uvm_fault.c revision 1.142 1 /* $NetBSD: uvm_fault.c,v 1.142 2010/02/01 08:19:17 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.142 2010/02/01 08:19:17 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 bool wired;
699 bool narrow;
700 bool shadowed;
701 bool wire_fault;
702 bool maxprot;
703 bool cow_now;
704 int npages;
705 int centeridx;
706 vaddr_t startva;
707 struct vm_anon *anon_spare;
708 };
709
710 static int
711 uvm_fault_check(
712 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
713 struct vm_anon ***ranons, struct vm_page ***rpages);
714 typedef int
715 uvm_fault_subfunc_t(
716 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
717 struct vm_anon **anons, struct vm_page **pages);
718 static uvm_fault_subfunc_t uvm_fault_upper_lookup;
719 static uvm_fault_subfunc_t uvm_fault_upper;
720 static uvm_fault_subfunc_t uvm_fault_lower;
721 static uvm_fault_subfunc_t uvm_fault_lower_special;
722 static uvm_fault_subfunc_t uvm_fault_lower_generic_lookup;
723 static uvm_fault_subfunc_t uvm_fault_lower_generic;
724 static uvm_fault_subfunc_t uvm_fault_lower_generic1;
725 static uvm_fault_subfunc_t uvm_fault_lower_generic2;
726
727 int
728 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
729 vm_prot_t access_type, int fault_flag)
730 {
731 struct uvm_faultinfo ufi;
732 struct uvm_faultctx flt = {
733 .access_type = access_type,
734 .wire_fault = (fault_flag & UVM_FAULT_WIRE) != 0,
735 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
736 };
737 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
738 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
739 int error;
740 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
741
742 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
743 orig_map, vaddr, access_type, fault_flag);
744
745 uvmexp.faults++; /* XXX: locking? */
746
747 /*
748 * init the IN parameters in the ufi
749 */
750
751 ufi.orig_map = orig_map;
752 ufi.orig_rvaddr = trunc_page(vaddr);
753 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
754 if (flt.wire_fault)
755 flt.narrow = true; /* don't look for neighborhood
756 * pages on wire */
757 else
758 flt.narrow = false; /* normal fault */
759
760 /*
761 * "goto ReFault" means restart the page fault from ground zero.
762 */
763
764 error = ERESTART;
765 while (error == ERESTART) {
766
767 anons = anons_store;
768 pages = pages_store;
769
770 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
771 if (error != 0)
772 continue;
773
774 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
775 if (error != 0)
776 continue;
777
778 if (flt.shadowed == true)
779 error = uvm_fault_upper(&ufi, &flt, anons, pages);
780 else
781 error = uvm_fault_lower(&ufi, &flt, anons, pages);
782
783 }
784
785 if (flt.anon_spare != NULL) {
786 flt.anon_spare->an_ref--;
787 uvm_anfree(flt.anon_spare);
788 }
789 return error;
790 }
791
792 int
793 uvm_fault_check(
794 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
795 struct vm_anon ***ranons, struct vm_page ***rpages)
796 {
797 struct vm_amap *amap;
798 struct uvm_object *uobj;
799 vm_prot_t check_prot;
800 int nback, nforw;
801
802 /*
803 * lookup and lock the maps
804 */
805
806 if (uvmfault_lookup(ufi, false) == false) {
807 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
808 return EFAULT;
809 }
810 /* locked: maps(read) */
811
812 #ifdef DIAGNOSTIC
813 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
814 printf("Page fault on non-pageable map:\n");
815 printf("ufi->map = %p\n", ufi->map);
816 printf("ufi->orig_map = %p\n", ufi->orig_map);
817 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
818 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
819 }
820 #endif
821
822 /*
823 * check protection
824 */
825
826 check_prot = flt->maxprot ?
827 ufi->entry->max_protection : ufi->entry->protection;
828 if ((check_prot & flt->access_type) != flt->access_type) {
829 UVMHIST_LOG(maphist,
830 "<- protection failure (prot=0x%x, access=0x%x)",
831 ufi->entry->protection, flt->access_type, 0, 0);
832 uvmfault_unlockmaps(ufi, false);
833 return EACCES;
834 }
835
836 /*
837 * "enter_prot" is the protection we want to enter the page in at.
838 * for certain pages (e.g. copy-on-write pages) this protection can
839 * be more strict than ufi->entry->protection. "wired" means either
840 * the entry is wired or we are fault-wiring the pg.
841 */
842
843 flt->enter_prot = ufi->entry->protection;
844 flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || flt->wire_fault;
845 if (flt->wired) {
846 flt->access_type = flt->enter_prot; /* full access for wired */
847 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
848 } else {
849 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
850 }
851
852 /*
853 * handle "needs_copy" case. if we need to copy the amap we will
854 * have to drop our readlock and relock it with a write lock. (we
855 * need a write lock to change anything in a map entry [e.g.
856 * needs_copy]).
857 */
858
859 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
860 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
861 KASSERT(!flt->maxprot);
862 /* need to clear */
863 UVMHIST_LOG(maphist,
864 " need to clear needs_copy and refault",0,0,0,0);
865 uvmfault_unlockmaps(ufi, false);
866 uvmfault_amapcopy(ufi);
867 uvmexp.fltamcopy++;
868 return ERESTART;
869
870 } else {
871
872 /*
873 * ensure that we pmap_enter page R/O since
874 * needs_copy is still true
875 */
876
877 flt->enter_prot &= ~VM_PROT_WRITE;
878 }
879 }
880
881 /*
882 * identify the players
883 */
884
885 amap = ufi->entry->aref.ar_amap; /* upper layer */
886 uobj = ufi->entry->object.uvm_obj; /* lower layer */
887
888 /*
889 * check for a case 0 fault. if nothing backing the entry then
890 * error now.
891 */
892
893 if (amap == NULL && uobj == NULL) {
894 uvmfault_unlockmaps(ufi, false);
895 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
896 return EFAULT;
897 }
898
899 /*
900 * establish range of interest based on advice from mapper
901 * and then clip to fit map entry. note that we only want
902 * to do this the first time through the fault. if we
903 * ReFault we will disable this by setting "narrow" to true.
904 */
905
906 if (flt->narrow == false) {
907
908 /* wide fault (!narrow) */
909 KASSERT(uvmadvice[ufi->entry->advice].advice ==
910 ufi->entry->advice);
911 nback = MIN(uvmadvice[ufi->entry->advice].nback,
912 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
913 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
914 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
915 ((ufi->entry->end - ufi->orig_rvaddr) >>
916 PAGE_SHIFT) - 1);
917 /*
918 * note: "-1" because we don't want to count the
919 * faulting page as forw
920 */
921 flt->npages = nback + nforw + 1;
922 flt->centeridx = nback;
923
924 flt->narrow = true; /* ensure only once per-fault */
925
926 } else {
927
928 /* narrow fault! */
929 nback = nforw = 0;
930 flt->startva = ufi->orig_rvaddr;
931 flt->npages = 1;
932 flt->centeridx = 0;
933
934 }
935 /* offset from entry's start to pgs' start */
936 const voff_t eoff = flt->startva - ufi->entry->start;
937
938 /* locked: maps(read) */
939 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
940 flt->narrow, nback, nforw, flt->startva);
941 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
942 amap, uobj, 0);
943
944 /*
945 * if we've got an amap, lock it and extract current anons.
946 */
947
948 if (amap) {
949 amap_lock(amap);
950 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
951 } else {
952 *ranons = NULL; /* to be safe */
953 }
954
955 /* locked: maps(read), amap(if there) */
956 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
957
958 /*
959 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
960 * now and then forget about them (for the rest of the fault).
961 */
962
963 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
964
965 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
966 0,0,0,0);
967 /* flush back-page anons? */
968 if (amap)
969 uvmfault_anonflush(*ranons, nback);
970
971 /* flush object? */
972 if (uobj) {
973 voff_t uoff;
974
975 uoff = ufi->entry->offset + eoff;
976 mutex_enter(&uobj->vmobjlock);
977 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
978 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
979 }
980
981 /* now forget about the backpages */
982 if (amap)
983 *ranons += nback;
984 #if 0
985 /* XXXUEBS */
986 if (uobj)
987 *rpages += nback;
988 #endif
989 flt->startva += (nback << PAGE_SHIFT);
990 flt->npages -= nback;
991 flt->centeridx = 0;
992 }
993 /*
994 * => startva is fixed
995 * => npages is fixed
996 */
997
998 return 0;
999 }
1000
1001 int
1002 uvm_fault_upper_lookup(
1003 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1004 struct vm_anon **anons, struct vm_page **pages)
1005 {
1006 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1007 int lcv;
1008 vaddr_t currva;
1009
1010 /* locked: maps(read), amap(if there) */
1011 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1012
1013 /*
1014 * map in the backpages and frontpages we found in the amap in hopes
1015 * of preventing future faults. we also init the pages[] array as
1016 * we go.
1017 */
1018
1019 currva = flt->startva;
1020 flt->shadowed = false;
1021 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1022 struct vm_anon *anon;
1023
1024 /*
1025 * dont play with VAs that are already mapped
1026 * except for center)
1027 */
1028 if (lcv != flt->centeridx &&
1029 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1030 pages[lcv] = PGO_DONTCARE;
1031 continue;
1032 }
1033
1034 /*
1035 * unmapped or center page. check if any anon at this level.
1036 */
1037 if (amap == NULL || anons[lcv] == NULL) {
1038 pages[lcv] = NULL;
1039 continue;
1040 }
1041
1042 /*
1043 * check for present page and map if possible. re-activate it.
1044 */
1045
1046 pages[lcv] = PGO_DONTCARE;
1047 if (lcv == flt->centeridx) { /* save center for later! */
1048 flt->shadowed = true;
1049 continue;
1050 }
1051 anon = anons[lcv];
1052 mutex_enter(&anon->an_lock);
1053 /* ignore loaned pages */
1054 if (anon->an_page && anon->an_page->loan_count == 0 &&
1055 (anon->an_page->flags & PG_BUSY) == 0) {
1056 mutex_enter(&uvm_pageqlock);
1057 uvm_pageenqueue(anon->an_page);
1058 mutex_exit(&uvm_pageqlock);
1059 UVMHIST_LOG(maphist,
1060 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1061 ufi->orig_map->pmap, currva, anon->an_page, 0);
1062 uvmexp.fltnamap++;
1063
1064 /*
1065 * Since this isn't the page that's actually faulting,
1066 * ignore pmap_enter() failures; it's not critical
1067 * that we enter these right now.
1068 */
1069
1070 (void) pmap_enter(ufi->orig_map->pmap, currva,
1071 VM_PAGE_TO_PHYS(anon->an_page),
1072 (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1073 flt->enter_prot,
1074 PMAP_CANFAIL |
1075 (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
1076 }
1077 pmap_update(ufi->orig_map->pmap);
1078 mutex_exit(&anon->an_lock);
1079 }
1080
1081 /* locked: maps(read), amap(if there) */
1082 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1083 /* (shadowed == true) if there is an anon at the faulting address */
1084 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", flt->shadowed,
1085 (uobj && flt->shadowed == false),0,0);
1086
1087 /*
1088 * note that if we are really short of RAM we could sleep in the above
1089 * call to pmap_enter with everything locked. bad?
1090 *
1091 * XXX Actually, that is bad; pmap_enter() should just fail in that
1092 * XXX case. --thorpej
1093 */
1094
1095 return 0;
1096 }
1097
1098 static int
1099 uvm_fault_lower(
1100 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1101 struct vm_anon **anons, struct vm_page **pages)
1102 {
1103 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1104 int error;
1105
1106 /*
1107 * if the desired page is not shadowed by the amap and we have a
1108 * backing object, then we check to see if the backing object would
1109 * prefer to handle the fault itself (rather than letting us do it
1110 * with the usual pgo_get hook). the backing object signals this by
1111 * providing a pgo_fault routine.
1112 */
1113
1114 if (uobj && uobj->pgops->pgo_fault != NULL) {
1115 error = uvm_fault_lower_special(ufi, flt, anons, pages);
1116 } else {
1117 error = uvm_fault_lower_generic(ufi, flt, anons, pages);
1118 }
1119 return error;
1120 }
1121
1122 static int
1123 uvm_fault_lower_special(
1124 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1125 struct vm_anon **anons, struct vm_page **pages)
1126 {
1127 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1128 int error;
1129
1130 mutex_enter(&uobj->vmobjlock);
1131 /* locked: maps(read), amap (if there), uobj */
1132 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1133 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1134
1135 /* locked: nothing, pgo_fault has unlocked everything */
1136
1137 if (error == ERESTART)
1138 error = ERESTART; /* try again! */
1139 /*
1140 * object fault routine responsible for pmap_update().
1141 */
1142
1143 return error;
1144 }
1145
1146 static int
1147 uvm_fault_lower_generic(
1148 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1149 struct vm_anon **anons, struct vm_page **pages)
1150 {
1151 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1152
1153 /*
1154 * now, if the desired page is not shadowed by the amap and we have
1155 * a backing object that does not have a special fault routine, then
1156 * we ask (with pgo_get) the object for resident pages that we care
1157 * about and attempt to map them in. we do not let pgo_get block
1158 * (PGO_LOCKED).
1159 */
1160
1161 if (uobj == NULL) {
1162 /* zero fill; don't care neighbor pages */
1163 pages[flt->centeridx] = NULL;
1164 } else {
1165 uvm_fault_lower_generic_lookup(ufi, flt, anons, pages);
1166 }
1167 return uvm_fault_lower_generic1(ufi, flt, anons, pages);
1168 }
1169
1170 static int
1171 uvm_fault_lower_generic_lookup(
1172 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1173 struct vm_anon **anons, struct vm_page **pages)
1174 {
1175 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1176 int lcv, gotpages;
1177 vaddr_t currva;
1178
1179 mutex_enter(&uobj->vmobjlock);
1180 /* locked (!shadowed): maps(read), amap (if there), uobj */
1181 /*
1182 * the following call to pgo_get does _not_ change locking state
1183 */
1184
1185 uvmexp.fltlget++;
1186 gotpages = flt->npages;
1187 (void) uobj->pgops->pgo_get(uobj, ufi->entry->offset + flt->startva - ufi->entry->start,
1188 pages, &gotpages, flt->centeridx,
1189 flt->access_type & MASK(ufi->entry),
1190 ufi->entry->advice, PGO_LOCKED);
1191
1192 /*
1193 * check for pages to map, if we got any
1194 */
1195
1196 if (gotpages == 0) {
1197 pages[flt->centeridx] = NULL;
1198 return 0;
1199 }
1200
1201 currva = flt->startva;
1202 for (lcv = 0; lcv < flt->npages;
1203 lcv++, currva += PAGE_SIZE) {
1204 struct vm_page *curpg;
1205 bool readonly;
1206
1207 curpg = pages[lcv];
1208 if (curpg == NULL || curpg == PGO_DONTCARE) {
1209 continue;
1210 }
1211 KASSERT(curpg->uobject == uobj);
1212
1213 /*
1214 * if center page is resident and not
1215 * PG_BUSY|PG_RELEASED then pgo_get
1216 * made it PG_BUSY for us and gave
1217 * us a handle to it. remember this
1218 * page as "uobjpage." (for later use).
1219 */
1220
1221 if (lcv == flt->centeridx) {
1222 UVMHIST_LOG(maphist, " got uobjpage "
1223 "(0x%x) with locked get",
1224 curpg, 0,0,0);
1225 continue;
1226 }
1227
1228 /*
1229 * calling pgo_get with PGO_LOCKED returns us
1230 * pages which are neither busy nor released,
1231 * so we don't need to check for this.
1232 * we can just directly enter the pages.
1233 */
1234
1235 mutex_enter(&uvm_pageqlock);
1236 uvm_pageenqueue(curpg);
1237 mutex_exit(&uvm_pageqlock);
1238 UVMHIST_LOG(maphist,
1239 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1240 ufi->orig_map->pmap, currva, curpg, 0);
1241 uvmexp.fltnomap++;
1242
1243 /*
1244 * Since this page isn't the page that's
1245 * actually faulting, ignore pmap_enter()
1246 * failures; it's not critical that we
1247 * enter these right now.
1248 */
1249 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1250 KASSERT((curpg->flags & PG_RELEASED) == 0);
1251 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1252 (curpg->flags & PG_CLEAN) != 0);
1253 readonly = (curpg->flags & PG_RDONLY)
1254 || (curpg->loan_count > 0)
1255 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1256
1257 (void) pmap_enter(ufi->orig_map->pmap, currva,
1258 VM_PAGE_TO_PHYS(curpg),
1259 readonly ?
1260 flt->enter_prot & ~VM_PROT_WRITE :
1261 flt->enter_prot & MASK(ufi->entry),
1262 PMAP_CANFAIL |
1263 (flt->wired ? PMAP_WIRED : 0));
1264
1265 /*
1266 * NOTE: page can't be PG_WANTED or PG_RELEASED
1267 * because we've held the lock the whole time
1268 * we've had the handle.
1269 */
1270 KASSERT((curpg->flags & PG_WANTED) == 0);
1271 KASSERT((curpg->flags & PG_RELEASED) == 0);
1272
1273 curpg->flags &= ~(PG_BUSY);
1274 UVM_PAGE_OWN(curpg, NULL);
1275 }
1276 pmap_update(ufi->orig_map->pmap);
1277 return 0;
1278 }
1279
1280 static int
1281 uvm_fault_lower_generic1(
1282 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1283 struct vm_anon **anons, struct vm_page **pages)
1284 {
1285 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1286 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1287 struct vm_page *uobjpage = pages[flt->centeridx];
1288
1289 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1290 KASSERT(!flt->shadowed);
1291 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1292 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1293 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1294
1295 /*
1296 * note that at this point we are done with any front or back pages.
1297 * we are now going to focus on the center page (i.e. the one we've
1298 * faulted on). if we have faulted on the upper (anon) layer
1299 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1300 * not touched it yet). if we have faulted on the bottom (uobj)
1301 * layer [i.e. case 2] and the page was both present and available,
1302 * then we've got a pointer to it as "uobjpage" and we've already
1303 * made it BUSY.
1304 */
1305
1306 /*
1307 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1308 */
1309
1310 /*
1311 * redirect case 2: if we are not shadowed, go to case 2.
1312 */
1313
1314 return uvm_fault_lower_generic2(ufi, flt, anons, pages);
1315 }
1316
1317 static int
1318 uvm_fault_upper(
1319 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1320 struct vm_anon **anons, struct vm_page **pages)
1321 {
1322 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1323 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1324 struct vm_anon *anon, *oanon;
1325 int error;
1326
1327 /* locked: maps(read), amap */
1328 KASSERT(mutex_owned(&amap->am_l));
1329
1330 /*
1331 * handle case 1: fault on an anon in our amap
1332 */
1333
1334 anon = anons[flt->centeridx];
1335 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1336 mutex_enter(&anon->an_lock);
1337
1338 /* locked: maps(read), amap, anon */
1339 KASSERT(mutex_owned(&amap->am_l));
1340 KASSERT(mutex_owned(&anon->an_lock));
1341
1342 /*
1343 * no matter if we have case 1A or case 1B we are going to need to
1344 * have the anon's memory resident. ensure that now.
1345 */
1346
1347 /*
1348 * let uvmfault_anonget do the dirty work.
1349 * if it fails (!OK) it will unlock everything for us.
1350 * if it succeeds, locks are still valid and locked.
1351 * also, if it is OK, then the anon's page is on the queues.
1352 * if the page is on loan from a uvm_object, then anonget will
1353 * lock that object for us if it does not fail.
1354 */
1355
1356 error = uvmfault_anonget(ufi, amap, anon);
1357 switch (error) {
1358 case 0:
1359 break;
1360
1361 case ERESTART:
1362 return ERESTART;
1363
1364 case EAGAIN:
1365 kpause("fltagain1", false, hz/2, NULL);
1366 return ERESTART;
1367
1368 default:
1369 return error;
1370 }
1371
1372 /*
1373 * uobj is non null if the page is on loan from an object (i.e. uobj)
1374 */
1375
1376 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1377
1378 /* locked: maps(read), amap, anon, uobj(if one) */
1379 KASSERT(mutex_owned(&amap->am_l));
1380 KASSERT(mutex_owned(&anon->an_lock));
1381 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1382
1383 /*
1384 * special handling for loaned pages
1385 */
1386
1387 if (anon->an_page->loan_count) {
1388
1389 if (!flt->cow_now) {
1390
1391 /*
1392 * for read faults on loaned pages we just cap the
1393 * protection at read-only.
1394 */
1395
1396 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1397
1398 } else {
1399 /*
1400 * note that we can't allow writes into a loaned page!
1401 *
1402 * if we have a write fault on a loaned page in an
1403 * anon then we need to look at the anon's ref count.
1404 * if it is greater than one then we are going to do
1405 * a normal copy-on-write fault into a new anon (this
1406 * is not a problem). however, if the reference count
1407 * is one (a case where we would normally allow a
1408 * write directly to the page) then we need to kill
1409 * the loan before we continue.
1410 */
1411
1412 /* >1 case is already ok */
1413 if (anon->an_ref == 1) {
1414 struct vm_page *pg;
1415
1416 /* get new un-owned replacement page */
1417 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1418 if (pg == NULL) {
1419 uvmfault_unlockall(ufi, amap, uobj,
1420 anon);
1421 uvm_wait("flt_noram2");
1422 return ERESTART;
1423 }
1424
1425 /*
1426 * copy data, kill loan, and drop uobj lock
1427 * (if any)
1428 */
1429 /* copy old -> new */
1430 uvm_pagecopy(anon->an_page, pg);
1431
1432 /* force reload */
1433 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1434 mutex_enter(&uvm_pageqlock); /* KILL loan */
1435
1436 anon->an_page->uanon = NULL;
1437 /* in case we owned */
1438 anon->an_page->pqflags &= ~PQ_ANON;
1439
1440 if (uobj) {
1441 /* if we were receiver of loan */
1442 anon->an_page->loan_count--;
1443 } else {
1444 /*
1445 * we were the lender (A->K); need
1446 * to remove the page from pageq's.
1447 */
1448 uvm_pagedequeue(anon->an_page);
1449 }
1450
1451 if (uobj) {
1452 mutex_exit(&uobj->vmobjlock);
1453 uobj = NULL;
1454 }
1455
1456 /* install new page in anon */
1457 anon->an_page = pg;
1458 pg->uanon = anon;
1459 pg->pqflags |= PQ_ANON;
1460
1461 uvm_pageactivate(pg);
1462 mutex_exit(&uvm_pageqlock);
1463
1464 pg->flags &= ~(PG_BUSY|PG_FAKE);
1465 UVM_PAGE_OWN(pg, NULL);
1466
1467 /* done! */
1468 } /* ref == 1 */
1469 } /* write fault */
1470 } /* loan count */
1471
1472 /*
1473 * if we are case 1B then we will need to allocate a new blank
1474 * anon to transfer the data into. note that we have a lock
1475 * on anon, so no one can busy or release the page until we are done.
1476 * also note that the ref count can't drop to zero here because
1477 * it is > 1 and we are only dropping one ref.
1478 *
1479 * in the (hopefully very rare) case that we are out of RAM we
1480 * will unlock, wait for more RAM, and refault.
1481 *
1482 * if we are out of anon VM we kill the process (XXX: could wait?).
1483 */
1484
1485 struct vm_page *pg;
1486 if (flt->cow_now && anon->an_ref > 1) {
1487
1488 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1489 uvmexp.flt_acow++;
1490 oanon = anon; /* oanon = old, locked anon */
1491
1492 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1493 &anon, &flt->anon_spare);
1494 switch (error) {
1495 case 0:
1496 break;
1497 case ERESTART:
1498 return ERESTART;
1499 default:
1500 return error;
1501 }
1502
1503 pg = anon->an_page;
1504 mutex_enter(&uvm_pageqlock);
1505 uvm_pageactivate(pg);
1506 mutex_exit(&uvm_pageqlock);
1507 pg->flags &= ~(PG_BUSY|PG_FAKE);
1508 UVM_PAGE_OWN(pg, NULL);
1509
1510 /* deref: can not drop to zero here by defn! */
1511 oanon->an_ref--;
1512
1513 /*
1514 * note: oanon is still locked, as is the new anon. we
1515 * need to check for this later when we unlock oanon; if
1516 * oanon != anon, we'll have to unlock anon, too.
1517 */
1518
1519 } else {
1520
1521 uvmexp.flt_anon++;
1522 oanon = anon; /* old, locked anon is same as anon */
1523 pg = anon->an_page;
1524 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1525 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1526
1527 }
1528
1529 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1530 KASSERT(mutex_owned(&amap->am_l));
1531 KASSERT(mutex_owned(&anon->an_lock));
1532 KASSERT(mutex_owned(&oanon->an_lock));
1533
1534 /*
1535 * now map the page in.
1536 */
1537
1538 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1539 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1540 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1541 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0))
1542 != 0) {
1543
1544 /*
1545 * No need to undo what we did; we can simply think of
1546 * this as the pmap throwing away the mapping information.
1547 *
1548 * We do, however, have to go through the ReFault path,
1549 * as the map may change while we're asleep.
1550 */
1551
1552 if (anon != oanon)
1553 mutex_exit(&anon->an_lock);
1554 uvmfault_unlockall(ufi, amap, uobj, oanon);
1555 if (!uvm_reclaimable()) {
1556 UVMHIST_LOG(maphist,
1557 "<- failed. out of VM",0,0,0,0);
1558 /* XXX instrumentation */
1559 error = ENOMEM;
1560 return error;
1561 }
1562 /* XXX instrumentation */
1563 uvm_wait("flt_pmfail1");
1564 return ERESTART;
1565 }
1566
1567 /*
1568 * ... update the page queues.
1569 */
1570
1571 mutex_enter(&uvm_pageqlock);
1572 if (flt->wire_fault) {
1573 uvm_pagewire(pg);
1574
1575 /*
1576 * since the now-wired page cannot be paged out,
1577 * release its swap resources for others to use.
1578 * since an anon with no swap cannot be PG_CLEAN,
1579 * clear its clean flag now.
1580 */
1581
1582 pg->flags &= ~(PG_CLEAN);
1583 uvm_anon_dropswap(anon);
1584 } else {
1585 uvm_pageactivate(pg);
1586 }
1587 mutex_exit(&uvm_pageqlock);
1588
1589 /*
1590 * done case 1! finish up by unlocking everything and returning success
1591 */
1592
1593 if (anon != oanon)
1594 mutex_exit(&anon->an_lock);
1595 uvmfault_unlockall(ufi, amap, uobj, oanon);
1596 pmap_update(ufi->orig_map->pmap);
1597 return 0;
1598 }
1599
1600 static int
1601 uvm_fault_lower_generic2(
1602 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1603 struct vm_anon **anons, struct vm_page **pages)
1604 {
1605 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1606 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1607 struct vm_page *uobjpage = pages[flt->centeridx];
1608 struct vm_anon *anon;
1609 bool promote;
1610 int error;
1611
1612 /*
1613 * handle case 2: faulting on backing object or zero fill
1614 */
1615
1616 /*
1617 * locked:
1618 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1619 */
1620 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1621 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1622 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1623
1624 /*
1625 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1626 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1627 * have a backing object, check and see if we are going to promote
1628 * the data up to an anon during the fault.
1629 */
1630
1631 if (uobj == NULL) {
1632 uobjpage = PGO_DONTCARE;
1633 promote = true; /* always need anon here */
1634 } else {
1635 KASSERT(uobjpage != PGO_DONTCARE);
1636 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1637 }
1638 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1639 promote, (uobj == NULL), 0,0);
1640
1641 /*
1642 * if uobjpage is not null then we do not need to do I/O to get the
1643 * uobjpage.
1644 *
1645 * if uobjpage is null, then we need to unlock and ask the pager to
1646 * get the data for us. once we have the data, we need to reverify
1647 * the state the world. we are currently not holding any resources.
1648 */
1649
1650 if (uobjpage) {
1651 /* update rusage counters */
1652 curlwp->l_ru.ru_minflt++;
1653 } else {
1654 bool locked;
1655 int gotpages;
1656 voff_t uoff;
1657
1658 /* update rusage counters */
1659 curlwp->l_ru.ru_majflt++;
1660
1661 /* locked: maps(read), amap(if there), uobj */
1662 uvmfault_unlockall(ufi, amap, NULL, NULL);
1663 /* locked: uobj */
1664
1665 uvmexp.fltget++;
1666 gotpages = 1;
1667 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1668 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1669 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1670 PGO_SYNCIO);
1671 /* locked: uobjpage(if no error) */
1672 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1673
1674 /*
1675 * recover from I/O
1676 */
1677
1678 if (error) {
1679 if (error == EAGAIN) {
1680 UVMHIST_LOG(maphist,
1681 " pgo_get says TRY AGAIN!",0,0,0,0);
1682 kpause("fltagain2", false, hz/2, NULL);
1683 return ERESTART;
1684 }
1685
1686 #if 0
1687 KASSERT(error != ERESTART);
1688 #else
1689 /* XXXUEBS don't re-fault? */
1690 if (error == ERESTART)
1691 error = EIO;
1692 #endif
1693
1694 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1695 error, 0,0,0);
1696 return error;
1697 }
1698
1699 /* locked: uobjpage */
1700
1701 mutex_enter(&uvm_pageqlock);
1702 uvm_pageactivate(uobjpage);
1703 mutex_exit(&uvm_pageqlock);
1704
1705 /*
1706 * re-verify the state of the world by first trying to relock
1707 * the maps. always relock the object.
1708 */
1709
1710 locked = uvmfault_relock(ufi);
1711 if (locked && amap)
1712 amap_lock(amap);
1713 uobj = uobjpage->uobject;
1714 mutex_enter(&uobj->vmobjlock);
1715
1716 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1717 /* locked(!locked): uobj, uobjpage */
1718
1719 /*
1720 * verify that the page has not be released and re-verify
1721 * that amap slot is still free. if there is a problem,
1722 * we unlock and clean up.
1723 */
1724
1725 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1726 (locked && amap &&
1727 amap_lookup(&ufi->entry->aref,
1728 ufi->orig_rvaddr - ufi->entry->start))) {
1729 if (locked)
1730 uvmfault_unlockall(ufi, amap, NULL, NULL);
1731 locked = false;
1732 }
1733
1734 /*
1735 * didn't get the lock? release the page and retry.
1736 */
1737
1738 if (locked == false) {
1739 UVMHIST_LOG(maphist,
1740 " wasn't able to relock after fault: retry",
1741 0,0,0,0);
1742 if (uobjpage->flags & PG_WANTED)
1743 wakeup(uobjpage);
1744 if (uobjpage->flags & PG_RELEASED) {
1745 uvmexp.fltpgrele++;
1746 uvm_pagefree(uobjpage);
1747 return ERESTART;
1748 }
1749 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1750 UVM_PAGE_OWN(uobjpage, NULL);
1751 mutex_exit(&uobj->vmobjlock);
1752 return ERESTART;
1753 }
1754
1755 /*
1756 * we have the data in uobjpage which is busy and
1757 * not released. we are holding object lock (so the page
1758 * can't be released on us).
1759 */
1760
1761 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1762 }
1763
1764 /*
1765 * locked:
1766 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1767 */
1768 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1769 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1770 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1771
1772 /*
1773 * notes:
1774 * - at this point uobjpage can not be NULL
1775 * - at this point uobjpage can not be PG_RELEASED (since we checked
1776 * for it above)
1777 * - at this point uobjpage could be PG_WANTED (handle later)
1778 */
1779
1780 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1781 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1782 (uobjpage->flags & PG_CLEAN) != 0);
1783 struct vm_page *pg;
1784 if (promote == false) {
1785
1786 /*
1787 * we are not promoting. if the mapping is COW ensure that we
1788 * don't give more access than we should (e.g. when doing a read
1789 * fault on a COPYONWRITE mapping we want to map the COW page in
1790 * R/O even though the entry protection could be R/W).
1791 *
1792 * set "pg" to the page we want to map in (uobjpage, usually)
1793 */
1794
1795 /* no anon in this case. */
1796 anon = NULL;
1797
1798 uvmexp.flt_obj++;
1799 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1800 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1801 flt->enter_prot &= ~VM_PROT_WRITE;
1802 pg = uobjpage; /* map in the actual object */
1803
1804 KASSERT(uobjpage != PGO_DONTCARE);
1805
1806 /*
1807 * we are faulting directly on the page. be careful
1808 * about writing to loaned pages...
1809 */
1810
1811 if (uobjpage->loan_count) {
1812 if (!flt->cow_now) {
1813 /* read fault: cap the protection at readonly */
1814 /* cap! */
1815 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1816 } else {
1817 /* write fault: must break the loan here */
1818
1819 pg = uvm_loanbreak(uobjpage);
1820 if (pg == NULL) {
1821
1822 /*
1823 * drop ownership of page, it can't
1824 * be released
1825 */
1826
1827 if (uobjpage->flags & PG_WANTED)
1828 wakeup(uobjpage);
1829 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1830 UVM_PAGE_OWN(uobjpage, NULL);
1831
1832 uvmfault_unlockall(ufi, amap, uobj,
1833 NULL);
1834 UVMHIST_LOG(maphist,
1835 " out of RAM breaking loan, waiting",
1836 0,0,0,0);
1837 uvmexp.fltnoram++;
1838 uvm_wait("flt_noram4");
1839 return ERESTART;
1840 }
1841 uobjpage = pg;
1842 }
1843 }
1844 } else {
1845
1846 /*
1847 * if we are going to promote the data to an anon we
1848 * allocate a blank anon here and plug it into our amap.
1849 */
1850 #if DIAGNOSTIC
1851 if (amap == NULL)
1852 panic("uvm_fault: want to promote data, but no anon");
1853 #endif
1854 error = uvmfault_promote(ufi, NULL, uobjpage,
1855 &anon, &flt->anon_spare);
1856 switch (error) {
1857 case 0:
1858 break;
1859 case ERESTART:
1860 return ERESTART;
1861 default:
1862 return error;
1863 }
1864
1865 pg = anon->an_page;
1866
1867 /*
1868 * fill in the data
1869 */
1870
1871 if (uobjpage != PGO_DONTCARE) {
1872 uvmexp.flt_prcopy++;
1873
1874 /*
1875 * promote to shared amap? make sure all sharing
1876 * procs see it
1877 */
1878
1879 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1880 pmap_page_protect(uobjpage, VM_PROT_NONE);
1881 /*
1882 * XXX: PAGE MIGHT BE WIRED!
1883 */
1884 }
1885
1886 /*
1887 * dispose of uobjpage. it can't be PG_RELEASED
1888 * since we still hold the object lock.
1889 * drop handle to uobj as well.
1890 */
1891
1892 if (uobjpage->flags & PG_WANTED)
1893 /* still have the obj lock */
1894 wakeup(uobjpage);
1895 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1896 UVM_PAGE_OWN(uobjpage, NULL);
1897 mutex_exit(&uobj->vmobjlock);
1898 uobj = NULL;
1899
1900 UVMHIST_LOG(maphist,
1901 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1902 uobjpage, anon, pg, 0);
1903
1904 } else {
1905 uvmexp.flt_przero++;
1906
1907 /*
1908 * Page is zero'd and marked dirty by
1909 * uvmfault_promote().
1910 */
1911
1912 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1913 anon, pg, 0, 0);
1914 }
1915 }
1916
1917 /*
1918 * locked:
1919 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1920 * anon(if !null), pg(if anon)
1921 *
1922 * note: pg is either the uobjpage or the new page in the new anon
1923 */
1924 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1925 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1926 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1927 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1928 KASSERT((pg->flags & PG_BUSY) != 0);
1929
1930 /*
1931 * all resources are present. we can now map it in and free our
1932 * resources.
1933 */
1934
1935 UVMHIST_LOG(maphist,
1936 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1937 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
1938 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
1939 (pg->flags & PG_RDONLY) == 0);
1940 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1941 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
1942 flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1943
1944 /*
1945 * No need to undo what we did; we can simply think of
1946 * this as the pmap throwing away the mapping information.
1947 *
1948 * We do, however, have to go through the ReFault path,
1949 * as the map may change while we're asleep.
1950 */
1951
1952 if (pg->flags & PG_WANTED)
1953 wakeup(pg);
1954
1955 /*
1956 * note that pg can't be PG_RELEASED since we did not drop
1957 * the object lock since the last time we checked.
1958 */
1959 KASSERT((pg->flags & PG_RELEASED) == 0);
1960
1961 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1962 UVM_PAGE_OWN(pg, NULL);
1963 uvmfault_unlockall(ufi, amap, uobj, anon);
1964 if (!uvm_reclaimable()) {
1965 UVMHIST_LOG(maphist,
1966 "<- failed. out of VM",0,0,0,0);
1967 /* XXX instrumentation */
1968 error = ENOMEM;
1969 return error;
1970 }
1971 /* XXX instrumentation */
1972 uvm_wait("flt_pmfail2");
1973 return ERESTART;
1974 }
1975
1976 mutex_enter(&uvm_pageqlock);
1977 if (flt->wire_fault) {
1978 uvm_pagewire(pg);
1979 if (pg->pqflags & PQ_AOBJ) {
1980
1981 /*
1982 * since the now-wired page cannot be paged out,
1983 * release its swap resources for others to use.
1984 * since an aobj page with no swap cannot be PG_CLEAN,
1985 * clear its clean flag now.
1986 */
1987
1988 KASSERT(uobj != NULL);
1989 pg->flags &= ~(PG_CLEAN);
1990 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1991 }
1992 } else {
1993 uvm_pageactivate(pg);
1994 }
1995 mutex_exit(&uvm_pageqlock);
1996 if (pg->flags & PG_WANTED)
1997 wakeup(pg);
1998
1999 /*
2000 * note that pg can't be PG_RELEASED since we did not drop the object
2001 * lock since the last time we checked.
2002 */
2003 KASSERT((pg->flags & PG_RELEASED) == 0);
2004
2005 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2006 UVM_PAGE_OWN(pg, NULL);
2007 uvmfault_unlockall(ufi, amap, uobj, anon);
2008 pmap_update(ufi->orig_map->pmap);
2009 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2010 return 0;
2011 }
2012
2013
2014 /*
2015 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2016 *
2017 * => map may be read-locked by caller, but MUST NOT be write-locked.
2018 * => if map is read-locked, any operations which may cause map to
2019 * be write-locked in uvm_fault() must be taken care of by
2020 * the caller. See uvm_map_pageable().
2021 */
2022
2023 int
2024 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2025 vm_prot_t access_type, int maxprot)
2026 {
2027 vaddr_t va;
2028 int error;
2029
2030 /*
2031 * now fault it in a page at a time. if the fault fails then we have
2032 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2033 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2034 */
2035
2036 /*
2037 * XXX work around overflowing a vaddr_t. this prevents us from
2038 * wiring the last page in the address space, though.
2039 */
2040 if (start > end) {
2041 return EFAULT;
2042 }
2043
2044 for (va = start ; va < end ; va += PAGE_SIZE) {
2045 error = uvm_fault_internal(map, va, access_type,
2046 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2047 if (error) {
2048 if (va != start) {
2049 uvm_fault_unwire(map, start, va);
2050 }
2051 return error;
2052 }
2053 }
2054 return 0;
2055 }
2056
2057 /*
2058 * uvm_fault_unwire(): unwire range of virtual space.
2059 */
2060
2061 void
2062 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2063 {
2064 vm_map_lock_read(map);
2065 uvm_fault_unwire_locked(map, start, end);
2066 vm_map_unlock_read(map);
2067 }
2068
2069 /*
2070 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2071 *
2072 * => map must be at least read-locked.
2073 */
2074
2075 void
2076 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2077 {
2078 struct vm_map_entry *entry;
2079 pmap_t pmap = vm_map_pmap(map);
2080 vaddr_t va;
2081 paddr_t pa;
2082 struct vm_page *pg;
2083
2084 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2085
2086 /*
2087 * we assume that the area we are unwiring has actually been wired
2088 * in the first place. this means that we should be able to extract
2089 * the PAs from the pmap. we also lock out the page daemon so that
2090 * we can call uvm_pageunwire.
2091 */
2092
2093 mutex_enter(&uvm_pageqlock);
2094
2095 /*
2096 * find the beginning map entry for the region.
2097 */
2098
2099 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2100 if (uvm_map_lookup_entry(map, start, &entry) == false)
2101 panic("uvm_fault_unwire_locked: address not in map");
2102
2103 for (va = start; va < end; va += PAGE_SIZE) {
2104 if (pmap_extract(pmap, va, &pa) == false)
2105 continue;
2106
2107 /*
2108 * find the map entry for the current address.
2109 */
2110
2111 KASSERT(va >= entry->start);
2112 while (va >= entry->end) {
2113 KASSERT(entry->next != &map->header &&
2114 entry->next->start <= entry->end);
2115 entry = entry->next;
2116 }
2117
2118 /*
2119 * if the entry is no longer wired, tell the pmap.
2120 */
2121
2122 if (VM_MAPENT_ISWIRED(entry) == 0)
2123 pmap_unwire(pmap, va);
2124
2125 pg = PHYS_TO_VM_PAGE(pa);
2126 if (pg)
2127 uvm_pageunwire(pg);
2128 }
2129
2130 mutex_exit(&uvm_pageqlock);
2131 }
2132