uvm_fault.c revision 1.137 1 /* $NetBSD: uvm_fault.c,v 1.137 2010/01/31 09:20:31 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.137 2010/01/31 09:20:31 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 int
696 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
697 vm_prot_t access_type, int fault_flag)
698 {
699 struct uvm_faultinfo ufi;
700 vm_prot_t enter_prot;
701 bool wired, narrow, shadowed, wire_fault, cow_now;
702 int npages, centeridx, error;
703 vaddr_t startva;
704 struct vm_amap *amap;
705 struct uvm_object *uobj;
706 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
707 struct vm_anon *anon_spare;
708 struct vm_page *pages[UVM_MAXRANGE], *uobjpage;
709 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
710
711 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
712 orig_map, vaddr, access_type, fault_flag);
713
714 anon_spare = NULL;
715
716 uvmexp.faults++; /* XXX: locking? */
717
718 /*
719 * init the IN parameters in the ufi
720 */
721
722 ufi.orig_map = orig_map;
723 ufi.orig_rvaddr = trunc_page(vaddr);
724 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
725 wire_fault = (fault_flag & UVM_FAULT_WIRE) != 0;
726 if (wire_fault)
727 narrow = true; /* don't look for neighborhood
728 * pages on wire */
729 else
730 narrow = false; /* normal fault */
731
732 /*
733 * "goto ReFault" means restart the page fault from ground zero.
734 */
735 ReFault:
736
737 /* uvm_fault_prepare */
738 {
739 vm_prot_t check_prot;
740 int nback, nforw;
741
742 /*
743 * lookup and lock the maps
744 */
745
746 if (uvmfault_lookup(&ufi, false) == false) {
747 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
748 error = EFAULT;
749 goto done;
750 }
751 /* locked: maps(read) */
752
753 #ifdef DIAGNOSTIC
754 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
755 printf("Page fault on non-pageable map:\n");
756 printf("ufi.map = %p\n", ufi.map);
757 printf("ufi.orig_map = %p\n", ufi.orig_map);
758 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
759 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
760 }
761 #endif
762
763 /*
764 * check protection
765 */
766
767 check_prot = (fault_flag & UVM_FAULT_MAXPROT) ?
768 ufi.entry->max_protection : ufi.entry->protection;
769 if ((check_prot & access_type) != access_type) {
770 UVMHIST_LOG(maphist,
771 "<- protection failure (prot=0x%x, access=0x%x)",
772 ufi.entry->protection, access_type, 0, 0);
773 uvmfault_unlockmaps(&ufi, false);
774 error = EACCES;
775 goto done;
776 }
777
778 /*
779 * "enter_prot" is the protection we want to enter the page in at.
780 * for certain pages (e.g. copy-on-write pages) this protection can
781 * be more strict than ufi.entry->protection. "wired" means either
782 * the entry is wired or we are fault-wiring the pg.
783 */
784
785 enter_prot = ufi.entry->protection;
786 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
787 if (wired) {
788 access_type = enter_prot; /* full access for wired */
789 cow_now = (check_prot & VM_PROT_WRITE) != 0;
790 } else {
791 cow_now = (access_type & VM_PROT_WRITE) != 0;
792 }
793
794 /*
795 * handle "needs_copy" case. if we need to copy the amap we will
796 * have to drop our readlock and relock it with a write lock. (we
797 * need a write lock to change anything in a map entry [e.g.
798 * needs_copy]).
799 */
800
801 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
802 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
803 KASSERT((fault_flag & UVM_FAULT_MAXPROT) == 0);
804 /* need to clear */
805 UVMHIST_LOG(maphist,
806 " need to clear needs_copy and refault",0,0,0,0);
807 uvmfault_unlockmaps(&ufi, false);
808 uvmfault_amapcopy(&ufi);
809 uvmexp.fltamcopy++;
810 goto ReFault;
811
812 } else {
813
814 /*
815 * ensure that we pmap_enter page R/O since
816 * needs_copy is still true
817 */
818
819 enter_prot &= ~VM_PROT_WRITE;
820 }
821 }
822
823 /*
824 * identify the players
825 */
826
827 amap = ufi.entry->aref.ar_amap; /* upper layer */
828 uobj = ufi.entry->object.uvm_obj; /* lower layer */
829
830 /*
831 * check for a case 0 fault. if nothing backing the entry then
832 * error now.
833 */
834
835 if (amap == NULL && uobj == NULL) {
836 uvmfault_unlockmaps(&ufi, false);
837 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
838 error = EFAULT;
839 goto done;
840 }
841
842 /*
843 * establish range of interest based on advice from mapper
844 * and then clip to fit map entry. note that we only want
845 * to do this the first time through the fault. if we
846 * ReFault we will disable this by setting "narrow" to true.
847 */
848
849 if (narrow == false) {
850
851 /* wide fault (!narrow) */
852 KASSERT(uvmadvice[ufi.entry->advice].advice ==
853 ufi.entry->advice);
854 nback = MIN(uvmadvice[ufi.entry->advice].nback,
855 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
856 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
857 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
858 ((ufi.entry->end - ufi.orig_rvaddr) >>
859 PAGE_SHIFT) - 1);
860 /*
861 * note: "-1" because we don't want to count the
862 * faulting page as forw
863 */
864 npages = nback + nforw + 1;
865 centeridx = nback;
866
867 narrow = true; /* ensure only once per-fault */
868
869 } else {
870
871 /* narrow fault! */
872 nback = nforw = 0;
873 startva = ufi.orig_rvaddr;
874 npages = 1;
875 centeridx = 0;
876
877 }
878 /* offset from entry's start to pgs' start */
879 const voff_t eoff = startva - ufi.entry->start;
880
881 /* locked: maps(read) */
882 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
883 narrow, nback, nforw, startva);
884 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
885 amap, uobj, 0);
886
887 /*
888 * if we've got an amap, lock it and extract current anons.
889 */
890
891 if (amap) {
892 amap_lock(amap);
893 anons = anons_store;
894 amap_lookups(&ufi.entry->aref, eoff, anons, npages);
895 } else {
896 anons = NULL; /* to be safe */
897 }
898
899 /* locked: maps(read), amap(if there) */
900 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
901
902 /*
903 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
904 * now and then forget about them (for the rest of the fault).
905 */
906
907 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
908
909 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
910 0,0,0,0);
911 /* flush back-page anons? */
912 if (amap)
913 uvmfault_anonflush(anons, nback);
914
915 /* flush object? */
916 if (uobj) {
917 voff_t uoff;
918
919 uoff = ufi.entry->offset + eoff;
920 mutex_enter(&uobj->vmobjlock);
921 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
922 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
923 }
924
925 /* now forget about the backpages */
926 if (amap)
927 anons += nback;
928 startva += (nback << PAGE_SHIFT);
929 npages -= nback;
930 centeridx = 0;
931 }
932 }
933
934 /*
935 * => startva is fixed
936 * => npages is fixed
937 */
938
939 /* uvm_fault_upper_lookup */
940 {
941 int lcv;
942 vaddr_t currva;
943
944 /* locked: maps(read), amap(if there) */
945 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
946
947 /*
948 * map in the backpages and frontpages we found in the amap in hopes
949 * of preventing future faults. we also init the pages[] array as
950 * we go.
951 */
952
953 currva = startva;
954 shadowed = false;
955 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
956 struct vm_anon *anon;
957
958 /*
959 * dont play with VAs that are already mapped
960 * except for center)
961 */
962 if (lcv != centeridx &&
963 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
964 pages[lcv] = PGO_DONTCARE;
965 continue;
966 }
967
968 /*
969 * unmapped or center page. check if any anon at this level.
970 */
971 if (amap == NULL || anons[lcv] == NULL) {
972 pages[lcv] = NULL;
973 continue;
974 }
975
976 /*
977 * check for present page and map if possible. re-activate it.
978 */
979
980 pages[lcv] = PGO_DONTCARE;
981 if (lcv == centeridx) { /* save center for later! */
982 shadowed = true;
983 continue;
984 }
985 anon = anons[lcv];
986 mutex_enter(&anon->an_lock);
987 /* ignore loaned pages */
988 if (anon->an_page && anon->an_page->loan_count == 0 &&
989 (anon->an_page->flags & PG_BUSY) == 0) {
990 mutex_enter(&uvm_pageqlock);
991 uvm_pageenqueue(anon->an_page);
992 mutex_exit(&uvm_pageqlock);
993 UVMHIST_LOG(maphist,
994 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
995 ufi.orig_map->pmap, currva, anon->an_page, 0);
996 uvmexp.fltnamap++;
997
998 /*
999 * Since this isn't the page that's actually faulting,
1000 * ignore pmap_enter() failures; it's not critical
1001 * that we enter these right now.
1002 */
1003
1004 (void) pmap_enter(ufi.orig_map->pmap, currva,
1005 VM_PAGE_TO_PHYS(anon->an_page),
1006 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
1007 enter_prot,
1008 PMAP_CANFAIL |
1009 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
1010 }
1011 pmap_update(ufi.orig_map->pmap);
1012 mutex_exit(&anon->an_lock);
1013 }
1014
1015 /* locked: maps(read), amap(if there) */
1016 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1017 /* (shadowed == true) if there is an anon at the faulting address */
1018 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1019 (uobj && shadowed == false),0,0);
1020
1021 /*
1022 * note that if we are really short of RAM we could sleep in the above
1023 * call to pmap_enter with everything locked. bad?
1024 *
1025 * XXX Actually, that is bad; pmap_enter() should just fail in that
1026 * XXX case. --thorpej
1027 */
1028 }
1029
1030 if (shadowed == true)
1031 goto Case1;
1032
1033 /* uvm_fault_lower */
1034 /*
1035 * if the desired page is not shadowed by the amap and we have a
1036 * backing object, then we check to see if the backing object would
1037 * prefer to handle the fault itself (rather than letting us do it
1038 * with the usual pgo_get hook). the backing object signals this by
1039 * providing a pgo_fault routine.
1040 */
1041
1042 if (uobj && uobj->pgops->pgo_fault != NULL) {
1043 /* uvm_fault_lower_special */
1044 mutex_enter(&uobj->vmobjlock);
1045 /* locked: maps(read), amap (if there), uobj */
1046 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1047 centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1048
1049 /* locked: nothing, pgo_fault has unlocked everything */
1050
1051 if (error == ERESTART)
1052 goto ReFault; /* try again! */
1053 /*
1054 * object fault routine responsible for pmap_update().
1055 */
1056 goto done;
1057 }
1058
1059 /* uvm_fault_lower_generic_lookup */
1060 {
1061 int lcv, gotpages;
1062 vaddr_t currva;
1063
1064 /*
1065 * now, if the desired page is not shadowed by the amap and we have
1066 * a backing object that does not have a special fault routine, then
1067 * we ask (with pgo_get) the object for resident pages that we care
1068 * about and attempt to map them in. we do not let pgo_get block
1069 * (PGO_LOCKED).
1070 */
1071
1072 if (uobj == NULL) {
1073 /* zero fill; don't care neighbor pages */
1074 uobjpage = NULL;
1075 goto lower_fault_lookup_done;
1076 }
1077
1078 mutex_enter(&uobj->vmobjlock);
1079 /* locked (!shadowed): maps(read), amap (if there), uobj */
1080 /*
1081 * the following call to pgo_get does _not_ change locking state
1082 */
1083
1084 uvmexp.fltlget++;
1085 gotpages = npages;
1086 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset + startva - ufi.entry->start,
1087 pages, &gotpages, centeridx,
1088 access_type & MASK(ufi.entry),
1089 ufi.entry->advice, PGO_LOCKED);
1090
1091 /*
1092 * check for pages to map, if we got any
1093 */
1094
1095 uobjpage = NULL;
1096
1097 if (gotpages == 0)
1098 goto lower_fault_lookup_done;
1099
1100 currva = startva;
1101 for (lcv = 0; lcv < npages;
1102 lcv++, currva += PAGE_SIZE) {
1103 struct vm_page *curpg;
1104 bool readonly;
1105
1106 curpg = pages[lcv];
1107 if (curpg == NULL || curpg == PGO_DONTCARE) {
1108 continue;
1109 }
1110 KASSERT(curpg->uobject == uobj);
1111
1112 /*
1113 * if center page is resident and not
1114 * PG_BUSY|PG_RELEASED then pgo_get
1115 * made it PG_BUSY for us and gave
1116 * us a handle to it. remember this
1117 * page as "uobjpage." (for later use).
1118 */
1119
1120 if (lcv == centeridx) {
1121 uobjpage = curpg;
1122 UVMHIST_LOG(maphist, " got uobjpage "
1123 "(0x%x) with locked get",
1124 uobjpage, 0,0,0);
1125 continue;
1126 }
1127
1128 /*
1129 * calling pgo_get with PGO_LOCKED returns us
1130 * pages which are neither busy nor released,
1131 * so we don't need to check for this.
1132 * we can just directly enter the pages.
1133 */
1134
1135 mutex_enter(&uvm_pageqlock);
1136 uvm_pageenqueue(curpg);
1137 mutex_exit(&uvm_pageqlock);
1138 UVMHIST_LOG(maphist,
1139 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1140 ufi.orig_map->pmap, currva, curpg, 0);
1141 uvmexp.fltnomap++;
1142
1143 /*
1144 * Since this page isn't the page that's
1145 * actually faulting, ignore pmap_enter()
1146 * failures; it's not critical that we
1147 * enter these right now.
1148 */
1149 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1150 KASSERT((curpg->flags & PG_RELEASED) == 0);
1151 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1152 (curpg->flags & PG_CLEAN) != 0);
1153 readonly = (curpg->flags & PG_RDONLY)
1154 || (curpg->loan_count > 0)
1155 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1156
1157 (void) pmap_enter(ufi.orig_map->pmap, currva,
1158 VM_PAGE_TO_PHYS(curpg),
1159 readonly ?
1160 enter_prot & ~VM_PROT_WRITE :
1161 enter_prot & MASK(ufi.entry),
1162 PMAP_CANFAIL |
1163 (wired ? PMAP_WIRED : 0));
1164
1165 /*
1166 * NOTE: page can't be PG_WANTED or PG_RELEASED
1167 * because we've held the lock the whole time
1168 * we've had the handle.
1169 */
1170 KASSERT((curpg->flags & PG_WANTED) == 0);
1171 KASSERT((curpg->flags & PG_RELEASED) == 0);
1172
1173 curpg->flags &= ~(PG_BUSY);
1174 UVM_PAGE_OWN(curpg, NULL);
1175 }
1176 pmap_update(ufi.orig_map->pmap);
1177
1178 lower_fault_lookup_done:
1179 {}
1180 }
1181
1182 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1183 KASSERT(!shadowed);
1184 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1185 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1186 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1187
1188 /*
1189 * note that at this point we are done with any front or back pages.
1190 * we are now going to focus on the center page (i.e. the one we've
1191 * faulted on). if we have faulted on the upper (anon) layer
1192 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1193 * not touched it yet). if we have faulted on the bottom (uobj)
1194 * layer [i.e. case 2] and the page was both present and available,
1195 * then we've got a pointer to it as "uobjpage" and we've already
1196 * made it BUSY.
1197 */
1198
1199 /*
1200 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1201 */
1202
1203 /*
1204 * redirect case 2: if we are not shadowed, go to case 2.
1205 */
1206
1207 goto Case2;
1208
1209 /* uvm_fault_upper */
1210 Case1:
1211 {
1212 struct vm_anon *anon, *oanon;
1213
1214 /* locked: maps(read), amap */
1215 KASSERT(mutex_owned(&amap->am_l));
1216
1217 /*
1218 * handle case 1: fault on an anon in our amap
1219 */
1220
1221 anon = anons[centeridx];
1222 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1223 mutex_enter(&anon->an_lock);
1224
1225 /* locked: maps(read), amap, anon */
1226 KASSERT(mutex_owned(&amap->am_l));
1227 KASSERT(mutex_owned(&anon->an_lock));
1228
1229 /*
1230 * no matter if we have case 1A or case 1B we are going to need to
1231 * have the anon's memory resident. ensure that now.
1232 */
1233
1234 /*
1235 * let uvmfault_anonget do the dirty work.
1236 * if it fails (!OK) it will unlock everything for us.
1237 * if it succeeds, locks are still valid and locked.
1238 * also, if it is OK, then the anon's page is on the queues.
1239 * if the page is on loan from a uvm_object, then anonget will
1240 * lock that object for us if it does not fail.
1241 */
1242
1243 error = uvmfault_anonget(&ufi, amap, anon);
1244 switch (error) {
1245 case 0:
1246 break;
1247
1248 case ERESTART:
1249 goto ReFault;
1250
1251 case EAGAIN:
1252 kpause("fltagain1", false, hz/2, NULL);
1253 goto ReFault;
1254
1255 default:
1256 goto done;
1257 }
1258
1259 /*
1260 * uobj is non null if the page is on loan from an object (i.e. uobj)
1261 */
1262
1263 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1264
1265 /* locked: maps(read), amap, anon, uobj(if one) */
1266 KASSERT(mutex_owned(&amap->am_l));
1267 KASSERT(mutex_owned(&anon->an_lock));
1268 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1269
1270 /*
1271 * special handling for loaned pages
1272 */
1273
1274 if (anon->an_page->loan_count) {
1275
1276 if (!cow_now) {
1277
1278 /*
1279 * for read faults on loaned pages we just cap the
1280 * protection at read-only.
1281 */
1282
1283 enter_prot = enter_prot & ~VM_PROT_WRITE;
1284
1285 } else {
1286 /*
1287 * note that we can't allow writes into a loaned page!
1288 *
1289 * if we have a write fault on a loaned page in an
1290 * anon then we need to look at the anon's ref count.
1291 * if it is greater than one then we are going to do
1292 * a normal copy-on-write fault into a new anon (this
1293 * is not a problem). however, if the reference count
1294 * is one (a case where we would normally allow a
1295 * write directly to the page) then we need to kill
1296 * the loan before we continue.
1297 */
1298
1299 /* >1 case is already ok */
1300 if (anon->an_ref == 1) {
1301 struct vm_page *pg;
1302
1303 /* get new un-owned replacement page */
1304 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1305 if (pg == NULL) {
1306 uvmfault_unlockall(&ufi, amap, uobj,
1307 anon);
1308 uvm_wait("flt_noram2");
1309 goto ReFault;
1310 }
1311
1312 /*
1313 * copy data, kill loan, and drop uobj lock
1314 * (if any)
1315 */
1316 /* copy old -> new */
1317 uvm_pagecopy(anon->an_page, pg);
1318
1319 /* force reload */
1320 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1321 mutex_enter(&uvm_pageqlock); /* KILL loan */
1322
1323 anon->an_page->uanon = NULL;
1324 /* in case we owned */
1325 anon->an_page->pqflags &= ~PQ_ANON;
1326
1327 if (uobj) {
1328 /* if we were receiver of loan */
1329 anon->an_page->loan_count--;
1330 } else {
1331 /*
1332 * we were the lender (A->K); need
1333 * to remove the page from pageq's.
1334 */
1335 uvm_pagedequeue(anon->an_page);
1336 }
1337
1338 if (uobj) {
1339 mutex_exit(&uobj->vmobjlock);
1340 uobj = NULL;
1341 }
1342
1343 /* install new page in anon */
1344 anon->an_page = pg;
1345 pg->uanon = anon;
1346 pg->pqflags |= PQ_ANON;
1347
1348 uvm_pageactivate(pg);
1349 mutex_exit(&uvm_pageqlock);
1350
1351 pg->flags &= ~(PG_BUSY|PG_FAKE);
1352 UVM_PAGE_OWN(pg, NULL);
1353
1354 /* done! */
1355 } /* ref == 1 */
1356 } /* write fault */
1357 } /* loan count */
1358
1359 /*
1360 * if we are case 1B then we will need to allocate a new blank
1361 * anon to transfer the data into. note that we have a lock
1362 * on anon, so no one can busy or release the page until we are done.
1363 * also note that the ref count can't drop to zero here because
1364 * it is > 1 and we are only dropping one ref.
1365 *
1366 * in the (hopefully very rare) case that we are out of RAM we
1367 * will unlock, wait for more RAM, and refault.
1368 *
1369 * if we are out of anon VM we kill the process (XXX: could wait?).
1370 */
1371
1372 struct vm_page *pg;
1373 if (cow_now && anon->an_ref > 1) {
1374
1375 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1376 uvmexp.flt_acow++;
1377 oanon = anon; /* oanon = old, locked anon */
1378
1379 error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1380 &anon, &anon_spare);
1381 switch (error) {
1382 case 0:
1383 break;
1384 case ERESTART:
1385 goto ReFault;
1386 default:
1387 goto done;
1388 }
1389
1390 pg = anon->an_page;
1391 mutex_enter(&uvm_pageqlock);
1392 uvm_pageactivate(pg);
1393 mutex_exit(&uvm_pageqlock);
1394 pg->flags &= ~(PG_BUSY|PG_FAKE);
1395 UVM_PAGE_OWN(pg, NULL);
1396
1397 /* deref: can not drop to zero here by defn! */
1398 oanon->an_ref--;
1399
1400 /*
1401 * note: oanon is still locked, as is the new anon. we
1402 * need to check for this later when we unlock oanon; if
1403 * oanon != anon, we'll have to unlock anon, too.
1404 */
1405
1406 } else {
1407
1408 uvmexp.flt_anon++;
1409 oanon = anon; /* old, locked anon is same as anon */
1410 pg = anon->an_page;
1411 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1412 enter_prot = enter_prot & ~VM_PROT_WRITE;
1413
1414 }
1415
1416 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1417 KASSERT(mutex_owned(&amap->am_l));
1418 KASSERT(mutex_owned(&anon->an_lock));
1419 KASSERT(mutex_owned(&oanon->an_lock));
1420
1421 /*
1422 * now map the page in.
1423 */
1424
1425 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1426 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1427 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1428 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1429 != 0) {
1430
1431 /*
1432 * No need to undo what we did; we can simply think of
1433 * this as the pmap throwing away the mapping information.
1434 *
1435 * We do, however, have to go through the ReFault path,
1436 * as the map may change while we're asleep.
1437 */
1438
1439 if (anon != oanon)
1440 mutex_exit(&anon->an_lock);
1441 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1442 if (!uvm_reclaimable()) {
1443 UVMHIST_LOG(maphist,
1444 "<- failed. out of VM",0,0,0,0);
1445 /* XXX instrumentation */
1446 error = ENOMEM;
1447 goto done;
1448 }
1449 /* XXX instrumentation */
1450 uvm_wait("flt_pmfail1");
1451 goto ReFault;
1452 }
1453
1454 /*
1455 * ... update the page queues.
1456 */
1457
1458 mutex_enter(&uvm_pageqlock);
1459 if (wire_fault) {
1460 uvm_pagewire(pg);
1461
1462 /*
1463 * since the now-wired page cannot be paged out,
1464 * release its swap resources for others to use.
1465 * since an anon with no swap cannot be PG_CLEAN,
1466 * clear its clean flag now.
1467 */
1468
1469 pg->flags &= ~(PG_CLEAN);
1470 uvm_anon_dropswap(anon);
1471 } else {
1472 uvm_pageactivate(pg);
1473 }
1474 mutex_exit(&uvm_pageqlock);
1475
1476 /*
1477 * done case 1! finish up by unlocking everything and returning success
1478 */
1479
1480 if (anon != oanon)
1481 mutex_exit(&anon->an_lock);
1482 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1483 pmap_update(ufi.orig_map->pmap);
1484 error = 0;
1485 goto done;
1486 }
1487
1488 /* uvm_fault_lower_generic */
1489 Case2:
1490 {
1491 struct vm_anon *anon;
1492 bool promote;
1493
1494 /*
1495 * handle case 2: faulting on backing object or zero fill
1496 */
1497
1498 /*
1499 * locked:
1500 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1501 */
1502 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1503 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1504 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1505
1506 /*
1507 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1508 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1509 * have a backing object, check and see if we are going to promote
1510 * the data up to an anon during the fault.
1511 */
1512
1513 if (uobj == NULL) {
1514 uobjpage = PGO_DONTCARE;
1515 promote = true; /* always need anon here */
1516 } else {
1517 KASSERT(uobjpage != PGO_DONTCARE);
1518 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1519 }
1520 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1521 promote, (uobj == NULL), 0,0);
1522
1523 /*
1524 * if uobjpage is not null then we do not need to do I/O to get the
1525 * uobjpage.
1526 *
1527 * if uobjpage is null, then we need to unlock and ask the pager to
1528 * get the data for us. once we have the data, we need to reverify
1529 * the state the world. we are currently not holding any resources.
1530 */
1531
1532 if (uobjpage) {
1533 /* update rusage counters */
1534 curlwp->l_ru.ru_minflt++;
1535 } else {
1536 bool locked;
1537 int gotpages;
1538 voff_t uoff;
1539
1540 /* update rusage counters */
1541 curlwp->l_ru.ru_majflt++;
1542
1543 /* locked: maps(read), amap(if there), uobj */
1544 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1545 /* locked: uobj */
1546
1547 uvmexp.fltget++;
1548 gotpages = 1;
1549 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1550 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1551 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1552 PGO_SYNCIO);
1553 /* locked: uobjpage(if no error) */
1554 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1555
1556 /*
1557 * recover from I/O
1558 */
1559
1560 if (error) {
1561 if (error == EAGAIN) {
1562 UVMHIST_LOG(maphist,
1563 " pgo_get says TRY AGAIN!",0,0,0,0);
1564 kpause("fltagain2", false, hz/2, NULL);
1565 goto ReFault;
1566 }
1567
1568 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1569 error, 0,0,0);
1570 goto done;
1571 }
1572
1573 /* locked: uobjpage */
1574
1575 mutex_enter(&uvm_pageqlock);
1576 uvm_pageactivate(uobjpage);
1577 mutex_exit(&uvm_pageqlock);
1578
1579 /*
1580 * re-verify the state of the world by first trying to relock
1581 * the maps. always relock the object.
1582 */
1583
1584 locked = uvmfault_relock(&ufi);
1585 if (locked && amap)
1586 amap_lock(amap);
1587 uobj = uobjpage->uobject;
1588 mutex_enter(&uobj->vmobjlock);
1589
1590 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1591 /* locked(!locked): uobj, uobjpage */
1592
1593 /*
1594 * verify that the page has not be released and re-verify
1595 * that amap slot is still free. if there is a problem,
1596 * we unlock and clean up.
1597 */
1598
1599 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1600 (locked && amap &&
1601 amap_lookup(&ufi.entry->aref,
1602 ufi.orig_rvaddr - ufi.entry->start))) {
1603 if (locked)
1604 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1605 locked = false;
1606 }
1607
1608 /*
1609 * didn't get the lock? release the page and retry.
1610 */
1611
1612 if (locked == false) {
1613 UVMHIST_LOG(maphist,
1614 " wasn't able to relock after fault: retry",
1615 0,0,0,0);
1616 if (uobjpage->flags & PG_WANTED)
1617 wakeup(uobjpage);
1618 if (uobjpage->flags & PG_RELEASED) {
1619 uvmexp.fltpgrele++;
1620 uvm_pagefree(uobjpage);
1621 goto ReFault;
1622 }
1623 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1624 UVM_PAGE_OWN(uobjpage, NULL);
1625 mutex_exit(&uobj->vmobjlock);
1626 goto ReFault;
1627 }
1628
1629 /*
1630 * we have the data in uobjpage which is busy and
1631 * not released. we are holding object lock (so the page
1632 * can't be released on us).
1633 */
1634
1635 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1636 }
1637
1638 /*
1639 * locked:
1640 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1641 */
1642 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1643 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1644 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1645
1646 /*
1647 * notes:
1648 * - at this point uobjpage can not be NULL
1649 * - at this point uobjpage can not be PG_RELEASED (since we checked
1650 * for it above)
1651 * - at this point uobjpage could be PG_WANTED (handle later)
1652 */
1653
1654 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1655 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1656 (uobjpage->flags & PG_CLEAN) != 0);
1657 struct vm_page *pg;
1658 if (promote == false) {
1659
1660 /*
1661 * we are not promoting. if the mapping is COW ensure that we
1662 * don't give more access than we should (e.g. when doing a read
1663 * fault on a COPYONWRITE mapping we want to map the COW page in
1664 * R/O even though the entry protection could be R/W).
1665 *
1666 * set "pg" to the page we want to map in (uobjpage, usually)
1667 */
1668
1669 /* no anon in this case. */
1670 anon = NULL;
1671
1672 uvmexp.flt_obj++;
1673 if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1674 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1675 enter_prot &= ~VM_PROT_WRITE;
1676 pg = uobjpage; /* map in the actual object */
1677
1678 KASSERT(uobjpage != PGO_DONTCARE);
1679
1680 /*
1681 * we are faulting directly on the page. be careful
1682 * about writing to loaned pages...
1683 */
1684
1685 if (uobjpage->loan_count) {
1686 if (!cow_now) {
1687 /* read fault: cap the protection at readonly */
1688 /* cap! */
1689 enter_prot = enter_prot & ~VM_PROT_WRITE;
1690 } else {
1691 /* write fault: must break the loan here */
1692
1693 pg = uvm_loanbreak(uobjpage);
1694 if (pg == NULL) {
1695
1696 /*
1697 * drop ownership of page, it can't
1698 * be released
1699 */
1700
1701 if (uobjpage->flags & PG_WANTED)
1702 wakeup(uobjpage);
1703 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1704 UVM_PAGE_OWN(uobjpage, NULL);
1705
1706 uvmfault_unlockall(&ufi, amap, uobj,
1707 NULL);
1708 UVMHIST_LOG(maphist,
1709 " out of RAM breaking loan, waiting",
1710 0,0,0,0);
1711 uvmexp.fltnoram++;
1712 uvm_wait("flt_noram4");
1713 goto ReFault;
1714 }
1715 uobjpage = pg;
1716 }
1717 }
1718 } else {
1719
1720 /*
1721 * if we are going to promote the data to an anon we
1722 * allocate a blank anon here and plug it into our amap.
1723 */
1724 #if DIAGNOSTIC
1725 if (amap == NULL)
1726 panic("uvm_fault: want to promote data, but no anon");
1727 #endif
1728 error = uvmfault_promote(&ufi, NULL, uobjpage,
1729 &anon, &anon_spare);
1730 switch (error) {
1731 case 0:
1732 break;
1733 case ERESTART:
1734 goto ReFault;
1735 default:
1736 goto done;
1737 }
1738
1739 pg = anon->an_page;
1740
1741 /*
1742 * fill in the data
1743 */
1744
1745 if (uobjpage != PGO_DONTCARE) {
1746 uvmexp.flt_prcopy++;
1747
1748 /*
1749 * promote to shared amap? make sure all sharing
1750 * procs see it
1751 */
1752
1753 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1754 pmap_page_protect(uobjpage, VM_PROT_NONE);
1755 /*
1756 * XXX: PAGE MIGHT BE WIRED!
1757 */
1758 }
1759
1760 /*
1761 * dispose of uobjpage. it can't be PG_RELEASED
1762 * since we still hold the object lock.
1763 * drop handle to uobj as well.
1764 */
1765
1766 if (uobjpage->flags & PG_WANTED)
1767 /* still have the obj lock */
1768 wakeup(uobjpage);
1769 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1770 UVM_PAGE_OWN(uobjpage, NULL);
1771 mutex_exit(&uobj->vmobjlock);
1772 uobj = NULL;
1773
1774 UVMHIST_LOG(maphist,
1775 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1776 uobjpage, anon, pg, 0);
1777
1778 } else {
1779 uvmexp.flt_przero++;
1780
1781 /*
1782 * Page is zero'd and marked dirty by
1783 * uvmfault_promote().
1784 */
1785
1786 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1787 anon, pg, 0, 0);
1788 }
1789 }
1790
1791 /*
1792 * locked:
1793 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1794 * anon(if !null), pg(if anon)
1795 *
1796 * note: pg is either the uobjpage or the new page in the new anon
1797 */
1798 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1799 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1800 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1801 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1802 KASSERT((pg->flags & PG_BUSY) != 0);
1803
1804 /*
1805 * all resources are present. we can now map it in and free our
1806 * resources.
1807 */
1808
1809 UVMHIST_LOG(maphist,
1810 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1811 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1812 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1813 (pg->flags & PG_RDONLY) == 0);
1814 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1815 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1816 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1817
1818 /*
1819 * No need to undo what we did; we can simply think of
1820 * this as the pmap throwing away the mapping information.
1821 *
1822 * We do, however, have to go through the ReFault path,
1823 * as the map may change while we're asleep.
1824 */
1825
1826 if (pg->flags & PG_WANTED)
1827 wakeup(pg);
1828
1829 /*
1830 * note that pg can't be PG_RELEASED since we did not drop
1831 * the object lock since the last time we checked.
1832 */
1833 KASSERT((pg->flags & PG_RELEASED) == 0);
1834
1835 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1836 UVM_PAGE_OWN(pg, NULL);
1837 uvmfault_unlockall(&ufi, amap, uobj, anon);
1838 if (!uvm_reclaimable()) {
1839 UVMHIST_LOG(maphist,
1840 "<- failed. out of VM",0,0,0,0);
1841 /* XXX instrumentation */
1842 error = ENOMEM;
1843 goto done;
1844 }
1845 /* XXX instrumentation */
1846 uvm_wait("flt_pmfail2");
1847 goto ReFault;
1848 }
1849
1850 mutex_enter(&uvm_pageqlock);
1851 if (wire_fault) {
1852 uvm_pagewire(pg);
1853 if (pg->pqflags & PQ_AOBJ) {
1854
1855 /*
1856 * since the now-wired page cannot be paged out,
1857 * release its swap resources for others to use.
1858 * since an aobj page with no swap cannot be PG_CLEAN,
1859 * clear its clean flag now.
1860 */
1861
1862 KASSERT(uobj != NULL);
1863 pg->flags &= ~(PG_CLEAN);
1864 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1865 }
1866 } else {
1867 uvm_pageactivate(pg);
1868 }
1869 mutex_exit(&uvm_pageqlock);
1870 if (pg->flags & PG_WANTED)
1871 wakeup(pg);
1872
1873 /*
1874 * note that pg can't be PG_RELEASED since we did not drop the object
1875 * lock since the last time we checked.
1876 */
1877 KASSERT((pg->flags & PG_RELEASED) == 0);
1878
1879 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1880 UVM_PAGE_OWN(pg, NULL);
1881 uvmfault_unlockall(&ufi, amap, uobj, anon);
1882 pmap_update(ufi.orig_map->pmap);
1883 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1884 error = 0;
1885 }
1886
1887 done:
1888 if (anon_spare != NULL) {
1889 anon_spare->an_ref--;
1890 uvm_anfree(anon_spare);
1891 }
1892 return error;
1893 }
1894
1895
1896 /*
1897 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1898 *
1899 * => map may be read-locked by caller, but MUST NOT be write-locked.
1900 * => if map is read-locked, any operations which may cause map to
1901 * be write-locked in uvm_fault() must be taken care of by
1902 * the caller. See uvm_map_pageable().
1903 */
1904
1905 int
1906 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1907 vm_prot_t access_type, int maxprot)
1908 {
1909 vaddr_t va;
1910 int error;
1911
1912 /*
1913 * now fault it in a page at a time. if the fault fails then we have
1914 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1915 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1916 */
1917
1918 /*
1919 * XXX work around overflowing a vaddr_t. this prevents us from
1920 * wiring the last page in the address space, though.
1921 */
1922 if (start > end) {
1923 return EFAULT;
1924 }
1925
1926 for (va = start ; va < end ; va += PAGE_SIZE) {
1927 error = uvm_fault_internal(map, va, access_type,
1928 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
1929 if (error) {
1930 if (va != start) {
1931 uvm_fault_unwire(map, start, va);
1932 }
1933 return error;
1934 }
1935 }
1936 return 0;
1937 }
1938
1939 /*
1940 * uvm_fault_unwire(): unwire range of virtual space.
1941 */
1942
1943 void
1944 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1945 {
1946 vm_map_lock_read(map);
1947 uvm_fault_unwire_locked(map, start, end);
1948 vm_map_unlock_read(map);
1949 }
1950
1951 /*
1952 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1953 *
1954 * => map must be at least read-locked.
1955 */
1956
1957 void
1958 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1959 {
1960 struct vm_map_entry *entry;
1961 pmap_t pmap = vm_map_pmap(map);
1962 vaddr_t va;
1963 paddr_t pa;
1964 struct vm_page *pg;
1965
1966 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1967
1968 /*
1969 * we assume that the area we are unwiring has actually been wired
1970 * in the first place. this means that we should be able to extract
1971 * the PAs from the pmap. we also lock out the page daemon so that
1972 * we can call uvm_pageunwire.
1973 */
1974
1975 mutex_enter(&uvm_pageqlock);
1976
1977 /*
1978 * find the beginning map entry for the region.
1979 */
1980
1981 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1982 if (uvm_map_lookup_entry(map, start, &entry) == false)
1983 panic("uvm_fault_unwire_locked: address not in map");
1984
1985 for (va = start; va < end; va += PAGE_SIZE) {
1986 if (pmap_extract(pmap, va, &pa) == false)
1987 continue;
1988
1989 /*
1990 * find the map entry for the current address.
1991 */
1992
1993 KASSERT(va >= entry->start);
1994 while (va >= entry->end) {
1995 KASSERT(entry->next != &map->header &&
1996 entry->next->start <= entry->end);
1997 entry = entry->next;
1998 }
1999
2000 /*
2001 * if the entry is no longer wired, tell the pmap.
2002 */
2003
2004 if (VM_MAPENT_ISWIRED(entry) == 0)
2005 pmap_unwire(pmap, va);
2006
2007 pg = PHYS_TO_VM_PAGE(pa);
2008 if (pg)
2009 uvm_pageunwire(pg);
2010 }
2011
2012 mutex_exit(&uvm_pageqlock);
2013 }
2014