uvm_fault.c revision 1.144 1 /* $NetBSD: uvm_fault.c,v 1.144 2010/02/01 09:06:43 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.144 2010/02/01 09:06:43 uebayasi Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52
53 #include <uvm/uvm.h>
54
55 /*
56 *
57 * a word on page faults:
58 *
59 * types of page faults we handle:
60 *
61 * CASE 1: upper layer faults CASE 2: lower layer faults
62 *
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
73 *
74 * d/c = don't care
75 *
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
78 *
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
84 *
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
91 *
92 * we follow the standard UVM locking protocol ordering:
93 *
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
96 *
97 *
98 * the code is structured as follows:
99 *
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
122 *
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
128 *
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
133 *
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
141 *
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
147 *
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 /*
181 * inline functions
182 */
183
184 /*
185 * uvmfault_anonflush: try and deactivate pages in specified anons
186 *
187 * => does not have to deactivate page if it is busy
188 */
189
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 int lcv;
194 struct vm_page *pg;
195
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
205 }
206 mutex_exit(&uvm_pageqlock);
207 }
208 mutex_exit(&anons[lcv]->an_lock);
209 }
210 }
211
212 /*
213 * normal functions
214 */
215
216 /*
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
218 *
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
222 */
223
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 for (;;) {
228
229 /*
230 * no mapping? give up.
231 */
232
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
235
236 /*
237 * copy if needed.
238 */
239
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243
244 /*
245 * didn't work? must be out of RAM. unlock and sleep.
246 */
247
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
252 }
253
254 /*
255 * got it! unlock and return.
256 */
257
258 uvmfault_unlockmaps(ufi, true);
259 return;
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
267 *
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
278 */
279
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
283 {
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289
290 KASSERT(mutex_owned(&anon->an_lock));
291
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
299
300 /*
301 * loop until we get it, or fail.
302 */
303
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
307
308 /*
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
312 */
313
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
316
317 /*
318 * page there? make sure it is not busy/released.
319 */
320
321 if (pg) {
322
323 /*
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
328 */
329
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
333 }
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
336
337 /*
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
340 */
341
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
356 }
357 } else {
358 #if defined(VMSWAP)
359
360 /*
361 * no page, we must try and bring it in.
362 */
363
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
372 }
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378
379 /*
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
385 */
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
389
390 /*
391 * we clean up after the i/o below in the
392 * "we_own" case
393 */
394 }
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428
429 /*
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
434 */
435
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
439
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
442
443 /*
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
447 */
448
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
452
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
460 }
461
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
465
466 /*
467 * released while we unlocked amap.
468 */
469
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
473
474 uvm_anon_release(anon);
475
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
480 }
481
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
484 }
485
486 /*
487 * we've successfully read the page, activate it.
488 */
489
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
536 *
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
540 *
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
544 */
545
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
552 {
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
572 }
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
577 }
578
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597
598 /*
599 * we can't allocate anons with kernel_map locked.
600 */
601
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
604
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
608 }
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
612 }
613 if (anon) {
614
615 /*
616 * The new anon is locked.
617 *
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
620 */
621
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
626 }
627
628 /*
629 * out of memory resources?
630 */
631
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
637 }
638
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
648 }
649
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
655 }
656
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
660 }
661
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
664
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
669 }
670
671
672 /*
673 * F A U L T - m a i n e n t r y p o i n t
674 */
675
676 /*
677 * uvm_fault: page fault handler
678 *
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686 */
687
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
690
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE (1 << 0)
693 #define UVM_FAULT_MAXPROT (1 << 1)
694
695 struct uvm_faultctx {
696 vm_prot_t access_type;
697 vm_prot_t enter_prot;
698 bool wired;
699 bool narrow;
700 bool wire_fault;
701 bool maxprot;
702 bool cow_now;
703 int npages;
704 int centeridx;
705 vaddr_t startva;
706 struct vm_anon *anon_spare;
707 };
708
709 static int uvm_fault_check(
710 struct uvm_faultinfo *, struct uvm_faultctx *,
711 struct vm_anon ***, struct vm_page ***);
712 typedef int uvm_fault_upper_subfunc_t(
713 struct uvm_faultinfo *, struct uvm_faultctx *,
714 struct vm_anon **, struct vm_page **);
715 static uvm_fault_upper_subfunc_t uvm_fault_upper_lookup;
716 static uvm_fault_upper_subfunc_t uvm_fault_upper;
717 typedef int uvm_fault_lower_subfunc_t(
718 struct uvm_faultinfo *, struct uvm_faultctx *,
719 struct vm_page **);
720 static uvm_fault_lower_subfunc_t uvm_fault_lower;
721 static uvm_fault_lower_subfunc_t uvm_fault_lower_special;
722 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic_lookup;
723 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic;
724 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic1;
725 static uvm_fault_lower_subfunc_t uvm_fault_lower_generic2;
726
727 int
728 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
729 vm_prot_t access_type, int fault_flag)
730 {
731 struct uvm_faultinfo ufi;
732 struct uvm_faultctx flt = {
733 .access_type = access_type,
734 .wire_fault = (fault_flag & UVM_FAULT_WIRE) != 0,
735 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
736 };
737 struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
738 struct vm_page *pages_store[UVM_MAXRANGE], **pages;
739 int error;
740 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
741
742 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
743 orig_map, vaddr, access_type, fault_flag);
744
745 uvmexp.faults++; /* XXX: locking? */
746
747 /*
748 * init the IN parameters in the ufi
749 */
750
751 ufi.orig_map = orig_map;
752 ufi.orig_rvaddr = trunc_page(vaddr);
753 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
754 if (flt.wire_fault)
755 flt.narrow = true; /* don't look for neighborhood
756 * pages on wire */
757 else
758 flt.narrow = false; /* normal fault */
759
760 error = ERESTART;
761 while (error == ERESTART) {
762 anons = anons_store;
763 pages = pages_store;
764
765 error = uvm_fault_check(&ufi, &flt, &anons, &pages);
766 if (error != 0)
767 continue;
768
769 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
770 if (error != 0)
771 continue;
772
773 if (pages[flt.centeridx] == PGO_DONTCARE)
774 error = uvm_fault_upper(&ufi, &flt, anons, pages);
775 else
776 error = uvm_fault_lower(&ufi, &flt, pages);
777 }
778
779 if (flt.anon_spare != NULL) {
780 flt.anon_spare->an_ref--;
781 uvm_anfree(flt.anon_spare);
782 }
783 return error;
784 }
785
786 static int
787 uvm_fault_check(
788 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
789 struct vm_anon ***ranons, struct vm_page ***rpages)
790 {
791 struct vm_amap *amap;
792 struct uvm_object *uobj;
793 vm_prot_t check_prot;
794 int nback, nforw;
795
796 /*
797 * lookup and lock the maps
798 */
799
800 if (uvmfault_lookup(ufi, false) == false) {
801 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
802 return EFAULT;
803 }
804 /* locked: maps(read) */
805
806 #ifdef DIAGNOSTIC
807 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
808 printf("Page fault on non-pageable map:\n");
809 printf("ufi->map = %p\n", ufi->map);
810 printf("ufi->orig_map = %p\n", ufi->orig_map);
811 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
812 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
813 }
814 #endif
815
816 /*
817 * check protection
818 */
819
820 check_prot = flt->maxprot ?
821 ufi->entry->max_protection : ufi->entry->protection;
822 if ((check_prot & flt->access_type) != flt->access_type) {
823 UVMHIST_LOG(maphist,
824 "<- protection failure (prot=0x%x, access=0x%x)",
825 ufi->entry->protection, flt->access_type, 0, 0);
826 uvmfault_unlockmaps(ufi, false);
827 return EACCES;
828 }
829
830 /*
831 * "enter_prot" is the protection we want to enter the page in at.
832 * for certain pages (e.g. copy-on-write pages) this protection can
833 * be more strict than ufi->entry->protection. "wired" means either
834 * the entry is wired or we are fault-wiring the pg.
835 */
836
837 flt->enter_prot = ufi->entry->protection;
838 flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || flt->wire_fault;
839 if (flt->wired) {
840 flt->access_type = flt->enter_prot; /* full access for wired */
841 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
842 } else {
843 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
844 }
845
846 /*
847 * handle "needs_copy" case. if we need to copy the amap we will
848 * have to drop our readlock and relock it with a write lock. (we
849 * need a write lock to change anything in a map entry [e.g.
850 * needs_copy]).
851 */
852
853 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
854 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
855 KASSERT(!flt->maxprot);
856 /* need to clear */
857 UVMHIST_LOG(maphist,
858 " need to clear needs_copy and refault",0,0,0,0);
859 uvmfault_unlockmaps(ufi, false);
860 uvmfault_amapcopy(ufi);
861 uvmexp.fltamcopy++;
862 return ERESTART;
863
864 } else {
865
866 /*
867 * ensure that we pmap_enter page R/O since
868 * needs_copy is still true
869 */
870
871 flt->enter_prot &= ~VM_PROT_WRITE;
872 }
873 }
874
875 /*
876 * identify the players
877 */
878
879 amap = ufi->entry->aref.ar_amap; /* upper layer */
880 uobj = ufi->entry->object.uvm_obj; /* lower layer */
881
882 /*
883 * check for a case 0 fault. if nothing backing the entry then
884 * error now.
885 */
886
887 if (amap == NULL && uobj == NULL) {
888 uvmfault_unlockmaps(ufi, false);
889 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
890 return EFAULT;
891 }
892
893 /*
894 * establish range of interest based on advice from mapper
895 * and then clip to fit map entry. note that we only want
896 * to do this the first time through the fault. if we
897 * ReFault we will disable this by setting "narrow" to true.
898 */
899
900 if (flt->narrow == false) {
901
902 /* wide fault (!narrow) */
903 KASSERT(uvmadvice[ufi->entry->advice].advice ==
904 ufi->entry->advice);
905 nback = MIN(uvmadvice[ufi->entry->advice].nback,
906 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
907 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
908 nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
909 ((ufi->entry->end - ufi->orig_rvaddr) >>
910 PAGE_SHIFT) - 1);
911 /*
912 * note: "-1" because we don't want to count the
913 * faulting page as forw
914 */
915 flt->npages = nback + nforw + 1;
916 flt->centeridx = nback;
917
918 flt->narrow = true; /* ensure only once per-fault */
919
920 } else {
921
922 /* narrow fault! */
923 nback = nforw = 0;
924 flt->startva = ufi->orig_rvaddr;
925 flt->npages = 1;
926 flt->centeridx = 0;
927
928 }
929 /* offset from entry's start to pgs' start */
930 const voff_t eoff = flt->startva - ufi->entry->start;
931
932 /* locked: maps(read) */
933 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
934 flt->narrow, nback, nforw, flt->startva);
935 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
936 amap, uobj, 0);
937
938 /*
939 * if we've got an amap, lock it and extract current anons.
940 */
941
942 if (amap) {
943 amap_lock(amap);
944 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
945 } else {
946 *ranons = NULL; /* to be safe */
947 }
948
949 /* locked: maps(read), amap(if there) */
950 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
951
952 /*
953 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
954 * now and then forget about them (for the rest of the fault).
955 */
956
957 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
958
959 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
960 0,0,0,0);
961 /* flush back-page anons? */
962 if (amap)
963 uvmfault_anonflush(*ranons, nback);
964
965 /* flush object? */
966 if (uobj) {
967 voff_t uoff;
968
969 uoff = ufi->entry->offset + eoff;
970 mutex_enter(&uobj->vmobjlock);
971 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
972 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
973 }
974
975 /* now forget about the backpages */
976 if (amap)
977 *ranons += nback;
978 #if 0
979 /* XXXUEBS */
980 if (uobj)
981 *rpages += nback;
982 #endif
983 flt->startva += (nback << PAGE_SHIFT);
984 flt->npages -= nback;
985 flt->centeridx = 0;
986 }
987 /*
988 * => startva is fixed
989 * => npages is fixed
990 */
991
992 return 0;
993 }
994
995 static int
996 uvm_fault_upper_lookup(
997 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
998 struct vm_anon **anons, struct vm_page **pages)
999 {
1000 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1001 int lcv;
1002 vaddr_t currva;
1003 bool shadowed;
1004
1005 /* locked: maps(read), amap(if there) */
1006 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1007
1008 /*
1009 * map in the backpages and frontpages we found in the amap in hopes
1010 * of preventing future faults. we also init the pages[] array as
1011 * we go.
1012 */
1013
1014 currva = flt->startva;
1015 shadowed = false;
1016 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) {
1017 struct vm_anon *anon;
1018
1019 /*
1020 * dont play with VAs that are already mapped
1021 * except for center)
1022 */
1023 if (lcv != flt->centeridx &&
1024 pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1025 pages[lcv] = PGO_DONTCARE;
1026 continue;
1027 }
1028
1029 /*
1030 * unmapped or center page. check if any anon at this level.
1031 */
1032 if (amap == NULL || anons[lcv] == NULL) {
1033 pages[lcv] = NULL;
1034 continue;
1035 }
1036
1037 /*
1038 * check for present page and map if possible. re-activate it.
1039 */
1040
1041 pages[lcv] = PGO_DONTCARE;
1042 if (lcv == flt->centeridx) { /* save center for later! */
1043 shadowed = true;
1044 continue;
1045 }
1046 anon = anons[lcv];
1047 mutex_enter(&anon->an_lock);
1048 /* ignore loaned pages */
1049 if (anon->an_page && anon->an_page->loan_count == 0 &&
1050 (anon->an_page->flags & PG_BUSY) == 0) {
1051 mutex_enter(&uvm_pageqlock);
1052 uvm_pageenqueue(anon->an_page);
1053 mutex_exit(&uvm_pageqlock);
1054 UVMHIST_LOG(maphist,
1055 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1056 ufi->orig_map->pmap, currva, anon->an_page, 0);
1057 uvmexp.fltnamap++;
1058
1059 /*
1060 * Since this isn't the page that's actually faulting,
1061 * ignore pmap_enter() failures; it's not critical
1062 * that we enter these right now.
1063 */
1064
1065 (void) pmap_enter(ufi->orig_map->pmap, currva,
1066 VM_PAGE_TO_PHYS(anon->an_page),
1067 (anon->an_ref > 1) ? (flt->enter_prot & ~VM_PROT_WRITE) :
1068 flt->enter_prot,
1069 PMAP_CANFAIL |
1070 (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
1071 }
1072 pmap_update(ufi->orig_map->pmap);
1073 mutex_exit(&anon->an_lock);
1074 }
1075
1076 /* locked: maps(read), amap(if there) */
1077 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1078 /* (shadowed == true) if there is an anon at the faulting address */
1079 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1080 (uobj && shadowed != false),0,0);
1081
1082 /*
1083 * note that if we are really short of RAM we could sleep in the above
1084 * call to pmap_enter with everything locked. bad?
1085 *
1086 * XXX Actually, that is bad; pmap_enter() should just fail in that
1087 * XXX case. --thorpej
1088 */
1089
1090 return 0;
1091 }
1092
1093 static int
1094 uvm_fault_lower(
1095 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1096 struct vm_page **pages)
1097 {
1098 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1099 int error;
1100
1101 /*
1102 * if the desired page is not shadowed by the amap and we have a
1103 * backing object, then we check to see if the backing object would
1104 * prefer to handle the fault itself (rather than letting us do it
1105 * with the usual pgo_get hook). the backing object signals this by
1106 * providing a pgo_fault routine.
1107 */
1108
1109 if (uobj && uobj->pgops->pgo_fault != NULL) {
1110 error = uvm_fault_lower_special(ufi, flt, pages);
1111 } else {
1112 error = uvm_fault_lower_generic(ufi, flt, pages);
1113 }
1114 return error;
1115 }
1116
1117 static int
1118 uvm_fault_lower_special(
1119 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1120 struct vm_page **pages)
1121 {
1122 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1123 int error;
1124
1125 mutex_enter(&uobj->vmobjlock);
1126 /* locked: maps(read), amap (if there), uobj */
1127 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1128 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1129
1130 /* locked: nothing, pgo_fault has unlocked everything */
1131
1132 if (error == ERESTART)
1133 error = ERESTART; /* try again! */
1134 /*
1135 * object fault routine responsible for pmap_update().
1136 */
1137
1138 return error;
1139 }
1140
1141 static int
1142 uvm_fault_lower_generic(
1143 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1144 struct vm_page **pages)
1145 {
1146 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1147
1148 /*
1149 * now, if the desired page is not shadowed by the amap and we have
1150 * a backing object that does not have a special fault routine, then
1151 * we ask (with pgo_get) the object for resident pages that we care
1152 * about and attempt to map them in. we do not let pgo_get block
1153 * (PGO_LOCKED).
1154 */
1155
1156 if (uobj == NULL) {
1157 /* zero fill; don't care neighbor pages */
1158 pages[flt->centeridx] = NULL;
1159 } else {
1160 uvm_fault_lower_generic_lookup(ufi, flt, pages);
1161 }
1162 return uvm_fault_lower_generic1(ufi, flt, pages);
1163 }
1164
1165 static int
1166 uvm_fault_lower_generic_lookup(
1167 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1168 struct vm_page **pages)
1169 {
1170 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1171 int lcv, gotpages;
1172 vaddr_t currva;
1173
1174 mutex_enter(&uobj->vmobjlock);
1175 /* locked (!shadowed): maps(read), amap (if there), uobj */
1176 /*
1177 * the following call to pgo_get does _not_ change locking state
1178 */
1179
1180 uvmexp.fltlget++;
1181 gotpages = flt->npages;
1182 (void) uobj->pgops->pgo_get(uobj,
1183 ufi->entry->offset + flt->startva - ufi->entry->start,
1184 pages, &gotpages, flt->centeridx,
1185 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1186
1187 /*
1188 * check for pages to map, if we got any
1189 */
1190
1191 if (gotpages == 0) {
1192 pages[flt->centeridx] = NULL;
1193 return 0;
1194 }
1195
1196 currva = flt->startva;
1197 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1198 struct vm_page *curpg;
1199 bool readonly;
1200
1201 curpg = pages[lcv];
1202 if (curpg == NULL || curpg == PGO_DONTCARE) {
1203 continue;
1204 }
1205 KASSERT(curpg->uobject == uobj);
1206
1207 /*
1208 * if center page is resident and not PG_BUSY|PG_RELEASED
1209 * then pgo_get made it PG_BUSY for us and gave us a handle
1210 * to it. remember this page as "uobjpage." (for later use).
1211 */
1212
1213 if (lcv == flt->centeridx) {
1214 UVMHIST_LOG(maphist, " got uobjpage "
1215 "(0x%x) with locked get",
1216 curpg, 0,0,0);
1217 continue;
1218 }
1219
1220 /*
1221 * calling pgo_get with PGO_LOCKED returns us pages which
1222 * are neither busy nor released, so we don't need to check
1223 * for this. we can just directly enter the pages.
1224 */
1225
1226 mutex_enter(&uvm_pageqlock);
1227 uvm_pageenqueue(curpg);
1228 mutex_exit(&uvm_pageqlock);
1229 UVMHIST_LOG(maphist,
1230 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1231 ufi->orig_map->pmap, currva, curpg, 0);
1232 uvmexp.fltnomap++;
1233
1234 /*
1235 * Since this page isn't the page that's actually faulting,
1236 * ignore pmap_enter() failures; it's not critical that we
1237 * enter these right now.
1238 */
1239 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1240 KASSERT((curpg->flags & PG_RELEASED) == 0);
1241 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1242 (curpg->flags & PG_CLEAN) != 0);
1243 readonly = (curpg->flags & PG_RDONLY)
1244 || (curpg->loan_count > 0)
1245 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1246
1247 (void) pmap_enter(ufi->orig_map->pmap, currva,
1248 VM_PAGE_TO_PHYS(curpg),
1249 readonly ? flt->enter_prot & ~VM_PROT_WRITE :
1250 flt->enter_prot & MASK(ufi->entry),
1251 PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0));
1252
1253 /*
1254 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1255 * held the lock the whole time we've had the handle.
1256 */
1257 KASSERT((curpg->flags & PG_WANTED) == 0);
1258 KASSERT((curpg->flags & PG_RELEASED) == 0);
1259
1260 curpg->flags &= ~(PG_BUSY);
1261 UVM_PAGE_OWN(curpg, NULL);
1262 }
1263 pmap_update(ufi->orig_map->pmap);
1264 return 0;
1265 }
1266
1267 static int
1268 uvm_fault_lower_generic1(
1269 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1270 struct vm_page **pages)
1271 {
1272 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1273 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1274 struct vm_page *uobjpage = pages[flt->centeridx];
1275
1276 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1277 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1278 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1279 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1280
1281 /*
1282 * note that at this point we are done with any front or back pages.
1283 * we are now going to focus on the center page (i.e. the one we've
1284 * faulted on). if we have faulted on the upper (anon) layer
1285 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1286 * not touched it yet). if we have faulted on the bottom (uobj)
1287 * layer [i.e. case 2] and the page was both present and available,
1288 * then we've got a pointer to it as "uobjpage" and we've already
1289 * made it BUSY.
1290 */
1291
1292 /*
1293 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1294 */
1295
1296 /*
1297 * redirect case 2: if we are not shadowed, go to case 2.
1298 */
1299
1300 return uvm_fault_lower_generic2(ufi, flt, pages);
1301 }
1302
1303 static int
1304 uvm_fault_upper(
1305 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1306 struct vm_anon **anons, struct vm_page **pages)
1307 {
1308 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1309 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1310 struct vm_anon *anon, *oanon;
1311 int error;
1312
1313 /* locked: maps(read), amap */
1314 KASSERT(mutex_owned(&amap->am_l));
1315
1316 /*
1317 * handle case 1: fault on an anon in our amap
1318 */
1319
1320 anon = anons[flt->centeridx];
1321 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1322 mutex_enter(&anon->an_lock);
1323
1324 /* locked: maps(read), amap, anon */
1325 KASSERT(mutex_owned(&amap->am_l));
1326 KASSERT(mutex_owned(&anon->an_lock));
1327
1328 /*
1329 * no matter if we have case 1A or case 1B we are going to need to
1330 * have the anon's memory resident. ensure that now.
1331 */
1332
1333 /*
1334 * let uvmfault_anonget do the dirty work.
1335 * if it fails (!OK) it will unlock everything for us.
1336 * if it succeeds, locks are still valid and locked.
1337 * also, if it is OK, then the anon's page is on the queues.
1338 * if the page is on loan from a uvm_object, then anonget will
1339 * lock that object for us if it does not fail.
1340 */
1341
1342 error = uvmfault_anonget(ufi, amap, anon);
1343 switch (error) {
1344 case 0:
1345 break;
1346
1347 case ERESTART:
1348 return ERESTART;
1349
1350 case EAGAIN:
1351 kpause("fltagain1", false, hz/2, NULL);
1352 return ERESTART;
1353
1354 default:
1355 return error;
1356 }
1357
1358 /*
1359 * uobj is non null if the page is on loan from an object (i.e. uobj)
1360 */
1361
1362 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1363
1364 /* locked: maps(read), amap, anon, uobj(if one) */
1365 KASSERT(mutex_owned(&amap->am_l));
1366 KASSERT(mutex_owned(&anon->an_lock));
1367 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1368
1369 /*
1370 * special handling for loaned pages
1371 */
1372
1373 if (anon->an_page->loan_count) {
1374
1375 if (!flt->cow_now) {
1376
1377 /*
1378 * for read faults on loaned pages we just cap the
1379 * protection at read-only.
1380 */
1381
1382 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1383
1384 } else {
1385 /*
1386 * note that we can't allow writes into a loaned page!
1387 *
1388 * if we have a write fault on a loaned page in an
1389 * anon then we need to look at the anon's ref count.
1390 * if it is greater than one then we are going to do
1391 * a normal copy-on-write fault into a new anon (this
1392 * is not a problem). however, if the reference count
1393 * is one (a case where we would normally allow a
1394 * write directly to the page) then we need to kill
1395 * the loan before we continue.
1396 */
1397
1398 /* >1 case is already ok */
1399 if (anon->an_ref == 1) {
1400 struct vm_page *pg;
1401
1402 /* get new un-owned replacement page */
1403 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1404 if (pg == NULL) {
1405 uvmfault_unlockall(ufi, amap, uobj,
1406 anon);
1407 uvm_wait("flt_noram2");
1408 return ERESTART;
1409 }
1410
1411 /*
1412 * copy data, kill loan, and drop uobj lock
1413 * (if any)
1414 */
1415 /* copy old -> new */
1416 uvm_pagecopy(anon->an_page, pg);
1417
1418 /* force reload */
1419 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1420 mutex_enter(&uvm_pageqlock); /* KILL loan */
1421
1422 anon->an_page->uanon = NULL;
1423 /* in case we owned */
1424 anon->an_page->pqflags &= ~PQ_ANON;
1425
1426 if (uobj) {
1427 /* if we were receiver of loan */
1428 anon->an_page->loan_count--;
1429 } else {
1430 /*
1431 * we were the lender (A->K); need
1432 * to remove the page from pageq's.
1433 */
1434 uvm_pagedequeue(anon->an_page);
1435 }
1436
1437 if (uobj) {
1438 mutex_exit(&uobj->vmobjlock);
1439 uobj = NULL;
1440 }
1441
1442 /* install new page in anon */
1443 anon->an_page = pg;
1444 pg->uanon = anon;
1445 pg->pqflags |= PQ_ANON;
1446
1447 uvm_pageactivate(pg);
1448 mutex_exit(&uvm_pageqlock);
1449
1450 pg->flags &= ~(PG_BUSY|PG_FAKE);
1451 UVM_PAGE_OWN(pg, NULL);
1452
1453 /* done! */
1454 } /* ref == 1 */
1455 } /* write fault */
1456 } /* loan count */
1457
1458 /*
1459 * if we are case 1B then we will need to allocate a new blank
1460 * anon to transfer the data into. note that we have a lock
1461 * on anon, so no one can busy or release the page until we are done.
1462 * also note that the ref count can't drop to zero here because
1463 * it is > 1 and we are only dropping one ref.
1464 *
1465 * in the (hopefully very rare) case that we are out of RAM we
1466 * will unlock, wait for more RAM, and refault.
1467 *
1468 * if we are out of anon VM we kill the process (XXX: could wait?).
1469 */
1470
1471 struct vm_page *pg;
1472 if (flt->cow_now && anon->an_ref > 1) {
1473
1474 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1475 uvmexp.flt_acow++;
1476 oanon = anon; /* oanon = old, locked anon */
1477
1478 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1479 &anon, &flt->anon_spare);
1480 switch (error) {
1481 case 0:
1482 break;
1483 case ERESTART:
1484 return ERESTART;
1485 default:
1486 return error;
1487 }
1488
1489 pg = anon->an_page;
1490 mutex_enter(&uvm_pageqlock);
1491 uvm_pageactivate(pg);
1492 mutex_exit(&uvm_pageqlock);
1493 pg->flags &= ~(PG_BUSY|PG_FAKE);
1494 UVM_PAGE_OWN(pg, NULL);
1495
1496 /* deref: can not drop to zero here by defn! */
1497 oanon->an_ref--;
1498
1499 /*
1500 * note: oanon is still locked, as is the new anon. we
1501 * need to check for this later when we unlock oanon; if
1502 * oanon != anon, we'll have to unlock anon, too.
1503 */
1504
1505 } else {
1506
1507 uvmexp.flt_anon++;
1508 oanon = anon; /* old, locked anon is same as anon */
1509 pg = anon->an_page;
1510 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1511 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1512
1513 }
1514
1515 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1516 KASSERT(mutex_owned(&amap->am_l));
1517 KASSERT(mutex_owned(&anon->an_lock));
1518 KASSERT(mutex_owned(&oanon->an_lock));
1519
1520 /*
1521 * now map the page in.
1522 */
1523
1524 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1525 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1526 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1527 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0))
1528 != 0) {
1529
1530 /*
1531 * No need to undo what we did; we can simply think of
1532 * this as the pmap throwing away the mapping information.
1533 *
1534 * We do, however, have to go through the ReFault path,
1535 * as the map may change while we're asleep.
1536 */
1537
1538 if (anon != oanon)
1539 mutex_exit(&anon->an_lock);
1540 uvmfault_unlockall(ufi, amap, uobj, oanon);
1541 if (!uvm_reclaimable()) {
1542 UVMHIST_LOG(maphist,
1543 "<- failed. out of VM",0,0,0,0);
1544 /* XXX instrumentation */
1545 error = ENOMEM;
1546 return error;
1547 }
1548 /* XXX instrumentation */
1549 uvm_wait("flt_pmfail1");
1550 return ERESTART;
1551 }
1552
1553 /*
1554 * ... update the page queues.
1555 */
1556
1557 mutex_enter(&uvm_pageqlock);
1558 if (flt->wire_fault) {
1559 uvm_pagewire(pg);
1560
1561 /*
1562 * since the now-wired page cannot be paged out,
1563 * release its swap resources for others to use.
1564 * since an anon with no swap cannot be PG_CLEAN,
1565 * clear its clean flag now.
1566 */
1567
1568 pg->flags &= ~(PG_CLEAN);
1569 uvm_anon_dropswap(anon);
1570 } else {
1571 uvm_pageactivate(pg);
1572 }
1573 mutex_exit(&uvm_pageqlock);
1574
1575 /*
1576 * done case 1! finish up by unlocking everything and returning success
1577 */
1578
1579 if (anon != oanon)
1580 mutex_exit(&anon->an_lock);
1581 uvmfault_unlockall(ufi, amap, uobj, oanon);
1582 pmap_update(ufi->orig_map->pmap);
1583 return 0;
1584 }
1585
1586 static int
1587 uvm_fault_lower_generic2(
1588 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1589 struct vm_page **pages)
1590 {
1591 struct vm_amap *amap = ufi->entry->aref.ar_amap;
1592 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1593 struct vm_page *uobjpage = pages[flt->centeridx];
1594 struct vm_anon *anon;
1595 bool promote;
1596 int error;
1597
1598 /*
1599 * handle case 2: faulting on backing object or zero fill
1600 */
1601
1602 /*
1603 * locked:
1604 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1605 */
1606 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1607 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1608 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1609
1610 /*
1611 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1612 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1613 * have a backing object, check and see if we are going to promote
1614 * the data up to an anon during the fault.
1615 */
1616
1617 if (uobj == NULL) {
1618 uobjpage = PGO_DONTCARE;
1619 promote = true; /* always need anon here */
1620 } else {
1621 KASSERT(uobjpage != PGO_DONTCARE);
1622 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1623 }
1624 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1625 promote, (uobj == NULL), 0,0);
1626
1627 /*
1628 * if uobjpage is not null then we do not need to do I/O to get the
1629 * uobjpage.
1630 *
1631 * if uobjpage is null, then we need to unlock and ask the pager to
1632 * get the data for us. once we have the data, we need to reverify
1633 * the state the world. we are currently not holding any resources.
1634 */
1635
1636 if (uobjpage) {
1637 /* update rusage counters */
1638 curlwp->l_ru.ru_minflt++;
1639 } else {
1640 bool locked;
1641 int gotpages;
1642 voff_t uoff;
1643
1644 /* update rusage counters */
1645 curlwp->l_ru.ru_majflt++;
1646
1647 /* locked: maps(read), amap(if there), uobj */
1648 uvmfault_unlockall(ufi, amap, NULL, NULL);
1649 /* locked: uobj */
1650
1651 uvmexp.fltget++;
1652 gotpages = 1;
1653 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1654 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1655 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1656 PGO_SYNCIO);
1657 /* locked: uobjpage(if no error) */
1658 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1659
1660 /*
1661 * recover from I/O
1662 */
1663
1664 if (error) {
1665 if (error == EAGAIN) {
1666 UVMHIST_LOG(maphist,
1667 " pgo_get says TRY AGAIN!",0,0,0,0);
1668 kpause("fltagain2", false, hz/2, NULL);
1669 return ERESTART;
1670 }
1671
1672 #if 0
1673 KASSERT(error != ERESTART);
1674 #else
1675 /* XXXUEBS don't re-fault? */
1676 if (error == ERESTART)
1677 error = EIO;
1678 #endif
1679
1680 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1681 error, 0,0,0);
1682 return error;
1683 }
1684
1685 /* locked: uobjpage */
1686
1687 mutex_enter(&uvm_pageqlock);
1688 uvm_pageactivate(uobjpage);
1689 mutex_exit(&uvm_pageqlock);
1690
1691 /*
1692 * re-verify the state of the world by first trying to relock
1693 * the maps. always relock the object.
1694 */
1695
1696 locked = uvmfault_relock(ufi);
1697 if (locked && amap)
1698 amap_lock(amap);
1699 uobj = uobjpage->uobject;
1700 mutex_enter(&uobj->vmobjlock);
1701
1702 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1703 /* locked(!locked): uobj, uobjpage */
1704
1705 /*
1706 * verify that the page has not be released and re-verify
1707 * that amap slot is still free. if there is a problem,
1708 * we unlock and clean up.
1709 */
1710
1711 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1712 (locked && amap &&
1713 amap_lookup(&ufi->entry->aref,
1714 ufi->orig_rvaddr - ufi->entry->start))) {
1715 if (locked)
1716 uvmfault_unlockall(ufi, amap, NULL, NULL);
1717 locked = false;
1718 }
1719
1720 /*
1721 * didn't get the lock? release the page and retry.
1722 */
1723
1724 if (locked == false) {
1725 UVMHIST_LOG(maphist,
1726 " wasn't able to relock after fault: retry",
1727 0,0,0,0);
1728 if (uobjpage->flags & PG_WANTED)
1729 wakeup(uobjpage);
1730 if (uobjpage->flags & PG_RELEASED) {
1731 uvmexp.fltpgrele++;
1732 uvm_pagefree(uobjpage);
1733 return ERESTART;
1734 }
1735 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1736 UVM_PAGE_OWN(uobjpage, NULL);
1737 mutex_exit(&uobj->vmobjlock);
1738 return ERESTART;
1739 }
1740
1741 /*
1742 * we have the data in uobjpage which is busy and
1743 * not released. we are holding object lock (so the page
1744 * can't be released on us).
1745 */
1746
1747 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1748 }
1749
1750 /*
1751 * locked:
1752 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1753 */
1754 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1755 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1756 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1757
1758 /*
1759 * notes:
1760 * - at this point uobjpage can not be NULL
1761 * - at this point uobjpage can not be PG_RELEASED (since we checked
1762 * for it above)
1763 * - at this point uobjpage could be PG_WANTED (handle later)
1764 */
1765
1766 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1767 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1768 (uobjpage->flags & PG_CLEAN) != 0);
1769 struct vm_page *pg;
1770 if (promote == false) {
1771
1772 /*
1773 * we are not promoting. if the mapping is COW ensure that we
1774 * don't give more access than we should (e.g. when doing a read
1775 * fault on a COPYONWRITE mapping we want to map the COW page in
1776 * R/O even though the entry protection could be R/W).
1777 *
1778 * set "pg" to the page we want to map in (uobjpage, usually)
1779 */
1780
1781 /* no anon in this case. */
1782 anon = NULL;
1783
1784 uvmexp.flt_obj++;
1785 if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1786 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1787 flt->enter_prot &= ~VM_PROT_WRITE;
1788 pg = uobjpage; /* map in the actual object */
1789
1790 KASSERT(uobjpage != PGO_DONTCARE);
1791
1792 /*
1793 * we are faulting directly on the page. be careful
1794 * about writing to loaned pages...
1795 */
1796
1797 if (uobjpage->loan_count) {
1798 if (!flt->cow_now) {
1799 /* read fault: cap the protection at readonly */
1800 /* cap! */
1801 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1802 } else {
1803 /* write fault: must break the loan here */
1804
1805 pg = uvm_loanbreak(uobjpage);
1806 if (pg == NULL) {
1807
1808 /*
1809 * drop ownership of page, it can't
1810 * be released
1811 */
1812
1813 if (uobjpage->flags & PG_WANTED)
1814 wakeup(uobjpage);
1815 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1816 UVM_PAGE_OWN(uobjpage, NULL);
1817
1818 uvmfault_unlockall(ufi, amap, uobj,
1819 NULL);
1820 UVMHIST_LOG(maphist,
1821 " out of RAM breaking loan, waiting",
1822 0,0,0,0);
1823 uvmexp.fltnoram++;
1824 uvm_wait("flt_noram4");
1825 return ERESTART;
1826 }
1827 uobjpage = pg;
1828 }
1829 }
1830 } else {
1831
1832 /*
1833 * if we are going to promote the data to an anon we
1834 * allocate a blank anon here and plug it into our amap.
1835 */
1836 #if DIAGNOSTIC
1837 if (amap == NULL)
1838 panic("uvm_fault: want to promote data, but no anon");
1839 #endif
1840 error = uvmfault_promote(ufi, NULL, uobjpage,
1841 &anon, &flt->anon_spare);
1842 switch (error) {
1843 case 0:
1844 break;
1845 case ERESTART:
1846 return ERESTART;
1847 default:
1848 return error;
1849 }
1850
1851 pg = anon->an_page;
1852
1853 /*
1854 * fill in the data
1855 */
1856
1857 if (uobjpage != PGO_DONTCARE) {
1858 uvmexp.flt_prcopy++;
1859
1860 /*
1861 * promote to shared amap? make sure all sharing
1862 * procs see it
1863 */
1864
1865 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1866 pmap_page_protect(uobjpage, VM_PROT_NONE);
1867 /*
1868 * XXX: PAGE MIGHT BE WIRED!
1869 */
1870 }
1871
1872 /*
1873 * dispose of uobjpage. it can't be PG_RELEASED
1874 * since we still hold the object lock.
1875 * drop handle to uobj as well.
1876 */
1877
1878 if (uobjpage->flags & PG_WANTED)
1879 /* still have the obj lock */
1880 wakeup(uobjpage);
1881 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1882 UVM_PAGE_OWN(uobjpage, NULL);
1883 mutex_exit(&uobj->vmobjlock);
1884 uobj = NULL;
1885
1886 UVMHIST_LOG(maphist,
1887 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1888 uobjpage, anon, pg, 0);
1889
1890 } else {
1891 uvmexp.flt_przero++;
1892
1893 /*
1894 * Page is zero'd and marked dirty by
1895 * uvmfault_promote().
1896 */
1897
1898 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1899 anon, pg, 0, 0);
1900 }
1901 }
1902
1903 /*
1904 * locked:
1905 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1906 * anon(if !null), pg(if anon)
1907 *
1908 * note: pg is either the uobjpage or the new page in the new anon
1909 */
1910 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1911 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1912 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1913 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1914 KASSERT((pg->flags & PG_BUSY) != 0);
1915
1916 /*
1917 * all resources are present. we can now map it in and free our
1918 * resources.
1919 */
1920
1921 UVMHIST_LOG(maphist,
1922 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1923 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, promote);
1924 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
1925 (pg->flags & PG_RDONLY) == 0);
1926 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1927 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
1928 flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1929
1930 /*
1931 * No need to undo what we did; we can simply think of
1932 * this as the pmap throwing away the mapping information.
1933 *
1934 * We do, however, have to go through the ReFault path,
1935 * as the map may change while we're asleep.
1936 */
1937
1938 if (pg->flags & PG_WANTED)
1939 wakeup(pg);
1940
1941 /*
1942 * note that pg can't be PG_RELEASED since we did not drop
1943 * the object lock since the last time we checked.
1944 */
1945 KASSERT((pg->flags & PG_RELEASED) == 0);
1946
1947 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1948 UVM_PAGE_OWN(pg, NULL);
1949 uvmfault_unlockall(ufi, amap, uobj, anon);
1950 if (!uvm_reclaimable()) {
1951 UVMHIST_LOG(maphist,
1952 "<- failed. out of VM",0,0,0,0);
1953 /* XXX instrumentation */
1954 error = ENOMEM;
1955 return error;
1956 }
1957 /* XXX instrumentation */
1958 uvm_wait("flt_pmfail2");
1959 return ERESTART;
1960 }
1961
1962 mutex_enter(&uvm_pageqlock);
1963 if (flt->wire_fault) {
1964 uvm_pagewire(pg);
1965 if (pg->pqflags & PQ_AOBJ) {
1966
1967 /*
1968 * since the now-wired page cannot be paged out,
1969 * release its swap resources for others to use.
1970 * since an aobj page with no swap cannot be PG_CLEAN,
1971 * clear its clean flag now.
1972 */
1973
1974 KASSERT(uobj != NULL);
1975 pg->flags &= ~(PG_CLEAN);
1976 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1977 }
1978 } else {
1979 uvm_pageactivate(pg);
1980 }
1981 mutex_exit(&uvm_pageqlock);
1982 if (pg->flags & PG_WANTED)
1983 wakeup(pg);
1984
1985 /*
1986 * note that pg can't be PG_RELEASED since we did not drop the object
1987 * lock since the last time we checked.
1988 */
1989 KASSERT((pg->flags & PG_RELEASED) == 0);
1990
1991 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1992 UVM_PAGE_OWN(pg, NULL);
1993 uvmfault_unlockall(ufi, amap, uobj, anon);
1994 pmap_update(ufi->orig_map->pmap);
1995 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1996 return 0;
1997 }
1998
1999
2000 /*
2001 * uvm_fault_wire: wire down a range of virtual addresses in a map.
2002 *
2003 * => map may be read-locked by caller, but MUST NOT be write-locked.
2004 * => if map is read-locked, any operations which may cause map to
2005 * be write-locked in uvm_fault() must be taken care of by
2006 * the caller. See uvm_map_pageable().
2007 */
2008
2009 int
2010 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2011 vm_prot_t access_type, int maxprot)
2012 {
2013 vaddr_t va;
2014 int error;
2015
2016 /*
2017 * now fault it in a page at a time. if the fault fails then we have
2018 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
2019 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2020 */
2021
2022 /*
2023 * XXX work around overflowing a vaddr_t. this prevents us from
2024 * wiring the last page in the address space, though.
2025 */
2026 if (start > end) {
2027 return EFAULT;
2028 }
2029
2030 for (va = start ; va < end ; va += PAGE_SIZE) {
2031 error = uvm_fault_internal(map, va, access_type,
2032 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2033 if (error) {
2034 if (va != start) {
2035 uvm_fault_unwire(map, start, va);
2036 }
2037 return error;
2038 }
2039 }
2040 return 0;
2041 }
2042
2043 /*
2044 * uvm_fault_unwire(): unwire range of virtual space.
2045 */
2046
2047 void
2048 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2049 {
2050 vm_map_lock_read(map);
2051 uvm_fault_unwire_locked(map, start, end);
2052 vm_map_unlock_read(map);
2053 }
2054
2055 /*
2056 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2057 *
2058 * => map must be at least read-locked.
2059 */
2060
2061 void
2062 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2063 {
2064 struct vm_map_entry *entry;
2065 pmap_t pmap = vm_map_pmap(map);
2066 vaddr_t va;
2067 paddr_t pa;
2068 struct vm_page *pg;
2069
2070 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2071
2072 /*
2073 * we assume that the area we are unwiring has actually been wired
2074 * in the first place. this means that we should be able to extract
2075 * the PAs from the pmap. we also lock out the page daemon so that
2076 * we can call uvm_pageunwire.
2077 */
2078
2079 mutex_enter(&uvm_pageqlock);
2080
2081 /*
2082 * find the beginning map entry for the region.
2083 */
2084
2085 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2086 if (uvm_map_lookup_entry(map, start, &entry) == false)
2087 panic("uvm_fault_unwire_locked: address not in map");
2088
2089 for (va = start; va < end; va += PAGE_SIZE) {
2090 if (pmap_extract(pmap, va, &pa) == false)
2091 continue;
2092
2093 /*
2094 * find the map entry for the current address.
2095 */
2096
2097 KASSERT(va >= entry->start);
2098 while (va >= entry->end) {
2099 KASSERT(entry->next != &map->header &&
2100 entry->next->start <= entry->end);
2101 entry = entry->next;
2102 }
2103
2104 /*
2105 * if the entry is no longer wired, tell the pmap.
2106 */
2107
2108 if (VM_MAPENT_ISWIRED(entry) == 0)
2109 pmap_unwire(pmap, va);
2110
2111 pg = PHYS_TO_VM_PAGE(pa);
2112 if (pg)
2113 uvm_pageunwire(pg);
2114 }
2115
2116 mutex_exit(&uvm_pageqlock);
2117 }
2118