
1679 * if we are going to promote the data to an anon we
1680 * allocate a blank anon here and plug it into our amap.
1681 */
1682 #if DIAGNOSTIC
1683 if (amap == NULL)
1684 panic("uvm_fault: want to promote data, but no anon");
1685 #endif
1686 error = uvmfault_promote(&ufi, NULL, uobjpage,
1687 &anon, &anon_spare);
1688 switch (error) {
1689 case 0:
1690 break;
1691 case ERESTART:
1692 goto ReFault;
1693 default:
1694 goto done;
1695 }
1696
1697 pg = anon->an_page;
1698
1699 /*
1700 * fill in the data
1701 */
1702
1703 if (uobjpage != PGO_DONTCARE) {
1704 uvmexp.flt_prcopy++;
1705
1706 /*
1707 * promote to shared amap? make sure all sharing
1708 * procs see it
1709 */
1710
1711 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1712 pmap_page_protect(uobjpage, VM_PROT_NONE);
1713 /*
1714 * XXX: PAGE MIGHT BE WIRED!
1715 */
1716 }
1717
1718 /*
1719 * dispose of uobjpage. it can't be PG_RELEASED
1720 * since we still hold the object lock.
1721 * drop handle to uobj as well.
1722 */
1723
1724 if (uobjpage->flags & PG_WANTED)
1725 /* still have the obj lock */
1726 wakeup(uobjpage);
1727 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1728 UVM_PAGE_OWN(uobjpage, NULL);
1729 mutex_exit(&uobj->vmobjlock);
1730 uobj = NULL;
1731
1732 UVMHIST_LOG(maphist,
1733 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1734 uobjpage, anon, pg, 0);
1735
1736 } else {
1737 uvmexp.flt_przero++;
1738
1739 /*
1740 * Page is zero'd and marked dirty by
1741 * uvmfault_promote().
1742 */
1743
1744 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1745 anon, pg, 0, 0);
1746 }
1747 }
1748
1749 /*
1750 * locked:
1751 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1752 * anon(if !null), pg(if anon)
1753 *
1754 * note: pg is either the uobjpage or the new page in the new anon
1755 */
1756 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1757 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1758 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1759 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1760 KASSERT((pg->flags & PG_BUSY) != 0);
1761
1762 /*
1763 * all resources are present. we can now map it in and free our
1764 * resources.
1765 */
1766
1767 UVMHIST_LOG(maphist,
1768 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1769 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1770 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1771 (pg->flags & PG_RDONLY) == 0);
1772 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1773 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1774 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1775
1776 /*
1777 * No need to undo what we did; we can simply think of
1778 * this as the pmap throwing away the mapping information.
1779 *
1780 * We do, however, have to go through the ReFault path,
1781 * as the map may change while we're asleep.
1782 */
1783
1784 if (pg->flags & PG_WANTED)
1785 wakeup(pg);
1786
1787 /*
1788 * note that pg can't be PG_RELEASED since we did not drop
1789 * the object lock since the last time we checked.
1790 */
1791 KASSERT((pg->flags & PG_RELEASED) == 0);
1792
1793 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1794 UVM_PAGE_OWN(pg, NULL);
1795 uvmfault_unlockall(&ufi, amap, uobj, anon);
1796 if (!uvm_reclaimable()) {
1797 UVMHIST_LOG(maphist,
1798 "<- failed. out of VM",0,0,0,0);
1799 /* XXX instrumentation */
1800 error = ENOMEM;
1801 goto done;
1802 }
1803 /* XXX instrumentation */
1804 uvm_wait("flt_pmfail2");
1805 goto ReFault;
1806 }
1807
1808 mutex_enter(&uvm_pageqlock);
1809 if (wire_fault) {
1810 uvm_pagewire(pg);
1811 if (pg->pqflags & PQ_AOBJ) {
1812
1813 /*
1814 * since the now-wired page cannot be paged out,
1815 * release its swap resources for others to use.
1816 * since an aobj page with no swap cannot be PG_CLEAN,
1817 * clear its clean flag now.
1818 */
1819
1820 KASSERT(uobj != NULL);
1821 pg->flags &= ~(PG_CLEAN);
1822 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1823 }
1824 } else {
1825 uvm_pageactivate(pg);
1826 }
1827 mutex_exit(&uvm_pageqlock);
1828 if (pg->flags & PG_WANTED)
1829 wakeup(pg);
1830
1831 /*
1832 * note that pg can't be PG_RELEASED since we did not drop the object
1833 * lock since the last time we checked.
1834 */
1835 KASSERT((pg->flags & PG_RELEASED) == 0);
1836
1837 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1838 UVM_PAGE_OWN(pg, NULL);
1839 uvmfault_unlockall(&ufi, amap, uobj, anon);
1840 pmap_update(ufi.orig_map->pmap);
1841 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1842 error = 0;
1843 done:
1844 if (anon_spare != NULL) {
1845 anon_spare->an_ref--;
1846 uvm_anfree(anon_spare);
1847 }
1848 return error;
1849 }
1850
1851
1852 /*
1853 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1854 *
1855 * => map may be read-locked by caller, but MUST NOT be write-locked.
1856 * => if map is read-locked, any operations which may cause map to
1857 * be write-locked in uvm_fault() must be taken care of by
1858 * the caller. See uvm_map_pageable().
1859 */
1860
1861 int
1862 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1863 vm_prot_t access_type, int maxprot)
1864 {
1865 vaddr_t va;
1866 int error;
1867
1868 /*
1869 * now fault it in a page at a time. if the fault fails then we have
1870 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1871 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1872 */
1873
1874 /*
1875 * XXX work around overflowing a vaddr_t. this prevents us from
1876 * wiring the last page in the address space, though.
1877 */
1878 if (start > end) {
1879 return EFAULT;
1880 }
1881
1882 for (va = start ; va < end ; va += PAGE_SIZE) {
1883 error = uvm_fault_internal(map, va, access_type,
1884 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
1885 if (error) {
1886 if (va != start) {
1887 uvm_fault_unwire(map, start, va);
1888 }
1889 return error;
1890 }
1891 }
1892 return 0;
1893 }
1894
1895 /*
1896 * uvm_fault_unwire(): unwire range of virtual space.
1897 */
1898
1899 void
1900 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1901 {
1902 vm_map_lock_read(map);
1903 uvm_fault_unwire_locked(map, start, end);
1904 vm_map_unlock_read(map);
1905 }
1906
1907 /*
1908 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1909 *
1910 * => map must be at least read-locked.
1911 */
1912
1913 void
1914 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1915 {
1916 struct vm_map_entry *entry;
1917 pmap_t pmap = vm_map_pmap(map);
1918 vaddr_t va;
1919 paddr_t pa;
1920 struct vm_page *pg;
1921
1922 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1923
1924 /*
1925 * we assume that the area we are unwiring has actually been wired
1926 * in the first place. this means that we should be able to extract
1927 * the PAs from the pmap. we also lock out the page daemon so that
1928 * we can call uvm_pageunwire.
1929 */
1930
1931 mutex_enter(&uvm_pageqlock);
1932
1933 /*
1934 * find the beginning map entry for the region.
1935 */
1936
1937 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1938 if (uvm_map_lookup_entry(map, start, &entry) == false)
1939 panic("uvm_fault_unwire_locked: address not in map");
1940
1941 for (va = start; va < end; va += PAGE_SIZE) {
1942 if (pmap_extract(pmap, va, &pa) == false)
1943 continue;
1944
1945 /*
1946 * find the map entry for the current address.
1947 */
1948
1949 KASSERT(va >= entry->start);
1950 while (va >= entry->end) {
1951 KASSERT(entry->next != &map->header &&
1952 entry->next->start <= entry->end);
1953 entry = entry->next;
1954 }
1955
1956 /*
1957 * if the entry is no longer wired, tell the pmap.
1958 */
1959
1960 if (VM_MAPENT_ISWIRED(entry) == 0)
1961 pmap_unwire(pmap, va);
1962
1963 pg = PHYS_TO_VM_PAGE(pa);
1964 if (pg)
1965 uvm_pageunwire(pg);
1966 }
1967
1968 mutex_exit(&uvm_pageqlock);
1969 }
1970