uvm_fault.c revision 1.140 1 /* $NetBSD: uvm_fault.c,v 1.140 2010/02/01 06:56:22 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.140 2010/02/01 06:56:22 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 bool wired;
699 bool narrow;
700 bool shadowed;
701 bool wire_fault;
702 bool maxprot;
703 bool cow_now;
704 int npages;
705 int centeridx;
706 vaddr_t startva;
707 struct vm_anon *anon_spare;
708 };
709
710 typedef int
711 uvm_fault_subfunc_t(
712 struct uvm_faultinfo *ufi,
713 struct uvm_faultctx *flt,
714 struct vm_amap *amap, struct uvm_object *uobj,
715 struct vm_anon **anons_store, struct vm_anon **anons,
716 struct vm_page **pages, struct vm_page *uobjpage);
717 static uvm_fault_subfunc_t uvm_fault_lower;
718 static uvm_fault_subfunc_t uvm_fault_lower_special;
719 static uvm_fault_subfunc_t uvm_fault_lower_generic;
720 static uvm_fault_subfunc_t uvm_fault_lower_generic1;
721 static uvm_fault_subfunc_t uvm_fault_upper;
722 static uvm_fault_subfunc_t uvm_fault_lower_generic2;
723 static void
724 uvm_fault_lower_generic_lookup(
725 struct uvm_faultinfo *ufi,
726 struct uvm_faultctx *flt,
727 struct vm_amap *amap, struct uvm_object *uobj,
728 struct vm_anon **anons_store, struct vm_anon **anons,
729 struct vm_page **pages, struct vm_page **ruobjpage);
730
731 int
732 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
733 vm_prot_t access_type, int fault_flag)
734 {
735 struct uvm_faultinfo ufi;
736 struct vm_amap *amap;
737 struct uvm_object *uobj;
738 struct uvm_faultctx flt = {
739 .access_type = access_type,
740 .wire_fault = (fault_flag & UVM_FAULT_WIRE) != 0,
741 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
742 };
743 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
744 struct vm_page *pages[UVM_MAXRANGE], *uobjpage = NULL;
745 int error;
746 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
747
748 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
749 orig_map, vaddr, access_type, fault_flag);
750
751 uvmexp.faults++; /* XXX: locking? */
752
753 /*
754 * init the IN parameters in the ufi
755 */
756
757 ufi.orig_map = orig_map;
758 ufi.orig_rvaddr = trunc_page(vaddr);
759 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
760 if (flt.wire_fault)
761 flt.narrow = true; /* don't look for neighborhood
762 * pages on wire */
763 else
764 flt.narrow = false; /* normal fault */
765
766 /*
767 * "goto ReFault" means restart the page fault from ground zero.
768 */
769 ReFault:
770
771 goto uvm_fault_prepare;
772 uvm_fault_prepare_done:
773
774 goto uvm_fault_upper_lookup;
775 uvm_fault_upper_lookup_done:
776
777 if (flt.shadowed == true)
778 error = uvm_fault_upper(
779 &ufi, &flt,
780 amap, uobj, anons_store, anons,
781 pages, uobjpage);
782 else
783 error = uvm_fault_lower(
784 &ufi, &flt,
785 amap, uobj, anons_store, anons,
786 pages, uobjpage);
787
788 if (error == ERESTART)
789 goto ReFault;
790
791 done:
792 if (flt.anon_spare != NULL) {
793 flt.anon_spare->an_ref--;
794 uvm_anfree(flt.anon_spare);
795 }
796 return error;
797
798 uvm_fault_prepare:
799 {
800 vm_prot_t check_prot;
801 int nback, nforw;
802
803 /*
804 * lookup and lock the maps
805 */
806
807 if (uvmfault_lookup(&ufi, false) == false) {
808 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
809 error = EFAULT;
810 goto done;
811 }
812 /* locked: maps(read) */
813
814 #ifdef DIAGNOSTIC
815 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
816 printf("Page fault on non-pageable map:\n");
817 printf("ufi.map = %p\n", ufi.map);
818 printf("ufi.orig_map = %p\n", ufi.orig_map);
819 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
820 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
821 }
822 #endif
823
824 /*
825 * check protection
826 */
827
828 check_prot = (fault_flag & UVM_FAULT_MAXPROT) ?
829 ufi.entry->max_protection : ufi.entry->protection;
830 if ((check_prot & flt.access_type) != flt.access_type) {
831 UVMHIST_LOG(maphist,
832 "<- protection failure (prot=0x%x, access=0x%x)",
833 ufi.entry->protection, flt.access_type, 0, 0);
834 uvmfault_unlockmaps(&ufi, false);
835 error = EACCES;
836 goto done;
837 }
838
839 /*
840 * "enter_prot" is the protection we want to enter the page in at.
841 * for certain pages (e.g. copy-on-write pages) this protection can
842 * be more strict than ufi.entry->protection. "wired" means either
843 * the entry is wired or we are fault-wiring the pg.
844 */
845
846 flt.enter_prot = ufi.entry->protection;
847 flt.wired = VM_MAPENT_ISWIRED(ufi.entry) || flt.wire_fault;
848 if (flt.wired) {
849 flt.access_type = flt.enter_prot; /* full access for wired */
850 flt.cow_now = (check_prot & VM_PROT_WRITE) != 0;
851 } else {
852 flt.cow_now = (flt.access_type & VM_PROT_WRITE) != 0;
853 }
854
855 /*
856 * handle "needs_copy" case. if we need to copy the amap we will
857 * have to drop our readlock and relock it with a write lock. (we
858 * need a write lock to change anything in a map entry [e.g.
859 * needs_copy]).
860 */
861
862 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
863 if (flt.cow_now || (ufi.entry->object.uvm_obj == NULL)) {
864 KASSERT((fault_flag & UVM_FAULT_MAXPROT) == 0);
865 /* need to clear */
866 UVMHIST_LOG(maphist,
867 " need to clear needs_copy and refault",0,0,0,0);
868 uvmfault_unlockmaps(&ufi, false);
869 uvmfault_amapcopy(&ufi);
870 uvmexp.fltamcopy++;
871 goto ReFault;
872
873 } else {
874
875 /*
876 * ensure that we pmap_enter page R/O since
877 * needs_copy is still true
878 */
879
880 flt.enter_prot &= ~VM_PROT_WRITE;
881 }
882 }
883
884 /*
885 * identify the players
886 */
887
888 amap = ufi.entry->aref.ar_amap; /* upper layer */
889 uobj = ufi.entry->object.uvm_obj; /* lower layer */
890
891 /*
892 * check for a case 0 fault. if nothing backing the entry then
893 * error now.
894 */
895
896 if (amap == NULL && uobj == NULL) {
897 uvmfault_unlockmaps(&ufi, false);
898 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
899 error = EFAULT;
900 goto done;
901 }
902
903 /*
904 * establish range of interest based on advice from mapper
905 * and then clip to fit map entry. note that we only want
906 * to do this the first time through the fault. if we
907 * ReFault we will disable this by setting "narrow" to true.
908 */
909
910 if (flt.narrow == false) {
911
912 /* wide fault (!narrow) */
913 KASSERT(uvmadvice[ufi.entry->advice].advice ==
914 ufi.entry->advice);
915 nback = MIN(uvmadvice[ufi.entry->advice].nback,
916 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
917 flt.startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
918 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
919 ((ufi.entry->end - ufi.orig_rvaddr) >>
920 PAGE_SHIFT) - 1);
921 /*
922 * note: "-1" because we don't want to count the
923 * faulting page as forw
924 */
925 flt.npages = nback + nforw + 1;
926 flt.centeridx = nback;
927
928 flt.narrow = true; /* ensure only once per-fault */
929
930 } else {
931
932 /* narrow fault! */
933 nback = nforw = 0;
934 flt.startva = ufi.orig_rvaddr;
935 flt.npages = 1;
936 flt.centeridx = 0;
937
938 }
939 /* offset from entry's start to pgs' start */
940 const voff_t eoff = flt.startva - ufi.entry->start;
941
942 /* locked: maps(read) */
943 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
944 flt.narrow, nback, nforw, flt.startva);
945 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
946 amap, uobj, 0);
947
948 /*
949 * if we've got an amap, lock it and extract current anons.
950 */
951
952 if (amap) {
953 amap_lock(amap);
954 anons = anons_store;
955 amap_lookups(&ufi.entry->aref, eoff, anons, flt.npages);
956 } else {
957 anons = NULL; /* to be safe */
958 }
959
960 /* locked: maps(read), amap(if there) */
961 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
962
963 /*
964 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
965 * now and then forget about them (for the rest of the fault).
966 */
967
968 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
969
970 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
971 0,0,0,0);
972 /* flush back-page anons? */
973 if (amap)
974 uvmfault_anonflush(anons, nback);
975
976 /* flush object? */
977 if (uobj) {
978 voff_t uoff;
979
980 uoff = ufi.entry->offset + eoff;
981 mutex_enter(&uobj->vmobjlock);
982 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
983 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
984 }
985
986 /* now forget about the backpages */
987 if (amap)
988 anons += nback;
989 flt.startva += (nback << PAGE_SHIFT);
990 flt.npages -= nback;
991 flt.centeridx = 0;
992 }
993 }
994 goto uvm_fault_prepare_done;
995
996 /*
997 * => startva is fixed
998 * => npages is fixed
999 */
1000
1001 uvm_fault_upper_lookup:
1002 {
1003 int lcv;
1004 vaddr_t currva;
1005
1006 /* locked: maps(read), amap(if there) */
1007 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1008
1009 /*
1010 * map in the backpages and frontpages we found in the amap in hopes
1011 * of preventing future faults. we also init the pages[] array as
1012 * we go.
1013 */
1014
1015 currva = flt.startva;
1016 flt.shadowed = false;
1017 for (lcv = 0 ; lcv < flt.npages ; lcv++, currva += PAGE_SIZE) {
1018 struct vm_anon *anon;
1019
1020 /*
1021 * dont play with VAs that are already mapped
1022 * except for center)
1023 */
1024 if (lcv != flt.centeridx &&
1025 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
1026 pages[lcv] = PGO_DONTCARE;
1027 continue;
1028 }
1029
1030 /*
1031 * unmapped or center page. check if any anon at this level.
1032 */
1033 if (amap == NULL || anons[lcv] == NULL) {
1034 pages[lcv] = NULL;
1035 continue;
1036 }
1037
1038 /*
1039 * check for present page and map if possible. re-activate it.
1040 */
1041
1042 pages[lcv] = PGO_DONTCARE;
1043 if (lcv == flt.centeridx) { /* save center for later! */
1044 flt.shadowed = true;
1045 continue;
1046 }
1047 anon = anons[lcv];
1048 mutex_enter(&anon->an_lock);
1049 /* ignore loaned pages */
1050 if (anon->an_page && anon->an_page->loan_count == 0 &&
1051 (anon->an_page->flags & PG_BUSY) == 0) {
1052 mutex_enter(&uvm_pageqlock);
1053 uvm_pageenqueue(anon->an_page);
1054 mutex_exit(&uvm_pageqlock);
1055 UVMHIST_LOG(maphist,
1056 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1057 ufi.orig_map->pmap, currva, anon->an_page, 0);
1058 uvmexp.fltnamap++;
1059
1060 /*
1061 * Since this isn't the page that's actually faulting,
1062 * ignore pmap_enter() failures; it's not critical
1063 * that we enter these right now.
1064 */
1065
1066 (void) pmap_enter(ufi.orig_map->pmap, currva,
1067 VM_PAGE_TO_PHYS(anon->an_page),
1068 (anon->an_ref > 1) ? (flt.enter_prot & ~VM_PROT_WRITE) :
1069 flt.enter_prot,
1070 PMAP_CANFAIL |
1071 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
1072 }
1073 pmap_update(ufi.orig_map->pmap);
1074 mutex_exit(&anon->an_lock);
1075 }
1076
1077 /* locked: maps(read), amap(if there) */
1078 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1079 /* (shadowed == true) if there is an anon at the faulting address */
1080 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", flt.shadowed,
1081 (uobj && flt.shadowed == false),0,0);
1082
1083 /*
1084 * note that if we are really short of RAM we could sleep in the above
1085 * call to pmap_enter with everything locked. bad?
1086 *
1087 * XXX Actually, that is bad; pmap_enter() should just fail in that
1088 * XXX case. --thorpej
1089 */
1090 }
1091 goto uvm_fault_upper_lookup_done;
1092 }
1093
1094 static int
1095 uvm_fault_lower(
1096 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1097 struct vm_amap *amap, struct uvm_object *uobj,
1098 struct vm_anon **anons_store, struct vm_anon **anons,
1099 struct vm_page **pages, struct vm_page *uobjpage)
1100 {
1101 int error;
1102
1103 /*
1104 * if the desired page is not shadowed by the amap and we have a
1105 * backing object, then we check to see if the backing object would
1106 * prefer to handle the fault itself (rather than letting us do it
1107 * with the usual pgo_get hook). the backing object signals this by
1108 * providing a pgo_fault routine.
1109 */
1110
1111 if (uobj && uobj->pgops->pgo_fault != NULL) {
1112 error = uvm_fault_lower_special(
1113 ufi, flt,
1114 amap, uobj, anons_store, anons,
1115 pages, uobjpage);
1116 } else {
1117 error = uvm_fault_lower_generic(
1118 ufi, flt,
1119 amap, uobj, anons_store, anons,
1120 pages, uobjpage);
1121 }
1122 return error;
1123 }
1124
1125 static int
1126 uvm_fault_lower_special(
1127 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1128 struct vm_amap *amap, struct uvm_object *uobj,
1129 struct vm_anon **anons_store, struct vm_anon **anons,
1130 struct vm_page **pages, struct vm_page *uobjpage)
1131 {
1132 int error;
1133
1134 mutex_enter(&uobj->vmobjlock);
1135 /* locked: maps(read), amap (if there), uobj */
1136 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1137 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1138
1139 /* locked: nothing, pgo_fault has unlocked everything */
1140
1141 if (error == ERESTART)
1142 error = ERESTART; /* try again! */
1143 /*
1144 * object fault routine responsible for pmap_update().
1145 */
1146
1147 return error;
1148 }
1149
1150 static int
1151 uvm_fault_lower_generic(
1152 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1153 struct vm_amap *amap, struct uvm_object *uobj,
1154 struct vm_anon **anons_store, struct vm_anon **anons,
1155 struct vm_page **pages, struct vm_page *uobjpage)
1156 {
1157
1158 /*
1159 * now, if the desired page is not shadowed by the amap and we have
1160 * a backing object that does not have a special fault routine, then
1161 * we ask (with pgo_get) the object for resident pages that we care
1162 * about and attempt to map them in. we do not let pgo_get block
1163 * (PGO_LOCKED).
1164 */
1165
1166 if (uobj == NULL) {
1167 /* zero fill; don't care neighbor pages */
1168 uobjpage = NULL;
1169 } else {
1170 uvm_fault_lower_generic_lookup(
1171 ufi, flt,
1172 amap, uobj, anons_store, anons,
1173 pages, &uobjpage);
1174 }
1175 return uvm_fault_lower_generic1(
1176 ufi, flt,
1177 amap, uobj, anons_store, anons,
1178 pages, uobjpage);
1179 }
1180
1181 static void
1182 uvm_fault_lower_generic_lookup(
1183 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1184 struct vm_amap *amap, struct uvm_object *uobj,
1185 struct vm_anon **anons_store, struct vm_anon **anons,
1186 struct vm_page **pages, struct vm_page **ruobjpage)
1187 {
1188 int lcv, gotpages;
1189 vaddr_t currva;
1190 struct vm_page *uobjpage;
1191
1192 mutex_enter(&uobj->vmobjlock);
1193 /* locked (!shadowed): maps(read), amap (if there), uobj */
1194 /*
1195 * the following call to pgo_get does _not_ change locking state
1196 */
1197
1198 uvmexp.fltlget++;
1199 gotpages = flt->npages;
1200 (void) uobj->pgops->pgo_get(uobj, ufi->entry->offset + flt->startva - ufi->entry->start,
1201 pages, &gotpages, flt->centeridx,
1202 flt->access_type & MASK(ufi->entry),
1203 ufi->entry->advice, PGO_LOCKED);
1204
1205 /*
1206 * check for pages to map, if we got any
1207 */
1208
1209 uobjpage = NULL;
1210
1211 if (gotpages == 0)
1212 goto done;
1213
1214 currva = flt->startva;
1215 for (lcv = 0; lcv < flt->npages;
1216 lcv++, currva += PAGE_SIZE) {
1217 struct vm_page *curpg;
1218 bool readonly;
1219
1220 curpg = pages[lcv];
1221 if (curpg == NULL || curpg == PGO_DONTCARE) {
1222 continue;
1223 }
1224 KASSERT(curpg->uobject == uobj);
1225
1226 /*
1227 * if center page is resident and not
1228 * PG_BUSY|PG_RELEASED then pgo_get
1229 * made it PG_BUSY for us and gave
1230 * us a handle to it. remember this
1231 * page as "uobjpage." (for later use).
1232 */
1233
1234 if (lcv == flt->centeridx) {
1235 uobjpage = curpg;
1236 UVMHIST_LOG(maphist, " got uobjpage "
1237 "(0x%x) with locked get",
1238 uobjpage, 0,0,0);
1239 continue;
1240 }
1241
1242 /*
1243 * calling pgo_get with PGO_LOCKED returns us
1244 * pages which are neither busy nor released,
1245 * so we don't need to check for this.
1246 * we can just directly enter the pages.
1247 */
1248
1249 mutex_enter(&uvm_pageqlock);
1250 uvm_pageenqueue(curpg);
1251 mutex_exit(&uvm_pageqlock);
1252 UVMHIST_LOG(maphist,
1253 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1254 ufi->orig_map->pmap, currva, curpg, 0);
1255 uvmexp.fltnomap++;
1256
1257 /*
1258 * Since this page isn't the page that's
1259 * actually faulting, ignore pmap_enter()
1260 * failures; it's not critical that we
1261 * enter these right now.
1262 */
1263 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1264 KASSERT((curpg->flags & PG_RELEASED) == 0);
1265 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1266 (curpg->flags & PG_CLEAN) != 0);
1267 readonly = (curpg->flags & PG_RDONLY)
1268 || (curpg->loan_count > 0)
1269 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1270
1271 (void) pmap_enter(ufi->orig_map->pmap, currva,
1272 VM_PAGE_TO_PHYS(curpg),
1273 readonly ?
1274 flt->enter_prot & ~VM_PROT_WRITE :
1275 flt->enter_prot & MASK(ufi->entry),
1276 PMAP_CANFAIL |
1277 (flt->wired ? PMAP_WIRED : 0));
1278
1279 /*
1280 * NOTE: page can't be PG_WANTED or PG_RELEASED
1281 * because we've held the lock the whole time
1282 * we've had the handle.
1283 */
1284 KASSERT((curpg->flags & PG_WANTED) == 0);
1285 KASSERT((curpg->flags & PG_RELEASED) == 0);
1286
1287 curpg->flags &= ~(PG_BUSY);
1288 UVM_PAGE_OWN(curpg, NULL);
1289 }
1290 pmap_update(ufi->orig_map->pmap);
1291 done:
1292 *ruobjpage = uobjpage;
1293 }
1294
1295 static int
1296 uvm_fault_lower_generic1(
1297 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1298 struct vm_amap *amap, struct uvm_object *uobj,
1299 struct vm_anon **anons_store, struct vm_anon **anons,
1300 struct vm_page **pages, struct vm_page *uobjpage)
1301 {
1302
1303 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1304 KASSERT(!flt->shadowed);
1305 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1306 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1307 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1308
1309 /*
1310 * note that at this point we are done with any front or back pages.
1311 * we are now going to focus on the center page (i.e. the one we've
1312 * faulted on). if we have faulted on the upper (anon) layer
1313 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1314 * not touched it yet). if we have faulted on the bottom (uobj)
1315 * layer [i.e. case 2] and the page was both present and available,
1316 * then we've got a pointer to it as "uobjpage" and we've already
1317 * made it BUSY.
1318 */
1319
1320 /*
1321 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1322 */
1323
1324 /*
1325 * redirect case 2: if we are not shadowed, go to case 2.
1326 */
1327
1328 return uvm_fault_lower_generic2(
1329 ufi, flt,
1330 amap, uobj, anons_store, anons,
1331 pages, uobjpage);
1332 }
1333
1334 static int
1335 uvm_fault_upper(
1336 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1337 struct vm_amap *amap, struct uvm_object *uobj,
1338 struct vm_anon **anons_store, struct vm_anon **anons,
1339 struct vm_page **pages, struct vm_page *uobjpage)
1340 {
1341 struct vm_anon *anon, *oanon;
1342 int error;
1343
1344 /* locked: maps(read), amap */
1345 KASSERT(mutex_owned(&amap->am_l));
1346
1347 /*
1348 * handle case 1: fault on an anon in our amap
1349 */
1350
1351 anon = anons[flt->centeridx];
1352 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1353 mutex_enter(&anon->an_lock);
1354
1355 /* locked: maps(read), amap, anon */
1356 KASSERT(mutex_owned(&amap->am_l));
1357 KASSERT(mutex_owned(&anon->an_lock));
1358
1359 /*
1360 * no matter if we have case 1A or case 1B we are going to need to
1361 * have the anon's memory resident. ensure that now.
1362 */
1363
1364 /*
1365 * let uvmfault_anonget do the dirty work.
1366 * if it fails (!OK) it will unlock everything for us.
1367 * if it succeeds, locks are still valid and locked.
1368 * also, if it is OK, then the anon's page is on the queues.
1369 * if the page is on loan from a uvm_object, then anonget will
1370 * lock that object for us if it does not fail.
1371 */
1372
1373 error = uvmfault_anonget(ufi, amap, anon);
1374 switch (error) {
1375 case 0:
1376 break;
1377
1378 case ERESTART:
1379 return ERESTART;
1380
1381 case EAGAIN:
1382 kpause("fltagain1", false, hz/2, NULL);
1383 return ERESTART;
1384
1385 default:
1386 return error;
1387 }
1388
1389 /*
1390 * uobj is non null if the page is on loan from an object (i.e. uobj)
1391 */
1392
1393 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1394
1395 /* locked: maps(read), amap, anon, uobj(if one) */
1396 KASSERT(mutex_owned(&amap->am_l));
1397 KASSERT(mutex_owned(&anon->an_lock));
1398 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1399
1400 /*
1401 * special handling for loaned pages
1402 */
1403
1404 if (anon->an_page->loan_count) {
1405
1406 if (!flt->cow_now) {
1407
1408 /*
1409 * for read faults on loaned pages we just cap the
1410 * protection at read-only.
1411 */
1412
1413 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1414
1415 } else {
1416 /*
1417 * note that we can't allow writes into a loaned page!
1418 *
1419 * if we have a write fault on a loaned page in an
1420 * anon then we need to look at the anon's ref count.
1421 * if it is greater than one then we are going to do
1422 * a normal copy-on-write fault into a new anon (this
1423 * is not a problem). however, if the reference count
1424 * is one (a case where we would normally allow a
1425 * write directly to the page) then we need to kill
1426 * the loan before we continue.
1427 */
1428
1429 /* >1 case is already ok */
1430 if (anon->an_ref == 1) {
1431 struct vm_page *pg;
1432
1433 /* get new un-owned replacement page */
1434 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1435 if (pg == NULL) {
1436 uvmfault_unlockall(ufi, amap, uobj,
1437 anon);
1438 uvm_wait("flt_noram2");
1439 return ERESTART;
1440 }
1441
1442 /*
1443 * copy data, kill loan, and drop uobj lock
1444 * (if any)
1445 */
1446 /* copy old -> new */
1447 uvm_pagecopy(anon->an_page, pg);
1448
1449 /* force reload */
1450 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1451 mutex_enter(&uvm_pageqlock); /* KILL loan */
1452
1453 anon->an_page->uanon = NULL;
1454 /* in case we owned */
1455 anon->an_page->pqflags &= ~PQ_ANON;
1456
1457 if (uobj) {
1458 /* if we were receiver of loan */
1459 anon->an_page->loan_count--;
1460 } else {
1461 /*
1462 * we were the lender (A->K); need
1463 * to remove the page from pageq's.
1464 */
1465 uvm_pagedequeue(anon->an_page);
1466 }
1467
1468 if (uobj) {
1469 mutex_exit(&uobj->vmobjlock);
1470 uobj = NULL;
1471 }
1472
1473 /* install new page in anon */
1474 anon->an_page = pg;
1475 pg->uanon = anon;
1476 pg->pqflags |= PQ_ANON;
1477
1478 uvm_pageactivate(pg);
1479 mutex_exit(&uvm_pageqlock);
1480
1481 pg->flags &= ~(PG_BUSY|PG_FAKE);
1482 UVM_PAGE_OWN(pg, NULL);
1483
1484 /* done! */
1485 } /* ref == 1 */
1486 } /* write fault */
1487 } /* loan count */
1488
1489 /*
1490 * if we are case 1B then we will need to allocate a new blank
1491 * anon to transfer the data into. note that we have a lock
1492 * on anon, so no one can busy or release the page until we are done.
1493 * also note that the ref count can't drop to zero here because
1494 * it is > 1 and we are only dropping one ref.
1495 *
1496 * in the (hopefully very rare) case that we are out of RAM we
1497 * will unlock, wait for more RAM, and refault.
1498 *
1499 * if we are out of anon VM we kill the process (XXX: could wait?).
1500 */
1501
1502 struct vm_page *pg;
1503 if (flt->cow_now && anon->an_ref > 1) {
1504
1505 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1506 uvmexp.flt_acow++;
1507 oanon = anon; /* oanon = old, locked anon */
1508
1509 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1510 &anon, &flt->anon_spare);
1511 switch (error) {
1512 case 0:
1513 break;
1514 case ERESTART:
1515 return ERESTART;
1516 default:
1517 return error;
1518 }
1519
1520 pg = anon->an_page;
1521 mutex_enter(&uvm_pageqlock);
1522 uvm_pageactivate(pg);
1523 mutex_exit(&uvm_pageqlock);
1524 pg->flags &= ~(PG_BUSY|PG_FAKE);
1525 UVM_PAGE_OWN(pg, NULL);
1526
1527 /* deref: can not drop to zero here by defn! */
1528 oanon->an_ref--;
1529
1530 /*
1531 * note: oanon is still locked, as is the new anon. we
1532 * need to check for this later when we unlock oanon; if
1533 * oanon != anon, we'll have to unlock anon, too.
1534 */
1535
1536 } else {
1537
1538 uvmexp.flt_anon++;
1539 oanon = anon; /* old, locked anon is same as anon */
1540 pg = anon->an_page;
1541 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1542 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1543
1544 }
1545
1546 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1547 KASSERT(mutex_owned(&amap->am_l));
1548 KASSERT(mutex_owned(&anon->an_lock));
1549 KASSERT(mutex_owned(&oanon->an_lock));
1550
1551 /*
1552 * now map the page in.
1553 */
1554
1555 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1556 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1557 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1558 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0))
1559 != 0) {
1560
1561 /*
1562 * No need to undo what we did; we can simply think of
1563 * this as the pmap throwing away the mapping information.
1564 *
1565 * We do, however, have to go through the ReFault path,
1566 * as the map may change while we're asleep.
1567 */
1568
1569 if (anon != oanon)
1570 mutex_exit(&anon->an_lock);
1571 uvmfault_unlockall(ufi, amap, uobj, oanon);
1572 if (!uvm_reclaimable()) {
1573 UVMHIST_LOG(maphist,
1574 "<- failed. out of VM",0,0,0,0);
1575 /* XXX instrumentation */
1576 error = ENOMEM;
1577 return error;
1578 }
1579 /* XXX instrumentation */
1580 uvm_wait("flt_pmfail1");
1581 return ERESTART;
1582 }
1583
1584 /*
1585 * ... update the page queues.
1586 */
1587
1588 mutex_enter(&uvm_pageqlock);
1589 if (flt->wire_fault) {
1590 uvm_pagewire(pg);
1591
1592 /*
1593 * since the now-wired page cannot be paged out,
1594 * release its swap resources for others to use.
1595 * since an anon with no swap cannot be PG_CLEAN,
1596 * clear its clean flag now.
1597 */
1598
1599 pg->flags &= ~(PG_CLEAN);
1600 uvm_anon_dropswap(anon);
1601 } else {
1602 uvm_pageactivate(pg);
1603 }
1604 mutex_exit(&uvm_pageqlock);
1605
1606 /*
1607 * done case 1! finish up by unlocking everything and returning success
1608 */
1609
1610 if (anon != oanon)
1611 mutex_exit(&anon->an_lock);
1612 uvmfault_unlockall(ufi, amap, uobj, oanon);
1613 pmap_update(ufi->orig_map->pmap);
1614 return 0;
1615 }
1616
1617 static int
1618 uvm_fault_lower_generic2(
1619 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1620 struct vm_amap *amap, struct uvm_object *uobj,
1621 struct vm_anon **anons_store, struct vm_anon **anons,
1622 struct vm_page **pages, struct vm_page *uobjpage)
1623 {
1624 struct vm_anon *anon;
1625 bool promote;
1626 int error;
1627
1628 /*
1629 * handle case 2: faulting on backing object or zero fill
1630 */
1631
1632 /*
1633 * locked:
1634 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1635 */
1636 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1637 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1638 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1639
1640 /*
1641 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1642 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1643 * have a backing object, check and see if we are going to promote
1644 * the data up to an anon during the fault.
1645 */
1646
1647 if (uobj == NULL) {
1648 uobjpage = PGO_DONTCARE;
1649 promote = true; /* always need anon here */
1650 } else {
1651 KASSERT(uobjpage != PGO_DONTCARE);
1652 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1653 }
1654 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1655 promote, (uobj == NULL), 0,0);
1656
1657 /*
1658 * if uobjpage is not null then we do not need to do I/O to get the
1659 * uobjpage.
1660 *
1661 * if uobjpage is null, then we need to unlock and ask the pager to
1662 * get the data for us. once we have the data, we need to reverify
1663 * the state the world. we are currently not holding any resources.
1664 */
1665
1666 if (uobjpage) {
1667 /* update rusage counters */
1668 curlwp->l_ru.ru_minflt++;
1669 } else {
1670 bool locked;
1671 int gotpages;
1672 voff_t uoff;
1673
1674 /* update rusage counters */
1675 curlwp->l_ru.ru_majflt++;
1676
1677 /* locked: maps(read), amap(if there), uobj */
1678 uvmfault_unlockall(ufi, amap, NULL, NULL);
1679 /* locked: uobj */
1680
1681 uvmexp.fltget++;
1682 gotpages = 1;
1683 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1684 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1685 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1686 PGO_SYNCIO);
1687 /* locked: uobjpage(if no error) */
1688 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1689
1690 /*
1691 * recover from I/O
1692 */
1693
1694 if (error) {
1695 if (error == EAGAIN) {
1696 UVMHIST_LOG(maphist,
1697 " pgo_get says TRY AGAIN!",0,0,0,0);
1698 kpause("fltagain2", false, hz/2, NULL);
1699 return ERESTART;
1700 }
1701
1702 #if 0
1703 KASSERT(error != ERESTART);
1704 #else
1705 /* XXXUEBS don't re-fault? */
1706 if (error == ERESTART)
1707 error = EIO;
1708 #endif
1709
1710 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1711 error, 0,0,0);
1712 return error;
1713 }
1714
1715 /* locked: uobjpage */
1716
1717 mutex_enter(&uvm_pageqlock);
1718 uvm_pageactivate(uobjpage);
1719 mutex_exit(&uvm_pageqlock);
1720
1721 /*
1722 * re-verify the state of the world by first trying to relock
1723 * the maps. always relock the object.
1724 */
1725
1726 locked = uvmfault_relock(ufi);
1727 if (locked && amap)
1728 amap_lock(amap);
1729 uobj = uobjpage->uobject;
1730 mutex_enter(&uobj->vmobjlock);
1731
1732 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1733 /* locked(!locked): uobj, uobjpage */
1734
1735 /*
1736 * verify that the page has not be released and re-verify
1737 * that amap slot is still free. if there is a problem,
1738 * we unlock and clean up.
1739 */
1740
1741 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1742 (locked && amap &&
1743 amap_lookup(&ufi->entry->aref,
1744 ufi->orig_rvaddr - ufi->entry->start))) {
1745 if (locked)
1746 uvmfault_unlockall(ufi, amap, NULL, NULL);
1747 locked = false;
1748 }
1749
1750 /*
1751 * didn't get the lock? release the page and retry.
1752 */
1753
1754 if (locked == false) {
1755 UVMHIST_LOG(maphist,
1756 " wasn't able to relock after fault: retry",
1757 0,0,0,0);
1758 if (uobjpage->flags & PG_WANTED)
1759 wakeup(uobjpage);
1760 if (uobjpage->flags & PG_RELEASED) {
1761 uvmexp.fltpgrele++;
1762 uvm_pagefree(uobjpage);
1763 return ERESTART;
1764 }
1765 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1766 UVM_PAGE_OWN(uobjpage, NULL);
1767 mutex_exit(&uobj->vmobjlock);
1768 return ERESTART;
1769 }
1770
1771 /*
1772 * we have the data in uobjpage which is busy and
1773 * not released. we are holding object lock (so the page
1774 * can't be released on us).
1775 */
1776
1777 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1778 }
1779
1780 /*
1781 * locked:
1782 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1783 */
1784 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1785 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1786 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1787
1788 /*
1789 * notes:
1790 * - at this point uobjpage can not be NULL
1791 * - at this point uobjpage can not be PG_RELEASED (since we checked
1792 * for it above)
1793 * - at this point uobjpage could be PG_WANTED (handle later)
1794 */
1795
1796 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1797 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1798 (uobjpage->flags & PG_CLEAN) != 0);
1799 struct vm_page *pg;
1800 if (promote == false) {
1801
1802 /*
1803 * we are not promoting. if the mapping is COW ensure that we
1804 * don't give more access than we should (e.g. when doing a read
1805 * fault on a COPYONWRITE mapping we want to map the COW page in
1806 * R/O even though the entry protection could be R/W).
1807 *
1808 * set "pg" to the page we want to map in (uobjpage, usually)
1809 */
1810
1811 /* no anon in this case. */
1812 anon = NULL;
1813
1814 uvmexp.flt_obj++;
1815 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1816 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1817 flt->enter_prot &= ~VM_PROT_WRITE;
1818 pg = uobjpage; /* map in the actual object */
1819
1820 KASSERT(uobjpage != PGO_DONTCARE);
1821
1822 /*
1823 * we are faulting directly on the page. be careful
1824 * about writing to loaned pages...
1825 */
1826
1827 if (uobjpage->loan_count) {
1828 if (!flt->cow_now) {
1829 /* read fault: cap the protection at readonly */
1830 /* cap! */
1831 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1832 } else {
1833 /* write fault: must break the loan here */
1834
1835 pg = uvm_loanbreak(uobjpage);
1836 if (pg == NULL) {
1837
1838 /*
1839 * drop ownership of page, it can't
1840 * be released
1841 */
1842
1843 if (uobjpage->flags & PG_WANTED)
1844 wakeup(uobjpage);
1845 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1846 UVM_PAGE_OWN(uobjpage, NULL);
1847
1848 uvmfault_unlockall(ufi, amap, uobj,
1849 NULL);
1850 UVMHIST_LOG(maphist,
1851 " out of RAM breaking loan, waiting",
1852 0,0,0,0);
1853 uvmexp.fltnoram++;
1854 uvm_wait("flt_noram4");
1855 return ERESTART;
1856 }
1857 uobjpage = pg;
1858 }
1859 }
1860 } else {
1861
1862 /*
1863 * if we are going to promote the data to an anon we
1864 * allocate a blank anon here and plug it into our amap.
1865 */
1866 #if DIAGNOSTIC
1867 if (amap == NULL)
1868 panic("uvm_fault: want to promote data, but no anon");
1869 #endif
1870 error = uvmfault_promote(ufi, NULL, uobjpage,
1871 &anon, &flt->anon_spare);
1872 switch (error) {
1873 case 0:
1874 break;
1875 case ERESTART:
1876 return ERESTART;
1877 default:
1878 return error;
1879 }
1880
1881 pg = anon->an_page;
1882
1883 /*
1884 * fill in the data
1885 */
1886
1887 if (uobjpage != PGO_DONTCARE) {
1888 uvmexp.flt_prcopy++;
1889
1890 /*
1891 * promote to shared amap? make sure all sharing
1892 * procs see it
1893 */
1894
1895 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1896 pmap_page_protect(uobjpage, VM_PROT_NONE);
1897 /*
1898 * XXX: PAGE MIGHT BE WIRED!
1899 */
1900 }
1901
1902 /*
1903 * dispose of uobjpage. it can't be PG_RELEASED
1904 * since we still hold the object lock.
1905 * drop handle to uobj as well.
1906 */
1907
1908 if (uobjpage->flags & PG_WANTED)
1909 /* still have the obj lock */
1910 wakeup(uobjpage);
1911 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1912 UVM_PAGE_OWN(uobjpage, NULL);
1913 mutex_exit(&uobj->vmobjlock);
1914 uobj = NULL;
1915
1916 UVMHIST_LOG(maphist,
1917 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1918 uobjpage, anon, pg, 0);
1919
1920 } else {
1921 uvmexp.flt_przero++;
1922
1923 /*
1924 * Page is zero'd and marked dirty by
1925 * uvmfault_promote().
1926 */
1927
1928 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1929 anon, pg, 0, 0);
1930 }
1931 }
1932
1933 /*
1934 * locked:
1935 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1936 * anon(if !null), pg(if anon)
1937 *
1938 * note: pg is either the uobjpage or the new page in the new anon
1939 */
1940 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1941 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1942 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1943 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1944 KASSERT((pg->flags & PG_BUSY) != 0);
1945
1946 /*
1947 * all resources are present. we can now map it in and free our
1948 * resources.
1949 */
1950
1951 UVMHIST_LOG(maphist,
1952 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1953 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
1954 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
1955 (pg->flags & PG_RDONLY) == 0);
1956 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1957 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
1958 flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1959
1960 /*
1961 * No need to undo what we did; we can simply think of
1962 * this as the pmap throwing away the mapping information.
1963 *
1964 * We do, however, have to go through the ReFault path,
1965 * as the map may change while we're asleep.
1966 */
1967
1968 if (pg->flags & PG_WANTED)
1969 wakeup(pg);
1970
1971 /*
1972 * note that pg can't be PG_RELEASED since we did not drop
1973 * the object lock since the last time we checked.
1974 */
1975 KASSERT((pg->flags & PG_RELEASED) == 0);
1976
1977 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1978 UVM_PAGE_OWN(pg, NULL);
1979 uvmfault_unlockall(ufi, amap, uobj, anon);
1980 if (!uvm_reclaimable()) {
1981 UVMHIST_LOG(maphist,
1982 "<- failed. out of VM",0,0,0,0);
1983 /* XXX instrumentation */
1984 error = ENOMEM;
1985 return error;
1986 }
1987 /* XXX instrumentation */
1988 uvm_wait("flt_pmfail2");
1989 return ERESTART;
1990 }
1991
1992 mutex_enter(&uvm_pageqlock);
1993 if (flt->wire_fault) {
1994 uvm_pagewire(pg);
1995 if (pg->pqflags & PQ_AOBJ) {
1996
1997 /*
1998 * since the now-wired page cannot be paged out,
1999 * release its swap resources for others to use.
2000 * since an aobj page with no swap cannot be PG_CLEAN,
2001 * clear its clean flag now.
2002 */
2003
2004 KASSERT(uobj != NULL);
2005 pg->flags &= ~(PG_CLEAN);
2006 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2007 }
2008 } else {
2009 uvm_pageactivate(pg);
2010 }
2011 mutex_exit(&uvm_pageqlock);
2012 if (pg->flags & PG_WANTED)
2013 wakeup(pg);
2014
2015 /*
2016 * note that pg can't be PG_RELEASED since we did not drop the object
2017 * lock since the last time we checked.
2018 */
2019 KASSERT((pg->flags & PG_RELEASED) == 0);
2020
2021 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2022 UVM_PAGE_OWN(pg, NULL);
2023 uvmfault_unlockall(ufi, amap, uobj, anon);
2024 pmap_update(ufi->orig_map->pmap);
2025 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2026 return 0;
2027 }
2028
2029
2030 /*
2031 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2032 *
2033 * => map may be read-locked by caller, but MUST NOT be write-locked.
2034 * => if map is read-locked, any operations which may cause map to
2035 * be write-locked in uvm_fault() must be taken care of by
2036 * the caller. See uvm_map_pageable().
2037 */
2038
2039 int
2040 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2041 vm_prot_t access_type, int maxprot)
2042 {
2043 vaddr_t va;
2044 int error;
2045
2046 /*
2047 * now fault it in a page at a time. if the fault fails then we have
2048 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2049 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2050 */
2051
2052 /*
2053 * XXX work around overflowing a vaddr_t. this prevents us from
2054 * wiring the last page in the address space, though.
2055 */
2056 if (start > end) {
2057 return EFAULT;
2058 }
2059
2060 for (va = start ; va < end ; va += PAGE_SIZE) {
2061 error = uvm_fault_internal(map, va, access_type,
2062 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2063 if (error) {
2064 if (va != start) {
2065 uvm_fault_unwire(map, start, va);
2066 }
2067 return error;
2068 }
2069 }
2070 return 0;
2071 }
2072
2073 /*
2074 * uvm_fault_unwire(): unwire range of virtual space.
2075 */
2076
2077 void
2078 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2079 {
2080 vm_map_lock_read(map);
2081 uvm_fault_unwire_locked(map, start, end);
2082 vm_map_unlock_read(map);
2083 }
2084
2085 /*
2086 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2087 *
2088 * => map must be at least read-locked.
2089 */
2090
2091 void
2092 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2093 {
2094 struct vm_map_entry *entry;
2095 pmap_t pmap = vm_map_pmap(map);
2096 vaddr_t va;
2097 paddr_t pa;
2098 struct vm_page *pg;
2099
2100 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2101
2102 /*
2103 * we assume that the area we are unwiring has actually been wired
2104 * in the first place. this means that we should be able to extract
2105 * the PAs from the pmap. we also lock out the page daemon so that
2106 * we can call uvm_pageunwire.
2107 */
2108
2109 mutex_enter(&uvm_pageqlock);
2110
2111 /*
2112 * find the beginning map entry for the region.
2113 */
2114
2115 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2116 if (uvm_map_lookup_entry(map, start, &entry) == false)
2117 panic("uvm_fault_unwire_locked: address not in map");
2118
2119 for (va = start; va < end; va += PAGE_SIZE) {
2120 if (pmap_extract(pmap, va, &pa) == false)
2121 continue;
2122
2123 /*
2124 * find the map entry for the current address.
2125 */
2126
2127 KASSERT(va >= entry->start);
2128 while (va >= entry->end) {
2129 KASSERT(entry->next != &map->header &&
2130 entry->next->start <= entry->end);
2131 entry = entry->next;
2132 }
2133
2134 /*
2135 * if the entry is no longer wired, tell the pmap.
2136 */
2137
2138 if (VM_MAPENT_ISWIRED(entry) == 0)
2139 pmap_unwire(pmap, va);
2140
2141 pg = PHYS_TO_VM_PAGE(pa);
2142 if (pg)
2143 uvm_pageunwire(pg);
2144 }
2145
2146 mutex_exit(&uvm_pageqlock);
2147 }
2148