uvm_fault.c revision 1.143 1 /* $NetBSD: uvm_fault.c,v 1.143 2010/02/01 08:23:13 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.143 2010/02/01 08:23:13 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 bool wired;
699 bool narrow;
700 bool shadowed;
701 bool wire_fault;
702 bool maxprot;
703 bool cow_now;
704 int npages;
705 int centeridx;
706 vaddr_t startva;
707 struct vm_anon *anon_spare;
708 };
709
710 static int
711 uvm_fault_check(
712 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
713 struct vm_anon ***ranons, struct vm_page ***rpages);
714 typedef int
715 uvm_fault_subfunc_t(
716 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
717 struct vm_anon **anons, struct vm_page **pages);
718 static uvm_fault_subfunc_t uvm_fault_upper_lookup;
719 static uvm_fault_subfunc_t uvm_fault_upper;
720 static uvm_fault_subfunc_t uvm_fault_lower;
721 static uvm_fault_subfunc_t uvm_fault_lower_special;
722 static uvm_fault_subfunc_t uvm_fault_lower_generic_lookup;
723 static uvm_fault_subfunc_t uvm_fault_lower_generic;
724 static uvm_fault_subfunc_t uvm_fault_lower_generic1;
725 static uvm_fault_subfunc_t uvm_fault_lower_generic2;
726
727 int
728 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
729 vm_prot_t access_type, int fault_flag)
730 {
731 struct uvm_faultinfo ufi;
732 struct uvm_faultctx flt = {
733 .access_type = access_type,
734 .wire_fault = (fault_flag & UVM_FAULT_WIRE) != 0,
735 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
736 };
737 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
738 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
739 int error;
740 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
741
742 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
743 orig_map, vaddr, access_type, fault_flag);
744
745 uvmexp.faults++; /* XXX: locking? */
746
747 /*
748 * init the IN parameters in the ufi
749 */
750
751 ufi.orig_map = orig_map;
752 ufi.orig_rvaddr = trunc_page(vaddr);
753 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
754 if (flt.wire_fault)
755 flt.narrow = true; /* don't look for neighborhood
756 * pages on wire */
757 else
758 flt.narrow = false; /* normal fault */
759
760 /*
761 * "goto ReFault" means restart the page fault from ground zero.
762 */
763
764 error = ERESTART;
765 while (error == ERESTART) {
766 anons = anons_store;
767 pages = pages_store;
768
769 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
770 if (error != 0)
771 continue;
772
773 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
774 if (error != 0)
775 continue;
776
777 if (flt.shadowed == true)
778 error = uvm_fault_upper(&ufi, &flt, anons, pages);
779 else
780 error = uvm_fault_lower(&ufi, &flt, anons, pages);
781 }
782
783 if (flt.anon_spare != NULL) {
784 flt.anon_spare->an_ref--;
785 uvm_anfree(flt.anon_spare);
786 }
787 return error;
788 }
789
790 int
791 uvm_fault_check(
792 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
793 struct vm_anon ***ranons, struct vm_page ***rpages)
794 {
795 struct vm_amap *amap;
796 struct uvm_object *uobj;
797 vm_prot_t check_prot;
798 int nback, nforw;
799
800 /*
801 * lookup and lock the maps
802 */
803
804 if (uvmfault_lookup(ufi, false) == false) {
805 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
806 return EFAULT;
807 }
808 /* locked: maps(read) */
809
810 #ifdef DIAGNOSTIC
811 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
812 printf("Page fault on non-pageable map:\n");
813 printf("ufi->map = %p\n", ufi->map);
814 printf("ufi->orig_map = %p\n", ufi->orig_map);
815 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
816 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
817 }
818 #endif
819
820 /*
821 * check protection
822 */
823
824 check_prot = flt->maxprot ?
825 ufi->entry->max_protection : ufi->entry->protection;
826 if ((check_prot & flt->access_type) != flt->access_type) {
827 UVMHIST_LOG(maphist,
828 "<- protection failure (prot=0x%x, access=0x%x)",
829 ufi->entry->protection, flt->access_type, 0, 0);
830 uvmfault_unlockmaps(ufi, false);
831 return EACCES;
832 }
833
834 /*
835 * "enter_prot" is the protection we want to enter the page in at.
836 * for certain pages (e.g. copy-on-write pages) this protection can
837 * be more strict than ufi->entry->protection. "wired" means either
838 * the entry is wired or we are fault-wiring the pg.
839 */
840
841 flt->enter_prot = ufi->entry->protection;
842 flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || flt->wire_fault;
843 if (flt->wired) {
844 flt->access_type = flt->enter_prot; /* full access for wired */
845 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
846 } else {
847 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
848 }
849
850 /*
851 * handle "needs_copy" case. if we need to copy the amap we will
852 * have to drop our readlock and relock it with a write lock. (we
853 * need a write lock to change anything in a map entry [e.g.
854 * needs_copy]).
855 */
856
857 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
858 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
859 KASSERT(!flt->maxprot);
860 /* need to clear */
861 UVMHIST_LOG(maphist,
862 " need to clear needs_copy and refault",0,0,0,0);
863 uvmfault_unlockmaps(ufi, false);
864 uvmfault_amapcopy(ufi);
865 uvmexp.fltamcopy++;
866 return ERESTART;
867
868 } else {
869
870 /*
871 * ensure that we pmap_enter page R/O since
872 * needs_copy is still true
873 */
874
875 flt->enter_prot &= ~VM_PROT_WRITE;
876 }
877 }
878
879 /*
880 * identify the players
881 */
882
883 amap = ufi->entry->aref.ar_amap; /* upper layer */
884 uobj = ufi->entry->object.uvm_obj; /* lower layer */
885
886 /*
887 * check for a case 0 fault. if nothing backing the entry then
888 * error now.
889 */
890
891 if (amap == NULL && uobj == NULL) {
892 uvmfault_unlockmaps(ufi, false);
893 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
894 return EFAULT;
895 }
896
897 /*
898 * establish range of interest based on advice from mapper
899 * and then clip to fit map entry. note that we only want
900 * to do this the first time through the fault. if we
901 * ReFault we will disable this by setting "narrow" to true.
902 */
903
904 if (flt->narrow == false) {
905
906 /* wide fault (!narrow) */
907 KASSERT(uvmadvice[ufi->entry->advice].advice ==
908 ufi->entry->advice);
909 nback = MIN(uvmadvice[ufi->entry->advice].nback,
910 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
911 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
912 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
913 ((ufi->entry->end - ufi->orig_rvaddr) >>
914 PAGE_SHIFT) - 1);
915 /*
916 * note: "-1" because we don't want to count the
917 * faulting page as forw
918 */
919 flt->npages = nback + nforw + 1;
920 flt->centeridx = nback;
921
922 flt->narrow = true; /* ensure only once per-fault */
923
924 } else {
925
926 /* narrow fault! */
927 nback = nforw = 0;
928 flt->startva = ufi->orig_rvaddr;
929 flt->npages = 1;
930 flt->centeridx = 0;
931
932 }
933 /* offset from entry's start to pgs' start */
934 const voff_t eoff = flt->startva - ufi->entry->start;
935
936 /* locked: maps(read) */
937 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
938 flt->narrow, nback, nforw, flt->startva);
939 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
940 amap, uobj, 0);
941
942 /*
943 * if we've got an amap, lock it and extract current anons.
944 */
945
946 if (amap) {
947 amap_lock(amap);
948 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
949 } else {
950 *ranons = NULL; /* to be safe */
951 }
952
953 /* locked: maps(read), amap(if there) */
954 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
955
956 /*
957 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
958 * now and then forget about them (for the rest of the fault).
959 */
960
961 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
962
963 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
964 0,0,0,0);
965 /* flush back-page anons? */
966 if (amap)
967 uvmfault_anonflush(*ranons, nback);
968
969 /* flush object? */
970 if (uobj) {
971 voff_t uoff;
972
973 uoff = ufi->entry->offset + eoff;
974 mutex_enter(&uobj->vmobjlock);
975 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
976 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
977 }
978
979 /* now forget about the backpages */
980 if (amap)
981 *ranons += nback;
982 #if 0
983 /* XXXUEBS */
984 if (uobj)
985 *rpages += nback;
986 #endif
987 flt->startva += (nback << PAGE_SHIFT);
988 flt->npages -= nback;
989 flt->centeridx = 0;
990 }
991 /*
992 * => startva is fixed
993 * => npages is fixed
994 */
995
996 return 0;
997 }
998
999 int
1000 uvm_fault_upper_lookup(
1001 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1002 struct vm_anon **anons, struct vm_page **pages)
1003 {
1004 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1005 int lcv;
1006 vaddr_t currva;
1007
1008 /* locked: maps(read), amap(if there) */
1009 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1010
1011 /*
1012 * map in the backpages and frontpages we found in the amap in hopes
1013 * of preventing future faults. we also init the pages[] array as
1014 * we go.
1015 */
1016
1017 currva = flt->startva;
1018 flt->shadowed = false;
1019 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1020 struct vm_anon *anon;
1021
1022 /*
1023 * dont play with VAs that are already mapped
1024 * except for center)
1025 */
1026 if (lcv != flt->centeridx &&
1027 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1028 pages[lcv] = PGO_DONTCARE;
1029 continue;
1030 }
1031
1032 /*
1033 * unmapped or center page. check if any anon at this level.
1034 */
1035 if (amap == NULL || anons[lcv] == NULL) {
1036 pages[lcv] = NULL;
1037 continue;
1038 }
1039
1040 /*
1041 * check for present page and map if possible. re-activate it.
1042 */
1043
1044 pages[lcv] = PGO_DONTCARE;
1045 if (lcv == flt->centeridx) { /* save center for later! */
1046 flt->shadowed = true;
1047 continue;
1048 }
1049 anon = anons[lcv];
1050 mutex_enter(&anon->an_lock);
1051 /* ignore loaned pages */
1052 if (anon->an_page && anon->an_page->loan_count == 0 &&
1053 (anon->an_page->flags & PG_BUSY) == 0) {
1054 mutex_enter(&uvm_pageqlock);
1055 uvm_pageenqueue(anon->an_page);
1056 mutex_exit(&uvm_pageqlock);
1057 UVMHIST_LOG(maphist,
1058 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1059 ufi->orig_map->pmap, currva, anon->an_page, 0);
1060 uvmexp.fltnamap++;
1061
1062 /*
1063 * Since this isn't the page that's actually faulting,
1064 * ignore pmap_enter() failures; it's not critical
1065 * that we enter these right now.
1066 */
1067
1068 (void) pmap_enter(ufi->orig_map->pmap, currva,
1069 VM_PAGE_TO_PHYS(anon->an_page),
1070 (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1071 flt->enter_prot,
1072 PMAP_CANFAIL |
1073 (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
1074 }
1075 pmap_update(ufi->orig_map->pmap);
1076 mutex_exit(&anon->an_lock);
1077 }
1078
1079 /* locked: maps(read), amap(if there) */
1080 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1081 /* (shadowed == true) if there is an anon at the faulting address */
1082 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", flt->shadowed,
1083 (uobj && flt->shadowed == false),0,0);
1084
1085 /*
1086 * note that if we are really short of RAM we could sleep in the above
1087 * call to pmap_enter with everything locked. bad?
1088 *
1089 * XXX Actually, that is bad; pmap_enter() should just fail in that
1090 * XXX case. --thorpej
1091 */
1092
1093 return 0;
1094 }
1095
1096 static int
1097 uvm_fault_lower(
1098 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1099 struct vm_anon **anons, struct vm_page **pages)
1100 {
1101 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1102 int error;
1103
1104 /*
1105 * if the desired page is not shadowed by the amap and we have a
1106 * backing object, then we check to see if the backing object would
1107 * prefer to handle the fault itself (rather than letting us do it
1108 * with the usual pgo_get hook). the backing object signals this by
1109 * providing a pgo_fault routine.
1110 */
1111
1112 if (uobj && uobj->pgops->pgo_fault != NULL) {
1113 error = uvm_fault_lower_special(ufi, flt, anons, pages);
1114 } else {
1115 error = uvm_fault_lower_generic(ufi, flt, anons, pages);
1116 }
1117 return error;
1118 }
1119
1120 static int
1121 uvm_fault_lower_special(
1122 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1123 struct vm_anon **anons, struct vm_page **pages)
1124 {
1125 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1126 int error;
1127
1128 mutex_enter(&uobj->vmobjlock);
1129 /* locked: maps(read), amap (if there), uobj */
1130 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1131 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1132
1133 /* locked: nothing, pgo_fault has unlocked everything */
1134
1135 if (error == ERESTART)
1136 error = ERESTART; /* try again! */
1137 /*
1138 * object fault routine responsible for pmap_update().
1139 */
1140
1141 return error;
1142 }
1143
1144 static int
1145 uvm_fault_lower_generic(
1146 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1147 struct vm_anon **anons, struct vm_page **pages)
1148 {
1149 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1150
1151 /*
1152 * now, if the desired page is not shadowed by the amap and we have
1153 * a backing object that does not have a special fault routine, then
1154 * we ask (with pgo_get) the object for resident pages that we care
1155 * about and attempt to map them in. we do not let pgo_get block
1156 * (PGO_LOCKED).
1157 */
1158
1159 if (uobj == NULL) {
1160 /* zero fill; don't care neighbor pages */
1161 pages[flt->centeridx] = NULL;
1162 } else {
1163 uvm_fault_lower_generic_lookup(ufi, flt, anons, pages);
1164 }
1165 return uvm_fault_lower_generic1(ufi, flt, anons, pages);
1166 }
1167
1168 static int
1169 uvm_fault_lower_generic_lookup(
1170 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1171 struct vm_anon **anons, struct vm_page **pages)
1172 {
1173 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1174 int lcv, gotpages;
1175 vaddr_t currva;
1176
1177 mutex_enter(&uobj->vmobjlock);
1178 /* locked (!shadowed): maps(read), amap (if there), uobj */
1179 /*
1180 * the following call to pgo_get does _not_ change locking state
1181 */
1182
1183 uvmexp.fltlget++;
1184 gotpages = flt->npages;
1185 (void) uobj->pgops->pgo_get(uobj,
1186 ufi->entry->offset + flt->startva - ufi->entry->start,
1187 pages, &gotpages, flt->centeridx,
1188 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1189
1190 /*
1191 * check for pages to map, if we got any
1192 */
1193
1194 if (gotpages == 0) {
1195 pages[flt->centeridx] = NULL;
1196 return 0;
1197 }
1198
1199 currva = flt->startva;
1200 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1201 struct vm_page *curpg;
1202 bool readonly;
1203
1204 curpg = pages[lcv];
1205 if (curpg == NULL || curpg == PGO_DONTCARE) {
1206 continue;
1207 }
1208 KASSERT(curpg->uobject == uobj);
1209
1210 /*
1211 * if center page is resident and not PG_BUSY|PG_RELEASED
1212 * then pgo_get made it PG_BUSY for us and gave us a handle
1213 * to it. remember this page as "uobjpage." (for later use).
1214 */
1215
1216 if (lcv == flt->centeridx) {
1217 UVMHIST_LOG(maphist, " got uobjpage "
1218 "(0x%x) with locked get",
1219 curpg, 0,0,0);
1220 continue;
1221 }
1222
1223 /*
1224 * calling pgo_get with PGO_LOCKED returns us pages which
1225 * are neither busy nor released, so we don't need to check
1226 * for this. we can just directly enter the pages.
1227 */
1228
1229 mutex_enter(&uvm_pageqlock);
1230 uvm_pageenqueue(curpg);
1231 mutex_exit(&uvm_pageqlock);
1232 UVMHIST_LOG(maphist,
1233 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1234 ufi->orig_map->pmap, currva, curpg, 0);
1235 uvmexp.fltnomap++;
1236
1237 /*
1238 * Since this page isn't the page that's actually faulting,
1239 * ignore pmap_enter() failures; it's not critical that we
1240 * enter these right now.
1241 */
1242 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1243 KASSERT((curpg->flags & PG_RELEASED) == 0);
1244 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1245 (curpg->flags & PG_CLEAN) != 0);
1246 readonly = (curpg->flags & PG_RDONLY)
1247 || (curpg->loan_count > 0)
1248 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1249
1250 (void) pmap_enter(ufi->orig_map->pmap, currva,
1251 VM_PAGE_TO_PHYS(curpg),
1252 readonly ? flt->enter_prot & ~VM_PROT_WRITE :
1253 flt->enter_prot & MASK(ufi->entry),
1254 PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0));
1255
1256 /*
1257 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1258 * held the lock the whole time we've had the handle.
1259 */
1260 KASSERT((curpg->flags & PG_WANTED) == 0);
1261 KASSERT((curpg->flags & PG_RELEASED) == 0);
1262
1263 curpg->flags &= ~(PG_BUSY);
1264 UVM_PAGE_OWN(curpg, NULL);
1265 }
1266 pmap_update(ufi->orig_map->pmap);
1267 return 0;
1268 }
1269
1270 static int
1271 uvm_fault_lower_generic1(
1272 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1273 struct vm_anon **anons, struct vm_page **pages)
1274 {
1275 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1276 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1277 struct vm_page *uobjpage = pages[flt->centeridx];
1278
1279 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1280 KASSERT(!flt->shadowed);
1281 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1282 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1283 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1284
1285 /*
1286 * note that at this point we are done with any front or back pages.
1287 * we are now going to focus on the center page (i.e. the one we've
1288 * faulted on). if we have faulted on the upper (anon) layer
1289 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1290 * not touched it yet). if we have faulted on the bottom (uobj)
1291 * layer [i.e. case 2] and the page was both present and available,
1292 * then we've got a pointer to it as "uobjpage" and we've already
1293 * made it BUSY.
1294 */
1295
1296 /*
1297 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1298 */
1299
1300 /*
1301 * redirect case 2: if we are not shadowed, go to case 2.
1302 */
1303
1304 return uvm_fault_lower_generic2(ufi, flt, anons, pages);
1305 }
1306
1307 static int
1308 uvm_fault_upper(
1309 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1310 struct vm_anon **anons, struct vm_page **pages)
1311 {
1312 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1313 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1314 struct vm_anon *anon, *oanon;
1315 int error;
1316
1317 /* locked: maps(read), amap */
1318 KASSERT(mutex_owned(&amap->am_l));
1319
1320 /*
1321 * handle case 1: fault on an anon in our amap
1322 */
1323
1324 anon = anons[flt->centeridx];
1325 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1326 mutex_enter(&anon->an_lock);
1327
1328 /* locked: maps(read), amap, anon */
1329 KASSERT(mutex_owned(&amap->am_l));
1330 KASSERT(mutex_owned(&anon->an_lock));
1331
1332 /*
1333 * no matter if we have case 1A or case 1B we are going to need to
1334 * have the anon's memory resident. ensure that now.
1335 */
1336
1337 /*
1338 * let uvmfault_anonget do the dirty work.
1339 * if it fails (!OK) it will unlock everything for us.
1340 * if it succeeds, locks are still valid and locked.
1341 * also, if it is OK, then the anon's page is on the queues.
1342 * if the page is on loan from a uvm_object, then anonget will
1343 * lock that object for us if it does not fail.
1344 */
1345
1346 error = uvmfault_anonget(ufi, amap, anon);
1347 switch (error) {
1348 case 0:
1349 break;
1350
1351 case ERESTART:
1352 return ERESTART;
1353
1354 case EAGAIN:
1355 kpause("fltagain1", false, hz/2, NULL);
1356 return ERESTART;
1357
1358 default:
1359 return error;
1360 }
1361
1362 /*
1363 * uobj is non null if the page is on loan from an object (i.e. uobj)
1364 */
1365
1366 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1367
1368 /* locked: maps(read), amap, anon, uobj(if one) */
1369 KASSERT(mutex_owned(&amap->am_l));
1370 KASSERT(mutex_owned(&anon->an_lock));
1371 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1372
1373 /*
1374 * special handling for loaned pages
1375 */
1376
1377 if (anon->an_page->loan_count) {
1378
1379 if (!flt->cow_now) {
1380
1381 /*
1382 * for read faults on loaned pages we just cap the
1383 * protection at read-only.
1384 */
1385
1386 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1387
1388 } else {
1389 /*
1390 * note that we can't allow writes into a loaned page!
1391 *
1392 * if we have a write fault on a loaned page in an
1393 * anon then we need to look at the anon's ref count.
1394 * if it is greater than one then we are going to do
1395 * a normal copy-on-write fault into a new anon (this
1396 * is not a problem). however, if the reference count
1397 * is one (a case where we would normally allow a
1398 * write directly to the page) then we need to kill
1399 * the loan before we continue.
1400 */
1401
1402 /* >1 case is already ok */
1403 if (anon->an_ref == 1) {
1404 struct vm_page *pg;
1405
1406 /* get new un-owned replacement page */
1407 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1408 if (pg == NULL) {
1409 uvmfault_unlockall(ufi, amap, uobj,
1410 anon);
1411 uvm_wait("flt_noram2");
1412 return ERESTART;
1413 }
1414
1415 /*
1416 * copy data, kill loan, and drop uobj lock
1417 * (if any)
1418 */
1419 /* copy old -> new */
1420 uvm_pagecopy(anon->an_page, pg);
1421
1422 /* force reload */
1423 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1424 mutex_enter(&uvm_pageqlock); /* KILL loan */
1425
1426 anon->an_page->uanon = NULL;
1427 /* in case we owned */
1428 anon->an_page->pqflags &= ~PQ_ANON;
1429
1430 if (uobj) {
1431 /* if we were receiver of loan */
1432 anon->an_page->loan_count--;
1433 } else {
1434 /*
1435 * we were the lender (A->K); need
1436 * to remove the page from pageq's.
1437 */
1438 uvm_pagedequeue(anon->an_page);
1439 }
1440
1441 if (uobj) {
1442 mutex_exit(&uobj->vmobjlock);
1443 uobj = NULL;
1444 }
1445
1446 /* install new page in anon */
1447 anon->an_page = pg;
1448 pg->uanon = anon;
1449 pg->pqflags |= PQ_ANON;
1450
1451 uvm_pageactivate(pg);
1452 mutex_exit(&uvm_pageqlock);
1453
1454 pg->flags &= ~(PG_BUSY|PG_FAKE);
1455 UVM_PAGE_OWN(pg, NULL);
1456
1457 /* done! */
1458 } /* ref == 1 */
1459 } /* write fault */
1460 } /* loan count */
1461
1462 /*
1463 * if we are case 1B then we will need to allocate a new blank
1464 * anon to transfer the data into. note that we have a lock
1465 * on anon, so no one can busy or release the page until we are done.
1466 * also note that the ref count can't drop to zero here because
1467 * it is > 1 and we are only dropping one ref.
1468 *
1469 * in the (hopefully very rare) case that we are out of RAM we
1470 * will unlock, wait for more RAM, and refault.
1471 *
1472 * if we are out of anon VM we kill the process (XXX: could wait?).
1473 */
1474
1475 struct vm_page *pg;
1476 if (flt->cow_now && anon->an_ref > 1) {
1477
1478 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1479 uvmexp.flt_acow++;
1480 oanon = anon; /* oanon = old, locked anon */
1481
1482 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1483 &anon, &flt->anon_spare);
1484 switch (error) {
1485 case 0:
1486 break;
1487 case ERESTART:
1488 return ERESTART;
1489 default:
1490 return error;
1491 }
1492
1493 pg = anon->an_page;
1494 mutex_enter(&uvm_pageqlock);
1495 uvm_pageactivate(pg);
1496 mutex_exit(&uvm_pageqlock);
1497 pg->flags &= ~(PG_BUSY|PG_FAKE);
1498 UVM_PAGE_OWN(pg, NULL);
1499
1500 /* deref: can not drop to zero here by defn! */
1501 oanon->an_ref--;
1502
1503 /*
1504 * note: oanon is still locked, as is the new anon. we
1505 * need to check for this later when we unlock oanon; if
1506 * oanon != anon, we'll have to unlock anon, too.
1507 */
1508
1509 } else {
1510
1511 uvmexp.flt_anon++;
1512 oanon = anon; /* old, locked anon is same as anon */
1513 pg = anon->an_page;
1514 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1515 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1516
1517 }
1518
1519 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1520 KASSERT(mutex_owned(&amap->am_l));
1521 KASSERT(mutex_owned(&anon->an_lock));
1522 KASSERT(mutex_owned(&oanon->an_lock));
1523
1524 /*
1525 * now map the page in.
1526 */
1527
1528 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1529 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1530 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1531 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0))
1532 != 0) {
1533
1534 /*
1535 * No need to undo what we did; we can simply think of
1536 * this as the pmap throwing away the mapping information.
1537 *
1538 * We do, however, have to go through the ReFault path,
1539 * as the map may change while we're asleep.
1540 */
1541
1542 if (anon != oanon)
1543 mutex_exit(&anon->an_lock);
1544 uvmfault_unlockall(ufi, amap, uobj, oanon);
1545 if (!uvm_reclaimable()) {
1546 UVMHIST_LOG(maphist,
1547 "<- failed. out of VM",0,0,0,0);
1548 /* XXX instrumentation */
1549 error = ENOMEM;
1550 return error;
1551 }
1552 /* XXX instrumentation */
1553 uvm_wait("flt_pmfail1");
1554 return ERESTART;
1555 }
1556
1557 /*
1558 * ... update the page queues.
1559 */
1560
1561 mutex_enter(&uvm_pageqlock);
1562 if (flt->wire_fault) {
1563 uvm_pagewire(pg);
1564
1565 /*
1566 * since the now-wired page cannot be paged out,
1567 * release its swap resources for others to use.
1568 * since an anon with no swap cannot be PG_CLEAN,
1569 * clear its clean flag now.
1570 */
1571
1572 pg->flags &= ~(PG_CLEAN);
1573 uvm_anon_dropswap(anon);
1574 } else {
1575 uvm_pageactivate(pg);
1576 }
1577 mutex_exit(&uvm_pageqlock);
1578
1579 /*
1580 * done case 1! finish up by unlocking everything and returning success
1581 */
1582
1583 if (anon != oanon)
1584 mutex_exit(&anon->an_lock);
1585 uvmfault_unlockall(ufi, amap, uobj, oanon);
1586 pmap_update(ufi->orig_map->pmap);
1587 return 0;
1588 }
1589
1590 static int
1591 uvm_fault_lower_generic2(
1592 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1593 struct vm_anon **anons, struct vm_page **pages)
1594 {
1595 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1596 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1597 struct vm_page *uobjpage = pages[flt->centeridx];
1598 struct vm_anon *anon;
1599 bool promote;
1600 int error;
1601
1602 /*
1603 * handle case 2: faulting on backing object or zero fill
1604 */
1605
1606 /*
1607 * locked:
1608 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1609 */
1610 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1611 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1612 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1613
1614 /*
1615 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1616 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1617 * have a backing object, check and see if we are going to promote
1618 * the data up to an anon during the fault.
1619 */
1620
1621 if (uobj == NULL) {
1622 uobjpage = PGO_DONTCARE;
1623 promote = true; /* always need anon here */
1624 } else {
1625 KASSERT(uobjpage != PGO_DONTCARE);
1626 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1627 }
1628 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1629 promote, (uobj == NULL), 0,0);
1630
1631 /*
1632 * if uobjpage is not null then we do not need to do I/O to get the
1633 * uobjpage.
1634 *
1635 * if uobjpage is null, then we need to unlock and ask the pager to
1636 * get the data for us. once we have the data, we need to reverify
1637 * the state the world. we are currently not holding any resources.
1638 */
1639
1640 if (uobjpage) {
1641 /* update rusage counters */
1642 curlwp->l_ru.ru_minflt++;
1643 } else {
1644 bool locked;
1645 int gotpages;
1646 voff_t uoff;
1647
1648 /* update rusage counters */
1649 curlwp->l_ru.ru_majflt++;
1650
1651 /* locked: maps(read), amap(if there), uobj */
1652 uvmfault_unlockall(ufi, amap, NULL, NULL);
1653 /* locked: uobj */
1654
1655 uvmexp.fltget++;
1656 gotpages = 1;
1657 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1658 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1659 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1660 PGO_SYNCIO);
1661 /* locked: uobjpage(if no error) */
1662 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1663
1664 /*
1665 * recover from I/O
1666 */
1667
1668 if (error) {
1669 if (error == EAGAIN) {
1670 UVMHIST_LOG(maphist,
1671 " pgo_get says TRY AGAIN!",0,0,0,0);
1672 kpause("fltagain2", false, hz/2, NULL);
1673 return ERESTART;
1674 }
1675
1676 #if 0
1677 KASSERT(error != ERESTART);
1678 #else
1679 /* XXXUEBS don't re-fault? */
1680 if (error == ERESTART)
1681 error = EIO;
1682 #endif
1683
1684 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1685 error, 0,0,0);
1686 return error;
1687 }
1688
1689 /* locked: uobjpage */
1690
1691 mutex_enter(&uvm_pageqlock);
1692 uvm_pageactivate(uobjpage);
1693 mutex_exit(&uvm_pageqlock);
1694
1695 /*
1696 * re-verify the state of the world by first trying to relock
1697 * the maps. always relock the object.
1698 */
1699
1700 locked = uvmfault_relock(ufi);
1701 if (locked && amap)
1702 amap_lock(amap);
1703 uobj = uobjpage->uobject;
1704 mutex_enter(&uobj->vmobjlock);
1705
1706 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1707 /* locked(!locked): uobj, uobjpage */
1708
1709 /*
1710 * verify that the page has not be released and re-verify
1711 * that amap slot is still free. if there is a problem,
1712 * we unlock and clean up.
1713 */
1714
1715 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1716 (locked && amap &&
1717 amap_lookup(&ufi->entry->aref,
1718 ufi->orig_rvaddr - ufi->entry->start))) {
1719 if (locked)
1720 uvmfault_unlockall(ufi, amap, NULL, NULL);
1721 locked = false;
1722 }
1723
1724 /*
1725 * didn't get the lock? release the page and retry.
1726 */
1727
1728 if (locked == false) {
1729 UVMHIST_LOG(maphist,
1730 " wasn't able to relock after fault: retry",
1731 0,0,0,0);
1732 if (uobjpage->flags & PG_WANTED)
1733 wakeup(uobjpage);
1734 if (uobjpage->flags & PG_RELEASED) {
1735 uvmexp.fltpgrele++;
1736 uvm_pagefree(uobjpage);
1737 return ERESTART;
1738 }
1739 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1740 UVM_PAGE_OWN(uobjpage, NULL);
1741 mutex_exit(&uobj->vmobjlock);
1742 return ERESTART;
1743 }
1744
1745 /*
1746 * we have the data in uobjpage which is busy and
1747 * not released. we are holding object lock (so the page
1748 * can't be released on us).
1749 */
1750
1751 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1752 }
1753
1754 /*
1755 * locked:
1756 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1757 */
1758 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1759 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1760 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1761
1762 /*
1763 * notes:
1764 * - at this point uobjpage can not be NULL
1765 * - at this point uobjpage can not be PG_RELEASED (since we checked
1766 * for it above)
1767 * - at this point uobjpage could be PG_WANTED (handle later)
1768 */
1769
1770 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1771 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1772 (uobjpage->flags & PG_CLEAN) != 0);
1773 struct vm_page *pg;
1774 if (promote == false) {
1775
1776 /*
1777 * we are not promoting. if the mapping is COW ensure that we
1778 * don't give more access than we should (e.g. when doing a read
1779 * fault on a COPYONWRITE mapping we want to map the COW page in
1780 * R/O even though the entry protection could be R/W).
1781 *
1782 * set "pg" to the page we want to map in (uobjpage, usually)
1783 */
1784
1785 /* no anon in this case. */
1786 anon = NULL;
1787
1788 uvmexp.flt_obj++;
1789 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1790 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1791 flt->enter_prot &= ~VM_PROT_WRITE;
1792 pg = uobjpage; /* map in the actual object */
1793
1794 KASSERT(uobjpage != PGO_DONTCARE);
1795
1796 /*
1797 * we are faulting directly on the page. be careful
1798 * about writing to loaned pages...
1799 */
1800
1801 if (uobjpage->loan_count) {
1802 if (!flt->cow_now) {
1803 /* read fault: cap the protection at readonly */
1804 /* cap! */
1805 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1806 } else {
1807 /* write fault: must break the loan here */
1808
1809 pg = uvm_loanbreak(uobjpage);
1810 if (pg == NULL) {
1811
1812 /*
1813 * drop ownership of page, it can't
1814 * be released
1815 */
1816
1817 if (uobjpage->flags & PG_WANTED)
1818 wakeup(uobjpage);
1819 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1820 UVM_PAGE_OWN(uobjpage, NULL);
1821
1822 uvmfault_unlockall(ufi, amap, uobj,
1823 NULL);
1824 UVMHIST_LOG(maphist,
1825 " out of RAM breaking loan, waiting",
1826 0,0,0,0);
1827 uvmexp.fltnoram++;
1828 uvm_wait("flt_noram4");
1829 return ERESTART;
1830 }
1831 uobjpage = pg;
1832 }
1833 }
1834 } else {
1835
1836 /*
1837 * if we are going to promote the data to an anon we
1838 * allocate a blank anon here and plug it into our amap.
1839 */
1840 #if DIAGNOSTIC
1841 if (amap == NULL)
1842 panic("uvm_fault: want to promote data, but no anon");
1843 #endif
1844 error = uvmfault_promote(ufi, NULL, uobjpage,
1845 &anon, &flt->anon_spare);
1846 switch (error) {
1847 case 0:
1848 break;
1849 case ERESTART:
1850 return ERESTART;
1851 default:
1852 return error;
1853 }
1854
1855 pg = anon->an_page;
1856
1857 /*
1858 * fill in the data
1859 */
1860
1861 if (uobjpage != PGO_DONTCARE) {
1862 uvmexp.flt_prcopy++;
1863
1864 /*
1865 * promote to shared amap? make sure all sharing
1866 * procs see it
1867 */
1868
1869 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1870 pmap_page_protect(uobjpage, VM_PROT_NONE);
1871 /*
1872 * XXX: PAGE MIGHT BE WIRED!
1873 */
1874 }
1875
1876 /*
1877 * dispose of uobjpage. it can't be PG_RELEASED
1878 * since we still hold the object lock.
1879 * drop handle to uobj as well.
1880 */
1881
1882 if (uobjpage->flags & PG_WANTED)
1883 /* still have the obj lock */
1884 wakeup(uobjpage);
1885 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1886 UVM_PAGE_OWN(uobjpage, NULL);
1887 mutex_exit(&uobj->vmobjlock);
1888 uobj = NULL;
1889
1890 UVMHIST_LOG(maphist,
1891 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1892 uobjpage, anon, pg, 0);
1893
1894 } else {
1895 uvmexp.flt_przero++;
1896
1897 /*
1898 * Page is zero'd and marked dirty by
1899 * uvmfault_promote().
1900 */
1901
1902 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1903 anon, pg, 0, 0);
1904 }
1905 }
1906
1907 /*
1908 * locked:
1909 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1910 * anon(if !null), pg(if anon)
1911 *
1912 * note: pg is either the uobjpage or the new page in the new anon
1913 */
1914 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1915 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1916 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1917 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1918 KASSERT((pg->flags & PG_BUSY) != 0);
1919
1920 /*
1921 * all resources are present. we can now map it in and free our
1922 * resources.
1923 */
1924
1925 UVMHIST_LOG(maphist,
1926 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1927 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
1928 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
1929 (pg->flags & PG_RDONLY) == 0);
1930 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1931 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
1932 flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1933
1934 /*
1935 * No need to undo what we did; we can simply think of
1936 * this as the pmap throwing away the mapping information.
1937 *
1938 * We do, however, have to go through the ReFault path,
1939 * as the map may change while we're asleep.
1940 */
1941
1942 if (pg->flags & PG_WANTED)
1943 wakeup(pg);
1944
1945 /*
1946 * note that pg can't be PG_RELEASED since we did not drop
1947 * the object lock since the last time we checked.
1948 */
1949 KASSERT((pg->flags & PG_RELEASED) == 0);
1950
1951 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1952 UVM_PAGE_OWN(pg, NULL);
1953 uvmfault_unlockall(ufi, amap, uobj, anon);
1954 if (!uvm_reclaimable()) {
1955 UVMHIST_LOG(maphist,
1956 "<- failed. out of VM",0,0,0,0);
1957 /* XXX instrumentation */
1958 error = ENOMEM;
1959 return error;
1960 }
1961 /* XXX instrumentation */
1962 uvm_wait("flt_pmfail2");
1963 return ERESTART;
1964 }
1965
1966 mutex_enter(&uvm_pageqlock);
1967 if (flt->wire_fault) {
1968 uvm_pagewire(pg);
1969 if (pg->pqflags & PQ_AOBJ) {
1970
1971 /*
1972 * since the now-wired page cannot be paged out,
1973 * release its swap resources for others to use.
1974 * since an aobj page with no swap cannot be PG_CLEAN,
1975 * clear its clean flag now.
1976 */
1977
1978 KASSERT(uobj != NULL);
1979 pg->flags &= ~(PG_CLEAN);
1980 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1981 }
1982 } else {
1983 uvm_pageactivate(pg);
1984 }
1985 mutex_exit(&uvm_pageqlock);
1986 if (pg->flags & PG_WANTED)
1987 wakeup(pg);
1988
1989 /*
1990 * note that pg can't be PG_RELEASED since we did not drop the object
1991 * lock since the last time we checked.
1992 */
1993 KASSERT((pg->flags & PG_RELEASED) == 0);
1994
1995 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1996 UVM_PAGE_OWN(pg, NULL);
1997 uvmfault_unlockall(ufi, amap, uobj, anon);
1998 pmap_update(ufi->orig_map->pmap);
1999 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2000 return 0;
2001 }
2002
2003
2004 /*
2005 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2006 *
2007 * => map may be read-locked by caller, but MUST NOT be write-locked.
2008 * => if map is read-locked, any operations which may cause map to
2009 * be write-locked in uvm_fault() must be taken care of by
2010 * the caller. See uvm_map_pageable().
2011 */
2012
2013 int
2014 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2015 vm_prot_t access_type, int maxprot)
2016 {
2017 vaddr_t va;
2018 int error;
2019
2020 /*
2021 * now fault it in a page at a time. if the fault fails then we have
2022 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2023 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2024 */
2025
2026 /*
2027 * XXX work around overflowing a vaddr_t. this prevents us from
2028 * wiring the last page in the address space, though.
2029 */
2030 if (start > end) {
2031 return EFAULT;
2032 }
2033
2034 for (va = start ; va < end ; va += PAGE_SIZE) {
2035 error = uvm_fault_internal(map, va, access_type,
2036 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2037 if (error) {
2038 if (va != start) {
2039 uvm_fault_unwire(map, start, va);
2040 }
2041 return error;
2042 }
2043 }
2044 return 0;
2045 }
2046
2047 /*
2048 * uvm_fault_unwire(): unwire range of virtual space.
2049 */
2050
2051 void
2052 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2053 {
2054 vm_map_lock_read(map);
2055 uvm_fault_unwire_locked(map, start, end);
2056 vm_map_unlock_read(map);
2057 }
2058
2059 /*
2060 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2061 *
2062 * => map must be at least read-locked.
2063 */
2064
2065 void
2066 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2067 {
2068 struct vm_map_entry *entry;
2069 pmap_t pmap = vm_map_pmap(map);
2070 vaddr_t va;
2071 paddr_t pa;
2072 struct vm_page *pg;
2073
2074 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2075
2076 /*
2077 * we assume that the area we are unwiring has actually been wired
2078 * in the first place. this means that we should be able to extract
2079 * the PAs from the pmap. we also lock out the page daemon so that
2080 * we can call uvm_pageunwire.
2081 */
2082
2083 mutex_enter(&uvm_pageqlock);
2084
2085 /*
2086 * find the beginning map entry for the region.
2087 */
2088
2089 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2090 if (uvm_map_lookup_entry(map, start, &entry) == false)
2091 panic("uvm_fault_unwire_locked: address not in map");
2092
2093 for (va = start; va < end; va += PAGE_SIZE) {
2094 if (pmap_extract(pmap, va, &pa) == false)
2095 continue;
2096
2097 /*
2098 * find the map entry for the current address.
2099 */
2100
2101 KASSERT(va >= entry->start);
2102 while (va >= entry->end) {
2103 KASSERT(entry->next != &map->header &&
2104 entry->next->start <= entry->end);
2105 entry = entry->next;
2106 }
2107
2108 /*
2109 * if the entry is no longer wired, tell the pmap.
2110 */
2111
2112 if (VM_MAPENT_ISWIRED(entry) == 0)
2113 pmap_unwire(pmap, va);
2114
2115 pg = PHYS_TO_VM_PAGE(pa);
2116 if (pg)
2117 uvm_pageunwire(pg);
2118 }
2119
2120 mutex_exit(&uvm_pageqlock);
2121 }
2122